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Abstract

We study the question of basing symmetric key cryptography on weak secrets. In this setting, Alice
and Bob share an n-bit secretW , which might not be uniformly random, but the adversary has at least
k bits of uncertainty about it (formalized using conditional min-entropy). Since standard symmetric-
key primitives require uniformly random secret keys, we would like to construct an authenticated
key agreement protocol in which Alice and Bob use W to agree on a nearly uniform key R, by
communicating over a public channel controlled by an active adversary Eve. We study this question
in the information theoretic setting where the attacker is computationally unbounded. We show that
single-round (i.e. one message) protocols do not work when k ≤ n

2 , and require poor parameters even
when n

2 < k � n.
On the other hand, for arbitrary values of k, we design a communication efficient two-round

(challenge-response) protocol extracting nearly k random bits. This dramatically improves the pre-
vious construction of Renner and Wolf [RW03], which requires Θ(λ+ log(n)) rounds where λ is the
security parameter. Our solution takes a new approach by studying and constructing “non-malleable”
seeded randomness extractors — if an attacker sees a random seed X and comes up with an arbitrarily
related seed X ′, then we bound the relationship between R = Ext(W ;X) and R′ = Ext(W ;X ′).

We also extend our two-round key agreement protocol to the “fuzzy” setting, where Alice and
Bob share “close” (but not equal) secrets WA and WB , and to the Bounded Retrieval Model (BRM)
where the size of the secret W is huge.
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1 Introduction

In this paper, we study the fundamental problem of symmetric key cryptography: Alice and Bob share
a secret W and wish to communicate securely over a public channel controlled by an active adversary
Eve. In particular, we want the communication to be private and authentic. Of course, this problem
is well studied and can be solved using basic cryptographic primitives, either under computational
assumptions, or even in the information theoretic setting. However, the standard solutions for both
settings assume that the secret W is perfectly (uniformly) random.

In practice, many secrets, such as human-memorable
passphrases and biometrics, are not uniformly random. Even keys that start out perfectly random may
become compromised, for example through side-channel attacks against hardware or due to a malware
infiltration of the storage device. Although all security is lost if the adversary learns the secret in its
entirety, it is often reasonable to assume that the compromise is only partial. This assumption is natural
for side-channel attacks (and was formalized in [MR04, DP08, AGV09]) where the adversary does not
have full access to the device, and for malware infiltration in the Bounded Retrieval Model [Dzi06,
CLW06], where the secret is made intentionally huge so that a malicious program cannot communicate
it fully to an adversary. Lastly, it is conceivable that Alice and Bob, who do not share a secret initially,
can use some physical means to agree on a key about which an eavesdropping adversary will only have
partial information. This is, for example, the case in Quantum Key Agreement [BB84] and in the
wiretap channel model [Wyn75]. In this work, we study a general setting which encompasses all of the
above examples. We assume that Alice and Bob share a weak secret, modeled as a random variable
W arbitrarily distributed over bit-strings of length n, about which an adversary Eve has some side
information, modeled as a random variable Z correlated with W . We want to base symmetric key
cryptography on minimal assumptions about the secrecy of W , and only require that W has at least k
bits of entropy (conditioned on the side-information Z), where k is roughly proportional to the security
parameter. As already mentioned, standard symmetric key primitives can be used in the case where
Alice and Bob share a truly random key, and therefore we ask the following natural question.

Question 1: Can Alice and Bob use a shared weak secret W to securely agree on a nearly
uniform secret key R, by communicating over a public and unauthenticated channel, con-
trolled by an active attacker Eve?

One possible solution to this problem, is to use password authenticated key exchange (PAK) [BMP00,
BPR00, KOY01, GL01, CHK+05, GL06], where the secret W is used as a password. PAK allows Alice
and Bob to agree on arbitrarily many random session keys using the secret W , and achieves strong
security guarantees even when the entropy k is very low. On the other hand, all of the practical
constructions of PAK either use the random oracle model or rely on a trusted common reference string.
The only exception is the construction of [GL01] which, instead, requires many rounds of interaction and
is not practically efficient. In addition, all of the constructions require the use of public key cryptography.
Thus, even though we are in a symmetric key setting where Alice and Bob share a secure secret W , the
use of PAK requires public key assumptions (and expensive public key operations) to take advantage
of it. Also, PAK is a computational primitive, and only provides security when the attacker Eve is
computationally bounded.

In contrast, we will study Question 1 in the information theoretic setting, where the adversary Eve
is computationally unbounded. We call protocols that solve the problem of Question 1 in our setting
(information-theoretic) authenticated key agreement (IT-AKA) protocols. Of course, IT-AKA cannot
achieve all of the security guarantees of PAK. For example, IT-AKA can only be used once to convert a
weak secret W into a uniformly random key R, and cannot be used to generate arbitrarily many session
keys. Also, authenticated key agreement does not provide any security guarantees when the entropy k
is very low (i.e. when the secret can be guessed with a reasonable probability). On the other hand, IT-
AKA achieves information theoretic security and thus allows us to base all of symmetric key cryptography
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(information-theoretic as well computational) on weak secrets. Moreover, our constructions will be
efficient (no public key operations) and do not require a common reference string or any other setup.
For the rest of the paper, we will therefore assume that the adversary Eve is computationally unbounded.

A weaker variant of the our problem, called privacy amplification [BBR88, Mau92, BBCM95], re-
quires that Alice and Bob communicate over an authenticated channel (alternatively, that the attacker
Eve is passive). In this setting, key agreement can be solved using a (strong) randomness extractor
[NZ96], which uses a seed X that is made public to the adversary, to extract nearly uniform random-
ness R = Ext(W ;X) from a weak secret W . Privacy amplification can therefore be done in a one-round
protocol, where Alice sends a seed X to Bob and both parties share the extracted key R.

The question of authenticated key agreement (when there is no authenticated channel and the ad-
versary is active) was first studied by Maurer and Wolf in [MW97], who constructed an IT-AKA protocol
for the case when W has entropy k > 2n

3 (where n is the bit-length of W ). This was later improved
to k > n

2 in the work of [DKRS06]. Both of the above constructions are single-round, but only achieve
authenticity at a price in the communication complexity (requiring at least n − k bits) and the size
of extracted key (which is at most ` < 2k − n bits long, and thus far below the full entropy of W ).
The most troubling aspect of these constructions, however, is the requirement that the entropy must
exceed k > n

2 , which conflicts with our goal of basing symmetric key cryptography on minimal secrecy
assumptions. Moreover, many natural sources of secret randomness, such as biometrics, are unlikely to
satisfy this requirement.

In terms of negative results, Dodis and Spencer [DS02] showed impossibility of one-round message
authentication if the only randomness available to Alice and Bob comes from a weak secret W whose
entropy is k ≤ n

2 . However, in our setting, we assume that the parties also have access to a local
(non-shared) source of perfect randomness. These two settings are very different and, when no perfect
randomness is available, most cryptographic primitives (including privacy amplification) are impossible
even if k > n

2 [MP90, DOPS04, BD07]. Therefore, we feel that the result of Dodis and Spencer has often
been incorrectly interpreted (for example in [RW03, DKRS06, CDF+08]) as showing the impossibility
of one-round authenticated key agreement protocols in our more general setting, where perfect (non-
shared) randomness is available. In this paper we rectify this discrepancy by proving a (non-trivial)
generalization of the [DS02] lower bound for our setting, thus showing that, unfortunately, single-round
protocols do not exist when the entropy is k ≤ n

2 .
In terms of positive results, an interactive IT-AKA for arbitrarily weak secrets (i.e. allowing entropy

k ≤ n
2 ) was constructed by Renner and Wolf in [RW03] using a protocol which requires Θ(λ + log(n))

rounds of interaction, where λ is the security parameter. Several optimizations to the above protocol
were proposed by Kanukurthi and Reyzin [KR09], leading to important practical efficiency gains, but
without improving the (large) asymptotic round complexity of the original protocol. Thus, there is a
huge gap between the lower bound (which shows that at least two rounds of interaction are required)
and the best prior constructions. We therefore turn our attention to the following question, which will
be the central question of this work.

Question 2: What is the minimal amount of interaction required to achieve authenticated
key agreement (IT-AKA) from arbitrarily weak secrets? In particular, is a two-round
protocol possible?

In this paper, we answer Question 2 in the affirmative by giving an efficient construction of the first
two-round IT-AKA protocol for arbitrarily weak secrets, and so bridge the gap between lower bound
and construction. Our protocol only requires k ≥ poly(λ, log(n)), where λ is the security parameter,
and thus allows for entropy k which is sub-linear in the size n of the secret.1 Hence our construction

1Our main (efficient) construction requires k ≥ O(λ2 + log2(n)) which asymptotically matches the requirements on
entropy needed in [KR09]. We show that this can be improved further, by giving a (non-constructive) argument for the
existence of IT-AKA protocols requiring only k ≥ O(λ+ log(n)).
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is optimal in the amount of interaction and requires (essentially) minimal assumptions on the entropy
of the secret W . Our protocol is also efficient in terms of communication complexity and extracts
essentially all of the entropy of W into the final shared key. Therefore, even in the setting n

2 < k � n,
where less efficient one-round protocols are possible, our two-round construction may be preferred.

Our results employ a new technique which differs significantly from the prior work. The main
novelty in our construction is the design of non-malleable extractors, which are an interesting primitive
of independent interest. For non-malleability, we consider an attacker who sees a random extractor
seed X and produces an arbitrarily related seed X ′. We require that the relationship between R =
Ext(W ;X) and R′ = Ext(W ;X ′) is “bounded” in some well-defined manner. To our knowledge, this is
the first work to explore the (non-)malleability properties of extractors, a problem which is particularly
difficult since we must analyze security with respect to a very large class of distributions for W and
methods for modifying the seed X. Our main construction of non-malleable extractors is based on
the (seemingly unrelated) concept of alternating extraction, recently introduced in [DP07]. Using non-
malleable extractors, we show how Alice can authenticate a message to Bob in a simple two-round
(challenge-response) protocol. Lastly, we use this message authentication protocol as a tool for our
construction of two-round authenticated key agreement.

We also present two orthogonal extensions of our basic scheme. In the first extension, we consider
the fuzzy case where Alice and Bob have two different but correlated secrets WA,WB. In the second
extension, we consider the case where the shared secret W is huge (e.g. as in the bounded retrieval
model) and hence efficient protocols require locality — i.e. Alice and Bob can only access a small portion
of W to run their protocol.

2 Notation and Preliminaries

Notation. If W is a probability distribution or a random variable then w ←W denotes that a value w
is sampled randomly according to W . For a randomized algorithm or function f , we use the semicolon
to make the randomness explicit i.e. f(w; r) is the output of f with input w using randomness r.
Otherwise, we let f(w) denote a random variable for the output of f on the value w. Similarly, for a
random variable W , we let f(W ) denote the output of f on an input sampled according to W . We use
U` to denote a uniformly random distribution over ` bit strings.

Min-entropy and Statistical Distance. The statistical distance between two random variables A,B
is defined by SD(A,B) = 1

2

∑
v |Pr[A = v]− Pr[B = v]|. We use A ≈ε B as shorthand for SD(A,B) ≤ ε.

The min-entropy of a random variable W is H∞(W ) def= − log(maxw Pr[W = w]). This notion of
entropy is useful in cryptography since it measures the predictability of W by an adversary. However,
cryptographic secrets cannot usually be analyzed in a vacuum and we have to consider the conditional
predictability of W when sampled according to some joint distribution (W,Z) where the adversary sees
Z. Following [DORS08], the correct corresponding notion is average conditional min entropy defined
by H̃∞(W |Z) def= − log (Ez←Z maxw Pr[W = w|Z = z]). We say that a random variable W is an (n, k)-
source if it is distributed over {0, 1}n and H∞(W ) ≥ k. We say that (W |Z) is an (n, k) source if W takes
values over {0, 1}n and H̃∞(W |Z) ≥ k. Several important background lemmas regarding min-entropy
and statistical distance are given in Appendix B.

Extractors and MACs: We review two information theoretic primitives that we will use extensively
throughout the paper: randomness extractors and (one-time) MACs. A randomness extractor uses a
random seed X as a catalyst to extract nearly uniform randomness R = Ext(W ;X) from a weak source
W . A message authentication code (MAC) uses a private key R to produce a tag σ for a message µ
such that an adversary who sees µ, σ cannot produce a valid tag σ′ for a modified message µ′ 6= µ.
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Definition 1. We say that an efficient function Ext : {0, 1}n × {0, 1}d → {0, 1}` is an (n, k, d, `, ε)-
extractor if for all (n, k)-sources (W |Z), (Z,X,Ext(W ;X)) ≈ε (Z,X,U`) where X is uniform on {0, 1}d.

Definition 2. We say that a family of functions {MACr : {0, 1}m → {0, 1}s}r∈{0,1}n is a δ-secure
(one-time) message authentication code (MAC) if for any µ 6= µ′, σ, σ′, Pr[MACR(µ) = σ |MACR(µ′) =
σ′] ≤ δ where R is uniformly random on {0, 1}n.

Some further notes about the above definitions and the parameters of known constructions for extractors
and MACs are deferred to Appendix A.

3 Interactive Message Authentication

In this section we study the problem of message authentication when Alice and Bob share an arbitrarily
weak secret W about which an adversary Eve has some side-information Z. Alice wants to send an
authenticated message µA to Bob, in the presence of an active attacker Eve, who has complete control
over the network and can modify protocol messages arbitrarily. Bob should either correctly receive µA,
or detect an active attack and quit by outputting ⊥.

Definition 3. An (n, k,m, δ)-message authentication protocol AUTH is a protocol in which Alice
starts with a source message µA ∈ {0, 1}m and, at the conclusion of the protocol, Bob outputs a received
message µB ∈ {0, 1}m ∪ {⊥}. We require the following properties:
Correctness. If the adversary Eve is passive then, for any source message µA ∈ {0, 1}m, Pr[µB =
µA] = 1.
Security. If (W |Z) is an (n, k)-source then, for any source message µA ∈ {0, 1}m and any active
adversarial strategy employed by Eve, Pr[µB 6∈ {µA,⊥}] ≤ δ.

For the case of perfectly random secrets W , it is well-known how to solve the above problem using
message authentication codes (MAC), where the authentication protocol consists of a single round in
which Alice sends her message µA along with a tag σ = MACW (µA). We show that this strategy
does not (in general) extend to the case of weak secrets. Namely, one-round message authentication
protocols are only possible if the entropy of the secret is at least k > n

2 . In addition, even when this
condition does hold, a single-round protocol will have a communication complexity of roughly n−k bits.
This lower bound often makes one-round protocols impossible, as in the setting of biometrics where the
entropy-rate is often k < n

2 , or impractical, as in the Bounded Retrieval Model where a communication
complexity of n− k bits would be huge and on the order of several gigabytes. Our lower bound applies
to authentication protocols in which Alice can authenticate even a single bit. As mentioned in the
introduction, this result can be thought of as a (non-trivial) extension of [DS02] to the setting where
Alice and Bob have access to a local (non-shared) source of perfect randomness. The proof of the
following theorem appears in Appendix C.

Theorem 4. Any one-round (n, k,m, δ)-message authentication protocol with security δ < 1
4 must

satisfy k > n
2 and must have a communication complexity of at least n− k − 2 bits.

In the rest of this section, we construct an efficient two-round authentication protocol that can tolerate
entropy k � n

2 , thus showing that the above lower bound does not extend beyond a single round.
Our protocol (see Figure 1) has a simple challenge-response structure; Bob initiates the conversation
by sending a random challenge to Alice, who then uses the secret W to compute a response that
authenticates her message. In our protocol, the challenge that Bob sends to Alice is a seed X for some
randomness extractor Ext. If the adversary does not modify the seed, then Alice and Bob will use it
to derive a shared random key R = Ext(W ;X). Alice can then authenticate her message µA, by using
R as a key for a message authentication code MAC and sending the tag σ = MACR(µA) along with
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µA as her response to Bob. This gives us a very natural construction of a two-round authentication
protocol based on an extractor and a MAC. Unfortunately, the construction is not secure in general. The
problem is that Eve can modify the extractor seed X to some arbitrarily related value X ′, causing Alice
to derive some incorrect, but possibly related, key R′ = Ext(W ;X ′). Alice then uses R′ to (incorrectly)
compute her response σ′ = MACR′(µA). In general, the incorrectly computed tag σ′ may allow the
adversary to forge a valid tag σ̃ = MACR(µB) for a new message µB 6= µA under the correct key R.
One can think of this as a related key attack where Eve learns the tag computed under a related key
and forges a tag for a new message under the original key. Therefore, we must somehow restrict the
adversarial attacks that Eve can perform by modifying the seed X. We use a two-pronged approach to
combat this problem. Firstly, we construct an extractor which has some “non-malleability” property
meaning that if an attacker sees a random seed X and comes up with a related seed X ′ then we bound
the relationship between the Bob’s key R = Ext(W ;X) and Alice’s incorrect key R′ = Ext(W ;X ′).
Secondly, we construct special MACs which are resistant to the limited types of related key attacks
that our extractor allows. We then plug our special constructions of extractors and a MACs into the
framework shown in Figure 1, to construct a two round authentication protocol.

Alice: W,µA Eve: Z Bob: W

Sample X.
R = Ext(W ;X)

X ′ ←−−−−−−−−−− X
R′ = Ext(W ;X ′)
σ′ ← MACR′(µA)

(µA, σ
′) −−−−−−−−−−→ (µB , σ̃)

σ̃
?= MACR(µB)

Figure 1: A Framework for Message Authentication Protocols.

We present two instantiations of the above framework. As our first instantiation, we define fully
non-malleable extractors, which essentially guarantee that randomness extracted under a modified seed
is completely unrelated to that extracted under the original seed. We prove that (surprisingly) such
extractors do indeed exist and can achieve very good parameters. We do so using a probabilistic method
argument and therefore this approach does not help us in finding an efficient implementation. The strong
non-malleability property essentially prevents Eve from performing any kind of related key attack and
therefore, in the first approach, we can use standard one-time MACs for the response. In our second
approach, we define a weaker non-malleability property that we call look-ahead and give an efficient
construction of look-ahead extractors. We then construct a new message authentication code which
is specifically tailored to withstand the limited types of related key attacks that look-ahead extractors
allow.

3.1 Approach 1: Fully Non-Malleable Extractors (non-constructive)

In this section, we define a powerful primitive called a (fully) non-malleable extractor. This is a seeded
extractor which takes a weak secret W and extracts randomness R using a seed X. For the non-
malleability property, we consider the following attack game. The adversary gets the seed X and comes
up with an arbitrarily related seed X ′ 6= X. The adversary then learns the value R′ extracted from W
under the seed X ′. We require that the original randomness R still looks uniformly random even when
given R′, and thus the two values are completely unrelated.

Definition 5. A function nmExt : {0, 1}n×{0, 1}d → {0, 1}` is a (n, k, d, `, ε) non-malleable extractor
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(NM-EXT) if, for any (n, k)-source (W |Z) and any adversarial function A:

(Z,X, nmExt(W ;A(X,Z)), nmExt(W ;X)) ≈ε (Z,X, nmExt(W ;A(X,Z)), U`)

where X is uniformly random over {0, 1}d and A(X,Z) 6= X.

Upon seeing the definition, it is not clear if non-malleable extractors can exist at all. In fact, one
obvious attack would be for the adversary to choose a random seed X ′ unrelated to X and thus learn
some ` bits of information about W from R′. In order for nmExt(W ;X) to then look random, we
need to make sure that W still has at least ` bits of residual entropy left after ` bits are revealed,
showing that we need ` < k

2 (i.e. we can extract at most half of the entropy) just to protect against
an adversary who sees the value of the extractor at a random and unrelated seed X ′. Of course, an
adversary that can choose an arbitrarily related seed X ′ has significantly more power and there is no
immediate reason to believe that we can defend against such an adversary at all. Surprisingly, using
the probabilistic method, we show that non-malleable extractors do indeed exist and that the condition
` < k

2 is essentially sufficient. The proof appears in Appendix D.1. It requires a careful analysis of the
dependencies introduced by the inclusion of a related-seed attacker A and thus is significantly more
involved than the simple probabilistic method argument for standard extractors.

Theorem 6. There exists an (n, k, d, `, ε) non-malleable extractor for any integers n ≥ k, d, ` and any
ε > 0 as long as k > 2`+ 3 log (1/ε) + log(d) + 9 and d > log(n− k + 1) + 2 log (1/ε) + 7.

Plugging in a non-malleable extractor and a one-time MAC into our main construction (Figure 1) gives
us a two-round authentication protocol: Bob picks an extractor seed X, computes R = nmExt(W ;X)
and sends X to Alice. Alice receives a (possibly modified) seed X ′ and computes R′ = nmExt(W ;X ′).
She then uses R′ as a key to a standard MAC to authenticate her message µA to Bob. It is fairly simple
to analyze the security of the protocol. If X ′ 6= X then, by non-malleability, the value R′ is unrelated
to the random key R and hence the value σ′ = MACR′(µA) will not help the adversary produce a valid
tag σ̃ under the key R — not even to authenticate Alice’s actual message µA! On the other hand,
if X ′ = X then R′ = R and hence we can rely directly on the security of the MAC to ensure that
µB = µA. Therefore we get the following theorem and corollary for the existence of two-round message
authentication protocols with nearly optimal parameters. See Appendix D.2 and Appendix D.3 for
proofs.

Theorem 7. Assume that nmExt is a (n, k, d, `, ε) non-malleable extractor and that the collection
{MACr : {0, 1}m → {0, 1}s}, indexed by keys r ∈ {0, 1}`, is a δ-secure one-time MAC. Then our con-
struction outlined above gives us a (n, k,m, 2(δ + ε))-message authentication protocol with two rounds
of interaction and a communication complexity of d+ s+m bits .

Corollary 1. There exist (n, k,m, δ)-message authentication protocols with two rounds of interaction
for any integers n ≥ k,m and any δ > 0 as long as k > O

(
log(log(n)) + log(m) + log

(
1
δ

))
. Moreover,

the communication complexity of such protocols is m+O
(
log(n) + log(m) + log

(
1
δ

))
.

3.2 Approach 2: Look-Ahead Extractors (efficient construction)

In this section, we define a weaker notion of non-malleability called look-ahead. A look-ahead extractor
uses a random seed X to extract t blocks of randomness R1, . . . , Rt from a secret W . Assume that a
seed X ′ is arbitrarily related to X and that the blocks R′1, . . . , R

′
t are extracted from W using X ′. We

insist that any suffix Ri+1, . . . , Rt of the original sequence looks uniformly random, even when given
the prefix R′1, . . . , R

′
i in the related sequence. In other words, the adversary cannot modify the seed and

use the (incorrectly) extracted blocks to look ahead into the the original sequence of blocks.
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Definition 8. Let laExt : {0, 1}n × {0, 1}d → ({0, 1}`)t be a function such that laExt(W ;X) outputs
blocks R1, . . . , Rt with Ri ∈ {0, 1}`. We say that laExt is a (n, k, d, `, t, ε)-look-ahead extractor if, for
any (n, k)-source (W |Z), any adversarial function A and any i ∈ {0, . . . , t− 1},(

Z,X, [R′1, . . . , R
′
i], [Ri+1, . . . , Rt]

)
≈ε
(
Z,X, [R′1, . . . , R

′
i], U`(t−i)

)
(1)

where [R1, . . . , Rt] = laExt(W ;X), X ′ = A(X,Z), [R′1, . . . , R
′
t] = laExt(W ;X ′).

We note that this is a significantly weaker property than full non-malleability. For example, given
a random seed X, there might be a related seed X ′ such that laExt(W ;X) = laExt(W ;X ′) with high
probability. Nevertheless, we will show that look-ahead suffices for our needs. Our construction of a look-
ahead extractor is based on the idea of alternating extraction, which was introduced by Dziembowski
and Pietrzak in [DP07] as a tool for building an intrusion resilient secret sharing scheme. In the following
section we review this concept using our own terminology and present an alternating-extraction theorem
which captures the main ideas implicit in [DP07], in an abstracted and (slightly) generalized form.

Quentin: Q,S1 Wendy W

S1

S1
−−−−−−−−−−→

R1
←−−−−−−−−−− R1 = Extw(W ;S1)

S2 = Extq(Q;R1)
S2

−−−−−−−−−−→
R2

←−−−−−−−−−− R2 = Extw(W ;S2)

. . .

St = Extq(Q;Rt−1)
St

−−−−−−−−−−→
Rt = Extw(W ;St)

Figure 2: Alternating Extraction

Alternating Extraction. Assume that two parties, Quentin and Wendy, have values Q,W respec-
tively such that W is kept secret from Quentin and Q is kept secret from Wendy. Let Extq,Extw be
randomness extractors (with possibly different parameters) and assume that Quentin also has a random
seed S1 for the extractor Extw. The alternating extraction protocol (see Figure 2) is an interactive
process between Quentin and Wendy, which runs in t iterations. In the first iteration, Quentin sends
his seed S1 to Wendy, Wendy computes R1 = Extw(W ;S1), sends R1 to Quentin, and Quentin com-
putes S2 = Extq(Q;R1). In each subsequent iteration i, Quentin sends Si to Wendy, who replies with
Ri = Extw(W ;Si), and Quentin computes Si+1 = Extq(Q;Ri). Thus Quentin and Wendy together
produce the sequence:

S1, R1 = Extw(W ;S1), S2 = Extq(Q;R1), . . . , St = Extq(Q;Rt−1), Rt = Extw(W ;St) (2)

The alternating-extraction theorem says that there is no better strategy that Quentin and Wendy can
use to compute the above sequence. More precisely, let us assume that, in each iteration, Quentin is
limited to sending at most sq bits to Wendy who can then reply by sending at most sw bits to Quentin
where sq and sw are much smaller than the entropy of Q,W (preventing Quentin from sending his
entire value Q). Then, for any possible strategy cooperatively employed by Quentin and Wendy in the
first i iterations, the values Ri+1, Ri+2, . . . , Rt look uniformly random to Quentin (and, symmetrically,
Si+1, Si+2, . . . , St look random to Wendy). In other words, Quentin and Wendy acting together cannot
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speed up the process in some clever way so that Quentin would learn Rj (or even distinguish it from
random) in fewer than j iterations. We prove the following theorem in Appendix E.1, essentially using
the techniques of [DP07].2

Theorem 9 (Alternating Extraction). Let (W |Z) be an (nw, kw)-source and Q be an (nq, kq)-source
independent of W,Z. For any integers sq, sw, t, `, let Extw,Extq be extractors with respective parameters

(nw, kw − (sw + `)t, `, `, εw) , (nq, kq − (sq + `)t, `, `, εq)

so that the seed size and extracted key length is ` in both cases. Let S1 be uniformly random on {0, 1}`
and define R1, S2, R2, . . . , St, Rt as in equation (2). Let Aq(Q,S1, Z),Aw(W,Z) be interactive machines
such that, in each iteration, Aq sends at most sq bits to Aw which replies with at most sw bits to Aq.
Let V i

w, V
i
q denote the views of the machines Aw,Aq respectively, including their inputs and transcripts

of communication, after the first i iterations. Then, for all 0 ≤ i ≤ t− 1,(
V i
q , Ri+1, Ri+2, . . . , Rt

)
≈ε
(
V i
q , U`(t−i)

)
and

(
V i
w, Si+1, Si+2, . . . , St

)
≈ε
(
V i
w, U`(t−i)

)
(3)

where ε = t2(εw + εq).

Construction of a Look-Ahead Extractor. At first it may seem surprising that alternating ex-
traction (which is an interactive protocol) can help us in the construction of a non-malleable extractor
(which is a non-interactive primitive). Our construction of a look-ahead extractor is relatively simple.
We let X = (Q,S1) be a seed, and define

laExt(W ; (Q,S1)) def= R1, . . . , Rt. (4)

where R1, . . . , Rt are generated as in equation (2). Essentially, the extractor uses the seed X = (Q,S1)
to run Quentin’s side and the secret W to run Wendy’s side in the alternating-extraction protocol for
t iterations and outputs all of Wendy’s blocks R1, . . . , Rt at the conclusion. We use the alternating-
extraction theorem to analyze resistance of this construction to malleability attacks. Suppose that a
modified seed X ′ = (Q′, S′1) = A((Q,S1), Z) is used to extract R′1, . . . , R

′
t. Then that corresponds to

an adversarial strategy Aq for Quentin where he runs A on his inputs, and then continues running the
protocol with the values S′1, Q

′. Wendy’s strategy is unchanged and she sends the values R′1, . . . , R
′
t

to Quentin. Note that Quentin’s view is therefore V i
q = (Z,X,R′1, . . . , R

′
i) and hence the look-ahead

property (equation (1)) follows directly from the alternating-extraction theorem (equation (3)).

Theorem 10. Given an (nw, kw−(2`)t, `, `, εw)-extractor Extw and an (nq, nq−(2`)t, `, `, εq)-extractor
Extq, our construction yields an (nw, kw, nq + `, `, t, t2(εw + εq))-look-ahead extractor.

Proof. Follows from the above discussion showing how to construct a strategy Aq for Quentin given
a malleability attacker A. Notice that the strategy Aq sends sq = ` bits in each iteration. Also, we
assume that Q is chosen to be uniformly random over {0, 1}nq and therefore kq = nq. The rest of the
parameters follow directly from Theorem 9. 2

As shown in Appendix E.2, we can plug in the concrete efficient extractor construction of [GUV07] and
get the following parameters.

Theorem 11. For all integers n ≥ k and all ε > 0 there exist (n, k, d, `, t, ε)-look-ahead extractors as
long as

k ≥ 2(t+ 2) max(`, O(log(n) + log(t) + log(1/ε))) ≥ O(t(`+ log(n) + log(t) + log(1/ε)))

and d ≥ O(t(`+ log(n) + log(t) + log(1/ε))).
2One difference between us and [DP07], is that we need all of Ri+1, . . . , Rt to look random and not just Ri+1. The

other difference is that they should look random even given the view V i
q which includes Q.
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Authentication using Look-Ahead. We will plug the look-ahead extractor into our framework
(Figure 1) to construct a message authentication protocol. However, if Eve now modifies the extractor
seed during the initial flow then she gets to perform some (limited) related key attack and, therefore,
we cannot analyze the security of the construction using standard MACs. Instead, we must carefully
construct and analyze a new message authentication code with look-ahead security – i.e. one which is
secure under the types of related key attacks allowed by the look-ahead extractor.

Definition 12. A family of functions {MACr : {0, 1}m → {0, 1}s} indexed by keys r ∈ ({0, 1}`)t is a
(m, s, `, t, ε, δ)-MAC with look-ahead security if, for any random variables R = [R1, . . . , Rt], R′ =
[R′1, . . . , R

′
t], V which satisfy the look-ahead property:(
V, [R′1, . . . , R

′
i], [Ri+1, . . . , Rt]

)
≈ε
(
V, [R′1, . . . , R

′
i], U(t−i)`

)
∀i ∈ {0, . . . , t− 1} (5)

any µA ∈ {0, 1}m and any adversarial function A, we have

Pr
[
µB 6= µA,MACR(µB) = σ̃

∣∣∣∣ σ′ ← MACR′(µA)
(µB, σ̃)← A(V, σ′)

]
≤ δ

It is simple to show that our construction (Figure 1) is a secure message authentication protocol if we
plug-in a look-ahead extractor and a MAC with look-ahead security.

Theorem 13. Plugging a (n, k, d, `, t, ε)-look-ahead extractor and a (m, s, `, t, ε, δ)-MAC with look-
ahead security into our framework (Figure 1) yields a (n, k,m, δ)-message authentication protocol with
a communication complexity of d+m+ s bits.

Proof. We can describe Eve through two adversarial functions A1,A2 where X ′ = A1(X,Z) is the
function used to modify the initial flow, and (µB, σ̃) = A2(X,Z,MACR′(µA)) is the function used
to modify the response flow. Now, for any function A1 (including ones which can leave the initial
flow unmodified) the definition of look-ahead extractors ensures that the variables V = (X,Z), R =
laExt(W ;X), R′ = laExt(W ;X ′) satisfy the look-ahead property ((5) in Definition 12). Therefore,
Definition 12 ensures that the probability of A2 successfully producing (µB, σ̃) such that µB 6= µA and
Bob accepts (µB, σ̃) is upper-bounded by δ. 2

We now proceed to construct a MAC with look-ahead security. To show the intuition behind our con-
struction, we first (informally) analyze a simple variant for 1 bit messages. For a keyR = [R1, R2, R3, R4],
let us define MACR(0) = [R1, R4] and MACR(1) = [R2, R3]. Then, if the adversary learns MACR′(1) =
[R′2, R

′
3], the random variable R4 still looks random and so it is hard to predict MACR(0) = [R1, R4]. On

the other hand, if the adversary learns MACR′(0) = [R′1, R
′
4], the variable R′1 is useless in helping predict

[R2, R3], and R′4 is too short (only ` bits long) to reveal enough information about [R2, R3] (which has
almost 2` bits of entropy). In the rest of the section, we formalize the above idea and generalize it to
longer messages. All proofs appear in Appendix E.

Definition 14. Given S1, S2 ⊆ {1, . . . , t}, we say that the ordered pair (S1, S2) is top-heavy if there
is some integer j such that,

∣∣∣S≥j1

∣∣∣ > ∣∣∣S≥j2

∣∣∣, where S≥j def= {s ∈ S | s ≥ j}. Note that it is possible that
(S1, S2) and (S2, S1) are both top-heavy. For a collection Ψ of sets Si ⊆ {1, . . . , t} we say that Ψ is
pairwise top-heavy if every ordered pair (Si, Sj) of sets Si, Sj ∈ Ψ with i 6= j, is top-heavy.

For example, if S1 := {1, 4}, S2 := {2, 3}, then both of the ordered pairs (S1, S2) and (S2, S1) are top
heavy. Therefore the collection Ψ = {S1, S2} is pairwise top-heavy. We show that any collection of
pairwise top-heavy sets can be used to construct a MAC with look-ahead security.
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Lemma 15. Assume that a collection Ψ = {S1, . . . , S2m} of sets Si ⊆ {1, . . . , t} is pairwise top-heavy.
Then the family of functions MACr(µ) def= [ri | i ∈ Sµ], indexed by r ∈ ({0, 1}`)t, is a (m, s, `, t, ε, δ)-
MAC with look-ahead security where s = `maxSi∈Ψ (|Si|), δ ≤

(
2m−` + 2mε

)
. Furthermore, if there is

an efficient mapping of µ ∈ {0, 1}m to Sµ, then the construction is efficient.

Therefore, to construct efficient MACs with look-ahead security, we must construct a large collection of
sets which is pairwise top-heavy. We generalize our example of Ψ = { {1, 4} , {2, 3} } to many bits, by
mapping an m bit message µ = (b1, . . . , bm) ∈ {0, 1}m to a subset S ⊆ {1, . . . , 4m} using the function

f(b1, . . . , bm) def= {4i− 3 + bi, 4i− bi | i = 1, . . . ,m} (6)

i.e. each bit bi decides if to include the values {4i− 3, 4i} (if bi = 0) or the values {4i− 2, 4i− 1} (if
bi = 1).

Lemma 16. The above construction gives us a pairwise top-heavy collection Ψ of 2m sets S ⊆ {1, . . . , t}
where t = 4m. Furthermore, the function f is an efficient mapping of µ ∈ {0, 1}m to Sµ.

Corollary 2. We get an (m, s, `, t, ε, δ)-MAC with look-ahead security for any m, `, ε, with t = 4m,
s = 4m`, δ ≤

(
2m−` + 2mε

)
.

Plugging in our parameters for look-ahead extractors (Theorem 11) with those for MACs with look-
ahead security (Corollary 2), we construct message authentication protocols with the following param-
eters.

Theorem 17. We construct an efficient two-round (n, k,m, δ)-message authentication protocol for
any integers n ≥ k,m and any δ > 0 as long as k > O(m(m + log(n) + log(1/δ))). The protocol has
communication complexity O(m(m+ log(n) + log(1/δ))). Moreover, the size of the MAC key (and thus
the entropy loss of the protocol) is bounded by τ = 4m(m+ log(1/δ)).

The parameters of our above construction are vastly sub-optimal for all but very short messages (es-
pecially compared to our non-constructive existential results). However, we will see that we can use
the above protocol efficiently as building block for authenticated key agreement by authenticating only
a very short message. In turn, authenticated key agreement will allow us to build an authentication
protocol for longer messages. Therefore, in Theorem 21, we will see that we can get efficient two-round
message authentication proctors with significantly better parameters by constructing authenticated key
agreement protocols first.

4 Authenticated Key Agreement

We now turn to the problem of authenticated key agreement (IT-AKA). As before, Alice and Bob share
a secret W about which Eve has some side-information Z. They would like to run a protocol, in which
they agree on a shared random key. More concretely, Alice and Bob each have candidate keys rA, rB
respectively, which are initially set to the special value ⊥. At some point during the protocol execution,
Alice can reach a KeyDerived state and Bob can reach a KeyConfirmed state. Upon reaching either of
these states, a party sets its candidate key to some `-bit value (not ⊥) and does not modify it afterwards.
Informally, the KeyDerived, KeyConfirmed states should be interpreted as follows:
(1) If Alice reaches the KeyDerived state, then she possesses a uniformly random candidate key, which
remains private no matter how the adversary acts during the remainder of the protocol execution.
However, she is not sure if her key is shared with Bob, or if Bob is even involved in the protocol
execution at all.
(2) If Bob reaches the KeyConfirmed state and gets a candidate key rB, then Alice must have been
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involved in the protocol execution, must have reached the KeyDerived state, and the two parties have
shared key rA = rB which is private from Eve.

Definition 18. In a (n, k, `, ε, δ)-(information theoretic) authenticated key agreement protocol (IT-
AKA), Alice and Bob have candidate keys rA, rB ∈ {0, 1}`∪{⊥} respectively. For any active adversarial
strategy A employed by Eve, let RA, RB be random variables which denote the values of the candidate
keys rA, rB at the conclusion of the protocol execution and let T be a random variable which denotes the
transcript of the (entire) protocol execution as seen by Eve. We require that the protocol satisfies the
following three properties:
(Correctness.) If Eve is passive, then Alice reaches the KeyDerived state, Bob reaches the KeyConfirmed
state, and RA = RB (with probability 1).
(Key Privacy.) If (W |Z) is an (n, k)-source then, for any adversarial strategy A employed by Eve, if
Alice reaches the KeyDerived state during the protocol execution, then (Z, T,RA) ≈ε (Z, T, U`).
(Key Authenticity.) We say that the protocol has pre-application authenticity if for any (n, k)-
source (W |Z) and any adversarial strategy A employed by Eve, the probability that Bob reaches the
KeyConfirmed state and RA 6= RB is at most δ. We say that the protocol has post-application authen-
ticity if the above holds even if the adversary is given RA immediately after Alice reaches the KeyDerived
state.

Notes on the Definition. To understand the definition, we need to think of key agreement in a
broader context where the key is used for some cryptographic task — for example to encrypt and
authenticate a message. Generally, the sender (Alice) would like to be assured that her key is private
(and will remain private), but she does not need the key to be shared at the time that she prepares/sends
her authenticated-ciphertext. On the other hand, the recipient (Bob) would like to know that the key he
uses for decryption/validation is the same shared private key which was used by Alice. For this reason,
we make our definition asymmetric, only requiring that Alice reaches KeyDerived (at which point she
can prepare/send her authenticated-ciphertext) and Bob alone reaches KeyConfirmed (at which point
he can validate/decrypt). Notice, that this definition captures and generalizes prior definitions for one-
round key agreement protocols ([MW03, DKRS06]) where Alice distills a key rA on her own, goes into
the KeyDerived state, and sends a single message to Bob. We therefore also generalize the notion of
pre/post-application authenticity from [DKRS06], where it was noted that, if Alice wants to use her
key rA immediately after reaching KeyDerived (i.e. to encrypt and authenticate a message to Bob), we
need to make sure that her use of the key does not help the adversary Eve break authenticity. Therefore,
we will construct a two-round protocol meeting the stronger post-application authenticity guarantee
where, even if the adversary is given (the entire) key rA, she cannot cause Bob to derive rB 6= rA. In
particular, using this protocol, Alice can encrypt and authenticate a message to Bob in two rounds of
interaction.

We begin with a lower-bound showing that single-round authenticated key agreement (even with pre-
application security) is essentially impossible when k < n

2 and inefficient (in communication complexity)
when n

2 < k � n
2 .

Theorem 19. A one-round (n, k, `, ε, δ)-IT-AKA with pre-application authenticity having key length
` ≥ 4, and security δ < 1

2 , ε <
1
16 , must satisfy k > n

2 and have a communication complexity is at least
n− k − 2 bits.

Construction. We proceed to construct an efficient, two-round, IT-AKA protocol where Bob sends a
message to Alice, Alice goes into KeyDerived and sends a reply to Bob, and Bob goes into KeyConfirmed.
Our construction uses the message-authentication protocols from Section 3 as building blocks. The main
idea behind our construction is fairly simple; Alice uses the authentication protocol to authenticate an
extractor seed Xkey to Bob who then uses it to extract a shared key with Alice. Essentially the same
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idea was used in [RW03] to construct authenticated key agreement from authentication protocols (with
many rounds of interaction). However, the basic idea of authenticating a seed Xkey might not work in
general, since the adversary Eve can potentially learn some information about W which is dependant
on Xkey during the course of the authentication protocol, thus compromising the secrecy of the final
key. Indeed, to overcome this complication, [RW03] needed to add extra rounds to their construction
on top of the authentication protocol. In contrast, we show that this complication does not arise when
the authentication protocol follows our framework (Figure 1) and so our construction of IT-AKA as
described above and shown in Figure 3 is secure and we do not need additional rounds.

Alice: W Eve: Z Bob: W

Sample Xkey Sample Xauth

RA := Extkey(W ;Xkey) Rauth := Extauth(W ;Xauth)
X ′auth ←−−−−−−−−−− Xauth

KeyDerived
R′auth := Extauth(W ;X ′auth)
σ′ ← MACR′

auth
(Xkey)

(Xkey, σ
′) −−−−−−−−−−→ (X ′key, σ̃)

If σ̃ ?= MACRauth(X ′key)
KeyConfirmed
RB := Extkey(W ;X ′key)

Figure 3: Authenticated Key Agreement Protocol

The security of the above construction is easy to explain on an intuitive level. By the security of
the authentication protocol, if Bob reaches the KeyConfirmed state, then X ′key = Xkey and therefore
RA = RB, showing authenticity (even if Eve sees RA). For privacy, on the other hand, the only
information that an active adversary might possibly get about W and which depends on Xkey, is the
tag σ′ = MACR′auth

(Xkey). However, σ′ is independent of W when conditioned on R′auth. Therefore,
the keys RA, RB are secure as long as there is enough entropy left over in W conditioned on R′auth

and Z. We formalize this argument in Theorem 20. We then plug in the parameters for our two
authentication protocols (non-constructive and constructive) to state the final parameters achieved by
our IT-AKA protocols in Corollaries 3 and 4. The proofs appear in Appendix F.

Theorem 20. Let AUTH be an (n, k,m, δ)-message authentication protocol which instantiates our
framework with the functions Extauth,MAC such that key size for MAC is τ bits long. Let Extkey be
an (n, k − τ, d = m, `, ε)-extractor. Then the our construction in Figure 3 is an (n, k, `, ε, δ)-IT-AKA
with pre-application authenticity. If we assume that AUTH is an (n, k− `,m, δ)–message authentication
protocol, then we get post-application authenticity.

Corollary 3. There exists a (possibly inefficient) two-round (n, k, `, ε, δ)-authenticated key agreement
protocol with post-application authenticity for any integers n ≥ k, any ε > 0, δ > 0 with key length

` = k −O(log(n) + log(1/δ) + log(1/ε))

and communication complexity O(log(n) + log(1/δ) + log(1/ε)).

Corollary 4. We construct an efficient two-round (n, k, `, ε, δ)-authenticated key agreement protocol
with post-application authenticity for any constant α > 0, and any integers n ≥ k, any ε > 0, δ > 0
with key length

` = (1− α)k −O
(
log2(n) + log2(1/δ) + log2(1/ε)

)
and communication complexity O

(
log2(n) + log2(1/δ) + log2(1/ε)

)
.
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As mentioned at the end of Section 3.2, we can use our construction of IT-AKA (which uses interactive
message authentication as a building block) to improve the efficiency of message authentication based
on the look-ahead extractor. The idea is to perform key agreement with post-application authenticity
and let Alice use her key rA as a key for a standard MAC to authenticate a long message efficiently in
the second flow. We prove the following theorem in Appendix F.4.

Theorem 21. We construct an efficient two-round (n, k,m, δ)-message authentication protocols for
any integers n ≥ k,m and any δ > 0 as long as k > O

(
log2(n) + log2(1/δ) + log(m)

)
.

5 Extensions: The Fuzzy Case and Bounded Retrieval Model

The Fuzzy Case. We now extend our result to the “fuzzy case” where Alice and Bob have some
highly-correlated, but possibly unequal, secrets WA,WB respectively. This can happen, for example,
when the secret is a biometric and the variables WA,WB represent different (but hopefully very similar)
scans of the same biometric.3 Non-interactive (one-round) solutions for this setting in the case of passive
attackers are called fuzzy extractors and were originally studied by [DRS04, DORS08]. For the case
of active attackers, such solutions are called robust fuzzy extractors and were originally constructed by
[DKRS06] and improved upon in [KR08]. Of course, such solutions inherit our lower-bound, and require
that the entropy of the secrets is at least k > n/2. Interactive solutions for this setting, which allow
k ≤ n/2 appear in [RW04] and are optimized in [KR09]. Again, as in the non-fuzzy case, the prior
solutions require many rounds of interaction (proportional to the security parameter). We now give a
high-level outline for extending our two-round IT-AKA protocol to the fuzzy setting.

In the fuzzy setting, Alice and Bob need to perform information reconciliation to agree on the same
shared secret. Using terminology from [DORS08], non-interactive information-reconciliation is called a
secure-sketch and consists of two procedures (SS,Rec). Bob first computes a sketch Skt = SS(WB) of
his secret value WB, and sends this sketch to Alice. Alice then runs an efficient recovery procedure to
compute Bob’s version of the secret WB = Rec(WA,Skt). The sketch is secure if it does not reveal much
information about WB so that, for any Z, H̃∞(WB|Z,SS(WB)) ≥ H̃∞(WB|Z)−α for some small value
α called the entropy loss. See [DORS08] for a formal definition of secure sketches and efficient secure
sketch constructions for several specific types of correlations of WA,WB (e.g. closeness with respect to
hamming distance). Also, see the work of [RW04] for a general, but inefficient, construction of secure
sketches for arbitrarily correlated variables (based on hash functions). We show how to implement
(efficient) two-round authenticated key agreement in the fuzzy setting for any correlation of WA,WB

for which there is an (efficient) secure sketch construction.
One idea of a construction for this setting is to first perform information-reconciliation (where Bob

sends a sketch Skt of his secret to Alice) and then have Alice and Bob run the standard authenticated
key agreement protocol using a shared secret WB.4 Unfortunately, this may not be secure in general
since Eve gets additional attack power by being able to modify the value of the sketch Skt = SS(WB)
sent by Bob to Alice.

We argue that the above idea is secure when implemented with our IT-AKA protocol based on the
alternating-extraction construction of look-ahead extractors. The key realization is that the look-ahead
property (see Definition 12) holds between the values [R′1, . . . , R

′
t] = laExt(W ′B;X ′) extracted by Alice

and the values [R1, . . . , Rt] = laExt(WB;X) extracted by Bob, even if Alice uses a modified seed X ′

and a modified secret W ′B = Rec(WA, Skt′) where X ′,Skt′ are adversarially chosen based on Skt, X.
Intuitively, any such substitution attack translates directly to an adversarial strategy for Quentin in the

3For example, Alice is a client who stores an initial scan WB of her biometric with some server. Later, Alice takes a
new scan WA and would like to agree on a key with the server.

4For our constructions, this means that Bob sends Skt during the first round along with the random seed X, and hence
preserves the two-round structure.
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alternating-extraction protocol and hence cannot break the look-ahead property.

Theorem 22. Assume that (WA,WB, Z) is some joint distribution such that (WB|Z), (WA|Z) are
both (n, k)-sources and that (SS,Rec) is a secure sketch construction for the joint distribution (WA,WB),
where the size of the sketch is bounded by α. Let Extw be an (n, k − α − (2`t), `, `, εw)-extractor and
Extq be an (nq, nq − (2` + α)t, `, `, εq)-extractor for some `, t and let laExt be the look-ahead extractor
constructed from Extw and Extq as in Theorem 10, using t iterations of alternating-extraction. Then we
get: (

Z,SS(WB), X, [R′1, . . . , R
′
i], [Ri+1, . . . , Rt]

)
≈ε

(
Z,SS(WB), X, [R′1, . . . , R

′
i], U`(t−i)

)
(7)

where

[R1, . . . , Rt] = laExt(WB;X), (X ′, Skt′) = A(Z,SS(WB), X),W ′ = Rec(WA,Skt′), [R′1, . . . , R
′
t] = laExt(W ′;X ′)

and the achieved security is ε ≤ t2(εq + εw).

Proof. We use the alternating-extraction theorem where, in the honest execution, Quentin uses
X = (Q,S1) and Wendy uses WB. Let Z ′ = (Z,SS(WB)). Then an adversarial strategy in which Eve
modifiesX = (Q,S1),Skt = SS(WB) toX ′ = (Q′, S′1) and Skt′ corresponds to a joint adversarial strategy
by Quentin and Wendy where Quentin uses X ′ = (Q′, S′1) and also sends Skt′ to Wendy in the first
iteration. Wendy samples from the distribution (WA|WB = wB) where wB is his secret (i.e he samples
from what Alice’s secret would be conditioned on Bob’s value). He then applies W ′B = Rec(WA,Skt′)
and follows the rest of the alternating-extraction protocol honestly. Notice that Quentin’s view in
this protocol is Z ′, Q,R′1, . . . , R

′
t whose joint distribution is identical to that in the statement of the

theorem. Therefore, our theorem follows directly from alternating extraction. For parameters, notice
that H̃∞(WB|Z ′) ≥ kw − α and the communication from Quentin to Wendy is limited to `+ α bits. 2

Informally, since the look-ahead property is all we needed to prove the security of our authentication
protocol and finally IT-AKA, we see that the security of these protocols carries over to the fuzzy setting.

The Bounded Retrieval Model. The Bounded Retrieval Model was first proposed (concurrently)
by [Dzi06, CLW06] and has since also been studied by [CDD+07, DP07]. The main idea is to make
Alice and Bob share an intentionally huge secret key (e.g. 10 GB). The size of the key is crucial in
protecting against intrusion attacks where the adversary gets complete control over the storage device
through some malware (i.e. a virus or trojan horse) which infiltrates Alice’s or Bob’s storage. It is
assumed that, although the malware has complete access to secret data, it cannot communicate too
much of it to the adversary (e.g. more than 4 GB), because of limits on bandwidth or implemented
security measures against excessive communication. Therefore this scenario falls into our framework
where Alice and Bob share a (now huge) secret W about which the adversary has side-information Z,
such that the entropy of W given Z is large (e.g. more than 6 GB). Our lower bounds show that, even
if the entropy of W is k ≥ n/2, the communication complexity of non-interactive (i.e. single-round)
protocols will be at least n − k bits (e.g. 4GB), which is unrealistic. Interaction is therefore essential
in this setting and, as presented, our protocols already achieve low communication complexity relative
to the size of the secret W . However, the current solutions may not be efficient since they require the
parties to read the entire secret to run the protocol. Therefore, we would like to have more efficient
construction which also achieve locality : the parties need only read a small number of positions in
W to run the protocol. We notice that, in our IT-AKA protocol based on the alternating-extraction
construction of look-ahead extractors, the secret W is only read by the (standard) extractor Extkey and a
look-ahead extractor, which is constructed using two (standard) extractors Extq,Extw. By substituting
local extractors (defined and constructed by Vadhan [Vad04]) for all of the above implementations, we
get a construction of message authentication and IT-AKA protocols which also achieve locality.
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A Background on Randomness Extractors and MACs

Our definition of extractor (Definition 1) is slightly different than the standard one. Firstly, we require
that the extracted randomness looks uniform, even given the extractor seed X. This is generally referred
to as a strong randomness extractor in the literature but, since we only consider this notion in our paper,
we drop the qualifier “strong”. Secondly, extractors are usually defined without the side information Z
and only assume that a variable W has worst-case min-entropy H∞(W ) ≥ k. We refer to this notion
as worst-case extractor. In contrast, our default notion of extractors, which we refer to as average-case
extractors when we wish to differentiate the two notions, follows the definition of [DORS08], where
it is assumed that W has average-case conditional min-entropy H̃∞(W |Z) ≥ k and the extracted
randomness should be uniform given Z as well. As shown in [DORS08], (essentially following part (a)
of Lemma 28) a worst-case extractor is also a good average-case extractor.
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Lemma 23. For any δ > 0 if Ext is a worst-case (n, k, d, `, ε)-extractor then it is also an (n, k +
log(1/δ), d, `, ε+ δ) extractor.

We will use the following two recent constructions of randomness extractors. Following Lemma 23
the parameters are the same for worst-case and average case extractors. The first construction, by
Guruswami, Umans and Vadhan achieves the following parameters.

Lemma 24. ([GUV07]) For every constant α > 0 all integers n ≥ k and all ε ≥ 0, there is an explicit
(efficient) (n, k, d, `, ε)-extractor with ` = (1−α)k−O(log(n)+log(1/ε)), and d = O(log(n)+log(1/ε)).

The following extractor also has locality meaning that only a small portion of the secret W is accessed
during extraction. We use this lemma which appeared in [Vad04] and is based on the the extractor of
[Zuc97].

Lemma 25. ([Zuc97, Vad04]) Let κ, α > 0 be arbitrary constants. Then for every n ∈ N and every ε >
exp(−n/2O(log∗(n))) there is an explicit (efficient) (n, k, d, `, ε)-extractor where k = ρn, d = O(log(n) +
log(1/ε)) and ` = (1−κ)αn. Furthermore, the extractor can achieve locality τ = (1+κ)`/α+O(log(1/ε)).

We also mention that explicit efficient constructions of message authentication codes (based on the
polynomial evaluation ε-universal hash function) achieve the following parameters.

Lemma 26. For any m, δ > 0 there is an efficient δ-secure MAC family {MACr : {0, 1}m →
{0, 1}s}r∈{0,1}n with s ≤

(
log(m) + log

(
1
δ

))
, n ≤ 2s.

B Background Lemmas for (conditional) Min-Entropy and Statistical
Distance

The following two lemmas follows directly from the definition of statistical distance and conditional min
entropy respectively.

Lemma 27. Assume that A,B are random variables such that A ≈ε B and f is a (randomized)
function. Then (A, f(A)) ≈ε (B, f(B)).

Lemma 28. For any random variable W , H∞(W ) = − log (maxA Pr[A() = W ]). For any random
variables W,Z, H̃∞(W |Z) = − log (maxA Pr[A(Z) = W ]). In both cases the maximum is taken over all
functions A.

We will use the following lemma from [DORS08].

Lemma 29. Let A,B,C be random variables.
(a) For any δ > 0, Prb←B

[
H∞(A|B = b) < H̃∞(A|B)− log

(
1
δ

)]
≤ δ.

(b) If B takes on values in a set of size at most 2λ then H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C) − λ ≥
H̃∞(A|C)− λ and, in particular, H̃∞(A|B) ≥ H̃∞(A)− λ.

We also use the following two lemmas from [DP07].

Lemma 30. Assume that A,B,C,C ′ are random variables such that A→ B → C is a Markov chain
and (B,C) ≈ε (B,C ′). Then (A,B,C) ≈ε (A,B,C ′).

Lemma 31. Assume that A,B,C,C ′, F are random variables and f is a function such that (A,C, f(C,B)) ≈ε
(A,C, F ) and (A,C) ≈δ (A,C ′). Then (A,C ′, f(C ′, B)) ≈ε+δ (A,C ′, F ).

Lastly, we use the following (slightly more complicated) lemma whose prove we provide.
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Lemma 32. Assume that (A,B,C) are random variables such that (A,C) ≈ε (A,Uq) and B is dis-
tributed over {0, 1}λ. Then, maxA Pr[C = A(A,B)] ≤ 2λ−q + ε.

Proof. For any correlated random variables A,B,C we can write (A,C,B) ≈0 (A,C, f(A,C)) where f
is some (possibly inefficient) randomized function whose range is {0, 1}λ. In particular, f samples from
the distribution of B conditioned on A,C. Therefore, applying Lemma 27, we get

(A,C,B) ≈0 (A,C, f(A,C)) ≈ε (A,Uq, f(A,Uq))

Lastly, for any A,

Pr[C = A(A,B)] ≤ Pr[C = A(Uq, f(A,Uq))] + ε

≤ 2−H̃∞(Uq |A,f(A,Uq)) + ε

≤ 2λ−H̃∞(Uq |A) + ε

≤ 2λ−q + ε.

2

C Lower Bounds for Non-Interactive Protocols

Both of our lower bounds follow as consequences of the following lemma.

Lemma 33. For any randomized functions Auth : {0, 1}n → {0, 1}s, Ver : {0, 1}n × {0, 1}s → {0, 1},
and any values 0 ≤ ρ ≤ 1, one of the following three conditions holds:
(1) There is an (n, k)-source W such that Pr[Ver(W,Auth(W )) = 1] < ρ.
(2) There is an (n, k)-source W and a value σ ∈ {0, 1}s such that Pr[Ver(W,σ) = 1] > ρ/2.
(3) There is an (n, k)-source W such that H̃∞(W |Auth(W )) ≤ max(0, 2k − n) + log

(
1
ρ

)
+ 2.

Proof. Let us pick some specific functions Auth,Ver and some value ρ. Assume that, for these choices,
conditions (1) and (2) do not hold. We show that condition (3) must hold.

First, for any σ ∈ {0, 1}s, let us define S(σ) := {w ∈ {0, 1}n | Pr[Ver(w, σ) = 1] ≥ ρ/2}. Essentially
S(σ) denotes the set of values w under which σ will correctly verify with high probability. Therefore, if
for some σ, |S(σ)| ≥ 2k , then the random variable W which is distributed uniformly on S(σ) satisfies
condition (2) and we get a contradiction. Hence the size of S(σ) is upper bounded by 2k for each σ.

Assume that the function Auth uses d random coins. Then, for each w ∈ {0, 1}n, r ∈ {0, 1}d, we
define

S̃(w, r) := S(Auth(w; r)) = {w̃ ∈ {0, 1}n | Pr[Ver(w̃,Auth(w; r)) = 1] ≥ ρ/2} (8)

We define the predicate Good(w, r) such that

Good(w, r)⇔ Pr[Ver(w,Auth(w; r)) = 1] ≥ ρ/2⇔ w ∈ S(w, r) (9)

On a high level, Good(w, r) indicates that the value σ = Auth(w; r) is likely to verify correctly and,
since condition (1) does not hold, we expect that Good(w, r) occurs with high probability. Specifically,
let W be some arbitrary (n, k) source and let R be uniformly distributed over {0, 1}d. Then, since W
does not satisfy condition (1),

ρ ≤ Pr[Ver(W,Auth(W ;R)) = 1]
≤ Pr[Good(W,R)] + Pr[Ver(W,Auth(W ;R)) = 1 | ¬Good(W,R)]
≤ Pr[Good(W,R)] + ρ/2

=⇒ Good(W,R) ≥ ρ/2 (10)
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We now use the above analysis to bound p = 2−H̃∞(W |Auth(W ;R)) by

p = E
σ←Auth(W ;R)

max
w

Pr[W = w | Auth(W ;R) = σ] (11)

≥ E
σ←Auth(W ;R)

max
w

(Pr[W = w | Auth(W ;R) = σ,Good(W,R)] Pr[Good(W,R)])

≥ (ρ/2) E
σ←Auth(W ;R)

max
w

Pr[W = w | Auth(W ;R) = σ,Good(W,R)] (12)

≥ (ρ/2) E
σ←Auth(W )

max
w

Pr[W = w | Auth(W ) = σ,W ∈ S(σ)] (13)

≥ (ρ/2) E
σ←Auth(W )

max
w

Pr[W = w |W ∈ S(σ)] (14)

where (11) is the definition of conditional min-entropy, (12) follows from the analysis of Good(W,R)
in (10), and (13) follows from the definition of Good(w, r) in (9).

Now, let us further assume that W is uniformly distributed over some subset W ⊂ {0, 1}n of size
|W| = 2k. Then, continuing from (14), we get

p ≥ (ρ/2) E
σ←Auth(W )

1
|S(σ) ∩W|

≥ (ρ/2)
(

E
σ←Auth(W )

|S(σ) ∩W|
)−1

(15)

Where (15) follows by Jensen’s inequality. Now we’d like to say that there exists some set W such
that the value Eσ←Auth(W ;R) |S(σ)∩W| is small (recall, we define W as the uniform distribution onW).
We show that such a set exists using a probabilistic method argument. Let Sets(n, k) bet these of all
subsetsW ⊂ {0, 1}n of size |W| = 2k. Then, whenW is chosen randomly from Sets(n, k), we claim that

E
W←Sets(n,k)

(
E

σ←Auth(W ;R)
|S(σ) ∩W|

)
≤ E

W←Sets(n,k),σ←Auth(W )
|S(σ) ∩W| (16)

≤ 1 + (2k − 1)
maxσ |S(σ)|

(2n − 1)
≤ 1 + 22k−n (17)

To see this, we notice that, in the experiment described in the right-hand side of (16), a random setW is
chosen, then a random w ∈ W and r ∈ {0, 1}d and we compute |S(w, r)∩W|. However, a syntactically
different but semantically equivalent way of describing such an experiment, would be to first choose
a random w ∈ {0, 1}n r ∈ {0, 1}d and compute S(w, r); then choose the remaining 2k − 1 elements
randomly from {0, 1}n \ {w} to form W. The expected value of each individual remaining element
falling into S(w, r) is |S(w, r)|/(2n − 1) and, by the linearity of expectation, we then get the first part
of (17). Recalling that |S(σ)| ≤ 2k and k ≤ n, the second part of (17) follows.

Therefore, it follows that there exists some specific set W ⊆ {0, 1}n of size 2k, and hence a corre-
sponding (n, k)-source W , such that (combining (15), (17)) we get

p = 2−H̃∞(W |Auth(W )) ≥ ρ

2(1 + 22k−n)

and hence

H̃∞(W |Auth(W )) ≤ log(1 + 22k−n) + log
(

1
ρ

)
+ 1 ≤ max(0, 2k − n) + log

(
1
ρ

)
+ 2.

2
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C.1 Proof of Theorem 4.

A single-phase protocol consists of Alice sending a message σ to Bob. Let us fix Alice’s source message to
the bit µA = 1, and let us define the randomized function Auth which maps Alice’s secret w (along with
some random coins) to the value σ that she will send to Bob. We also define the randomized function
Ver(w, σ) used by Bob to verify if σ authenticates the bit 1. Following, Lemma 33, one of the following
three conditions must hold: (1) the scheme does not achieve correctness and Pr[Ver(W,Auth(W ))] < ρ,
(2) a message σ which authenticates 1 is easy to guess, or (3) the message σ which authenticated 1
reduces the entropy of the secret by n − k bits. In the case of (2), the adversary can successfully
authenticate the bit 1 to Bob without any help from Alice. In the case of (3), if Alice attempts to
authenticate the bit 1 to Bob, then the adversary’s uncertainty about Alice’s secret w is reduced to
k − (n − k) = 2k − n bits and, if k < n/2, the adversary completely learns w. Hence, upon seing
the message σ that authenticates the bit 1, the adversary can forge a message σ′ which authenticates
the bit 0. This intuition is formalized in the proof below. We prove a slightly more general version of
Theorem 4 where we also allow imperfect correctness – i.e. Bob is only required to output the correct
message µA with probability ρ.

Theorem 34. Any single-phase (n, k,m, δ)-message authentication protocol with correctness ρ and
security δ < ρ2

4 must satisfy k > n
2 and must have communication complexity at least n−k− log

(
1
ρ

)
−2

bits. In particular, when ρ = 1 as specified in Definition 3, then security δ < 1
4 can only be achieved if

k > n
2 and with a communication complexity of at least n− k − 2 bits.

Proof. As in our discussion, let Auth be the (randomized) functions used by Alice to authenticate the
bit 1 to Bob and let Ver be the (randomized) function used by Bob to detect if the received message
authenticates 1. Since we have correctness ρ, all (n, k) sources W satisfy Pr[Ver(W,Auth(W )) = 1] ≥ ρ.
By Lemma 33, one of conditions (2) or (3) must then hold.

If condition (2) holds, then there is an (n, k) source W and a value σ such that Pr[Ver(W,σ) = 1] ≥
ρ/2. Hence, if the adversary sends σ to Bob, Bob will output µB = 1 with probability at least ρ/2 and,
therefore δ ≥ ρ/2. Assuming δ < ρ2

4 < ρ/2, condition (3) must hold. So there is an (n, k)-source W

such that H̃∞(W |Auth(W )) ≤ max(0, 2k − n) + log
(

1
ρ

)
+ 2.

First let us assume that k < n/2. Then 2−H̃∞(W |Auth(W )) ≥ ρ/4. By Lemma 28, there then exists
an adversary A such that Pr[A(Auth(W )) = W ] ≥ ρ/4. Assume that Alice’s source message is µA = 1.
The adversary Eve waits to receive σ = Auth(W ), then computes W̃ ← A(σ) and σ̃ to be a randomly
computed authentication of the bit 0 using the secret W̃ . Then, Pr[W̃ = W ] ≥ ρ/4 and, by correctness,
the probability that Bob outputs µB = 0 upon receiving σ̃ conditioned on W̃ = W is at least ρ. Hence,
Eve succeeds with probability δ ≥ ρ2

4 .
Lastly, assume that the communication complexity of the protocol is strictly less than n − k −

log
(

1
ρ

)
− 2. Then, H̃∞(W |Auth(W )) > k− (n− k− log

(
1
ρ

)
− 2) > 2k− n+ log

(
1
ρ

)
+ 2 contradicting

our assumption that condition (3) holds.
2

C.2 Proof of Theorem 19.

We again prove a slightly stronger version of the theorem where we also assume imperfect correctness
(i.e. the probability that, in an honest execution, Alice reaches KeyDerived, Bob reaches KeyConfirmed
and the parties agree on a key is at least ρ).

Theorem 35. Any single-phase (non-interactive) (n, k, `, ε, δ)-IT-AKA with pre-application authentic-
ity, correctness ρ > 9

10 , key length ` ≥ 4, and security δ < ρ
2 , ε <

1
16 , must satisfy k > n

2 and have a
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communication complexity is at least n− k − log
(

1
ρ

)
− 2 bits.

Proof. Without loss of generality, a single-phase protocol has Alice go into KeyDerived and send
a single message to Bob who goes into the KeyConfirmed state. Let Auth be the functions used by
Alice to prepare her message for Bob, and Ver be the function which returns 1 if Bob goes into the
KeyConfirmed state. Then, one of the three conditions of Lemma 33 must hold. Condition (1) cannot
hold by the correctness of our protocol. If condition (2) holds, then the adversary can break authenticity
by sending σ to Bob without Alice’s participation with probability δ ≥ ρ/2 and therefore it cannot hold
either. Therefore, condition (3) holds and H̃∞(W |Auth(W )) ≤ max(0, 2k−n) + log

(
1
ρ

)
+ 2. Assuming

k ≤ n
2 , we get H̃∞(W |Auth(W )) log

(
1
ρ

)
+ 2 and hence, by Lemma 28, there is a function A such that

Pr[A(Auth(W )) = W ] ≥ ρ/4.
Then we construct an attacker B(Auth(W )) which predicts RA (given Auth(W )) as follows: run

W̃ = A(Auth(W )), and then follow Bob’s procedure using W̃ ,Auth(W ). Let E1 be the even that
W̃ = A(Auth(W )) and E2 be the event, after Alice sends Auth(W ) in a passive execution, Bob recovers
the key RB = RA. Then the probability that B succeeds is at least Pr[E1 ∩ E2] ≥ Pr[E1] + Pr[E2]− 1 ≥
ρ/4+ρ−1 ≥ 1/8. However, if RA is at least 4 bits long and ε close to uniform (conditioned on Auth(W ))
then, Pr[B(Auth(W )) = RA] ≤ 1/16 + ε. Therefore ε ≥ 1/16.

Lastly, we reuse the argument in the proof of Theorem 34 which show that (3) can only hold if the
communication complexity is at least n− k − log

(
1
ρ

)
− 2 bits.

2

D Proofs for Authentication Based on Fully Non-Malleable Extrac-
tors

D.1 Existence of Non-Malleable Extractors

As with regular extractors, we first define a simpler notion of a worst-case non-malleable extractor
(Definition 36) and then show that it implies our standard notion of an (average case) non-malleable
extractor in Definition 5.

D.1.1 Existence of Non-Malleable Worst Case Extractors

Definition 36. We say that a function nmExt : {0, 1}n × {0, 1}d → {0, 1}` is a (n, k, d, `, ε) non-
malleable worst-case extractor if, for any (n, k)-source W , any adversarial function A, we have:

(X, nmExt(W ;A(X)), nmExt(W ;X)) ≈ε (X, nmExt(W ;A(X,Z)), U`)

where X is uniformly random over {0, 1}d and A(X) 6= X.

The main theorem of this section will be to show the existence of non-malleable worst-case extractors.

Theorem 37. There exists an (n, k, d, `, ε) non-malleable worst-case extractor as long as

d > log(n− k + 1) + 2 log (1/ε) + 5 (18)
k > 2`+ 2 log (1/ε) + log(d) + 6 (19)

We prove Theorem 37 using the probabilistic method showing that a random function R is a non-
malleable (worst-case) extractor with overwhelming probability. First, a functionR : {0, 1}n×{0, 1}d →
{0, 1}` is an (n, k, d, `, ε) non-malleable worst-case extractor if for all distinguishers D, all adversarial
function A, all (n, k)-sources W :
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Pr[D(X,R(W,A(X)), R(W,X)) = 1]− Pr[D(X,R(W,A(X)), U`) = 1] ≤ ε (20)

Moreover, we can only consider (n, k)-sources W which are uniformly distributed on some subset
W ⊆ {0, 1}n of size |W| = 2k. This is because if (20) fails on some arbitrary (n, k)-source W then, the
uniform distribution on the 2k elements w in the support of W which maximize

Pr[D(X,R(w,A(X)), R(w,X)) = 1]− Pr[D(X,R(w,A(X)), U`) = 1]

also causes (20) to fail.
Let us, for now fix some functions D,A and a set W ⊆ {0, 1}n of size |W| = 2k and let W be

uniformly distributed on W. We use the bold-face R to denote a random variable which is distributed
uniformly on the space of all functions R : {0, 1}n × {0, 1}d → {0, 1}`.

For each x ∈ {0, 1}d, u ∈ {0, 1}`, we define

Count(x, u) :=
∣∣∣{u2 ∈ {0, 1}` : D(x, u, u2) = 1

}∣∣∣ (21)

For each w ∈ W, x ∈ {0, 1}d we define the following random variables (with randomness coming
from the random variable R):

Left(w, x) := D(x,R(w,A(x)),R(w, x)) (22)

Right(w, x) :=
(

Count(x,R(w,A(x)))
2`

)
(23)

Q(w, x) := Left(w, x)−Right(w, x) (24)

and set

Q :=

∑
w,x Q(w, x)

2k+d
(25)

Essentially, Q is a random variable which maps each choice of the function R← R to the value

p(R) := Pr[D(X,R(W,A(X)), R(W,X)) = 1]− Pr[D(X,R(W,A(X)), U`) = 1] (26)

Therefore, we want to upper bound

Pr[Q > ε] = Pr
R←R

[p(R) > ε] (27)

We notice that, for any w, x, we have E[Left(w, x)] = E[Right(w, x)] and therefore E[Q(w, x)] = 0
and E[Q] = 0. However, the values Q(w, x) are not necessarily independent from each other, preventing
us from using a simple Chernoff Bound on (27). For example if A(A(x)) = x then

Left(w, x) = D(x,R(w,A(x)),R(w, x)) and Left(w,A(x)) = D(x,R(w, x),R(w,A(x)))

are not independent and hence neither are Q(w, x),Q(w,A(x)). We show that all bad dependance is
essentially of this form. More precisely, let us represent the function A as a directed graph G = (V,E)
on the vertex set V = {0, 1}d and edges E := {(A(x), x) : x ∈ {0, 1}d} i.e there is an edge from x′

to x iff A(x) = x′. Since A is a function, the in-degree of each vertex is 1. We show that, if we limit
ourselves to values of x contained in a subset of V that does not have cycles then the variables Q(x,w)
have very limited sort of dependence.

Lemma 38. For V ′ ⊆ V , let G′ ⊆ G be a restriction of G to the vertices V ′ and assume that the graph
G′ is an acyclic subgraph of G. Then the set {Q(w, x)}w∈W,x∈V ′ of random variables can be enumerated
by Q1, . . . ,Qm for m = |V ′|2k such that E[Qi|Q1, . . . ,Qi−1] = 0 for all 1 ≤ i ≤ m.
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Proof. The graph G′ is a directed acyclic graph and hence defines a partial order “≤” on the vertices
V ′ so that, if (x′, x) ∈ V ′ then x′ ≤ x. We use the partial order on V ′ to define a partial order on the
set {Q(w, x)}w∈W,x∈V ′ . Lastly, we can extend this partial order to a total order and thus enumerate
the above set as Q1, . . . ,Qm such that if x′ ≤ x and Qi = Q(w, x′),Qj = Q(w, x) then i ≤ j. Now we
show that, for all 1 ≤ i ≤ m, we have E[Qi|Q1, . . . ,Qi−1] = 0. The randomness of these variables comes
solely from the choice of R← R. We can think of a uniformly random function R as being choosing a
random output for every input in the domain of R. Then conditioned on any choice of the value of R
for all points other than (w, x) we have

E[Qi] = E[Q(w, x)] = E
[
D(x, u′,R(w, x))−

(
Count(x, u′)

2`

)]
= 0 (28)

Moreover, by the properties of our ordering, the variables Q1, . . . ,Qi−1 are independent of R(w, x) and
hence the statement of the lemma follows. 2

The good news of Lemma 38 is that restrictions of G which are acyclic do not contain bad depen-
dance. We now show that we can partition the entire vertext set V = {0, 1}d into two subsets V1, V2 of
equal size such that the restriction of G to either of these sets is acyclic.

Lemma 39. For any directed graph G = (V,E) where all vertices have an ind-degree of 1 and where
|V | is even, there is a partition of V into V1, V2 such that |V1| = |V2| and, letting Gb be the restriction
of G to the set Vb, both graphs G1, G2 are acyclic.

Proof. The key realization is that each vertex v ∈ V can belong to at most one cycle. We can break
apart each cycle by placing half the vertices into V1 and the other half into V2. We can do this for all
cycles (one-by-one) keeping V1 and V2 balanced (during this stage, we allow |V1| = |V2|+ 1 to break up
cycles of odd lengths). At the conclusion, we will end up with two equally sized sets V1, V2 neither of
which contains a cycle. 2

Now, combining Lemma 38, Lemma 39 we can partition {Q(w, x)} into two (enumerated) sets
{Q1

1, . . . ,Q
1
m}, {Q2

1, . . . ,Q
2
m} wherem = 2d−1 such that, for b ∈ {1, 2}, 1 ≤ i ≤ m, E[Qb

i |Qb
1, . . . ,Q

b
i−1] =

0 . Let us define the random variables Sbi =
∑i

j=1 Qb
j for all b ∈ {1, 2}, 1 ≤ i ≤ m. Then (for b = 1, 2)

the sequence Sb1, . . . , S
b
m is a martingale. Now, going back to equation (27), we get

Pr[Q > ε] = Pr

[(
S1
m + S2

m

)
2k+d

> ε

]
≤ Pr[S1

m > ε2k+d−1] + Pr[S2
m > ε2k+d−1] (29)

≤ 2e−
1
16

2d+kε2 (30)

Where (30) follows from applying Azuma’s inequality to both terms on the right-hand side of (29), and
noting that |Sbi − Sbi−1| = Qb

i ≤ 2. We now use this analysis to prove Theorem 37.

Proof. (of Theorem 37) Thus far we have considered some fixed adversary A, distinguisher D and set
W so that (30) bounds the probability that these are bad (i.e. that (20) does not hold for these) for a
random function R. We now make this explicit by referring to the random variable Q as Q(W,A,D)
and will now quantify over all possible sets W and all functions A,D. In particular, let us define the
event R that, for a random function R ← R, there exists some set W, adversary A and distinguisher
D for which Q(W,A,D) ≥ ε.

We will apply the union bound over all possible values of W,A,D. For ease of exposition, let

N = 2n,K = 2k, D = 2d, L = 2`. Then, there are
(
N
K

)
possible sets W ⊆ {0, 1}n of size |W| = 2k,

there are DD adversaries A : {0, 1}d → {0, 1}d and there are 2DL
2

distinguishers D : {0, 1}d ×
{0, 1}` × {0, 1}` → {0, 1}. Therefore
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Pr[R] ≤ Pr
[⋃

Q(W,AD)
]
≤
∑

Pr[Q(W,A,D)] (31)

≤
(
N
K

)
DD2DM

2
2e−

1
16

2d+kε2 (32)

≤ eK(1+ln( N
K ))+D(lnD+ln(2)M2)+ln 2− 1

16
DKε2 (33)

Now the above is strictly less than 1 if the exponent is less than 0 and therefore it suffices to show that[
K

(
1 + ln

(
N

K

))
− 1

32
DKε2 < 0

]
and

[
D(lnD + ln(2)M2) + ln 2− 1

32
DKε2 < 0

]
(34)

and it is easy to check that (34) is satisfied as long as as (18), (19) hold and hence Pr[R] < 1. This
implies that under conditions (18) and (19), there must exist some particular function R for which the
event R does not occur and hence this is a non-malleable (worst-case) extractor.

It is easy to see that, with slight degradation of the parameters in (18) and (19), we can in fact
ensure that Pr[R] is negligible and hence a uniformly random function is a non-malleable (worst-case)
extractor with overwhelming probability.
2

D.1.2 Worst Case Implies Average Case

Now we simply need to show that a non-malleable (worst-case) extractor is also a good non-malleable
(average-case) extractor.

Theorem 40. For any ρ > 0, if nmExt is a (n, k − log
(

1
ρ

)
, d, `, ε − ρ)-non-malleable worst-case

extractor then it is also a (n, k, d, `, ε)-non-malleable average case extractor.

Proof. Let (W |Z) be an arbitrary average-case (n, k)-source. Let Wz = (W | Z = z). We call a
value z “bad” if H̃∞(Wz) < k − log

(
1
ρ

)
and “good” otherwise. Then by Lemma 29, Pr[Z is bad ] ≤ ρ.

Conditioning on the Z being good,

SD((Z,X, nmExt(W ;A(X,Z)), nmExt(W ;X)) , (Z,X, nmExt(W ;A(X,Z)), U`))

≤
∑
z

Pr[Z = z] · SD((X, nmExt(Wz,A(X, z)), nmExt(W ;X)) , (X, nmExt(Wz,A(X, z)), U`))

≤ Pr[Z is bad] +
∑

good z

SD((X, nmExt(W ;Az(X)), nmExt(W ;X)) , (X, nmExt(W ;Az(X)), U`))

≤ ρ+ (ε− ρ) ≤ ε

2

D.1.3 Proof of Theorem 6.

Proof. By Theorem 37, we see that (n, k − log
(

1
ε/2

)
, d, `, ε/2)-non-malleable worst-case extractors

exist if

d > log(n− k + 1) + 2 log
(

1
ε

)
+ 7

k > 2`+ 3 log
(

1
ε

)
+ log(d) + 9

By Theorem 40, setting ρ = ε/2, these conditions also guarantee the existence of (n, k, d, `, ε)-non-
malleable average-case extractors. 2
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D.2 Proof of Theorem 7

Proof. Let us fix a value µA ∈ {0, 1}m and some adversarial strategy used by Eve. Let E1 be the event
that Eve succeeds (i.e. µB 6= µA and MACR(µB) = σ̃) and let E2 be the event that Eve is active during
the initial flow (i.e. X ′ 6= X). Then

Pr[E1 ∩ E2] = Pr

MACR(µB) = σ̃

∣∣∣∣∣∣
R′ = nmExt(W ;A1(X,Z)), σ′ ← MACR′(µA),

R = nmExt(W ;X)
(µB, σ̃)← A2(X,Z, σ)


≤ ε+ Pr

[
MACU`

(µB) = σ̃

∣∣∣∣ R′ = nmExt(W ;A1(X,Z)), σ′ ← MACR′(µA),
(µB, σ̃)← A2(X,Z, σ)

]
(35)

≤ ε+ δ (36)

where A1 is some function such that A1(X,Z) 6= X. Then (35) follows from the definition of a non-
malleable extractor and (36) from that of a MAC.

Also

Pr[E1 ∩ ¬E2] = Pr
[
MACR(µB) = σ̃

∣∣∣∣ R = nmExt(W ;X), σ ← MACR(µA)
(µB, σ̃)← A2(X,Z, σ)

]
≤ ε+ Pr

[
MACU`

(µB) = σ̃

∣∣∣∣ σ ← MACU`
(µA)

(µB, σ̃)← A2(X,Z, σ)

]
(37)

≤ ε+ δ (38)

where, again, (37) follows from the definition of a non-malleable extractor and (38) from that of a MAC.
Putting the two inequalities together we get Pr[E1] ≤ 2(ε+ δ) as we wanted to show. 2

D.3 Proof of Corollary Corollary 1

Proof. We apply Theorem 7 to the achievable parameters of non-malleable extractors from Theorem 6
and those of MACs from Lemma 26. 2

E Proofs for Authentication Based on Look-Ahead Extractors

E.1 Proof of the Alternating Extraction Theorem

The main part of Theorem 9 is proved in the following slightly simpler lemma.

Lemma 41. Let everything be as in Theorem 9, but only assume that Extw be an (nw, kw−(sw)t, `, `, εw)-
extractor and Extq be an (nq, kq − (sq)t, `, `, εq)-extractor. Then(

V i
w, Si+1

)
≈ρw(i)

(
V i
w, U`

)
(39)(

V i
q , Ri+1

)
≈ρq(i)

(
V i
q , U`

)
(40)

where ρw(i) def= i(εw + εq), ρq(i)
def= ρw(i) + εw.

Proof. Our proof proceeds by induction. For i = 0, S1 is uniform and independent of V 0
w = (W,Z)

and hence (V 0
w , S1) = (V 0

w , U`). On the other had, V 0
q = (Z,Q, S1) and therefore(

V 0
q , R1 = Extw(W ;S1)

)
≈εw

(
V 0
q , U`

)
since H̃∞(W |(Q,Z)) ≥ kw ≥ kw − (sw)t. Hence, the lemma holds for i = 0.
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Assume that the lemma holds for i− 1. We proceed in two steps. First we show that (V i
w, Si+1) ≈

(V i
w, U`) i.e. no matter what message Aq sends in the ith iteration to Aw, the value Si+1 still looks

random. For our analysis we introduce several new variables: let msgiq be the message sent by Aq in
iteration i, and let T iq = (msg1

q , . . . ,msgiq). We define msgiw and T iw analogously. Then(
V i−1
q , Ri

)
≈ρq(i−1)

(
V i−1
q , U`

)
(41)

⇒
(
V i−1
q ,msgiq, Ri,Extq(Q;Ri)

)
≈ρq(i−1)

(
V i−1
q ,msgiq, U`,Ext(Q;U`)

)
(42)

⇒
(
T iq , Ri,Extq(Q;Ri)

)
≈ρq(i−1)

(
T iq , U`,Extq(Q;U`)

)
(43)

⇒
(
T iq , Ri,Extq(Q;Ri)

)
≈ρq(i−1)+εq

(
T iq , Ri, U`

)
(44)

⇒
(
W,T iq , Ri,Extq(Q;Ri)

)
≈ρw(i)

(
W,T iq , Ri, U`

)
(45)

⇒
(
V i
w, Si+1

)
≈ρw(i)

(
V i
w, U`

)
(46)

Equation (41) is given by the inductive hypothesis. Equation (42) follows by Lemma 27 where we apply
the function used by Aq to compute the next message along with the Extq function. Equation (43)
follows by another application of Lemma 27 where we delete Q from V i−1

q ,msgiq to get T iq . Equation
(44) follows from Lemma 31 and the fact that |T iq | ≤ (sq)t. Equation (45) follows from Lemma 30.
Lastly, (46) follows from another application of Lemma 27.

Now, we re-use essentially the same analysis to show (V i
q , Ri+1) ≈ (V i

q , U`)(
V i
w, Si+1

)
≈ρw(i)

(
V i
w, U`

)
(47)

⇒
(
V i
w,msgiw, Si+1,Extw(W ;Si+1)

)
≈ρw(i)

(
V i
w,msgiw, U`,Extw(W ;U`)

)
(48)

⇒
(
T iw, Si+1,Extw(W ;Si+1)

)
≈ρw(i)

(
T iw, U`,Extw(W ;U`)

)
(49)

⇒
(
T iw, Si+1,Extw(W ;Si+1)

)
≈ρw(i)+εw

(
T iw, Si+1, U`

)
(50)

⇒
(
Q,T iw, Si+1,Extw(W ;Si+1)

)
≈ρq(i)

(
Q,T iw, Si+1, U`)

)
(51)

⇒
(
V i
q , Ri+1

)
≈ρq(i)

(
V i
q , U`)

)
(52)

Where equations (47) - (52) follow the same reasoning as (41) - (46). 2

E.1.1 Proof of Theorem 9

Proof. Given Aw,Aq which are restricted to communicating sw, sq bits respectively, we construct the
machines A′w,A′q which, on each iteration, run Aw,Aq but also, in parallel, run the honest alternating-
extraction procedure for Quentin and Wendy. Then A′w,A′q have communication s′w = sw+`, s′q = sq+`.
Applying Lemma 41 to A′w,A′q, we get(

V i
q , Ri+1, Ri+2, . . . , Rt−1, Rt

)
≈ρq(t−1)

(
V i
q , Ri+1, Ri+2, . . . , Rt−2, Rt−1, U`

)
(53)(

V i
q , Ri+1, Ri+2, . . . , Rt−1, U`

)
≈ρq(t−2)

(
V i
q , Ri+1, Ri+2, . . . , Rt−2, U2`

)
(54)

. . .(
V i
q , Ri+1, U`(t−i+1)

)
≈ρq(i)

(
V i
q , U`(t−i)

)
(55)
(56)

Therefore, by the hybrid argument,

SD
((
V i
q , Ri+1, . . . , Rt

)
,
(
V i
q , U`(t−i)

))
≤ tρq(t− 1) ≤ t2(εw + εq) (57)

We can use the exact same argument to show that

SD
((
V i
w, Si+1, . . . , St

)
,
(
V i
q , U`(t−i)

))
≤ tρw(t− 1) ≤ t2(εw + εq) (58)

2
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E.2 Proof of Theorem 11.

Proof. By Theorem 10, we need to construct an (n, k−2`′t, `′, d′, ε′ = ε/2t2)-extractor Extw where and
a (n′, n′ − 2`′t, `′, d′, ε′ε/2t2)-extractor Extq where `′ = max(`, d′). By Lemma 24, such extractors Extw
can be explicitly constructed for

`′ ≤ (k − 2`′t)/2− d′ ⇐ k ≥ 2(`′ + d′) + 2`′t ⇐ k ≥ 2(t+ 2) max(`, d′)

where d′ = O(log(n) + log(1/ε′)) = O(log(n) + log(1/ε) + log(t)). Setting n′ = 2(t + 2) max(`, d′) we
can get the same parameters for Extq. The last part follows since d = d′ + n′. 2

E.3 Proof of Lemma 15

Proof. Let V,R′, R be random variables satisfying the look-ahead property of equation (5), and let
µA ∈ {0, 1}m be an arbitrary message and A an arbitrary adversarial function. Then we need to find a
bound for:

Pr
[
µB 6= µA,MACR(µB) = σ̃

∣∣∣∣ σ′ ← MACR′(µA)
(µB, σ̃)← A(V, σ′)

]
(59)

Let us split A into two functions A1,A2 where A1 computes the first argument µB and A2 computes
the second argument σ̃. Without loss of generality, we may assume that A2 never outputs µB = µA. We
also define φ(µB, µA) for any µA 6= µB to be the (first) value of j ∈ {1, . . . , t} such that |S≥jµB | > |S

≥j
µA |

(which is well defined since Ψ is pairwise top-heavy).
Then we can rewrite (59) as

Pr
[
µB 6= µA,MACR(µB) = σ̃

∣∣∣∣ σ′ ← MACR′(µA)
(µB, σ̃)← A(V, σ′)

]
= Pr

[
[Ri | i ∈ SµB ] = A2(V, [R′i | i ∈ SµA ])

∣∣ µB ← A(V,MACR′(µA))
]

≤ Pr
[
∃µB 6= µA s.t. [Ri | i ∈ SµB ] = A2(V, [R′i | i ∈ SµA ])

]
≤

∑
µB

Pr
[
[Ri | i ∈ SµB ] = A2(V, [R′i | i ∈ SµA ])

]
≤

∑
µB

Pr
[
[Ri | i ∈ S≥jµB

] = A2(V, [R′i | i ∈ S≥jµA
], [R′i | i ∈ S<jµA

])
]

where j = φ(µB, µA)

≤
∑
µB

(
2−` + ε

)
(60)

≤
(

2m−` + 2mε
)

where (60) follows from Lemma 32 by setting A =
(
V, [R′i | i ∈ S

<j
µA ]
)

, B = [R′i | i ∈ S
≥j
µA ], C = [Ri | i ∈

S≥jµB ]. Then (A,C) ≈ε (A,Uq) by look-ahead (for some q which depends on µA, µB) and B takes values
in {0, 1}λ for some λ such that q − λ ≥ `. 2

E.4 Proof of Lemma 16

Proof. Assume that µA 6= µB and let SA, SB be the corresponding sets in Ψ. Let i be the first index for
which the bits of µA and µB disagree: i.e. bAi 6= bBi where bAi , b

B
i is the ith bits of µA, µB respectively.

If bAi = 0 then, letting j = 4i, |S≥jA | = 1 + 2(m − i) and |S≥jB | = 2(m − i) so (SA, SB) is top-heavy. If
bAi = 1 then, letting j = 4i − 2, |S≥jA | = 2 + 2(m − i) and |S≥jB | = 1 + 2(m − i) so again (SA, SB) is
top-heavy. 2
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E.5 Proof of Theorem 17.

Proof. By Theorem 13, we need to plug in a (n, k, d, `, t, ε)-look-ahead extractor and a (m, s, `, t, ε, δ)-
MAC with look-ahead security to get an AUTH protocol. By Corollary 2, we can get such a MAC with
message size m and security δ by setting

` = m+ log(1/δ) + 1, ε = δ/2m+1, t = 4m, s = t` = 4m(m+ log(1/δ) + 1) (61)

By Theorem 11, we can construct a look-ahead extractor for any n ≥ k and the values `, ε, t above as
long as k, d ≥ O(m(m+ log(n) + log(1/δ))). 2

F Proofs for Authenticated Key Agreement

F.1 Proof of Theorem 20

Proof. The correctness property is obvious. For pre-application authenticity, we are analyzing the
following (equivalent) experiment. First, a value µA ← Xkey is chosen by Alice (we won’t carte that it is
random). Then Alice and Bob run an authentication protocol where Alice uses the value µA and, if Bob
outputs µB 6= µA then the adversary wins. By the security of the authentication protocol this occurs
with probability at most δ, proving pre-application authenticity. For post-application authenticity, we
must analyze the game where Alice picks µA ← Xkey and the adversary also gets RA = Extkey(W ;µA).
But this just means that we need to analyze the security of the authentication protocol where the
adversary has side information Z ′ = (Z,RA). Since |RA| = `, we have H̃∞(W |Z ′) ≥ H̃∞(W |Z) − ` ≥
k − `. Hence security follows if our authentication protocol is (n, k − `,m, δ) secure.

For privacy:

SD
(

(Z,Xauth,MACR′auth
(Xkey), Xkey, RA) , (Z,Xauth,MACR′auth

(Xkey), Xkey, U`)
)

≤ SD
(

(Z,Xauth, R
′
auth, Xkey, RA) , (Z,Xauth, R

′
auth, Xkey, U`)

)
≤ SD

(
(Z ′, Xkey,Extkey(W ;Xkey)) , (Z ′, Xkey, U`)

)
(62)

≤ ε (63)

Where, in (62), Z ′ = (Z,Xauth, R
′
auth) and so Xkey is random and independent of Z ′. Moreover

H̃∞(W |Z ′) ≥ H̃∞(W |Z,Xauth)− τ ≥ k − τ

since |Rauth| = τ and Xauth is independent from W . Therefore (63) follows since Extkey is an (n, k −
τ,m, `, ε) extractor. 2

F.2 Proof of Corollary 3

Proof. By Theorem 20 we need to plug in an (n, k − τ, d, `, ε)-extractor and a (n, k − `,m = d, δ)-
authentication protocol. Existentially, such extractors are known to exist as long as

k > `+ τ +O(log(1/ε)) (64)

and have seeds of length d = O(log(n) + log(1/ε)). Furthermore, in Corollary 1, we showed that (n, k−
`, d, δ)-authentication protocols exist where the MAC key is τ = O(log(m)+log(1/δ)) = O(log(log(n))+
log(1/δ) + log(1/ε)), and require

k > `+O(log(n) + log(d) + log(1/δ)) = O(log(n) + log(1/δ) + log(1/ε)). (65)

Therefore, our bound on ` satisfies both (64) and (65). 2
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F.3 Proof of Corollary 4

Proof. By Theorem 20 we need to plug in an (n, k − τ, d, `, ε)-extractor and a (n, k − `,m = d, δ)-
authentication protocol. By Lemma 24, such extractors exist for any constant α > 0 with d = O(log(n)+
log(1/ε)). By Theorem 17, for m = d we can get an authentication protocol with τ = 4d(d+ log(1/δ)).
Therefore we can extract at most ` = (1−α)k−τ which gets us the bound for `. Lastly, the authentication
protocol requires k > `+O(d(d+ log(1/δ))) but that’s already implied by our bound on `. 2

F.4 Proof of Theorem 21

Proof. We need to argue the security of the scenario where Alice and Bob run a (n, k, `, ε, δ1)-key
agreement protocol for a key rA of size ` to a (standard) δ2-secure one-time MAC, and Alice then uses
this key to authenticate her message (sending the tag σ = MACrA(µA) in the second phase of the key
agreement protocol, immediately after reaching KeyDerived). Correctness is obvious. If Eve breaks
security, then either she causes Bob to distill a key rB 6= rA or else she forges a tag for the MAC under
the key rA. The first event occurs with probability at most δ1 (even if Eve was given all of rA and not
just σ). The second event occurs with probability at most ε+ δ2 by the privacy of rA and the security
of the MAC. Therefore our protocol is δ1 + δ2 + ε secure. Setting ε = δ1 = δ2 = δ/3 we get the desired
security and parameters. 2
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