
Differential Fault Analysis on the AES Key

Schedule

Junko TAKAHASHI and Toshinori FUKUNAGA
NTT Information Sharing Platform Laboratories,
Nippon Telegraph and Telephone Corporation,

{takahashi.junko, fukunaga.toshinori}@lab.ntt.co.jp

Abstract

This letter proposes a differential fault analysis on the AES key sched-
ule and shows how an entire 128-bit AES key can be retrieved. In the
workshop at FDTC 2007, we presented the DFA mechanism on the AES
key schedule and proposed general attack rules. Using our proposed rules,
we showed an efficient attack that can retrieve 80 bits of the 128-bit key.
Recently, we have found a new attack that can obtain an additional 8 bits
compared with our previous attack. As a result, we present most efficient
attack for retrieving 88 bits of the 128-bit key using approximately two
pairs of correct and faulty ciphertexts.

1 Introduction

Fault analysis is one of the threat attacks for retrieving secret information from
secure devices such as smart cards. This attack is executed by inducing faults
into the secure device while it is computing the cryptographic algorithm. A
differential fault analysis (DFA) on DES was proposed by Biham and Shamir
[1]. Their attack obtains keys by analyzing the difference between correct and
faulty ciphertexts calculated for the same plaintext. Recently, some papers have
proposed a DFA on AES [2, 3, 4] and on the AES key schedule [5, 6, 7].

In our presentation in the workshop at FDTC 2007 [8], we generalized the
attack approach to the DFA on the AES key schedule and proposed some attack
rules. We showed how to retrieve an 128-bit key without solving complicated
simultaneous equations. Using our proposed rules, we showed a more efficient
attack than previous ones. Our attack can retrieve 80 bits of the 128-bit key
using approximately two pairs of correct and faulty ciphertexts.

In this letter, we propose an even more efficient attack than previous ones
including our attack presented in FDTC 2007. This new attack can retrieve an
additional 8 bits compared with our previous attack. The result shows that 88
bits of the 128-bit key can be retrieved using two pairs of correct and faulty
ciphertexts.

1

K93,0

K9 2 ,0

K9 1 ,0

K90,0

K93,0

K9 2 ,0

K9 1 ,0

K90,0

K93,1

K9 2 ,1

K9 1 ,1

K90,1

K93,1

K9 2 ,1

K9 1 ,1

K90,1

K93,2

K9 2 ,2

K9 1 ,2

K90,2

K93,2

K9 2 ,2

K9 1 ,2

K90,2

K93,3

K9 2 ,3

K9 1 ,3

K90,3

K93,3

K9 2 ,3

K9 1 ,3

K90,3

RotWord

S u b Word

Rcon9

RotWord

S u b Word

Rcon 1 0

9th r o u n d

1 0 th r o u n d

RotWord

S u b Word

Rcon9

RotWord

S u b Word

Rcon 1 0

(a) (a) (a) (a)

(b)

K 1 0 3,0

K 1 0 2 ,0

K 1 0 1 ,0

K 1 0 0,0

K 1 0 3,0

K 1 0 2 ,0

K 1 0 1 ,0

K 1 0 0,0

K 1 0 3,1

K 1 0 2 ,1

K 1 0 1 ,1

K 1 0 0,1

K 1 0 3,1

K 1 0 2 ,1

K 1 0 1 ,1

K 1 0 0,1

K 1 0 3,2

K 1 0 2 ,2

K 1 0 1 ,2

K 1 0 0,2

K 1 0 3,2

K 1 0 2 ,2

K 1 0 1 ,2

K 1 0 0,2

K 1 0 3,3

K 1 0 2 ,3

K 1 0 1 ,3

K 1 0 0,3

K 1 0 3,3

K 1 0 2 ,3

K 1 0 1 ,3

K 1 0 0,3

Figure 1: AES key scheduling process: without faults (left) and with faults
(right).

In Section 2, we review the DFA mechanism and proposed rules presented
in FDTC 2007 (for details, see [8]). Section 3 describes our new attack.

2 DFA on the AES Key Schedule

2.1 DFA mechanism

In this section, we describe only attack essentials of the DFA on the AES key
schedule (for details, see [8]). In our attack, we assume that faults injected into
32 bits of one column randomly disturb the intermediate states of the key sched-
ule in the 9th round. This assumption is feasible especially for cryptographic
devices with 32-bit (or 16-bit) CPU (or coprocessor). We also assume that such
a distribution of the intermediate states occurs just once; that is, faults are
induced only one time. Therefore, fault values are ε9a,b = · · · = ε9a,3, where a
and b are the row and column numbers of the fault-injected byte. For example,
when faults are injected into 32 bits of the 3rd column, they propagate to the
same row in the 9th round and propagate to the 10th round through path (a)
and path (b) in Fig. 1. The specifications of the AES key schedule algorithm
are given in [9].

From here on, we use the following notation.

Kl: The lth round key of correct operation, which consists of 16 bytes: a 4 ×
4 matrix

K̃l: The lth round key of faulty operation, which consists of 16 bytes: a 4 × 4
matrix

Kl
i,j(K̃

l
i,j): (i, j) byte of Kl(K̃l) where i and j are the row and column numbers

(i, j = 0 . . . 3)

εl
i,j : The faulty value, which is the difference between Kl

i,j and K̃l
i,j ; that is,

εl
i,j = Kl

i,j ⊕ K̃l
i,j(i, j = 0 . . . 3)

2

⊕ : The bitwise exclusive-OR (XOR) operation

The main approach of this attack is that the state calculated by the faulty
output must be equal to the state calculated by the correct output before the
addition of the faulty 9th round key. An intermediate state m calculated by the
correct output before the addition of the correct 9th round key can be written
as

m = K9 ⊕ InvSubBytes[InvShiftRows[K10 ⊕ (correct output bytes)]]. (1)

Similarly, an intermediate state m′ calculated by the faulty output before the
addition of the faulty 9th round key can be written as

m′ = K̃9 ⊕ InvSubBytes[InvShiftRows[K̃10 ⊕ (faulty output bytes)]]. (2)

Since these states must be equal, the following equation is satisfied

K9⊕InvSubBytes[InvShiftRows[K10 ⊕ (correct output bytes)]]

=K̃9 ⊕ InvSubBytes[InvShiftRows[K̃10 ⊕ (faulty output bytes)]]. (3)

For simplicity, we define y
.= (InvShiftRows [(correct output bytes)]) and

ỹ
.= (InvShiftRows [(faulty output bytes)]) where yi,j(ỹi,j) is the (i,j) byte of

y(ỹ). Furthermore, we define ε9i,j as εi,j and K9 as K. We can express all bytes
of K10 using K [8]. Therefore, each byte of eq. (3) can be written as follows:

Ki,j⊕K̃i,j⊕S−1[Qi,j⊕S[Ki+1(mod4),3]⊕yi,j]⊕S−1[Q̃i,j⊕S[K̃i+1(mod4),3]⊕ỹi,j] = 0.
(4)

where S[] is the S-box function and S−1[] is the inverse S-box function. The

3

notation Qi,j is the (i,j) byte of Q defined as follows:

Q =




Rcon10 Rcon10 Rcon10 Rcon10

0 0 0 0
0 0 0 0
0 0 0 0




⊕




K0,0 K0,0 K0,0 K0,0

K1,0 K1,0 K1,0 K1,0

K2,0 K2,0 K2,0 K2,0

K3,0 K3,0 K3,0 K3,0




⊕




0 K0,1 K0,1 K0,1

K1,1 0 K1,1 K1,1

K2,1 K2,1 0 K2,1

K3,1 K3,1 K3,1 0




⊕




0 0 K0,2 K0,2

K1,2 0 0 K1,2

K2,2 K2,2 0 0
0 K3,2 K3,2 0




⊕




0 0 0 K0,3

K1,3 0 0 0
0 K2,3 0 0
0 0 K3,3 0


 . (5)

Furthermore, Q̃i,j is the (i,j) byte of Q̃. We show an example of Q̃ for
the case where faults are injected into 32 bits of the 3rd column; that is, (i,2)
(i = 0 . . . 3):

Q̃ = Q⊕




0 0 ε0,2 0
0 0 0 ε1,2

ε2,2 0 0 0
0 ε3,2 0 0


 . (6)

As is shown in [8], each byte of eq. (4) can be classified into 8 patterns, which
are the simple equation of the faulty value: εi,j = yi,j ⊕ ỹi,j , εl

i,j = 0 (l = 9, 10)
or the formula of types A–F as follows:

type A
S[Ki+1(mod4),3]⊕ S[K̃i+1(mod4),3]⊕ yi,j ⊕ ỹi,j = 0 (7)

type B

S[Ki+1(mod4),3]⊕ S[K̃i+1(mod4),3]⊕ yi,j ⊕ ỹi,j ⊕ εi,j = 0 (8)

type C

S−1[Qi,j⊕S[Ki+1(mod4),3]⊕ yi,j]

⊕ S−1[Qi,j ⊕ S[Ki+1(mod4),3]⊕ ỹi,j]⊕ εi,j = 0 (9)

4

DDBA
DDAB
FDAA
DFAA

DDBA
DDAB
FDAA
DFAA

Figure 2: The type of each byte of eq. (4) when faults are injected into 32 bits
of the 3rd column.

type D

S−1[Qi,j⊕S[Ki+1(mod4),3]⊕ yi,j]

⊕ S−1[Qi,j ⊕ S[K̃i+1(mod4),3]⊕ ỹi,j]⊕ εi,j = 0 (10)

type E

S−1[Qi,j⊕S[Ki+1(mod4),3]⊕ yi,j]

⊕ S−1[Qi,j ⊕ S[Ki+1(mod4),3]⊕ ỹi,j ⊕ εi,j]⊕ εi,j = 0 (11)

type F

S−1[Qi,j⊕S[Ki+1(mod4),3]⊕ yi,j]

⊕ S−1[Qi,j ⊕ S[K̃i+1(mod4),3]⊕ ỹi,j ⊕ εi,j]⊕ εi,j = 0 (12)

For example, when faults are injected into 32 bits of the 3rd column, each
byte of eq. (4) can be described as shown in Fig. 2 (for other cases, see [8]).

2.2 Proposed rules

On the basis of the classification of eq. (4) and the position of each type in
the matrix of eq. (4), we previously proposed the following attack rules for
retrieving the key.

Rule 1. When a type A byte and a type B byte are in the same row i, we can
obtain the faulty value ε in row i from one pair of correct and faulty ciphertexts.
When the coordinates of the type A byte are (i, a) and those of the type B byte
are (i, b), the XOR between eqs. (7) and (8) is given by

εi,s = yi,a ⊕ ỹi,a ⊕ yi,b ⊕ ỹi,b, (13)

where s is the column number of the fault-injected byte in row i. Since yi,a,
yi,b, ỹi,a, and ỹi,b are known values, we can obtain the faulty value εi,s.

5

Rule 2. If εi,j is known and there is a type A byte in row i−1(mod 4), we can
obtain Ki,3 in the same row with εi,j from approximately two pairs of correct
and faulty ciphertexts. On the other hand, if Ki,3 is known and there is a type A
byte in row i− 1(mod 4), we can obtain εi,j in the same row with Ki,3 from one
pair of correct and faulty ciphertexts. In fact, if we know εi,j , we can calculate
Ki,3 by substituting εi,j into the equation for the type A byte:

S[Ki,3]⊕ S[Ki,3 ⊕ εi,j]⊕ yi−1(mod 4),j ⊕ ỹi−1(mod 4),j = 0. (14)

Since we know εi,j , we can solve eq. (14) for Ki,3:

Ki,3 = {x | S[x]⊕ S[x⊕ εi,j]⊕ yi−1(mod 4),j ⊕ ỹi−1(mod 4),j = 0}. (15)

Using eq. (15), we can determine the correct key with approximately two pairs
of correct and faulty ciphertexts (for details, see [5]).

Rule 3. When there are a type A byte and a type D byte (or type F byte)
in the same row and εi,j is known, we can obtain Qi,j ⊕ S[Ki+1(mod 4),3] from
approximately two pairs of correct and faulty ciphertexts. On the other hand,
when there are a type A byte and a type D byte (or type F byte) in the same
row and Qi,j ⊕ S[Ki+1(mod 4),3] is known, we can obtain εi,j from one pair of
correct and faulty ciphertexts (in the case of a type F byte, from approximately
two pairs of correct and faulty ciphertexts).

In fact, when the coordinates of the type A byte are (i, a), the type D byte
are (i, d) and the type F byte is (i, f), we get the following equations from eqs.
(7) and (10) and eqs. (7) and (12)

S−1[Qi,d ⊕ S[Ki+1(mod 4),3]⊕ yi,a ⊕ ỹi,a ⊕ ỹi,d]⊕ εi,d

⊕ S−1[Qi,d ⊕ S[Ki+1(mod 4),3]⊕ yi,d] = 0,

S−1[Qi,f ⊕ S[Ki+1(mod 4),3]⊕yi,a ⊕ ỹi,a ⊕ ỹi,f ⊕ εi,f]

⊕ εi,f ⊕ S−1[Qi,f ⊕ S[Ki+1(mod 4),3]⊕ yi,f] = 0.

Since we know all values except the unknown value (εi,j or Qi,j⊕S[Ki+1(mod 4),3]),
we can solve the above equations using approximately two pairs of correct and
faulty ciphertexts according to rule 2. If we know Ki+1(mod 4),3, we can obtain
Qi,j which is the key value itself or the XOR between some key values.

Rule 4. If three of four values – Qi,j in a type D (or type F) byte, εi,j ,
εi+1(mod 4),j and Ki+1(mod 4),3 – are known, we can obtain the unknown value
from approximately two pairs of correct and faulty ciphertexts. This is possible
by solving eq. (10) or (12), similar to rule 2.

6

Rule 5. When there is a pair of known values Qi,j ⊕ α and Qi,k ⊕ α in the
same row (α: any constant value), we can obtain the key value itself or the
XOR between the key values by calculating the difference between them. In
fact, when we compare the column number j with k (in the case of j < i (or
k < i), we set j (or k) as j + 4 (or k + 4) and when we compare j + 4 with k
(or compare k + 4 with j)), we set the smaller one as a and the bigger one as b.
We can then calculate the combination of Ki,j as follows:

(b−i)mod 4⊕

x={(a−i)mod 4}+1

Ki,x = Qi,a ⊕Qi,b. (16)

Rule 6. If there is a type B byte in row i and two of three values – εi,j ,
εi+1(mod 4),j , and Ki+1(mod 4),3 – are known, we can obtain the unknown value
by solving eq. (8). We deduce εi,j or εi+1(mod 4),j using one pair of correct and
faulty ciphertexts and we also deduce Ki+1(mod 4),3 using approximately two
pairs of correct and faulty ciphertexts, similar to rule 2.

Rule 7. When there are two type D (or type F) bytes on (i,j) and (i,k),
and Qi,j , Qi,k, and Ki+1(mod 4),3 are known values, we can calculate εi,j and
εi+1(mod 4),j using approximately three pairs of correct and faulty ciphertexts.
We can obtain them by solving the simultaneous equations of eq. (10) or (12).

3 Attack Expressed by Our Rules

In this section, we show how to retrieve the key using our rules. Here, we
consider that faults are injected into 32 bits of the 3rd column (for other cases,
see [8]). The corrupted values are described as K̃i,2 = Ki,2 ⊕ εi,2 and K̃i,3 =
Ki,3 ⊕ εi,3 (i = 0 . . . 3), where εi,2 = εi,3. Each byte takes the type shown the
matrix in Fig. 2.

This matrix shows that there are a type A byte and a type B byte in (2,1)
and (2,0). We then apply rule 1 and obtain ε2,2. Similarly, since there are a
type A byte and a type B byte in (3,0) and (3,1), we apply rule 1 and obtain
ε3,2. Since we know εi,2 (i = 2, 3) and there is a type A byte above each byte
of εi,2 (i = 2, 3), we apply rule 2 and obtain K2,3 and K3,3. Since we know ε2,2

in the type D byte (2,2) and there is a type A byte in (2,1) in the same row of
ε2,2, we apply rule 3 and obtain K2,0 ⊕ S[K3,3]. Similarly, since we know the
faulty value ε2,2 in the type D byte (2,3), and there is a type A byte in (2,1) in
the same row of ε2,2, we apply rule 3 and obtain K2,0 ⊕K2,1 ⊕ S[K3,3]. Since
we know K3,3, we obtain K2,0 and K2,1 by rule 5. Similarly, since we know ε3,2

in the type D byte and there is a type A byte in the same row of ε3,2, we obtain
K3,0 ⊕ K3,1 ⊕ K3,2 ⊕ K3,3 ⊕ S[K0,3] and K3,0 ⊕ S[K0,3] by rule 3. Since we
know K3,3, we obtain K3,0 ⊕K3,1 ⊕K3,2 ⊕ S[K0,3] by rule 5. Since we obtain
K3,0 ⊕ S[K0,3], we also obtain K3,1 ⊕K3,2 by rule 5.

7

Next, if we guess K0,3, we obtain ε0,2 in the type A byte in (3,0) by rule
2. Then, since we know ε0,2 and there is the type A byte in (0,0) or (0,1), we
obtain K0,0 ⊕K0,1 ⊕K0,2 ⊕ S[K1,3] in the type F byte in (0,2) by rule 3. We
substitute K0,3, ε0,2 and K0,0⊕K0,1⊕K0,2⊕S[K1,3] into the equation of the (0,3)
byte in order to verify the candidates. If they satisfy the equation of (0,3), the
candidates are correct and we can obtain K0,3 and K0,0⊕K0,1⊕K0,2⊕S[K1,3]
and ε0,2. Since we know K0,3 and K3,0 ⊕ S[K0,3], we obtain K3,0 by rule 5.

Furthermore, if we guess K1,3, we obtain ε1,2 in the type A byte in (0,0) or
(0,1) by rule 2. Similarly, if we guess K1,0 ⊕K1,1, we obtain ε1,2 in the type D
byte in (1,2) by rule 3. Since ε1,2 obtained from the above two ways must be
equal, we keep the sets of candidates (K1,3, K1,0⊕K1,1) that gave the same ε1,2.
In fact, two sets of candidates (K1,3, K1,0 ⊕K1,1) remain in this step. In order
to verify which set is correct, we substitute the candidates (K1,3, K1,0 ⊕K1,1)
and ε1,2 obtained from them into the equation of the type F byte in (1,3). We
can obtain K1,2 ⊕ S[K2,3] by rule 3 only when we substitute the correct set of
(K1,3, K1,0 ⊕K1,1) and ε1,2. Since we know K2,3, we obtain K1,2 by rule 5.

Table 1 shows the above procedure for obtaining the key. It lists the ap-
plied rules, using byte types and known or guessed values, and the retrieved
information.

As a result, we obtain 88 bits of the key and all 32 bits of the faulty value.
We obtain 64 bits of the key directly (K0,3, K1,2, K1,3, K2,0, K2,1, K2,3, K3,0,
K3,3) and 24-bit values of XOR between some key values (K0,0 ⊕K0,1 ⊕K0,2,
K1,0⊕K1,1, K3,1⊕K3,2). We have two ways to obtain an entire 128-bit key. One
is to execute a 40-bit brute-force search, which is a feasible computation. The
other is to change the fault injection point. After injection into the 3rd column,
faults are injected into the 32 bits of the 2nd and 1st columns successively. In
this case, we use rules 4, 6, and 7, which were not used in this section [8].

4 Conclusion

We proposed a new attack for obtaining an additional 8 bits compared with our
previous attack presented in FDTC 2007. The results show that it can obtain
88 bits of the 128-bit AES key using approximately two pairs of correct and
faulty ciphertexts.

A comparison with previous attacks is shown in Table 2. Figure 3 shows the
relation between the number of required pairs of correct and faulty ciphertexts
and the retrieved key bits. These results show that we can obtain the 128-bit
AES key using approximately two pairs of correct and faulty ciphertexts with
a 40-bit brute-force search, four pairs of them with a 16-bit brute-force search,
seven pairs of them without brute-force search. This attack is more efficient
than all previous ones.

8

Table 1: Procedure for retrieving keys.
] Applied Using type byte and Retrieved information

rules known or guessed values
¿ A À is a guessed value

1 rule 1 type A in (2,1) ε2,2

type B in (2,0)
2 rule 1 type A in (3,0) ε3,2

type B in (3,1)
3 rule 2 type A in {(1,0) or (1,1)} K2,3

ε2,2

4 rule 2 type A in {(2,0) or (2,1)} K3,3

ε3,2

5 rule 3 type A in (2,1) K2,0 ⊕ S[K3,3]
type D in (2,2)
ε2,2

6 rule 3 type A in (2,1) K2,0 ⊕K2,1 ⊕ S[K3,3]
type D in (2,3)
ε2,2

7 rule 5 K3,3 K2,0,K2,1

8 rule 3 type A in (3,0) K3,0 ⊕K3,1 ⊕K3,2 ⊕K3,3 ⊕ S[K0,3]
type D in (3,2)
ε3,2

9 rule 3 type A in (3,0) K3,0 ⊕ S[K0,3]
type D in (3,3)
ε3,2

10 rule 5 K3,3, K3,0 ⊕ S[K0,3] K3,1, K3,2

11 rule 2 type A in (3,0) ¿ ε0,2 À
¿ K0,3 À

rule 3 type A in {(0,0) or (0,1)} ¿ K0,0 ⊕K0,1 ⊕K0,2 ⊕ S[K1,3] À
type F in (0,2)
¿ ε0,2 À

rule 3 type D in (0,3) (when evaluated equation satisfies)
¿ K0,3 À K0,3

¿ K0,0 ⊕K0,1 ⊕K0,2 ⊕ S[K1,3] À K0,0 ⊕K0,1 ⊕K0,2 ⊕ S[K1,3]
¿ ε0,2 À ε0,2

12 rule 5 K0,3, K3,0 ⊕ S[K0,3] K3,0

13 rule 2 type A in {(0,0) or (0,1)} ¿ ε1,2 À
¿ K1,3 À

rule 3 type A in {(1,0) or (1,1)} ¿ ε1,2 À
type D in (1,2)
¿ K1,0 ⊕K1,1 À

rule 3 type A in {(1,0) or (1,1)} (when evaluated equation satisfies)
type F in (1,3) K1,0 ⊕K1,1, K1,3

¿ K1,0 ⊕K1,1 À K1,2 ⊕ S[K2,3]
¿ ε1,2 À ε1,2

14 rule 5 K2,3, K1,2 ⊕ S[K2,3] K1,2

9

Table 2: The relation between number of fault injection point and key informa-
tion (required number of ciphertexts pairs).
Number of fault Key information (number of pairs)
injection point Peacham’s attack Our attack (FDTC) Our new attack

1 48 bits (2) 80 bits (2) 88 bits (2)
2 88 bits (4) 112 bits (4) 112 bits (4)
3 112 bits (6) 128 bits (7) 128 bits (7)
4 128 bits (12) – –

0

3 2

64

9 6

1 28

0 2 4 6 8 1 0 1 2 1 4
Number of pairs

Re
trie

ve
d k

ey
 (b

its
)

our new attack
our attack (F D T C)
P each am ' s attack

88

1 1 2

0

3 2

64

9 6

1 28

0 2 4 6 8 1 0 1 2 1 4
Number of pairs

Re
trie

ve
d k

ey
 (b

its
)

our new attack
our attack (F D T C)
P each am ' s attack

88

1 1 2

Figure 3: Comparison with previous attacks (number of required pairs of correct
and faulty ciphertexts versus retrieved key (bits)).

References

[1] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryp-
tosystems,” Technion - Computer Science Department - Technical Report
CS0901.revised - 1997.

[2] P. Dusart, G. Letourneux and O. Vivolo, “Differential Fault Analysis on
A.E.S.,” in J. Zhou, M. Yung, Y. Han, editor, Applied Cryptography and
Network Security – ACNS 2003, vol. 2846 of Lecture Notes in Computer
Science, pp. 293-306, 2003.

[3] G. Piret and J. J. Quisquater, “A Differential Fault Attack Technique against
SPN Structures, with Application to the AES and KHAZAD,” in C. D.
Walter et al. , editor, Cryptographic Hardware and Embedded Systems –

10

CHES 2003, vol. 2779 of Lecture Notes in Computer Science, pp. 77-88,
2003.

[4] A. Moradi, M. T. M. Shalmani and M. Salmasizadeh, “A Generalized
Method of Differential Fault Attack Against AES Cryptosystem,” in L.
Goubin and M. Matsui, editor, Cryptographic Hardware and Embedded Sys-
tems – CHES 2006, vol. 4249 of Lecture Notes in Computer Science, pp.
91-100, 2006.

[5] C.-N. Chen and S.-M. Yen, “Differential Fault Analysis on AES Key Sched-
ule and Some Countermeasures,” Australasian Conference on Information
Security and Privacy 2003 (ACISP 2003), vol. 2727 of Lecture Notes in
Computer Science, pp. 118-129, Springer, 2003.

[6] C. Giraud, “DFA on AES,” in H. Dobbertin, V. Rijmen and A. Sowa, editors,
Advanced Encryption Standard (AES): 4th International Conference, AES
2004, vol. 3373 of Lecture Notes in Computer Science, pp. 27-41, Springer-
Verlag, 2005.

[7] D. Peacham and B. Thomas, “A DFA attack against the AES key
schedule,” SiVenture White Paper 001, 26 October 2006. Available at
http://www.siventure.com/pdfs/AES KeySchedule DFA whitepaper.pdf

[8] J. Takahashi, T. Fukunaga and K. Yamakoshi, “DFA mechanism on the AES
key schedule,” in proceedings of the Fourth International Workshop, FDTC
2007, IEEE-Computer Society, pp. 62-72.

[9] National Institute of Standards and Technology, Advanced Encryption Stan-
dard, NIST FIPS PUB 197, 2001.

11

