
On Generalization of Cheon’s Algorithm

Takakazu Satoh⋆

Department of Mathematics,
Tokyo Institute of Technology, Tokyo, 152-8551, Japan

satohcgn@mathpc-satoh.math.titech.ac.jp

Abstract. Let G be a cyclic group generated by g whose group oper-
ations are written additively. Assume that the order of G is a prime p.
Let d be a divisor of p + 1. Let c ∈ Fp. Given cg, c2g, . . ., c2dg, Cheon[4]
gave an algorithm to compute c more efficiently than solving ordinal dis-
crete logarithm problems. With improvement by Kozaki, Kutsuma and
Matsuo[5], the algorithm runs with O(max(d,

p

p/d)) group operations.
We generalize his algorithm for divisors of ϕn(p) where n ∈ N and ϕn is
the n-th cyclotomic polynomial. In case that d is a divisor of p + 1 (i.e.
the case n = 2), our algorithm requires only cg, . . ., cdg to compute c
with Õ(max(d,

p

p/d)) operations of G and Fp.

Key words: discrete log problem, generic algorithm, Cheon’s algorithm

1 Introduction

Let G := 〈g〉 be a cyclic group of prime order p. We write the group op-
erations of G additively. The classical discrete logarithm problem (DLP) with
respect to the base point g is a problem to compute c ∈ Fp from input date g
and cg. We can compute c by using Shank’s Baby Step Giant Step (BSGS) algo-
rithm[8] with O(

√
p) group operations. It is independently proved by Nechaev[7]

and Shoup[9] that the growth rate estimate is best possible for generic algo-
rithms solving DLP. In Eurocrypt 2006, Cheon[4] made a breakthrough. Let d
be a divisor of p − 1. For given cg and cdg, he gave an algorithm to compute
c with O(log pmax(

√
d,

√

p/d)) group operations. Kozaki, Kutsuma and Mat-

suo reduced a number of group operation to O(max(d,
√

p/d)). The l-strong
Diffie-Hellman problem is to compute cl+1g from given g, cg, . . ., clg. (See e.g.,
Boneh and Boyen[2], Boneh, Boyen and Goh[3].) One of important consequences
of Cheon’s algorithm is that the difficulty of the strong Diffie-Hellman problems
depends on p even under generic algorithms.

Cheon[4] also gave an algorithm for a divisor d of p + 1. For given cg, c2g,
. . ., c2dg, Cheon’s algorithm together with Kozaki et al.’s technique computes c
with O(max(d,

√

p/d)) group operations. This is based on a certain embedding
from F×

p to the unique subgroup of F×

p2 of order p+ 1. In [4, Remark 1], Cheon

wrote: (group operation notation is changed to additive notation)
⋆ The work was supported by the Grant-in-Aid for the Scientific Research (B)

18340005.

in our situations we can use the Diffie-Hellman oracle DH(xg, yg) =
xyg only when x is fixed and y = xl for some small l. This restriction is
an obstacle when we try to generalize the proposed algorithm into other
extension fields of Fp or elliptic or hyperelliptic curves over Fp.

In this paper, we generalize Cheon’s algorithm to the case that d satisfies the
following two conditions.

(1) There exists an integer n for which d|ϕn(p), where ϕn(X) is the n-th cyclo-
tomic polynomial.

(2) There exists integers u, ∆ and δ such that du(pn−1)
ϕn(p) ≡ ∆ − δ mod (pn − 1)

and that 0 ≤ ∆, δ, u < pn − 1 and that gcd(pn − 1, u) = 1.

For an integer a :=
∑

i≥0 aip
i with 0 ≤ ai < p, we define its p-adic weight ‖a‖p

as
∑

i≥0 ai. Put w := ‖∆‖p−‖δ‖p. We show that, given cg, . . ., cwg, we can com-

pute c with Õ(n2(n log p+w+n3 +
√
D)) group operations and field arithmetic

in Fp. Cheon’s algorithm for a divisor of p+1 corresponds to the case of n = 2 of
our algorithm. However, in this case, there is a choice of u, ∆ and δ which gives
w = d and our algorithm needs only cg, . . ., cdg for input and Õ(max(d,

√

p/d))
group operations and arithmetic operations of Fp. An effectiveness of our al-
gorithm for the cases n ≥ 3 is not clear. Numerical experiments suggests that
there exists an integer n ≤ 14 and a divisor D of ϕn(p) satisfying D ≈ p2/3

for most of p. Although ϕn(p) is too large to factorize completely, finding its
divisor of bit size 20∼60 (if any) is not hard if we use elliptic curve factorization
method by Lenstra[6]. One more thing to be considered is that in pairing based
cryptography, it is necessary to use use p such that (1) is fulfilled with small n.
Thus, difficulty to find c depends on existence of u, ∆ and δ satisfying (2) for
which ‖∆‖p − ‖δ‖p is small. Although (2) is stated in the elementary number
theory, finding such u, ∆ and δ is much complicated than it looks. So far, the
author obtained neither proof of non-existence of such u, ∆ and δ for n ≥ 3 nor
non-trivial example of u, ∆ and δ. Probably, it would be a prudent choice to use
a larger p until we obtain more precise understanding on Cheon’s algorithm.

The rest of the paper is organized as follows. In Section 2, we present our
generalization of Cheon’s algorithm. In Section 3, we show Cheon’s algorithm is
a special case of our algorithm. In Section 4, we present some results of numerical
experiments and we discuss cryptographic implication of our results.

Notation.

Throughout the paper, the word ”operation” means either arithmetic oper-
ations of Fp or group operations of G unless otherwise noted. We denote the
group of n-th roots of unity by µn.

2 Generalized Cheon’s Algorithm

In this section, we give our generalization of Cheon’s algorithm. Let p be an
odd (large) prime. LetG = 〈g〉 be a cyclic group of order p whose group operation

2

is written additively. Our main idea is to embed G to GL(n,Fp) rather than a
multiplicative group of an extension field of Fp.

Given cg, c2g, . . ., we want to compute c ∈ Fp. Let n ≥ 2 be an integer. We
denote the n-th cyclotomic polynomial by ϕn. We extend Cheon’s algorithm in
the case that ϕn(p) has a certain divisor whose explicit condition is given later.

Put q := pn. Let θ ∈ F×
q be a generator of Fq over Fp and let χθ(T) :=

T n + an−1T
n−1 + · · ·+ a1T + a0 be the monic minimal polynomial of θ over Fp.

Note Fp(θ) = Fq. Let Θ be the representation matrix of the multiplication by θ
on Fp(θ) with respect to the base { 1, θ, . . . , θn−1 }. Thus,

Θ :=

0 0 · · · 0 0 −a0

1 0
... −a1

0 1 0
... −a2

0 0
. . .

. . .
...

...

...
. . .

. . . 0
...

0 0 · · · 0 1 −an−1

.

Note that the characteristic polynomial of Θ coincides with χθ. Denote the p-
th power Frobenius map by πp. Define a ring homomorphism ε from Fq to
Mat(n,Fq) by

ε(z) := diag(z, πp(z), . . . , π
n−1
p (z))

where diag(a1, . . . , an) is the diagonal matrix whose i-th diagonal entry is ai.
Since χθ is irreducible over Fp, all the roots of χθ are θ, πp(θ), . . ., π

n−1
p (θ).

Let v0 ∈ Fn
q be an eigenvector of Θ for the eigenvalue z. Then, πi

p(v0) is an

eigenvector for the eigenvalue πi
p(θ). On the other hand, χθ is square free and

thus Θ is diagonisable. Specifically, we have

V −1ΘV = ε(θ)

where V := (v0 πp(v0) · · · πn−1
p (v0)).

Lemma 1. For any z ∈ Fq, it holds that V ε(z)V −1 ∈ Mat(n,Fp).

Proof. There exist a0, . . ., an−1 ∈ Fp satisfying z =
∑n−1

i=0 aiθ
i. Then, V ε(z)V −1

= V ε
(
∑

aiθ
i
)

V −1 = V
∑

aiε(θ)
iV −1 =

∑

aiΘ
i ∈ Mat(n,Fp). ⊓⊔

Definition 1. For a given integer ν, we put ‖ν‖p :=
∑

i≥0 νi where νi is an

integer satisfying 0 ≤ νi < p and
∑

i≥0 νip
i = ν.

Lemma 2. Let ν be a positive integer less than pn and put N := ‖ν‖p. Then
there exists N + 1 matrices A0, . . ., AN ∈ Mat(n,Fp) satisfying

(xI +Θ)ν =
N

∑

j=0

xjAj (3)

3

for all x ∈ Fp. We can compute A0, . . ., AN with Õ(n3(log p+N+n)) operations.

Proof. Since ν < pn, we can write ν =
∑n−1

i=0 νip
i with 0 ≤ νi < p. Observe that

(x+ θ)ν =

n−1
∏

i=0

(x+ θ)νip
i

=

n−1
∏

i=0

(x + πi
p(θ))

νi .

for x ∈ Fp. In practice n is not so large. So we use naive arithmetic algorithms
to estimate the time complexity of arithmetic operations of Fq in terms of those
of Fp. We can compute πp(θ), . . ., π

n−1
p (θ) with O(n log p) multiplications in

Fq which amounts to Õ(n3 log p) arithmetic operations in Fp. (Whereas, we use
an FFT based polynomial multiplication algorithm for multiplications of poly-
nomials with coefficients in Fq since νi and N are as large as such an asymp-
totic algorithm is very efficient.) Let X be an indeterminate. We can compute
(X + πi

p(θ))
νi ∈ Fq[X] with Õ(n2νi) operations for each i. Computing products

of these n polynomials with Õ(n3N) operations, we obtain α0, . . ., αN ∈ Fq

satisfying

(x+ θ)ν =

N
∑

j=0

xjαj . (4)

Applying ε followed by the conjugation by V , we see that

(xI +Θ)ν = V (xI + ε(θ))νV −1 =

N
∑

j=0

xjV ε(αj)V
−1.

Thus we can take V ε(αi)V
−1 as Aj satisfying (3) for all x ∈ Fp. The assertion

Aj ∈ Mat(n,Fp) follows from Lemma 1. Note that we have already computed
πp(θ), . . ., π

n−1
p (θ). Since Θ ∈ Mat(n,Fp), we obtain Θ2, . . ., Θn−1 with O(n4)

operations with the naive matrix multiplication algorithm. Then for each j we
obtain Aj from αj with O(n3) operations. These estimates give overall time
complexity. ⊓⊔
Definition 2. Given ν ∈ N, we denote the matrix coefficient polynomial

∑N
j=0X

jAj

by Rν(X).

Now we can state our generalization of Cheon’s algorithm. Let d be a proper
divisor of ϕn(p) and put D := ϕn(p)/d. Take a generator θ of Fq over Fp

satisfying
θd(pn−1)/ϕn(p) 6= 1. (5)

(Testing random elements of F×
q will give such a θ sooner or later.) Let c ∈ Fp

and put M := cI + Θ. Note V −1MV = ε(c + θ). Let ζ be a primitive D-th
root of unity. Since (c + θ)(p

n−1)/D ∈ µD, there exists an integer m satisfying
0 ≤ m < D and (c+ θ)(p

n−1)/D = ζm, or equivalently

M (pn−1)/D = Ωm where Ω := V ε(ζ)V −1. (6)

We note Ω ∈ Mat(n,Fp) by Lemma 1. Suppose we found non-negative integers
u, ∆ and δ satisfying

4

(7) gcd(u, pn − 1) = 1, 0 ≤ ∆ < pn, 0 ≤ δ < pn, 0 < u < pn−1.
(8) u(pn − 1)/D ≡ ∆− δ mod (pn − 1).

Note that (7) implies gcd(u,D) = 1. Thus (6) holds if and only if

M∆ = ΩmuM δ. (9)

We use Shanks’ Baby Step Giant Step algorithm to find m. Put L =
⌈√

D
⌉

.

There exists integers m1 and m2 satisfying 0 ≤ m1 < L, 0 ≤ m2 < L and
m = m1L+m2. Multiplying Ω−m1L to (9) from left, we see that (9) is equivalent
to

Ω−m1uLM∆ = Ωm2uM δ. (10)

Once we have obtained m, we compute c as a solution of

r∆(x) = ζmurδ(x) (11)

where rν(x) is the right hand side of (4) for ν ∈ N. This is a polynomial equation
with respect to x of degree at most w := max(‖∆‖p, ‖δ‖p). This is obvious except
possibly for the case m = 0 in which case (11) might be an identity. However,
evaluating (11) at x = 0, we obtain θd = 1, which contradicts to the choice of
θ as (5). Therefore, (11) is not an identity. With asymptotic fast algorithms,
solving (11) costs Õ(w) operations.

It remains to see how we can test whether (10) holds or not. Since the order
of G is p, the set Gn is a left Mat(n,Fp) module by the natural action of Fp on
G. Explicitly, the action is

(rij)1≤i,j≤n(gi)1≤i≤n :=

n
∑

j=1

rijgj

1≤i≤n

.

Let ei ∈ Gn be a column vector whose i-th row is g and other rows are 0 ∈ G.

Lemma 3. Eq. (10) holds if and only if

Ω−m2uLR∆(c)e1 = Ωm1uRδ(c)e1. (12)

Proof. Note that Mν = Rν(c) for any c ∈ Fp and ν ∈ N. Hence ”only if” part
is obvious. To prove converse, note that, as a left Mat(n,Fp) module, Gn is
isomorphic to Fn

p . Hence it is enough to show

Ω−m2uLR∆(c)ei = Ωm1uRδ(c)ei (13)

for all 1 ≤ i ≤ n. By the definition of Θ, we see ei = Θi−1e1. However, Θ
commutes with M and Ω. Multiplying Θi−1 to (12) from left, we obtain (13).

⊓⊔

We end this section with the resulting algorithm.

5

Algorithm 1.

Input: p, n, χθ, d, u, ∆, δ, g, cg, c2g, . . ., cwg
Output: c
Procedure:

1: D := ϕn(p)/d ; w := ‖∆‖p − ‖δ‖p ; ζ := θ(p
n−1)/D ;

2: compute Θ, R∆(X) and Rδ(X)
3: v1 := R∆(c)e1 ; v2 := Rδ(c)e1 ;
4: compute Ωu

5: L :=
⌈√

D
⌉

;

6: Build a look up table consisting of (m2, Ω
m2uv2) for m2 = 0, . . ., L

7: Find a match Ω−m1uLv1 = Ωm2uv2
8: m := m1L+m2

9: find roots ξ of r∆(x) = ζmurδ(x) in Fp

10: output ξ if ξg = cg

With the technique used in Kozaki, Kutsuma and Matsuo[5], we can perform
Step 6 and Step 7 with O(n2

√
D) operations. Thus overall time complexity is

Õ(n2(n log p+ w + n3 +
√
D)) operations.

3 Relation to Cheon’s Algorithm

In this section, we observe that Cheon’s algorithm is the case n = 2 of our
algorithm. We keep notation in the previous section.

Let d be a proper divisor of p + 1 = ϕ2(p). Then D = (p + 1)/d and (p2 −
1)/D = (p − 1)d. Let ζp+1 be a (fixed) primitive (p + 1)-th root of unity and

put ζD := ζ
(p+1)/D
p+1 . We take u = 1, ∆ = pd and δ = d. Then, ‖∆‖p = ‖δ‖p = d.

Thus with d inputs cg, c2g, . . ., cdg, we can run Algorithm 1. In this case, as is
Cheon’s original algorithm, we can obtain c without solving a degree d equation.
Suppose we have obtained m satisfying

(c+ θ)pd = ζm
D (c+ θ)d. (14)

In order to read off c, Cheon used the BSGS again, which requires only O(
√
d)

operations. This is a result of the choice of ∆ and δ. By (14), there exists k ∈ N

such that (c + θ)p−1 = ζ
m+ p+1

d
k

p+1 . We can apply the BSGS procedure to find k.

Put n := m + p+1
d k. Then (14) yields c + θp = ζn

p+1(c + θ). Hence, we obtain

c =
ζn

p+1θ−θp

1−ζn
p+1

with no more group operations.

Cheon’s original algorithm requires 2d+ 1 inputs g, cg, . . ., c2dg. The reason
why we need only d+ 1 inputs g, cg, . . ., cdg comes from the decomposition of
(p+ 1)/d to a differences of low weight integers. In Cheon’s original algorithm,
a non-square element t ∈ F×

p and its square root ψ ∈ F×
p2 are used to construct

1 + tc2

1 − tc2
+

2c

1 − tc2
ψ ∈ µp+1 ⊂ F×

p2

6

from an unknown c ∈ F×
p . In our method c+θ 6∈ µp+1 in general but (c+θ)p−1 ∈

µp+1 and p− 1 = 1 · p− 1.
We note that the O-constant in the time complexity of Cheon’s original al-

gorithm is smaller than that of our algorithm. However, decreasing number of
inputs seems to be more important in case that we obtain c2g, c3g, . . . by com-
municating other entity who knows c. For example, Cheon[4, Sect. 4.1] proposed
a “protocol” to obtain cn+1g from cng by requesting one blind signature due
to Boldyreva[1]. Reducing number of signature queries from 2d to d makes an
attempt to obtain necessary input data less conspicuous.

4 Cryptographic Implication of our Algorithm

In this section, we consider time complexity of our algorithm and its crypto-
graphic implications. We keep the notation in the previous sections. Let t ≤ 1

2 .

The conditions on p in order that the time complexity of our algorithm is Õ(pt)
is that there exist integers n, d, ∆, δ, u satisfying the following conditions:

(a) d|ϕn(p) and n2ϕn(p)
d = Õ(p2t)

(b) ud(pn−1)
ϕn(p) ≡ ∆− δ mod (pn − 1) where 0 ≤ ∆ < pn − 1, 0 ≤ δ < pn − 1 and

gcd(u, pn − 1) = 1.
(c) n2w = Õ(pt) where w = max(‖∆‖p, ‖δ‖p).

In order to perform arithmetic operation in Fq, it seems adequate to determine
an upper bound N of n. Although there is no theoretical support, the integer
d satisfying (a) seems to exists for most of p unless N or t is too small. The
author ran numerical experiments with N = 14. Among 18 randomly generated
140 bit primes p, only two primes do not have a divisor d of ϕn(p) satisfying
270 ≤ d < 2105 and 3 ≤ n ≤ 14. For 150 bit primes, among 23 randomly
generated primes, only one prime does not have a divisor d of ϕn(p) satisfying
275 ≤ d < 2113 and 3 ≤ n ≤ 14. In order to find divisors, a ρ-method based
factoring algorithm up to 224 steps was used. Probably, with some increase of
N , the condition (a) is always fulfilled for most of p.

Given d satisfying (a) and any integer u satisfying gcd(u, pn − 1) = 1, there
always exist many integers ∆ and δ satisfying (b). Thus, difficulty of the w-
strong Diffie-Hellman problem (or inefficiency of our algorithm) depends on the
non-existence of integers u, ∆ and δ satisfying (c).

For a particular u, the proposition given at the end of this section (where we

take ν = ud(pn−1)
ϕn(p)) gives a criterion of existence of ∆ and δ which gives small w.

However, to the best knowledge of current author, there is no known criterion
or algorithm to test existence of u, ∆ and δ giving small w. Whether one can
intentionally create p for which our algorithm especially runs faster.

Assuming w ≈
√

ϕn(p)/D (which holds for Cheon’s original algorithm), our
algorithm is most efficient when w ≈ p1/3. However we cannot take w so large
due to space complexity constraint. In practice, w ≈ 220 seems to be well above
feasible value. Under the assumption,

√
D, the search size for the BSGS process

7

involved in our algorithm, is smaller by a factor of
√
w than

√
p. This means

that in order to compensate security loss, even if our algorithm works with best
efficiency, we need to increase the bit size of p by the bit size of w.

We end this section with a proof of an inequality used in the above argument.

Proposition 1. Let ν =
∑

i≥0

aip
i with |ai| < p

2 be the signed p-adic expansion of

ν and put ν+ :=
∑

ai>0
aip

i and ν− :=
∑

ai<0
(−ai)p

i. For non-negative integers m

and n satisfying β − γ = ν, it holds that

max(‖β‖p, ‖γ‖p) ≥
1

2
(‖ν+‖p + ‖ν−‖p)

Proof. The assertion is a consequence of

‖β‖p + ‖γ‖p ≥ ‖ν+‖p + ‖ν−‖p. (15)

Let β =
∑

bip
i and γ =

∑

cip
i where 0 ≤ bi < p and 0 ≤ ci < p be p-adic

expansion of β and γ, respectively. We show the minimum value of ‖β‖p + ‖γ‖p

under β − γ = ν is attained with β and γ satisfying

bici = 0, 0 ≤ bi <
p

2
and 0 ≤ ci <

p

2
(16)

for all i ≥ 0. In order to prove this assertion, for given β and γ which satisfy (16)
for 0 ≤ i < k (the case k = 0 is allowed), we construct β′ and γ′ which satisfies
(16) for 0 ≤ i ≤ k. and ‖β′‖p + ‖γ′‖p ≤ ‖β‖p + ‖γ‖p. Put sk := min(bk, ck). In
case of bk − sk >

p
2 , we put

β′ := β + (p− bk)pk and γ′ := γ + (p− bk)pk.

Then ‖β′‖p ≤ ‖β‖p + 1 − bk and ‖γ′‖p ≤ ‖γ‖p + p − bk. (Note bk − sk > 0

implies that ck = sk and thus γ′ = (γ − ckp
k) + (p − (bk − sk))pk.) Therefore,

‖β′‖p + ‖γ′‖p ≤ ‖β‖p + ‖γ‖p +1+ p− 2bk ≤ ‖β‖p + ‖γ‖p. In case of ck − sk >
p
2 ,

we put

β′ := β + (p− ck)pk and γ′ := γ + (p− ck)pk.

Then, by a similar argument, we obtain ‖β′‖p +‖γ′‖p ≤ ‖β‖p +‖γ‖p. Otherwise,
we put

β′ := β − skp
k and γ′ := γ − skp

k.

Then ‖β′‖p ≤ ‖β‖p − sk and ‖γ′‖p ≤ ‖γ‖p − sk. In the all three cases, the
conditions (16) for β′ and γ′ hold for 0 ≤ i ≤ k.

However, the integers β and γ satisfying (16) for all i ≥ 0 and β − γ = ν
are unique, namely (β, γ) = (ν+, ν−). Therefore, (15) holds for all non-negative
integers β and γ satisfying β − γ = ν. ⊓⊔

8

5 Conclusion

We generalized Cheon’s algorithm for divisors of ϕn(p) to the case n ≥ 2. In
case of n = 2, our generalization reduces number of input data as many as half
of Cheon’s original algorithm. The efficiency of n ≥ 3 is open. Until we have an
efficient algorithm to test whether there is a serious security loss or not, it would
be prudent to increase a side of p by, say, 20bits.

References

1. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) Public
Key Cryptography - PKC 2003, Lect. Notes in Comput. Sci., vol. 2567, pp. 31-46.
Springer, Berlin, Heidelberg(2002). doi: 10.1007/3-540-36288-6 3

2. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (ed.) Eurocrypt 2004, Lect. Notes in Comput. Sci., vol. 3027, pp.
56-73. Springer, Berlin, Heidelberg(2004).

3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) Eurocrypt 2005, Lect. Notes in Comput.
Sci., vol. 3494, pp. 440-456. Springer, Berlin, Heidelberg. doi: 10.1007/11426639 26

4. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay,
S. (ed.) Eurocrypt 2006, Lect. Notes in Comput. Sci., vol. 4004, pp. 1-11. Springer,
Berlin, Heidelberg(2006). doi: 10.1007/11761679 1

5. Kozaki, S., Kutsuma, T., Matsuo, K.: Remarks on Cheon’s algorithm for pair-
ing related problems. In: Pairing-based cryptography – Pairing 2007, Lect. Notes
in Comput. Sci., vol. 4575, pp. 302-316. Springer, Berlin-Heidelberg(2007). doi:
10.1007/978-3-540-73489-5 17

6. Lenstra, H.W. Jr.: Factoring integers with elliptic curves. Ann. Math. 126, 649-673
(1987).

7. Nechaev, V.I.: On the complexity of a deterministic algorithm for a discrete loga-
rithm. Mat. Zametki 55, 91-101 (1994), translation in Math. Notes 55(1994) 165-
172.

8. Shanks, D.: Class number, a theory of factorization, and genera. In: 1969 Number
Theory Institute, Proc. Symp. Pure. Math., vol. 20, pp. 415-440. AMS, Providence,
R.I.(1971).

9. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Ad-
vances in cryptology - EUROCRYPT’97, Lect. Notes in Comput. Sci., vol. 1233,
pp. 256-266. Springer, Berlin(1997). doi: 10.1007/3-540-69053-0 18

9

