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Summary of the Contribution 
 
We present Vortex a new family of one way hash functions that can produce message 
digests of 224, 256, 384 and 512 bits. The main idea behind the design of these hash 
functions is that we use well known algorithms that can support very fast diffusion in a 
small number of steps. We also balance the cryptographic strength that comes from 
iterating block cipher rounds with SBox substitution and diffusion (like Whirlpool) 
against the need to have a lightweight implementation with as small number of rounds as 
possible. We use a variable number of Rijndael rounds with a stronger key schedule. Our 
goal is not to protect a secret symmetric key but to support perfect mixing of the bits of 
the input into the hash value. Rijndael rounds are followed by our variant of Galois Field 
multiplication. This achieves cross-mixing between 128-bit or 256-bit sets. Our hash 
function uses the Enveloped Merkle-Damgård construction to support properties such as 
collision resistance, first and second pre-image resistance, pseudorandom oracle 
preservation and pseudorandom function preservation. We provide analytical results that 
demonstrate that the number of queries required for finding a collision with probability 
greater or equal to 0.5 in an ideal block cipher approximation of Vortex 256 is at least 
1.18•2122.55 if the attacker uses randomly selected message words. We also provide 
experimental results that indicate that the compression function of Vortex is not inferior 
to that of the SHA family regarding its capability to preserve the pseudorandom oracle 
property. We list a number of well known attacks and discuss how the Vortex design 
addresses them. The main strength of the Vortex design is that this hash function can 
demonstrate an expected performance of 2.2-2.5 cycles per byte in future processors with 
instruction set support for Rijndael rounds and carry-less multiplication. We provide 
arguments why we believe this is a trend in the industry. We also discuss how optimized 
assembly code can be written that demonstrates such performance.   
 
 
 
 
 
 
 



1. Introduction 
 
Guaranteeing message and code integrity is very important for the security of 
applications, operating systems and the network infrastructure of the future Internet. 
Protection against intentional alteration of data is typically supported using one way hash 
functions. A one way hash function is a mathematical construct that accepts as input a 
message of some length and returns a digest of much smaller length. One way hash 
functions are designed in such a way that it is computationally infeasible to find the input 
message by knowing only the digest. One way hash functions which have been in use 
today include algorithms like   MD-5 and SHA1, SHA256, SHA384 and SHA512. The 
problem with using these algorithms is that they are time consuming when implemented 
in software. One way hash functions typically involve multiple shifts, XOR and ADD 
operations which they combine in multiple rounds in order to produce message digests. 
Because of this reason, one way hash functions consume a substantial number of 
processor clocks when executing, which limits their applicability to high speed secure 
network applications (e.g., 10 Gbps e-commerce transactions), or protection against 
malware (e.g., virus detection or hashed code execution).  
 
In this submission document we describe Vortex: a novel hash family based on an 
alternative design approach. In our approach a family of one way hash functions is built 
from other well known security algorithms used as building blocks, as opposed to more 
primitive shift, rotate or XOR operations. The algorithms we choose in our design help 
with achieving fast mixing across a large number of input bits. Using the Merkle-
Damgård [8, 15] and the Enveloped Merkle-Damgård [3] constructions as frameworks 
we construct a compression function from Rijndael rounds [1] and a novel merging 
technique based on Galois Field (GF(2)) multiplication. Using three or more successive 
Rijndael rounds we provide mixing across 128 bits. Using a merging function based on 
Galois Field (GF(2)) multiplication we provide mixing across sets of 128 bits. Perfect 
mixing is accomplished through combinations of Rijndael rounds and our merging 
function.  
 
We provide analytical results that demonstrate that the number of queries required for 
finding a collision with probability greater or equal to 0.5 in an ideal block cipher 
approximation of Vortex 256 is at least 1.18•2122.5 if the attacker uses randomly selected 
message words. We also provide experimental results that indicate that the compression 
function of Vortex is not inferior to that of the SHA family regarding its capability to 
preserve the pseudorandom oracle property. We have conducted experiments calculating 
statistical properties such as the collision probability, hamming weight, distribution 
function, and correlation matrix of outputs coming from randomly selected messages as 
well as single bit differentials superimposed on random messages. Our results indicate 
that there is no experimental evidence that Vortex is inferior when compared to the SHA-
2 family in terms of its security. Performance-wise, however, the difference can be 
substantial. For example our SHA 256 implementation operates at 21 cycles per byte on 
an Intel® Core 2 Duo processor.   The Vortex family is expected to operate at a speed 
between 2.2-2.5 cycles per byte in future processors with instruction set support for 
Rijndael round computation and Galois Field (GF(2)) multiplication. We provide 



arguments why we believe this is a trend in the industry. We also discuss how optimized 
assembly code can be written that demonstrates such performance.  We conclude by 
listing a number of well known attacks and how the Vortex design addresses them. 
 
The document is structured as follows: In Section 2 we describe the design methodology 
of the Vortex family. In Section 3 we describe the algorithm. In Section 4, we provide 
qualitative arguments as well as analytical and experimental evidence for the security of 
Vortex. In Section 5 we present our performance analysis. In Section 6 we discuss related 
work. Finally in Section 7 we provide concluding remarks. The constant generation 
algorithm of Vortex is given in Appendix A and a list of intermediate values for a known 
answer test vector is given at the Appendix B. The rather lengthy proof of Lemma 1 used 
for the derivation of the main security proof is given in Appendix C.  
 
 
2. Design Methodology 
 
Vortex represents a new family of one way hash functions that can produce message 
digests of 224, 256, 384 and 512 bits. The main idea behind the design of these hash 
functions is that we use known algorithms that can support very fast diffusion in a small 
number of steps. Our intent is to allow each bit of an input block to affect all bits of a 
hash after a small number of computations.  
 
The algorithms we use in our design are: 

 
• The Rijndael round due to its capability to perform very fast mixing across 32-bits 

as a stand-alone operation and 128 bits or 256 bits if combined with at least one 
more round; and:  

• A variant of Galois Field (GF(2)) multiplication due to its capability to cross mix 
bits of different sets (i.e., the input operands) in a manner that is 
cryptographically stronger than other simpler schemes (e.g., Feistel reordering 
proposed in modes like MDC-2 [23]).  

 
We also balance the cryptographic strength that comes from iterating block cipher rounds 
with SBox substitution and diffusion (like Whirlpool) against the need to have a 
lightweight implementation with as small number of rounds as possible. We use a 
variable number of Rijndael rounds with stronger key schedule. The number of rounds is 
a tunable parameter. The best tradeoff between security and performance for the Vortex 
family comes when the number of rounds is greater or equal to 3. The design threshold of 
3 comes from the fact that 2 rounds is the bare minimum number needed for 128-bit wide 
mixing. One more round is considered as a safety margin. The authors are aware that 
fewer than 10 Rijndael round transformations can be distinguished from random 
permutations in several ways. For this reason our design introduces a new key schedule 
algorithm for compensating for the security lost from reducing the number of Rijndael 
rounds in Vortex. In any case our design is open for introducing more rounds if proven 
necessary in the future. Rijndael rounds are followed by our variant of Galois Field 



multiplication. This achieves cross-mixing between 128-bit or 256-bit sets. Our 
transformation is not simple carry-less multiplication but combines bit reordering 
operations, XORs and additions with carries. In this way our variant of Galois Field 
multiplication: 
 

• achieves better diffusion than the straightforward carry-less multiplication 
between the 128-bit or 256-bit inputs 

• is a non-commutative operation protecting against attacks based on swapping the 
order of the chaining variables in the processing of a message.    

 
Our family of one way hash functions uses the Rijndael round as specified in [7]. Vortex 
224 and Vortex 256 use Rijndael 128 rounds. Vortex384 and Vortex 512 use Rijndael 
256 rounds. Rijndael 128 round is the round algorithm of the Advanced Encryption 
Standard (AES) as specified in the standard FIPS-197. 
 
 
3. Algorithm Description 
 
Endianness and Notation 
 
Unless stated explicitly, the Vortex algorithm specification is independent of the 
endianness of the machine where Vortex is implemented. In the specification that follows 
we use the term ‘least significant’ to refer to the unit of information (whether bit, byte or 
word) with the smallest index. We also use the term ‘most significant’ to refer to the unit 
of information with the greatest index. For example in the bit representation of a 128-bit 
variable A = ]...[ 0126127 aaa , 0a is the least significant bit whereas 127a is the most 
significant bit. 
 
Mathematical Operations 
 
Mathematical operations used by the Vortex specification are listed below. These 
operations are: (i) bit-wise exclusive OR (XOR) (ii) addition modulo-264; and (iii) carry-
less multiplication (iv) substitution box SBox() (v) Rijndael round R() 
 
Bit-wise XOR is denoted by ‘⊕’ and defined as follows: Let the inputs to the operation 
are A and B consisting of N bits each: 
 

]...[],...[ 021021 bbbBaaaA NNNN −−−− ==  (1) 
 
The result of the operation ]...[ 021 cccBAC NN −−=⊕= is an N-bit number defined as: 
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Addition modulo-264 is denoted by ‘⊞’ and defined as follows: Let the inputs to the 
operation are A and B consisting of M 64-bit words each: 
 

]:...::[],:...::[ 021021 BBBBAAAA MMMM −−−− ==  (3) 
 
The result of the operation C=A⊞B = ]:...::[ 021 CCC MM −− is an M-word number defined 
as: 
 

10,2mod)( 64 −≤≤+= MiBAC iii  (4) 
 
Carry-less multiplication is denoted by ‘⊗’ and defined as follows: Let the inputs to the 
operation are A and B consisting of N bits each: 
 

]...[],...[ 021021 bbbBaaaA NNNN −−−− ==  (5) 
 
The result of the operation ]...[ 02222 cccC NN −−= is an 2N-1 bit number. The bits of the 
output C result from the following logic functions of the bits of the inputs A and B: 
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The SBox() transformation is defined as in the symmetric encryption standard FIPS-
197 (AES). Let the input operand be A, defined a sequence of M bytes: 
 

]:...::[ 021 AAAA MM −−=  (8) 
 
The result of the transformation on A, is C = SBox(A) = ]:...::[ 021 CCC MM −−  where 
 

=iC sbox( iA ) = ))(( iIT AMA ,  10 −<≤ Mi  (9) 
 
The transformation sbox() is the AES substitution box applied on a single byte. Such 
transformation consists of two stages IM (a) and TA (a). In the first stage IM (a), each 
byte a is replaced by its multiplicative inverse in the finite field GF(28). This finite field 
is defined by the irreducible polynomial 0x11B (or 100011011b in binary notation). 
Additions and multiplications in GF(28) are carry-less and results are represented modulo 



0x11B (or 100011011b). The second stage TA (a) replaces the value of each byte a with 
another byte value according to a bit-linear transform plus a constant. Specifically, every 
bit ai of byte a is substituted by another bit ai

+ according to the following formula: 
 

70,8mod)7(8mod)6(8mod)5(8mod)4( ≤≤⊕⊕⊕⊕⊕= ++++
+ iwaaaaaa iiiiiii  (10) 

                  
where by ‘⊕’ we mean the XOR logical operation, and wi is the ith bit of the value 0x63. 
 
The Rijndael round transformation R() applies to inputs A and B consisting of M bytes 
each: 
 

]:...::[],:...::[ 021021 BBBBAAAA MMMM −−−− ==  (11) 
 
where M = 16 (Rijndael 128) or  M = 32 (Rijndael 256). Input A denotes the round state 
whereas input B denotes the round key.  The result of the transformation C = R(A, B) is 
defined as:  
 

=C  MC (SBox(SR (A))) B⊕  (12) 
 
where the transformation SR(A) called ‘Shift Rows’ is a byte permutation on A. SR(A) is 
defined as: 
 

MiiiR AAS mod)4)4mod(()( ⋅+=   (13) 
 
The transformation MC(A) called ‘Mix Columns’ modifies the values of sequences of 4 
adjacent bytes from A of the form ]:::[ 3424144 +⋅+⋅+⋅⋅ iiii AAAA , 0 ≤ i < 4,  using matrix 
multiplication in the finite field GF(28).  
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where the irreducible polynomial defining GF(28) is the same as the one used in the 
SBox() transformation (0x11B or 100011011b). 
 
Block Length and Padding 
 
Vortex processes an input stream as a sequence of blocks. A block is defined as a 
sequence of bits of specific length. The length of all blocks but the last is N bits. The 
length of the last block is N/2 bits. For Vortex 224 and Vortex 256 N=512. For Vortex 
384 and Vortex 512 N=1024. The stream is padded with a bit value equal to‘1’ following 
the most significant bit of the input stream. The stream may be further padded with bits 



of value equal to ‘0’ so that its length becomes equal to (k+0.5)•N - N/8 for some non-
negative integer k. If the length of the stream is already equal to (k+0.5)•N - N/8 for 
some k, the stream is not padded with zeros. Finally, the stream is padded with N/8 bits 
indicating the length of the stream. The length of the stream is expressed in bits and 
denoted using the little endian format. This means that the bit following the previous 
padding stages is the least significant bit of the value of the stream length.   
 
Tunable Parameters 
 
The tunable parameters of the Vortex algorithm include: (i) the number of rounds NR 
used by an internal block cipher based on the Rijndael round R() transformation (see 
below); (ii) the degree of the diffusion DF which affects the number of times each bit of 
the input stream is diffused over all bits of the output digest; and (iii) the type of 
multiplication algorithm MT employed the Vortex merging function )()( aV A

M  described 
below. If MT = 0 then multiplication is carry-less, else if MT = 1, multiplication is integer. 
 
Other tunable parameters include an initial value of the chaining variable 00 || BA  of the 
algorithm and a final tweak value BA TT ||  both of which are explained below. By ‘||’ we 
mean concatenation. 00 || BA  and BA TT ||  are of size N/2 bits. The user of the Vortex 
algorithm can either set 00 || BA  and BA TT ||  to some constants like the ones specified in 
the Appendix or to some randomly generated values. In this case Vortex operates as a 
pseudorandom function family, where for a different random pair of  00 || BA  and BA TT ||  
one obtains a different cryptographic hash function (which should ideally not be 
distinguishable from a random function). What is important in the specification of 

00 || BA  and BA TT ||  is that the chaining variable value 00 || BA  should always be 
different from the final tweak BA TT || .  
 
Domain Extension Transform 
 
Vortex operates on a chaining variable resulting from the concatenation of two N/4-bit 
variables A and B initialized to 00 || BA . Vortex also uses a tweak value consisting of the 
concatenation of variables TA and TB. TA and TB are N/4 bits long. To support collision 
resistance as well as pseudorandom function and pseudorandom oracle preservation, 
Vortex uses the Enveloped Merkle-Damgård construction as its domain extension 
transform. The Enveloped Merkle-Damgård construction is shown in Figure 1.  
 
Each padded input stream consists of k blocks of size N bits for some non-negative 
integer k and a last block of size N/2 bits.  Each block Bi (except for the last) consists of 4 
words of size N/4 bits: ]:::[ 4142434 iiiii WWWWB ⋅+⋅+⋅+⋅= , 0 ≤ i ≤ k-1. The last block Bk 

consists of 2 words: ]:[ 414 kkk WWB ⋅+⋅= . The compression function used by the 
Enveloped Merkle-Damgård construction, called ‘Vortex block’ works as follows: It 



accepts as input the previous value of a chaining variable  ii BA ||  and an input block Bi,  
0 ≤ i ≤ k-1. It returns an updated value of the chaining variable 11 || ++ ii BA . 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 1: Vortex as an Enveloped Merkle-Damgård  construction 
 
The processing done on the last block differs from the processing done on other blocks. 
For the last block, the compression function uses the tweak value BA TT ||  as a chaining 
variable and the concatenation of ]:[ kk BA and ]:[ 414 kk WW ⋅+⋅ as input block. For Vortex 
256 and Vortex 512, the message digest resulting from the input stream is equal to the 
final value of the chaining variable ]:[ 11 ++ kk BA . For Vortex 224 and Vortex 384, the 
message digest resulting from the input stream is equal to the 224 and 284 least 
significant bits of ]:[ 11 ++ kk BA  respectively. 
 
Vortex Block 
 
The Vortex block algorithm incorporates two repetitions of an algorithm called ‘Vortex -
sub-block’. Such structure is shown in Figure 2.  The first repetition of Vortex sub-block 
accepts as input the chaining variable ii BA ||  and two least significant input block words 

144 , +⋅⋅ ii WW . It returns an intermediate value for the chaining variable BA || .  The second 
repetition of Vortex sub-block accepts as input the intermediate value of the chaining 
variable BA ||  and two most significant input block words 3424 , +⋅+⋅ ii WW . It returns an 
update on the chaining variable 11 || ++ ii BA .  The Vortex block algorithm is: 
 
Vortex block( 3424144 ,,,,, +⋅+⋅+⋅⋅ iiiiii WWWWBA ) 
begin 
 ←BA ||  Vortex sub-block( 144 ,,, +⋅⋅ iiii WWBA )   // uses 144 , +⋅⋅ ii WW   
 ←++ 11 || ii BA  Vortex sub-block( 3424 ,,, +⋅+⋅ ii WWBA )   // uses 3424 , +⋅+⋅ ii WW  
 return 11 || ++ ii BA  
End 
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Figure 2: Structure of Vortex  block 
 
Vortex Sub-block 
 
With the exception of the last sub-block (see below), the algorithm for processing a 
Vortex sub-block is the following: 
 
Vortex sub-block(A, B, W0, W1) 
begin 
 ; W0 is the first word of the current sub-block to be processed 
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 ;W1 is the second word of the current sub-block to be processed  

 

),(

)(~
)(~

)(

11

11

BAVBA

WWAB

WWAA

A
M

B

A

←

⊕←

⊕←

 

 return BA ||  
end 
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Figure 3: Vortex sub-block 
 

The structure of the Vortex sub-block is shown in Figure 3. The Vortex sub-block is built 
upon two mathematical functions: The transformation )(~ xAK  called ‘A-Rijndael’, which 
is a block cipher based on Rijndael rounds, and the merging function ),()( BAV A

M . There 

are four instances of the transformation )(~ xAK  in the Vortex sub-block. Each instance is 
wrapped using a Matyas-Meyer-Oseas structure to make the transformation non-
reversible. The first two instances process input word W0. The other two instances 
process the input word W1. W0 is the least significant word of the current sub-block to be 
processed. Instances of )(~ xAK that accept the same input word processes a different 
variable from among A, B. Each instance treats its input variable A or B as a key and its 
input word, which is one from W0 or W1 as plaintext,  as it is the norm in the a Matyas-
Meyer-Oseas structure. The merging function  ),()( BAV A

M combines the outputs of the 
two instances of  ),()( BAV A

M into a new value of A||B.   
 
A-Rijndael Transformation 
 
The A-Rijndael transformation )(~ xAK  is a high performance block cipher based on 
Rijndael rounds that encrypts x, which is N/4 bits long, using the key K which is also  N/4 
bits long. )(~ xAK uses a tunable number of Rijndael rounds which we symbolize as NR. 
For N/4=128 rounds are as specified in AES, FIPS-197 [1]. Each Rijndael round R() 
consists of an SBox() substitution phase, a ‘Shift Rows’ transformation, a ‘Mix Columns’ 

VM
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transformation and a round key addition in GF(2). The key schedule algorithm used by 
)(~ xAK is different from that of Rijndael. )(~ xAK  uses a variable number NR of N/4-bit 

wide Rcon values RC1, RC2 … RCNR to derive NR round keys RK1, RK2 … RKNR as 
follows:  
 
RK1 ← Perm(SBox(K ⊞ RC1)) 
RK2 ← Perm(SBox(RK1 ⊞ RC2)) 
… 
RKNR ← Perm(SBox(RKNR-1 ⊞ RCNR)) 
 
where Perm() is a byte permutation and by ‘⊞’ we mean addition modulo 264. In this 
specification and prototype implementation Perm() is equal to the identity function. Other 
byte permutations can be considered though if deemed necessary. The SBox() 
transformation in the key schedule is applied on N/32 bytes, i.e., N/4 bits (i.e., 128 bits or 
16 bytes for Vortex 256 and 256 bits or 32 bytes for Vortex 512). A single Rijndael round 
performs diffusion across 32 bits. This is accomplished through the combination of the 
SBox() and Mix Columns transformations. Two Rijndael rounds diffuse across 128 bits. 
This is accomplished through the combination of the subsequent Shift Rows and Mix 
Columns transformations. Three or more rounds further strengthen the diffusion 
performed.  The Rcon values are set to constant values. The algorithm for generating 
these constants is described in Appendix A.  
 
Merging Function ),()( BAV A

M  
 
The merging function ),()( BAV A

M  is shown in Figure 4. If the multiplication type MT is 0 
(carry-less multiplication) ),()( BAV A

M operates as follows:  
 

),()( BAV A
M  

begin 
 let A = [A1: A0]  // A1,  A0 are N/8 bit words 
 let B = [B1: B0]  // B1,  B0 are N/8 bit words 
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BAI
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⊗←
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 let I = [I1, I0]       // I1,  I0 are N/8 bit words 
 let O = [O1, O0]  // O1,  O0 are N/8 bit words 
 return [B1 ⊞ I1: B0 ⊞ O0: A1 ⊕ O1: A0 ⊕ I0]  
end 
 
where by ‘⊞’ we addition modulo 264, and  ‘⊗’ we mean carry-less multiplication.  
 
If the multiplication type MT is 1 (integer multiplication) ),()( BAV A

M operates as follows:  



 
),()( BAV A

M  
begin 
 let A = [A1: A0]  // A1,  A0 are N/8 bit words 
 let B = [B1: B0]  // B1,  B0 are N/8 bit words 
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 let I = [I1, I0]       // I1,  I0 are N/8 bit words 
 let O = [O1, O0]  // O1,  O0 are N/8 bit words 
 return [B1 ⊞ I1: B0 ⊞ O0: A1 ⊕ O1: A0 ⊕ I0]  
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: The Merging Function of Vortex (MT=0) 
 
The merging function is based on multiplication (carry-less or integer). Our merging 
function makes sure that the bits of A impact the bits of B and vice versa.  In fact, each bit 
of one variable affects a significant number of the bits of the other variable in a non-
linear manner. This makes our design better than a straightforward XOR or other simple 
mathematical operation.  
 
Setting Mt = 0 (carry-less multiplication) is the default configuration of Vortex. The 
reason why Vortex uses carry-less multiplication by default is because it is easier to 
assert analytically about the collision resistance and pre-image resistance of the hash as 
explained in the next section. On the other hand using an integer multiplier in the 
merging function increases the performance of the hash (not all processor architectures 

B1 B0 A1 A0

I1 I0

O1 O0
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have a carry-less multiplier), increases the non-linearity of merging, but makes the 
security of the scheme more difficult to prove.  
 
Last Vortex Sub-block 
 
One can also observe that even though our merging function is strong cryptographically 
due to the mixing it provides, it does not accomplish perfect mixing by itself. This is 
because each bit of A or B affects a large number of bits of the other variable but not all 
of them. Perfect mixing is accomplished by the Rijndael rounds that follow our merging 
function. So, for a pair of input words W0, W1 perfect mixing is accomplished after a 
sequence of Rijndael rounds (mix across N/4 bits), merging using Galois Field 
multiplication (cross-mix across N/4 bit sets but not perfect mixing) and another set of 
Rijndael rounds as part of the sub-block processing to follow. 

 
The total number of times every bit is diffused over all bits of the hash is determined by 
the number of sequences of Rijndael rounds and merging found in the last Vortex sub-
block; This is another tunable parameter of the hash called ‘degree of diffusion’ DF. The 
algorithm for the last Vortex sub-block is given below: 

 
Last Vortex sub-block(A, B, W0, W1, DF) 
begin 
 ; W0 is the first word of the last sub-block to be processed 
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 for i←1 to DF do 
  ; DF is the degree of diffusion 
  ;W1 is the second word of the current sub-block to be processed 
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 return A||B 
} 
 
 
4. Security Analysis 
 
The security of the Vortex family was investigated both analytically and experimentally 
by computing or measuring the collision probability, hamming weight, mean value, 
distribution and other statistical properties of outputs from random messages as well as 
single bit output differentials. For these experiments we compared the numbers we got 
from Vortex with numbers we got from the SHA family.  No collision occurred in our 



experiments. Our initial results indicate that there is no experimental evidence that 
Vortex is inferior in terms of its security properties when compared to the SHA family.  
 
 Qualitative Analysis 
 
We argue that the Vortex family is at least as secure as the SHA family even though it 
uses smaller number of processing steps. There are several reasons for this. First Rijndael 
round is a good mixing function. The key used results from the current value of the 
chaining variable and hence is in most cases data dependent.  Hence our scheme does not 
suffer from known attacks on compression functions that use a small set of keys [5]. The 
key schedule transformation of Vortex is stronger than Rijndael due to the fact that the 
SBox() transformation is applied across each 128- or 256-bit round key as opposed to 32 
bits only and that round constants are added using integer addition modulo 264 as opposed 
to XOR.  It is the combination of two independent sources of non-linearities in the key 
schedule, i.e., addition with carries and inversion in GF(28) that strengthen the mixing 
performed by Vortex. We have investigated experimentally whether the security obtained 
by strengthening the key schedule of A-Rijndael can compensate for reducing its number 
of rounds (to increase performance). Our initial results indicate that, even with a 3 round 
A-Rijndael transformation, Vortex outputs message digests with satisfactory statistical 
properties.  
 
Vortex uses a Matyas-Meyer-Oseas transformation, where they key is obtained from the 
chaining variable and not the message. Because of this reason Vortex is more secure 
against related key attacks. This is because the attacker can be in control of the message 
supplied as input to A-Rijndael but not the key. The merging function of Vortex 
combines linear (XORs) and non-linear (adds with carries) transformations with 64-bit or 
128-bit multiplication building blocks. This operation is non-commutative and when 
combined with previous and subsequent Rijndael rounds and Galois Field multiplication 
achieves perfect mixing across N/2 bits. By designing the merging function to be non-
commutative we destroy any symmetry in the computation of the Vortex sub-block that 
could be a potential source of collision. If Vortex was designed such that its merging 
function is commutative, then an attacker could create a collision by generating a 
message that swaps the position of chaining variables A and B as compared to another 
given message. 
 
A more thorough analytical study on the security of the Vortex family is described in the 
next section. Specifically, we show that the number of queries required for finding a 
collision with probability greater or equal to 0.5 in an ideal block cipher approximation of 
A-Rijndael is at least 1.18•2122.5 . A part of this work we developed a methodology for 
computing the collision resistance and the first pre-image resistance of our construction 
based on the divide-and-conquer approach that was first used in the study of the MDC-2 
mode by Steinberger [23]. Such approach helps with reasoning about the collision and 
pre-image resistance of specific components of hash functions. Components of hash 
functions include adders, shifters, XORs, S-Boxes, linear diffusers, bit permutations etc.  
Whereas our merging function is more complex than the MDC-2 mode of operation it can 
be analyzed due to the fact that it combines relatively simple building blocks (i.e., 



multipliers adders and XORs). In addition when MT = 0 multipliers are carry-less 
accepting small size input operands (i.e., 64 or 128 bits). These facts make the collision 
and pre-image resistance of our construction easier to compute than MDC-2. 
 
The current design choices have been made to balance the security of Vortex with 
performance. There are several possible extensions that can be made to the Vortex design 
though. As part of future work, we need to determine whether the presence of simple 
carry-less or integer multiplication is sufficient in the merging function or not. Any non-
zero operand multiplied with zero results in zero. Such fact marginally increases the 
collision probability associated with our merging function as explained below (we obtain 
122 bits of collision resistance as opposed to128). If this is proven to be a design 
deficiency, it can be potentially corrected with simple modifications to the algorithm. For 
example, a single multiplication can be replaced by two multiplications. In each of the 
two multiplications, operands are XOR-ed with a correcting constant and the results of 
the multiplications are merged with each other. 
 
A careful observer can also see that when the multiplication type is 0 (carry-less) the 
most significant bit of A is not affected by the merging function whereas the most 
significant bit of B is only changed by the carry value, and so it remains the same with 
probability 0.5. Diffusion in the most significant bit position of A is completed by 
subsequent stages of Rijndael rounds and merging. This is one of the reasons why the last 
Vortex sub-block executes several times.  
 
Theoretical Analysis 
 
In what follows we provide an analytical argument for the collision and pre-image 
resistance of the Vortex algorithm. For our analysis we replace the A-Rijndael 
transformation with an ideal block cipher. An ideal block cipher is computationally 
indistinguishable from a random permutation given a secret randomly chosen key. The 
rationale behind such replacement is that the number of rounds NR of A-Rijndael can be 
se to any appropriate value since it is a tunable parameter of the algorithm. Once the 
number of rounds is sufficiently large, A-Rijndael does approximate an ideal block 
cipher, hence we can safely do the replacement. We also restrict our analysis for merging 
functions with carry-less multiplication (MT = 0). The reason why is because it is much 
easier to analyze the behavior of a carry-less multiplier as compared to an integer due to 
the absence of carry propagation.  
 
In what follows we define a ‘query’ as a sequence of A-Rijndael transformations 
followed by merging. A query is part of the Vortex sub-block algorithm. 
 
Query(A, B, W0) 
begin 
 ; W0 is the word of the current sub-block to be processed 
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 return BA ||  
end 
 
Theorem 1: The number of queries required for finding a collision with probability 
greater or equal to 0.5 in an ideal block cipher approximation of A-Rijndael is at least 
1.18•2122.5 for Vortex 224 and Vortex 256, if the attacker uses randomly chosen message 
words for the queries. 
 
To prove the theorem above we investigate the behavior of the 64-bit carry-less 
multiplier which is the main mixing component of the Vortex merging function. We 
show that if the input to the carry-less multiplier is uniformly distributed then the output 
is almost uniformly distributed too.  Let the inputs to a 64-bit carry-less multiplier by X 
and Y: 
 

]...[],...[ 0626306263 yyyYxxxX ==  (15) 
 
Let’s also assume that X and Y are uniformly distributed: 
 

]12,0[~,~,2)~Pr()~Pr( 6464 −∈∀==== − YXYYXX  (16) 
 
We denote the output of carry-less multiplication as [W:Z]: 
 

YXZW ⊗=]:[  (17) 
 
where W is a 63 bit word and Z is a 64-bit word: 
 

]...[],...[ 0626306162 zzzZwwwW ==  (18) 
 
In what follows we state a useful Lemma regarding the probability distribution of ]:[ ZW  
 
Lemma 1: Let YXZW ⊗=]:[ be the result of the carry-less multiplication of quantities 
X and Y defined as in Eq. (15) and distributed as in Eq. (16). Then the probability that 

]:[ ZW  takes a specific value ]~:~[ ZW in the set [0, 2128-1] is bounded by: 
 

]12,0[]~:~[,2])~:~[]:Pr([ 1285.122 −∈∀≤= − ZWZWZW  (19) 
 
Moreover, the probability that Z takes a specific value Z~  in the set [0, 264-1] is bounded 
by: 



]12,0[~,2)~Pr( 6466.61 −∈∀≤= − ZZZ  (20) 
 
and the probability that W takes a specific value W~  in the set [0, 264-1] is bounded by: 
 

]12,0[~,2)~Pr( 6483.60 −∈∀≤= − WWW  (21) 
 
Proof of Lemma 1: is provided in Appendix C. 
 
To prove Theorem 1 we further show that the output of the ‘Query’ algorithm     
Query(A, B, W0) is almost uniformly distributed if at least the input word  W0  is 
uniformly distributed.  
 
Lemma 2: Let ]:[ DC = Query(A, B, W0) be the output of the query algorithm on N/4 bit 
quantities A, B, W0. Let N=512. Let also W0 be uniformly distributed and the A-Rijndael 
transformation used by Query() replaced by an ideal block cipher. Then the probability 
that ]:[ DC  takes a specific value ]~:~[ DC in the set [0, 2256-1] is bounded by: 
 

]12,0[]~:~[,2])~:~[]:Pr([ 256245 −∈∀≤= − DCDCDC  (22) 
 
Proof follows from Lemma 1. The behavior of the Query algorithm is illustrated in 
Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Behavior of the Query Algorithm 
 

AA(W0)~AA(W0)~AA(W0)~AA(W0)~ AB(W0)~AB(W0)~AB(W0)~AB(W0)~

W0

A B

⊕ ⊕

F1 F0 E1 E0

I1 I0

O1 O0

D1 D0 C1 C0

F1 F0 E1 E0

I1 I0

O1 O0

D1 D0 C1 C0



Since the input word is uniformly distributed and the A-Rijndael transformation is 
replaced by an ideal block cipher, the outputs ]:[ 01 EEE = and ]:[ 01 FFF = of the 
Matyas-Meyer-Oseas structures of the Query algorithm are also uniformly distributed. 
Because of this reason the probability distributions of the inner and outer products 

]:[ 01 III = and ]:[ 01 OOO =  are bounded according to Lemma 1: 
 

]12,0[~,2)~Pr( 64
0

66.61
00 −∈∀≤= − III  (23) 

 
]12,0[~,2)~Pr( 64

1
83.60

11 −∈∀≤= − III  (24) 
 

]12,0[~,2)~Pr( 64
0

66.61
00 −∈∀≤= − OOO  (25) 

 
]12,0[~,2)~Pr( 64

1
83.60

11 −∈∀≤= − OOO  (26) 
 
Hence Lemma 2 is proven as follows: 
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(27) 

 
Lemma 2 indicates that the Vortex 256 algorithm offers at least 245 bits of first pre-
image resistance. The reason why we do not get the ideal 256 bit security is because of 
the zero accumulation point of the multiplier units employed by the Vortex merging 
function. As it is shown in Appendix C (proof of lemma 1) the byte distribution 
probabilities for the output of the carry-less multiplier are all bounded by 2-8 apart from 
those associated with the most and least significant byte positions of the output. For these 
byte positions the bounds are 2-4.83 and 2-5.68 respectively. These higher bounds come 
from the probabilities that the output bytes are equal to zero. As a result the Vortex 



design cannot achieve the ideal security of 256 bits. However, there are several ways by 
which the design can be extended if this is deemed necessary.  
 
From Lemma 1 and Lemma 2 we can now prove theorem 1 and conclude this theoretical 
analysis of our algorithm. We assume the presence of an adversary who chooses 
randomly selected messages as inputs to the Query() algorithm. The values of the 
chaining variables A and B are not under the explicit control of the adversary. Lemma 2 
states that the probability that the output of Query(A, B, W0) is equal to a specific  value 

]~:~[ DC is bounded by 2-245.  This bound can be written as 2139/2384. This means that from 
all possible 2384 triplets (A, B, W0) there exists a set of no more than 2139 resulting in the 
same specific output ]~:~[ DC . This also means that there are at least 2245 sets of triplets (A, 
B, W0) of cardinality less than or equal to 2139 where the triples of the same set result in 
the same output.  
 
The probability p̂ that the adversary has not found a collision after q queries is equal to 
the probability that the adversary has used a triplet from a different set in each of the q 
queries the adversary has made. To compute a lower bound for the number of queries the 
adversary needs to make so that 1- p̂≥ 0.5 we proceed as in any typical birthday attack. 
Considering 2245 = NT, we have: 
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Setting 1- p̂ = ½ we get that: 
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The above equation has two roots 2/)2ln811( TNq ⋅⋅+±= of which the positive is 

equal to 2/)2ln811( TNq ⋅⋅++= .  
 
For 1>>TN , we get that  TNq ⋅= 18.1 5.122218.1 ⋅= . Hence Theorem 1 is proven. 
 
Experimental Analysis 
 
To evaluate our algorithm we conducted a number of experiments hashing random 
messages and computing the statistical properties of the resulting digests as well as single 
bit output differentials. In this section we present our experimental results. The collision 



resistance of the Vortex family was investigated experimentally by conducting a large 
number of experiments (220) hashing the Vortex specification document with random 
perturbations superimposed on it. No collision occurred in our experiments.  
 
Another set of experiments was conducted in order to demonstrate how random the 
outputs of the Vortex hash are. For this purpose we first computed the Hamming weight 
of message digests resulting from the short and long message Known Answer Test 
vectors (KATs) provided by NIST.   Our Hamming weight analysis results are illustrated 
below. For each value shown in Tables 1-5, the notation used is ‘average ± standard’ 
deviation. 
 

Experiment NR=3, DF=5 NR=5, DF=5 NR=7, DF=5 NR=10, DF=5 

Short Messages,  Vortex 224 112.1±7.4 111.8±7.5 112.3±7.6 112.0±7.4 

Long Messages,  Vortex 224 112.3±7.4 111.3±7.4 112.2±8.0 111.9±7.5 

Short Messages,  Vortex 256 128.1±8.1 127.8±8.0 128.3±8.1 128.0±7.8 

Long Messages,  Vortex 256 128.6±7.9 127.2±7.8 128.2±8.4 128.0±7.9 

Short Messages,  Vortex 384 191.8±9.8 192.2±9.9 192.3±9.8 192.1±9.9 

Long Messages,  Vortex 384 191.7±9.7 191.6±10.1 192.1±10.1 192.5±10.4 

Short Messages,  Vortex 512 255.7±11.3 256.2±11.5 256.1±11.4 256.0±11.4 

Long Messages,  Vortex 512 255.5±11.4 255.6±11.7 255.8±11.5 256.0±11.8 
 

Table 1: Hamming Weight Analysis for Carry-less Multiplication (MT=0) 
 

Experiment NR=3, DF=5 NR=5, DF=5 NR=7, DF=5 NR=10, DF=5 

Short Messages,  Vortex 224 112.1±7.3 111.9±7.5 112.1±7.6 111.8±7.4 

Long Messages,  Vortex 224 112.5±7.4 111.9±7.7 112.6±7.3 111.9±7.9 

Short Messages,  Vortex 256 128.0±7.8 127.9±7.9 128.2±8.1 127.9±8.0 

Long Messages,  Vortex 256 128.3±7.9 128.0±8.4 128.5±7.7 127.9±8.3 

Short Messages,  Vortex 384 192.3±10.2 192.2±10.0 192.1±9.9 192.1±10.0 

Long Messages,  Vortex 384 191.4±10.2 191.8±9.4 192.7±10.1 191.1±9.9 

Short Messages,  Vortex 512 256.4±11.8 256.0±11.4 256.1±11.3 256.2±11.4 

Long Messages,  Vortex 512 255.1±12.4 255.7±11.3 256.4±11.6 255.0±11.0 
 

Table 2: Hamming Weight Analysis for Integer Multiplication (MT=1) 
 



A second set of experiments was conducted in order to measure the statistical properties 
of single bit output differentials. We computed the statistical mean and correlation matrix 
of single bit output differentials resulting from 16K random messages of size 256 bits. 
For the derivation of the differentials we XOR-ed a single bit perturbation mask with the 
value “1” being set in bit positions 0 to 255 to each input message. Then, we XOR-ed the 
outputs.  
 

Experiment NR=3, DF=5 NR=5, DF=5 

Vortex  256 (1 bit) 8192.37 ± 64.03 8191.93 ± 63.99 

SHA 256 (1 bit) 8191.99 ± 63.96 8192.6 ± 63.98 

Vortex 256 (16 bits) 53689.75 ± 238.16 53687.54± 242.44 

SHA 256 (16 bits) 53689.86 ± 238.91 53693.23± 241.05 
Experiment NR=7, DF=5 NR=10, DF=5 

Vortex  256 (1 bit) 8191.69 ± 64.08 8192.03 ± 63.98 
SHA 256 (1 bit) 8191.75 ± 63.93 8191.99 ± 63.85 

Vortex 256 (16 bits) 53688.50 ± 242.03 53685.16 ± 240.04 
SHA 256 (16 bits) 53682.48 ± 246.06 53681.98 ± 242.25 

 
 

Table 3: Single Bit Differential Analysis: Scaled Mean Values across Output 
Differentials for Carry-less Multiplication (MT=0) 

 
Experiment NR=3, DF=5 NR=5, DF=5 

Vortex  256 (1 bit) 8192.46 ± 63.87 8191.81 ± 63.96 

SHA 256 (1 bit) 8192.32 ±  63.92 8192.16 ± 64.22 

Vortex 256 (16 bits) 53690.16 ± 245.51 53680.92 ± 239.86 

SHA 256 (16 bits) 53690.73 ± 243.23 53689.34 ± 241.73 
Experiment NR=7, DF=5 NR=10, DF=5 

Vortex  256 (1 bit) 8191.67 ± 63.91 8192.33 ± 64.24 
SHA 256 (1 bit) 8191.96 ± 63.94 8191.76 ± 63.86 

Vortex 256 (16 bits) 53678.77 ± 244.83 53687.57 ± 242.94 
SHA 256 (16 bits) 53681.87.± 242.01 53688.66 ± 243.16 

 
Table 4: Single Bit Differential Analysis: Scaled Mean Values across Output 

Differentials for Integer Multiplication (MT=1) 



 
The statistical means and correlation properties shown in Tables 1-5 were derived from 
these computed output differentials. We considered that either a single bit or a group of 
16 consecutive bits in an output differential is a random signal. Computations were done 
to derive the statistical properties of these random signals over specific sets of output 
differentials. Each differential in a set was associated with a perturbation in a different bit 
position from 0 to 255, over the same random message.  
 
Tables 3 and 4 show the mean values across all random signals coming from output 
differentials for MT=0 and MT=1 respectively. Table 5 shows the sum of the elements of 
the correlation matrix computed for the random signals described above. The results from 
our experiments were multiplied with appropriate scaling constants so that the 
comparison between Vortex 256 and SHA 256 is meaningful.  
 
 

Experiment NR=3, DF=5, MT=0 NR=5, DF=5, MT=0 
Vortex 256 (16 bits) 147.99 ± 55.27  148.71 ± 55.90 
SHA 256 (16 bits) 152.92 ± 56.23 150.82 ± 56.11 

Experiment NR=7, DF=5, MT=0 NR=10, DF=5, MT=0 
Vortex 256 (16 bits) 151.43 ± 56.55 162.26 ± 59.04  
SHA 256 (16 bits) 149.55 ± 55.88 154.34 ± 56.71  

Experiment NR=3, DF=5, MT=1 NR=5, DF=5, MT=1 
Vortex 256 (16 bits) 150.31 ± 56.55  149.14 ± 55.41  
SHA 256 (16 bits) 150.45 ± 57.09 147.32 ±  55.15 

Experiment NR=7, DF=5, MT=1 NR=10, DF=5, MT=1 
Vortex 256 (16 bits) 154.68 ± 56.42  153.66 ± 57.21  
SHA 256 (16 bits) 151.31 ± 56.74  150.29 ± 57.98 

 
Table 5: Single Bit Differential Analysis: Scaled Sum of the Elements of the 

Correlation Matrix  
 
It is clear from the results that Vortex outputs are as random as those of the SHA family 
across all variants of the family. These results also indicate that even with three rounds 
and degree of diffusion equal to 5 the Vortex family can output values with satisfactory 
statistical properties. This is due to the strong mixing performed by its compression 
function and the EMD transform used as domain extension which preserves the pseudo-
random oracle and pseudo-random function properties.  
 
Known Attacks 
 
In what follows we provide a summary of how Vortex addresses a number of known 
attacks:  

 



• Algebraic attacks may be applicable to Vortex. Vortex provides two mechanisms 
for mitigating algebraic attacks: First it sets the number of block cipher rounds to 
a tunable parameter, where the larger the number of rounds is the more complex 
an algebraic attack becomes. Second, it includes a degree of diffusion parameter 
for repeating the last sub-bock several times.  These repetitions, together with 
other non-linearities of the block cipher push the complexity of algebraic attacks 
to a safety margin. For example, if the number of rounds is 3 and the degree of 
diffusion 5 (which is the default setup of the algorithm), each bit of the input goes 
through a SBox transformation 15 times. This is even stronger mixing as 
compared to AES 256 (14 times). 

• Related key attacks are mitigated by using a Matyas-Meyer-Oseas structure 
which sets the attacker in control of the plaintext of the encryption but not the 
key. 

• Multi-collision attacks  may be applicable to Vortex; However the number of 
queries required for finding a single collision is quite high (~2122.5) as shown in 
the previous section and hence such attacks may not be practical.  

• Side channel attacks can be mitigated using processor instructions that 
implement Rijndael rounds and carry-less multiplication using combinatorial 
logic as opposed to memory lookups.  

• Birthday attacks are mitigated by feeding the same message word into two 
parallel block cipher stages and then mixing the results of the encryption using the 
Vortex merging function.  

 
 

5. Performance Analysis 
 
The main strength from using Vortex comes from the fact that the algorithm operates at a 
expected speed of 2.2-2.5 cycles per byte when using parameters NR=3, MT=0, DF=5, and 
running in future processor architectures with instruction set support for Rijndael rounds 
and carry-less multiplication. Moreover, adding a single round to an A-Rijndael 
transformation increases the cost of the algorithm by no more than 0.5 cycles per byte. 
  
An example a future processor architecture that will support such instructions, and which 
is familiar to the authors of this document, is Intel’s next generation Core Micro-
architecture.   In this processor family, a new set of instructions will be introduced that 
enable high performance and secure round encryption and decryption. These instructions 
are AESENC (AES round encryption), AESENCLAST (AES last round encryption), 
AESDEC (AES round decryption) and AESDECLAST (AES last round decryption). The 
specification for these instructions is given in Table 6. Further information about the AES 
instructions can be found in the reference [10]. 
 
As shown in Table 6 the state of the cipher is kept at the destination XMM register 
(xmm1). The round key is kept at a source XMM register or can be obtained from 
memory. The AESENC instruction implements the following transformations of the AES 
specification in the order presented: Shift Rows, SBox, Mix Columns and Add Round 
Key. The AESENCLAST implements Shift Rows, SBox and Add Round Key but not 



Mix Columns. The AESDEC instruction implements Inverse Shift Rows, Inverse SBox, 
Inverse Mix Columns and Add Round Key. Finally the AESDECLAST instruction 
implements Inverse Shift Rows, Inverse SBox, and Add Round Key but not Inverse Mix 
Columns.  
 

Instruction Description 

AESENC xmm1, xmm2/128 
performs one round of an AES encryption flow 
operating on a 128-bit data (state) from xmm1 with a 
128-bit round key from xmm2/128 

AESENCLAST xmm1, xmm2/128 
performs the last  round of an AES encryption flow 
operating on a 128-bit data (state) from xmm1 with a 
128-bit round key from xmm2/128 

AESDEC xmm1, xmm2/128 

performs one round of an AES decryption flow using 
the equivalent inverse cipher operating on a 128-bit 
data (state) from xmm1 with a 128-bit round key from 
xmm2/128 

AESDECLAST xmm1, xmm2/128 

performs the last  round of an AES decryption flow 
using the equivalent inverse cipher operating on a 128-
bit data (state) from xmm1 with a 128-bit round key 
from xmm2/128 

 
Table 6: AES instructions for round encryption and decryption 

 

Instruction/ Description 

PCLMULQDQ xmm1, xmm2/m128, imm8 
Carry-less multiplication of one quadword of xmm1 by one quadword of xmm2/m128, returning 
double quadwords. The immediate byte is used for determining which quadwords of xmm1 and 
xmm2/m128 should be used. 

imm8[7:0] Operation 

0x00 xmm2/m128[63:0] • xmm1[63:0] 
0x01 xmm2/m128[63:0] • xmm1[127:64] 
0x10 xmm2/m128[127:64] • xmm1[63:0] 
0x11 xmm2/m128[127:64] • xmm1[127:64] 

 
Table 7: The PCLMULQDQ instruction 

 
Together with the AES instructions, Intel will also offer one new instruction supporting 
carry-less multiplication named PCLMULQDQ. The PCLMULQDQ instruction 
performs carry-less multiplication of two 64-bit words which are selected from the first 



and the second operands according to the immediate byte value.   The specification of the 
PCLMULQDQ instruction is given in Table 7. 
 
In this document we argue that the introduction of such instructions will not characterize 
one particular processor family only, but eventually become a trend in the industry. There 
are several reasons for this: First, several hardware vendors besides Intel including Sun  
and IBM are researching the implementation of high performance AES encryption [16] 
and Galois Field multiplication [9] in hardware. Second, technologies such as composite 
fields are well known and can be used for constructing very compact AES 
implementations potentially exhibiting single clock throughput and small processing 
latency. Third, there is precedence with examples like the SSE instructions for 
multimedia processing, or the 64-bit extensions to integer arithmetic instructions which 
indicate that good technologies are eventually adopted by several semiconductor 
manufacturers. Fourth, even processors used in embedded systems already use hardware 
for AES encryption. Fifth, flexible crypto instructions like AES round instructions can be 
good hardware solutions for implementing a variety of algorithms. This is one of the aims 
of this work. 
 
In this submission package we provide 4 implementations of the Vortex family: (i) a 
reference implementation; (ii) an optimized 64-bit implementation; (iii) an optimized 32-
bit implementation; (iv) and an optimized assembly implementation with instruction 
‘stand-ins’ for AESENC, AESENCLAST and PCLMULQDQ.  The replacement we used 
for all three instructions is the integer multiplication instruction PMULUDQ. 
PMULUDQ demonstrates single clock throughput and three clock latency. From a 
researcher’s perspective, we believe that such instruction can approximate the best 
performance that can come out of future implementations of AESENC, AESENCLAST 
and PCLMULQDQ. This statement reflects a belief based on well known characteristics 
of high performance and compact AES implementations and should not be seen as any 
form of product roadmap commitment.  
 
Our performance results for the four types of implementation are shown in Table 8. Table 
8 shows the performance of all members of the Vortex family when the number of rounds   
NR is equal to 3, multiplication is carry-less (MT = 0), and the degree of diffusion DF is 
equal to 5. The results were obtained by hashing 1024 random messages of size 128 KB 
on a Core 2 Duo processor running at 3 GHz clock speed with 4 GB of RAM. 
Measurements were taken using the RDTSC instruction.  
 

Implementation Vortex 224 
(cycles/byte) 

Vortex 256 
(cycles/byte) 

Vortex 384 
(cycles/byte) 

Vortex 512 
(cycles/byte) 

Reference (64bit) 46.46 46.46 61.67 61.67 
Optimized 64-bit 46.26 46.26 56.05 56.05 
Optimized 32-bit 69.44 69.44 90.07 90.07 

Assembly (stand-ins) 2.47 2.47 2.22 2.22 
 

Table 8: Performance of the Vortex Family 
 



Our optimized assembly code which results in the best performance is listed below: 
 
Vortex_256_asm PROC 
 
 ;rcx holds the pointer to the hash  
 ;rdx holds the pointer to the data 
 ;r8  holds the pointer to the rcon constants 
 ;r9  holds the pointer to the length in blocks 
  
  
 ;first we load the hash in the register pair <xmm1:xmm0> 
  
 movdqu  xmm0, XMMWORD PTR [rcx] 
 movdqu  xmm1, XMMWORD PTR [rcx+16] 
  

;then we load the rcon constants in the registers xmm13, xmm14,   
;xmm15 

  
 movdqu  xmm13, XMMWORD PTR [r8] 
 movdqu  xmm14, XMMWORD PTR [r8+16] 
 movdqu  xmm15, XMMWORD PTR [r8+32] 
  
 ;xmm12 holds the constant zero 
 pxor  xmm12, xmm12 
 
  
vortex_block_loop: 
 mov   r10, 4 
vortex_word_loop: 
 ;first we load the data into the register xmm11 
 movdqu  xmm11, XMMWORD PTR [rdx] 
 
 ;1st block: move the data to xmm4, xmm5 
 movdqu  xmm4, xmm11 
 movdqu  xmm5, xmm11 
  
 ;do the modified key schedule 
 paddq  xmm0, xmm13 
 paddq  xmm1, xmm13 
  

;permutation + sbox can be implemented using the future pshufb +   
;aeseclast instructions 

 ;we simulate these using pxor, pmuludq 
  
 ;pshufb  xmm0 
 pxor  xmm0, xmm13 ;1 clock stand-in 
 ;pshufb  xmm1 
 pxor  xmm1, xmm13 
 ;aesenclast xmm0, xmm12 
 pmuludq  xmm0, xmm12 ;3 clock latency, 1 clock  

;throughput stand-in 
;aesenclast xmm1, xmm12 

 pmuludq  xmm1, xmm12 
  
 ;the keys for the first round are in the registers xmm1:xmm0 
 ;to pipeline the execution of the aes round instructions we begin 



  ;preparing the key schedule for the next round 
  
 movdqu  xmm2, xmm0 
 movdqu  xmm3, xmm1 
 paddq  xmm2, xmm14 
 paddq  xmm3, xmm14 
 ;pshufb  xmm2 
 pxor  xmm2, xmm14 ;1 clock stand-in 
 ;pshufb  xmm3 
 pxor  xmm3, xmm14 
  
 ;now we issue four aes instructions 2 for the first round and 2 
  ;for the next key schedule 
 ;aesenc  xmm4, xmm0 
 pmuludq  xmm4, xmm0 
 ;aesenc  xmm5, xmm1 
 pmuludq  xmm5, xmm1  
 ;aesenclast xmm2, xmm12 
 pmuludq  xmm2, xmm12  

;3 clock latency, 1 clock throughput stand-in 
 ;aesenclast xmm3, xmm12 
 pmuludq  xmm3, xmm12 
  
 ;first round done - key schedule for second round prepared 
  
 ;we begin preparing the key schedule for the third round 
  
 movdqu  xmm0, xmm2 
 movdqu  xmm1, xmm3 
 paddq  xmm0, xmm15 
 paddq  xmm1, xmm15 
 ;pshufb  xmm0 
 pxor  xmm0, xmm15 ;1 clock stand-in 
 ;pshufb  xmm1 
 pxor  xmm1, xmm15 
  

;now we issue four aes instructions 2 for the first round and 2        
;for the next key schedule 

 ;aesenc  xmm4, xmm2 
 pmuludq  xmm4, xmm2 
 ;aesenc  xmm5, xmm3 
 pmuludq  xmm5, xmm3  
 ;aesenclast xmm0, xmm12 
 pmuludq  xmm0, xmm12 ;3 clock latency, 1 clock   

;throughput stand-in 
 ;aesenclast xmm1, xmm12 
 pmuludq  xmm1, xmm12 
  
 ;second round done - key schedule for third round prepared 
  
 ;aesenc  xmm4, xmm0 
 pmuludq  xmm4, xmm0 
 ;aesenc  xmm5, xmm1 
 pmuludq  xmm5, xmm1 
  
 ;last round done!  
 pxor  xmm4, xmm11 ;matyas-mayer-oseyas 



 pxor  xmm5, xmm11   
  
 ;now we start the merging 
  
 movdqu  xmm1, xmm4 
 ;pclmulqdq xmm1, xmm5, 0x10 ;xmm1 holds the outer product 
 pmuludq  xmm1, xmm5 
 movdqu  xmm0, xmm4 
 ;pclmulqdq xmm0, xmm5, 0x01 ;xmm0 holds the inner product 
 pmuludq  xmm0, xmm5 
  
 movdqu  xmm2, xmm0 
 movdqu  xmm3, xmm1 
 shufpd  xmm0, xmm3, 0 
 shufpd  xmm1, xmm2, 0 
 pxor  xmm0, xmm4 
 paddq  xmm1, xmm5 
 ;we are done! 
  
 add   rdx, 16 
 dec   r10 
 jnz   vortex_word_loop 
 dec   r9 
 jnz   vortex_block_loop 
  
 ;we load the hash back 
 movdqu  XMMWORD PTR [rcx], xmm0 
 movdqu  XMMWORD PTR [rcx+16], xmm1 
 
 RET 
 

 
6. Selected Related Work and Acknowledgement 
 
A lot of work has been done the recent years on the design of one way hash functions [3, 
5, 6, 8, 11, 12, 15, 18, 19, 23]. In this section we acknowledge some seminal papers, 
which this design heavily draws from. First, this design uses the Enveloped Merkle-
Damgård construction [3] as its domain extension transform to preserve the pseudo-
random function and pseudo-random oracle properties besides collision resistance. 
Second, to avoid length extension attacks this design uses the concept of Merkle-
Damgård strengthening presented in [8, 15]. Third, motivated by the weak security of the 
MDC2 mode, analyzed in [23] this design improves upon MDC2 by replacing its Feistel 
reordering stage by a more computationally complex merging function. Fourth the 
assembly implementation reported in this document uses processor instructions and 
development techniques discussed in [10, 24]. The authors would like to thank Jesse 
Walker and Gary Graunke for their useful discussions and comments on the algorithm 
specification and for their suggestions on how to demonstrate the security of the 
algorithm analytically and experimentally.  
 
 
 
 



7. Concluding Remarks 
 
We presented Vortex a new family of one way hash functions that can produce message 
digests of 224, 256, 384 and 512 bits. The main idea behind the design of these hash 
functions is that we use well known algorithms supporting very fast diffusion in a small 
number of steps. We presented a set of qualitative and analytical arguments why we 
believe Vortex is secure and described a set of experiments that gave us confidence that 
the Vortex design is not inferior to the SHA family in terms of its collision resistance and 
randomness of output differentials. Performance-wise the expected difference between 
Vortex and earlier work is expected to be substantial in future processor architectures. 
The Vortex family is expected to operate at a speed of less than 2.2-2.5 cycles per byte in 
future CPUs with instruction set support for Rijndael round computation and Galois Field 
(GF(2)) multiplication.  We believe that the design of the Vortex family is important 
because it represents a scalable on-the-CPU solution for message and code integrity and 
can be used for supporting both high speed secure networking and protection against 
malware in next generation computing systems. 
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Appendix A: Constant generation 
 
 
Vortex uses a simple algorithm for constant generation. Two 32-bit values need to be 
stored by the algorithm in advance. These are a prime x and a modulus p listed below. All 
vortex constants result from x by iterating the formula pxxx mod)( 2 −← . The ANSI C 
code implementing the generation of the Vortex constants is given below. 
 
 
int i, j; 

 uint64_t p, x;  
 a0_b0_32_g = (uint8_t *)malloc(32); 
 a0_b0_64_g = (uint8_t *)malloc(64); 
 ta_tb_32_g = (uint8_t *)malloc(32); 
 ta_tb_64_g = (uint8_t *)malloc(64); 
 
 for(i=0; i < MAX_NUMBER_OF_ROUNDS; i++) 
 { 
  rcon_256_g[i] = (uint8_t *)malloc(16); 
  rcon_512_g[i] = (uint8_t *)malloc(32); 
 } 
 
 p = 4294967291; 
 x = 1414213562; 
 x = (x*x-x) % p; 
 
 for(i=0; i < 8; i++) 
 { 
  ((uint32_t *)a0_b0_32_g)[i] = (uint32_t)x; 
  x = (x*x-x) % p; 
 } 
 for(i=0; i < MAX_NUMBER_OF_ROUNDS; i++) 
  for(j=0; j < 4; j++) 
  { 
   ((uint32_t *)(rcon_256_g[i]))[j] = (uint32_t)x; 
   x = (x*x-x) % p; 
  } 
 for(i=0; i < 16; i++) 
 { 
  ((uint32_t *)a0_b0_64_g)[i] = (uint32_t)x; 
  x = (x*x-x) % p; 
 } 
 for(i=0; i < MAX_NUMBER_OF_ROUNDS; i++) 
  for(j=0; j < 8; j++) 
  { 
   ((uint32_t *)(rcon_512_g[i]))[j] = (uint32_t)x; 
   x = (x*x-x) % p; 
  } 
 for(i=0; i < 8; i++) 
 { 
  ((uint32_t *)ta_tb_32_g)[i] = (uint32_t)x; 
  x = (x*x-x) % p; 
 } 
 for(i=0; i < 16; i++) 
 { 



  ((uint32_t *)ta_tb_64_g)[i] = (uint32_t)x; 
  x = (x*x-x) % p; 
 } 
 return VORTEX_SUCCESS; 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B: Test Vector with List of Intermediate Values 
 
In what follows we provide a list of intermediate values for a known answer text vector 
for Vortex 256. The algorithm setup is the default (NR=3, DF=5, MT=0). The input message 
is of length 2 and each bit value is equal to “1”. The representation is little endian and the 
least significant bit of the quantities presented is the rightmost in the listing below. 

 
message: 3 
inputs to the vortex block compression function:  
hash: 
4932b0fc796d966ab6874438c48941ed435d25efe0c0c972766bdc05aa33ac12 
input block: 
987b3efa1d423a6c4ab885fbd29f4522531784875a34e4087b561a4d465dc66d 
0000000000000002000000000000000000000000000000000000000000000007 
before A-Rijndael 
a: 
435d25efe0c0c972766bdc05aa33ac12 
b: 
4932b0fc796d966ab6874438c48941ed 
after A-Rijndael 
a: 
b5319fdd290ec6e34dd3218af5a01a8d 
b: 
2fbb92b3ddcdbe2e34e334e70c7052e5 
after merging 
a: 
bf2d4faa78d3abb598d527f94354e4c2 
b: 
4efcf1a7b1003945513811237856bfcb 
before A-Rijndael 
a: 
bf2d4faa78d3abb598d527f94354e4c2 
b: 
4efcf1a7b1003945513811237856bfcb 
after A-Rijndael 
a: 
23dcb50e7ad740680f1ccb43b62318dc 
b: 
ef743f916f33d44cd2fc9677b5115ad2 
after merging 
a: 
262123695ba4366d679762658efea08c 
b: 
0af217e7758318ba498a59ce92d27d62 
before A-Rijndael 
a: 
262123695ba4366d679762658efea08c 
b: 
0af217e7758318ba498a59ce92d27d62 
after A-Rijndael 
a: 
cb3e931feceef5029a8c5b12ac04ec99 
b: 
12605eb1adc372181ffba1ab5343b0a9 
after merging 



a: 
c3969452a049470f9fd9f20a7fcef0cb 
b: 
1b3eb72abd82d6de030ea255deeb2001 
before A-Rijndael 
a: 
c3969452a049470f9fd9f20a7fcef0cb 
b: 
1b3eb72abd82d6de030ea255deeb2001 
after A-Rijndael 
a: 
d5f294b1db65cd6a58da00e7eb29a6b1 
b: 
9f4812d16567116b140b236c1a1e80bb 
after merging 
a: 
ff4a179a60b1a3e19ebb28f3e59354bf 
b: 
ad573c421cbef91b8cda415b80ee85f6 
before A-Rijndael 
a: 
ff4a179a60b1a3e19ebb28f3e59354bf 
b: 
ad573c421cbef91b8cda415b80ee85f6 
after A-Rijndael 
a: 
f68220794a2654976c7d1f013165753f 
b: 
cdc3c4ed7c28a0819b2e43bb6b0115dc 
after merging 
a: 
d930305fcdd8c54f806c4d54dfcc1feb 
b: 
40618fc43cb332028735a39ab900a09b 
before A-Rijndael 
a: 
d930305fcdd8c54f806c4d54dfcc1feb 
b: 
40618fc43cb332028735a39ab900a09b 
after A-Rijndael 
a: 
ec1641623b45e38438b60ffcb11468f7 
b: 
f54f5fb1857d2f9b8659bf95f46611c1 
after merging 
a: 
fa2845b200385d2a3fa553ebea9b6c73 
b: 
69a0dd6348f118274ed81f43fcd3a912 
before A-Rijndael 
a: 
fa2845b200385d2a3fa553ebea9b6c73 
b: 
69a0dd6348f118274ed81f43fcd3a912 
after A-Rijndael 
a: 
bbf9bcf276ca962c28abb7c7d70f47f3 



b: 
8428284c2b6d0dfb8db57f779643e18d 
after merging 
a: 
af0a9dbe26aa235f53fc2252c64a820f 
b: 
de5c789b89dd75217da01fa86aa9b62a 
before A-Rijndael 
a: 
af0a9dbe26aa235f53fc2252c64a820f 
b: 
de5c789b89dd75217da01fa86aa9b62a 
after A-Rijndael 
a: 
b0b7bfd9e47395c2b5254a54cc8fe39d 
b: 
1707f50a6ce2ca11d163cbd8116cc999 
after merging 
a: 
b8ed7239b4d1c091d313587066e1376f 
b: 
96fe5bcb14dff7987297eb979e4691e6 
final message digest: 
96fe5bcb14dff7987297eb979e4691e6b8ed7239b4d1c091d313587066e1376f 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Appendix C 
 
Proof of lemma 1 
 
A straightforward way to prove Lemma 1 is to build the truth table of the 64-bit carry-
less multiplier and observe the frequency by which output values appear. Such approach 
is computationally infeasible since it requires storage space of at least 2102 GB. An 
alternative approach is to consider the carry-less multiplier as resulting from smaller 
input functions for which truth tables can be built. 
 
We define the ‘upper square’ function ),,,( jiYXU s as follows: 
 

)],,,()...,,,(),,,([),,,( )0()6()7( jiYXujiYXujiYXujiYXU sssS =  (30) 
 
where X, Y are given by (15), }48,40,32,24,16,8,0{∈i , }56,48,40,32,24,16,8{∈j and the 
bit functions ),,,(),...,,,,(,),,,( )7()1()0( jiYXujiYXujiYXu sss are given by: 
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Similarly we define the ‘upper triangle’ function ),,,( jiYXU t : 
 

)],,,()...,,,(),,,([),,,( )0()6()7( jiYXujiYXujiYXujiYXU tttt =  (32) 
 
where X, Y are given by (15), }56,48,40,32,24,16,8,0{∈i , 0=j  and the bit functions 

),,,(),...,,,(,),,,( )7()1()0( jiYXujiYXujiYXu ttt are given by: 
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Next, we define the ‘lower square’ function ),,,( jiYXLs as follows: 
 

)],,,()...,,,(),,,([),,,( )0()6()7( jiYXljiYXljiYXljiYXL sssS =  (34) 
 
where X, Y are given by (15), }49,41,33,25,17,9,1{∈i , }63,55,47,39,31,23,15{∈j and the 
bit functions ),,,(),...,,,(,),,,( )7()1()0( jiYXljiYXljiYXl sss are given by: 
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Last we define the lower triangle’ function ),,,( jiYXLt : 



 
)],,,()...,,,(),,,([),,,( )0()5()6( jiYXljiYXljiYXljiYXL tttt =  (36) 

 
where X, Y are given by (15), 57=i , }63,55,47,39,31,23,15,7{∈j  and the bit functions 

),,,(),...,,,(,),,,( )6()1()0( jiYXljiYXljiYXl ttt are given by: 
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The importance of the functions defined by Eq. (30)-(37) lies on the fact that the 64-bit 
carry-less multiplication can be expressed as an exclusive OR (XOR) operation between 
their outputs. Let the output words W and Z be the byte sequences: 
 

]:...::[],:...::[ 067067 ZZZZWWWW ==  (38) 
 
Then one can show that: 
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and: 
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where 0 ≤ k ≤ 7.  
 
The functional decomposition of the 64-bit carry-less multiplier into upper, and lower, 
square and triangle functions is further shown in Figure 6. 
 
We define ‘adjacent’ squares, as the outputs of upper or lower square functions of the 
form ),,,( jiYXU s  or ),,,( jiYXLs  for which the indexes i and j have the same sum and 
the indexes do not differ by more than 8 between different squares. Adjacent squares are 
illustrated as neighboring in Figure 6. For example, the squares )16,0,,( YXU s and 

)8,8,,( YXU s  are adjacent. This is because the indexes 0, 16 and 8, 8 have the same sum 
and do not differ by more than 8. On the other hand the squares )16,0,,( YXU s and 

)24,0,,( YXU s are not adjacent. The concept of adjacency can be extended between 
square and triangle functions (upper or lower) in a similar manner.  
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Functional Decomposition of a 64-bit Carry-less Multiplier 
 
We observe that only adjacent squares or adjacent squares and triangles have associated 
input bits in common. Specifically, the squares ),,,( JIYXU s  
and )8,8,,( −+ JIYXU s defined for some index pair I, J that satisfies (34) have seven 
input bits in common. These are the bits ]...[ 167 −−− JJJ yyy . Similarly squares 

),,,( JIYXLs , )8,8,,( −+ JIYXLs defined for some index pair I, J that satisfies (23) 
have seven input bits in common. These are the bits ]...[ 1498 +++ III xxx . Adjacent upper 
squares ),,,( JIYXU s  and triangles )8,8,,( −+ JIYXU t have common input bits 

]...[ 167 −−− JJJ yyy . Similarly adjacent lower squares ),,,( JIYXLs  and triangles 
)8,8,,( −+ JIYXLt have common input bits ]...[ 1498 +++ III xxx . 

US(X, Y, 0, 56), US(X, Y, 8, 48), US(X, Y, 16, 40), US(X, Y, 24, 32), US(X, Y, 32, 24), US(X, Y, 40, 16), US(X, Y, 48, 8),XOR of

US(X, Y, 0, 48), US(X, Y, 8, 40), US(X, Y, 16, 32), US(X, Y, 24, 24), US(X, Y, 32, 16), US(X, Y, 40, 8),XOR of

US(X, Y, 0, 40), US(X, Y, 8, 32), US(X, Y, 16, 24), US(X, Y, 24, 16), US(X, Y, 32, 8),XOR of

US(X, Y, 0, 32), US(X, Y, 8, 24), US(X, Y, 16, 16), US(X, Y, 24, 8),XOR of

US(X, Y, 0, 24), US(X, Y, 8, 16), US(X, Y, 16, 8),XOR of

US(X, Y, 0, 16), US(X, Y, 8, 8),XOR of

US(X, Y, 0, 8),XOR of Ut(X,Y,8,0)

Ut(X,Y,0,0)

Ut(X,Y,16,0)

Ut(X,Y,24,0)

Ut(X,Y,32,0)

Ut(X,Y,40,0)

Ut(X,Y,48,0)

Ut(X,Y,56,0)

=Z0

=Z1

=Z2

=Z3

=Z4

=Z5

=Z6

=Z7

LS(X, Y, 1, 63), LS(X, Y, 9, 55), LS(X, Y, 17, 47), LS(X, Y, 25, 39), LS(X, Y, 33, 31), LS(X, Y, 41, 23), LS(X, Y, 49, 15),XOR of
=W0

Lt(X,Y,57,7)

LS(X, Y, 9, 63), LS(X, Y, 17, 55), LS(X, Y, 25, 47), LS(X, Y, 33, 39), LS(X, Y, 41, 31), LS(X, Y, 49, 23),
=W1

Lt(X,Y,57,15)

LS(X, Y, 17, 63), LS(X, Y, 25, 55), LS(X, Y, 33, 47), LS(X, Y, 41, 39), LS(X, Y, 49, 31),
=W2

Lt(X,Y,57,23)

XOR of

XOR of

LS(X, Y, 25, 63), LS(X, Y, 33, 55), LS(X, Y, 41, 47), LS(X, Y, 49, 39),
=W3

Lt(X,Y,57,31)
XOR of

LS(X, Y, 33, 63), LS(X, Y, 41, 55), LS(X, Y, 49, 47),
=W4

XOR of
Lt(X,Y,57,39)

LS(X, Y, 41, 63), LS(X, Y, 49, 55),
=W5

XOR of
Lt(X,Y,57,47)

LS(X, Y, 49, 63),
=W6

XOR of

Lt(X,Y,57,55)

=W7

Lt(X,Y,57,63)



 
From Eq. (31) and (35) it is evident that the upper and lower square functions accept 
much fewer input bits as compared to the 64-bit carry-less multiplier. Each upper or 
lower square function accepts 23 input bits. An upper square accepts 8 bits from X and 15 
bits from Y, where 7 bits from Y are in common with an adjacent square. A lower square 
accepts 15 bits from X and 8 bits from Y, where 7 bits from X are in common with an 
adjacent square. 
 
Similarly, from Eq. (33) it is evident that the upper triangle function accepts 16 input bits, 
8 bits from X and 8 bits from Y, where 7 bits from Y are in common with an adjacent 
square. From Eq. (37) it is also evident that a lower triangle function accepts 14 input 
bits, 7 bits from X and 7 bits from Y, where all 7 bits from X are in common with an 
adjacent square. 
 
Based on these observations we build a truth table for each of these functions. The size of 
the truth table for both the upper and lower square functions is 8 MB. The size of the 
truth table for the upper triangle function is 64 KB. The size of the truth table for the 
lower triangle function is 16 KB. Using these truth tables we observe the frequency by 
which output values appear. Using these frequencies we compute probability 
distributions for each of these functions when the bits which are in common with adjacent 
squares are given.  
 
In all expressions listed below it is assumed that the input to the carry-less multiplier is X 
and Y and it is uniformly distributed. We define the ‘upper square –left’ distribution as: 
 

)~]...[~),,,(Pr()~,~( 167
)( cyyyvjiYXUcvP jjjs

LUS =∧== −−−
−  (41) 

 
where the indexes i and j take the values defined in (34). Because of the uniformity of the 
square and triangle functions the probability distribution )~,~()( cvP LUS−  is independent of 
the values of indexes i and j. 
 
 Similarly we define the ‘upper square –right’ distribution as: 
 

)~]...[~),,,(Pr()~,~( 721
)( cyyyvjiYXUcvP jjjs

RUS =∧== +++
−  (42) 

 
the ‘lower square –left’ distribution as: 
 

)~]...[~),,,(Pr()~,~( 1498
)( cxxxvjiYXLcvP iiis

LLS =∧== +++
−  (43) 

 
and the ‘lower square-right distribution as: 
 

)~]...[~),,,(Pr()~,~( 61
)( cxxxvjiYXLcvP iiis

RLS =∧== ++
−  (44) 

 
Last we define the ‘upper triangle distribution’ as: 



 
)~]...[~),,,(Pr()~,~( 721

)( cyyyvjiYXUcvP jjjt
UT =∧== +++  (45) 

 
and the ‘lower triangle distribution’ as: 
  

)~]...[~),,,(Pr()~,~( 61
)( cxxxvjiYXLcvP iiit

LT =∧== ++  (46) 
 
The probability distributions defined in Eq. (42)-(46) are independent of the choices of i, 
j. If the inputs X and Y are uniformly distributed, the probability distributions (41)-(46) 
can be computed from the truth tables of the upper and lower, square and triangle 
functions.   
 
We continue with the proof of Lemma 1 by computing the probability distribution of the 
exclusive OR (XOR) between the outputs of two adjacent squares - or one triangle and its 
adjacent square. We define ‘upper adjacent square XOR’ distribution as: 
 

)~)8,8,,(),,,(Pr()~()( vjiYXUjiYXUvP ss
AUS =−+⊕=−  (47) 

 
The probability distribution (47) is obtained from the upper square left (41) and right (42) 
distributions as follows: 
 

∑
=⊕∈∈

−−− ⋅=
vwuwuc

RUSLUSAUS cwPcuPvP
~~~],255,0[~,~],127,0[~

)()()( )~,~()~,~()~(  (48) 

 
Similarly, we define the ‘lower adjacent square XOR’ distribution: 
 

)~)8,8,,(),,,(Pr()~()( vjiYXLjiYXLvP ss
ALS =−+⊕=−  (49) 

 
which is computed from the lower square left (43) and right (44) distributions: 
 

∑
=⊕∈∈

−−− ⋅=
vwuwuc

RLSLLSALS cwPcuPvP
~~~],255,0[~,~],127,0[~

)()()( )~,~()~,~()~(  (50) 

 
We also define the ‘upper adjacent square-triangle XOR’ distribution as: 
 

)~)8,8,,(),,,(Pr()~()( vjiYXUjiYXUvP ts
AUST =−+⊕=−  (51) 

 
which is computed from the upper square left (41) and triangle (45) distributions:  
 

∑
=⊕∈∈

−− ⋅=
vwuwuc

UTLUSAUST cwPcuPvP
~~~],255,0[~,~],127,0[~

)()()( )~,~()~,~()~(  (52) 

 
Last we define the ‘lower adjacent square-triangle XOR’ distribution as: 
 



)~)8,8,,(),,,(Pr()~()( vjiYXLjiYXLvP ts
ALST =−+⊕=−  (53) 

 
which is computed from the lower square left (41) and triangle (45) distributions:  
 

∑
=⊕∈∈

−− ⋅=
vwuucw

LTLLSALST cwPcuPvP
~~~],255,0[~],127,0[~,~

)()()( )~,~()~,~()~(  (54) 

 
The probability distributions computed from (47), (49), (51), (53) are used together with 
Eq. (39) and Eq. (40) to compute the probability distribution of the output of the 64-bit 
carry-less multiplier,  assuming that the input is uniformly distributed.  
 
Let the byte representation of a 128-bit value ]~:~[ ZW be:  
 

]~:...:~:~[~],~:...:~:~[~
067067 ZZZZWWWW ==  (55) 

 
The probability that the 64-bit carry-less multiplier output ]:[ ZW is equal to ]~:~[ ZW is 
given by the product: 
 

))~Pr(())~Pr((])~:~[]:Pr([
7

0

7

0
∏∏
==

=⋅===
k

kk
k

kk ZZWWZWZW  (56) 

 
where the output words W and Z are expressed as byte sequences as in Eq. (38). 
 
Each of the output byte probabilities  )~Pr( kk ZZ = for k =0 , 1,…,7 are computed from 
the XOR probability distributions for adjacent squares and adjacent squares/triangles 
using the  algorithm ‘compute )~Pr( kk ZZ = ’ shown below. 

compute )~Pr( kk ZZ =  
begin 
 if (k=0)  return ∑

∈ ]127,0[~
0

)( )~,~(
c

UT cZP  // the output results from a single triangle 

 else   // the output results from XOR-ing squares and a triangle 
  for i←0 to 255 do )~(][ )(

2 k
AUST ZiPiT ⊕← −  

  for i←0 to k-1 do 
  begin 
   21 TT ←  
   for j←0 to 255 do ∑

=⊕∈

− ⋅←
jvuvu

AUS vTuPjT
~~],255,0[~,~

1
)(

2 ]~[)~(][  

  end 

  return ∑ ∑
= ∈

− ⋅
255

0
2

]127,0[~

)( ])[))~,((
i c

LUS iTciP    

end 



 
The rationale behind this algorithm is that the event kk ZZ ~=  is expressed as the union of 
other events.  These are the events that certain values, from 0 to 255, appear at the 
outputs of the squares that contribute to the computation of kk ZZ ~= . Knowing the XOR 
probability distributions for adjacent squares and adjacent squares/triangles helps us 
compute the probabilities of such events. The computation starts from the square that is 
adjacent to the upper triangle resulting in kk ZZ ~=  and proceeds by taking one additional 
adjacent square into account at a time.  The computation stops when all squares that 
contribute to kk ZZ ~= have been taken into account. The resulting probability is returned. 

Similarly the output byte probabilities )~Pr( kk WW = for k =0 , 1,…,7 are computed using 

the algorithm ‘compute )~Pr( kk WW = ’ 
 
compute )~Pr( kk WW =  
begin 
 if (k=7)  return ∑

∈ ]127,0[~
7

)( )~,~(
c

LT cWP  // the output results from a single triangle 

 else   // the output results from XOR-ing squares and a triangle 
  for i←0 to 255 do )~(][ )(

2 k
ALST WiPiT ⊕← −  

  for i←0 to 6-k do 
  begin 
   21 TT ←  
   for j←0 to 255 do ∑

=⊕∈

− ⋅←
jvuvu

ALS vTuPjT
~~],255,0[~,~

1
)(

2 ]~[)~(][  

  end 

  return ∑ ∑
= ∈

− ⋅
255

0
2

]127,0[~

)( ])[))~,((
i c

LLS iTciP    

end 
 

k 
upper bound for 

)~Pr( kk ZZ =  
upper bound for 

)~Pr( kk WW =  
0 2-5.68 2-8 
1 2-7.98 2-8 
2 2-8 2-8 
3 2-8 2-8 
4 2-8 2-8 
5 2-8 2-8 
6 2-8 2-8 
7 2-8 2-4.83 

 
Table 9: Upper bounds for the byte probabilities )~Pr( kk WW =  and )~Pr( kk ZZ =  



Upper bounds for the probabilities )~Pr( kk ZZ =  and )~Pr( kk WW =  are computed using 
the algorithms presented above and the truth tables for the upper and lower square and 
triangle functions. These upper bounds are shown in Table 9. From the data of Table 9 
and Eq. (56) Lemma 1 is proven. 

 
 


