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Abstract. In this paper I describe the construction of Dynamic SHA 
family of cryptographic hash functions. They are built with design 
components from the SHA-2 family, but there is function R in the new 
hash function. It enabled us to achieve a novel design principle:  When 
message is changed, different rotate right operation maybe done. It 
makes the system can resistant against all extant attacks.  
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1 Introduction 
The SHA-2 family of hash functions was designed by NSA and adopted 
by NIST in 2000 as a standard that is intended to replace SHA-1 in 2010 
[6]. Since MD5, SHA-0 and SHA-1 was brought out, people have not 
stopped attacking them, and they succeed. Such as: den Boer and 
Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in 1995, Dobbertin [5] 
in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and Chen [1] in 
2004, and Wang et al. [9–12] in 2005. Most well known cryptographic 
hash functions such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and 
SHA-1, have succumbed to those attacks. 
Since the developments in the field of cryptographic hash functions, 
NIST decided to run a 4 year hash competition for selection of a new 
cryptographic hash standard [7]. And the new cryptographic hash 
standard will provide message digests of 224, 256, 384 and 512-bits. 
In those attacks, we can find that when different message inputted, the 
operation in the hash function is no change. If message space is divided 
many parts, in different part, the calculation is different, the attacker will 
not know the relationship between message and hash value. The hash 
function will be secure. To achieve the purpose, I bring in data depend 
function R to realize the principle. 
My Work: By introducing a novel design principle in the design of hash 
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functions, and by using components from the SHA-2 family, I describe 
the design of a new family of cryptographic hash functions called 
Dynamic SHA. The principle is: 
1. When message is changed, different rotate right operation maybe done. 
 
The principle combined with the already robust design principles present 
in SHA-2 enabled us to build a compression function of Dynamic SHA 
that has the following properties: 
 
1. There is not message expansion part. 
2. The iterative part has 48 rounds. Message bits have been mixed three 
times. 
3. The iterative part has two different functions. 
 

2 Preliminaries and notation 
In this paper I will use the same notation as that of NIST: FIPS 180-2 
description of SHA-2 [6]. 
The following operations are applied to 32-bit or 64-bit words in 
Dynamic SHA: 
 
1. Bitwise logical word operations:‘∧’–AND ,‘∨’–OR,‘⊕’–XOR and 
‘ ’–Negation. ¬

2. Addition ‘+’ modulo or modulo . 322 642

3. The shift right operation, , where x is a 32-bit or 64-bit word 
and n is an integer with 0≤n<32 (resp. 0≤n<64). 

)(xSHR n

4.The shift left operation, , where x is a 32-bit or 64-bit word and 
n is an integer with 0≤n<32 (resp. 0≤n<64). 

)(xSHLn

5. The rotate right (circular right shift) operation, , where x is a 
32-bit or 64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 
64). 

)(xROTRn

6. The rotate left (circular left shift) operation, , where x is a 
32-bit or 64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 
64). 

)(xROTLn

 



Depending on the context I will sometimes refer to the hash function as 
Dynamic SHA, and sometimes as Dynamic SHA-224/256 or Dynamic 
SHA-384/512. 
 

2.1 Functions 
Dynamic SHA include two functions. The two functions are used in 
compression function. 
 

2.1.1 Function G(x1,x2, x3,t) 
Function G operates on three words x1,x2, x3 and an integer t, produces a 
word y as output. And function G as follow: 
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Table 2.1 function G for Dynamic SHA 

The truth table for logical functions as table 2.2. 
x1 x2 x3 f1 f2 f3 f4 

0 0 0 0 0 1 1 

0 0 1 1 1 0 0 

0 1 0 1 0 1 0 

0 1 1 0 1 0 1 

1 0 0 1 0 0 1 

1 0 1 0 1 1 0 

1 1 0 0 1 1 1 

1 1 1 1 0 0 0 

Table 2.2. truth table for logical functions 

 

2.1.2 Function R(x1, x2, x3, x4, x5, x6, x7, x8) 
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7 and x8, 
produces a word y as output. And function R as table 2.3. 
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Table 2.3. Function R for Dynamic SHA 

 

 

2.2 Preprocessing 
Preprocessing in Dynamic SHA is exactly the same as that of SHA-2. 
That means that these three steps: padding the message M, parsing the 
padded message into message blocks, and setting the initial hash value, 

0H  are the same as in SHA-2. Thus in the parsing step the message is 
parsed into N blocks of 512 bits (resp. 1024 bits), and the i-th block of 
512 bits (resp. 1024 bits) is a concatenation of sixteen 32-bit (resp. 64-bit) 
words denoted as . Dynamic SHA may be used to hash 
a message, M, having a length of  bits, where . 
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2.2.1 padding 
2.2.1.1 Dynamic SHA-224/256 
Suppose that the length of the message M is L bits. Append the bit “1” to 
the end of the message, followed by k zero bits, where k is the smallest, 
non-negative solution to the equation L+1+k ≡ 448 mod 512. Then 
append the 64-bit block that is equal to the number L expressed using a 
binary representation.  
 
2.2.1.2 Dynamic SHA-384/512 
Suppose that the length of the message M is L bits. Append the bit “1” to 
the end of the message, followed by k zero bits, where k is the smallest, 



non-negative solution to the equation L+1+k ≡ 896 mod 1024. Then 
append the 128-bit block that is equal to the number L expressed using a 
binary representation. 
 
2.3 Initial Hash Value 0H  
The initial hash value, 0H  for Dynamic SHA is the same as that of 
SHA-2 (given in Table 2.4).  
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Table 2.4. The initial hash value, 0H  for Dynamic SHA 
     

2.4 Constants 
The Dynamic SHA has three constants (given in table 2.5): 

Dynamic SHA-224/256 Dynamic SHA-384/512 
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Table 2.5. The constants for Dynamic SHA 

 

2.5 Dynamic SHA Hash Computation 

The Dynamic SHA hash computation uses functions and initial values 
defined in previous subsections. So, after the preprocessing is completed, 
each message block, , is processed in order, using the 
steps described algorithmically in Table 2.6.  

)()1()0( ,.....,, NMMM

 
 



For i = 1 to N: 

{ 

1.Initialize eight working variables a, b, c, d, e, f, g and h with the  hash value: thi )1( −
)1(
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Table 2.6. Algorithmic description of Dynamic SHA hash function. 

The algorithm uses 1) a message schedule of sixteen 32-bit (resp. 64-bit) 
words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3) a hash 
value of eight 32-bit (resp. 64-bit) words. The final result of Dynamic 
SHA-256 is a 256-bit message digest and of Dynamic SHA-512 is a 
512-bit message digest. The final result of Dynamic SHA-224 and 
Dynamic SHA-384 are also 256 and 512 bits, but the output is then 
truncated as 224 (resp. 384) bits. The words of the message schedule are 
labeled . The eight working variables are labeled 

 and  and sometimes they are called “state register”. The 
words of the hash value are labeled , which will hold the 
initial hash value, 

1510 ,...,, WWW

gfedcba ,,,,,, h
)(

7
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0 ,...,, iii HHH
)0(H , replaced by each successive intermediate hash 

value (after each message block is processed), )(iH , and ending with the 
final hash value, )( NH . Dynamic SHA also uses one temporary words T 



and three constants. 
 
3 Security of Dynamic SHA 

In this section I will make an initial analysis of how strongly collision 
resistant, preimage resistant and second preimage resistant Dynamic SHA 
is. I will start by describing our design rationale, then I will discuss the 
strength of the function against known attacks for finding different types 
of collisions. 
 
3.0 Cryptographic Hash Functions 
After preprocess message, there are some message blocks that include 
512(resp.1024) bits.  
Let there exist message blocks M(1),M(2),…,M(n). Let f(h,Mi) is 
compression function, it is as table 2.6. The operation of the iterated hash 
function is as follows. First, an b-bit value h(0)=IV is fixed. Then the 
message blocks are hashed in order. There exist f(h(i-1),M(i))=h(i) i = 
1,2,...,n. As table 3.1 

f f f…

M1 MnM2 

IV F(x) f

Mj

…

 

 Table 3.1 The iterated construction of compression function f 
 
When someone find collisions, he can randomly guess message blocks 
except for one block M(j) ,where 0≤j≤n. Then he can calculate out h(j-1) 
with function f and message blocks M(1),…,M(j-1) , and he can 
backward function f with message blocks M(j+1),…,M(n) to calculate 
out h(j). At last he can just find suitable M(j) that mak f(h(j-1),M(j))=h(j) 
to complete findding collisions. So I will discuss the security of Dynamic 
SHA in one block. 
 



3.1 Properties of iterative part 
In the iterative part, there are 48 rounds. In one round, there are functions 
G, R, one message word will be mixed. 
 

3.2 Design rationale 

The reasons for the first principle: When message is changed, different 
rotate right operation maybe done. 
From the definition of function R, it is easy to know when the variable is 
different, the parameter n in  will be different, different rotate 
left operation will be done.  

)(xROTRn

It can guess the parameter n in . Function R is called 48 times 
in Dynamic SHA, and in first round, the message words is not mixed, so 
it can just guess the parameter n 48-1=47 times. Then there are 

(resp. ) 47-tuple (n(1),…,n(i),…,n(47)), where n(i) is 
the parameter n of  in i-th round. 

)(xROTRn

23547 232 = 28247 264 =

)(xROTRn

If someone guess the parameter of function R. There are  (resp. ) 
47-tuple (n(1),…, n(i),…,n(47)). A given 47-tuple define different 
calculation, so 47-tuple (n(1),…, n(i),…,n(47)) divide the message space 
into  (resp. ) parts. In different part, the calculation is different. 
When message is changed, the 47-tuple (n(1),…, n(i),…,n(47)) maybe 
change, different rotate right operation maybe done. 

2352 2822

2352 2822

 

Controlling the differentials is hard in Dynamic SHA: 

In Dynamic SHA, it is known that when message is changed, the 
calculation will be different. To analyze Dynamic SHA, it need the 
unchangeable formulas that represent function R. There are three ways to 
analyze Dynamic SHA: 

1. Guess the parameters of function R. This way is select a part in the 
message value space. And the message space is divided into  
(resp. ) parts. In different part, the calculation is different. In a 
part, the average number of message value is  (resp. 

). Then the average number of collisions for a hash 
value is (resp. , , ), it less than 

(resp. , , ). If attacker selects a part, he will 

2352
2822

277235512 22 =−

7422821024 22 =−

53224277 22 =− 212 3582 2302
288224512 22 =− 2562 6402 5122



have a calculation. To a calculation, the average number of 
collisions for a hash value is 288224512 22 =− (resp. , , ). If 
someone develop an algorithm to find collision, then the 
probability of find the collision is (resp. 

, , ). 

2562 6402 5122

23528853 22 −− =
2352− 2822− 2822−

2. Someone can use Algebraic Normal Form (ANF) to represent 
Dynamic SHA, but the ANFs that represent function R has up to 

(resp. ) monomials. If constitute the Arithmetic function 
based on ANF, the degree of the Arithmetic function represents 
function R is up to 256(resp. 512), and has up to (resp. ) 
monomials. 

2562 5122

2562 5122

3. Someone can constitute Arithmetic functions to represent Dynamic 
SHA as in Appendix 2. But the Arithmetic function that represent 
function R is complex exponential function with round-off 
instruction. After 48 rounds, the Arithmetic function that represent 
function R will be very huge. 

 

3.3 Finding Preimages of Dynamic SHA 
To a hash function f(·), it need satisfy: 

Given hash value H=f(M), it is hard to find message M that meet 
H=f(M). 

 

There are two ways to find preimages of a hash function: 
1,From the definition of Dynamic SHA it follows that from a given 

hash digest it is possible to perform backward iterative steps by 
guessing values that represent some relations between working 
variables of the message words. For that purpose let us use the 
following notation: 

-  For every iterative round t = 0,1,...,47, variables that are on the left 
side of the assignment (equality sign '=') will be denoted by , ,...,  
while variables that are on the right side of the assignment will be 
denoted by , ,..., . 

ta tb th

1−ta 1−tb 1−th

 
 



1. Initialize eight variables , ,...,  47a 47b 47h

2.For t=46 to -1 

{ 
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} 
 Table 3.2. Backward recurrence expressions of Dynamic SHA. Note that the relations 

for the variables  are given in (2)  tC0
 
With that notation we can write the backward recurrence expressions as it 
is done in Table 3.2. Function R1 as table 3.3: 
-The initialization of the variables , , , ,  

, , , , will be denoted as equations (2): 
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Table 3.3. functions R1 for Dynamic SHA 

Now, we have the equations (1) as a one system of 48 equations with 
16 unknown variables. It is a system over GF(2) or over 322  (resp. 

642 ).  
The size of  space is , The size of  space 

is , where w is bit-length of , . The number of 
the mwssage value that has same hash value is .  he 
probability of there is solution for equation (1) is .  

470 0,...,0 CC w×482
150 ,...,WW

w×162
470 0,...,0 CC 150 ,...,WW

www ××−× = 8816 22
www ×−×−× = 40488 22

In first sixteen rounds, all message words are guessed. And there still are 
32 words  that had not been guessed. Backwarding iterative 
steps by guessing values is not better than random guessing in Dynamic 
SHA. 

310 0,...,0 CC

2, The probability of random guess of finding preimages is (resp. 
, , ). 

2242−

2562− 3842− 5122−

 

3.4 Finding Second Preimages of Dynamic SHA 
To a hash function f(·), it need satisfy: 

Given M, it is hard to find M’≠ M  s.t. f(M) = f(M’). 
 

There are five ways to find second preimages of a hash function: 
1, Get hash value H=f(M) of message M, and find different message 

M’≠ M that has hash value H= f(M’). In section 3.3, it is known 
that it is hard to calculate out the message M’ from given hash value 
H. 



2, Given M, and find out the relationship between the difference △M 
and the difference △H=f(M+△M)-f(M). And find out △M≠0 that 
make △H=0. To do this, someone will set up some system of 
equations obtained from the definition of the hash function, then 
trace forward and backward some initial bit differences that will 
result in fine tuning and annulling of those differences and finally 
obtain Second Preimages. It need know the unchangeable formulas 
that represent hash function f. In Dynamic SHA, when message is 
changed, the calculation maybe different. To get unchangeable 
formulas that represent hash function f, it need get ANFs for 
Dynamic SHA. And the ANFs for function R have up to (resp. 

) monomials. 

2562
5122

3. To get unchangeable formulas that represent hash function f. It can 
constitute Arithmetic functions to represent Dynamic SHA. And the 
Arithmetic functions that represent function R is exponential 
function with round-off instruction. Or someone had to constitute 
high degree Arithmetic function to represent function R. And the 
degree of the Arithmetic function is up to 256-degree(resp. 
512-degree), and have up to (resp. ) monomials. 2562 5122

4. Guess the parameters of function R. This way is select a part in the 
message value space. And the message space is divided into  
(resp. ) parts. In different part, the calculation is different. In a 
part, the average number of message value is  (resp. 

). Then the average number of collisions for a hash 
value is (resp. , , ), it less than 

(resp. , , ). If attacker selects a part, he will 
have a calculation. To a calculation, the average number of 
collisions for a hash value is 

2352
2822

277235512 22 =−

7422821024 22 =−

53224277 22 =− 212 3582 2302
288224512 22 =− 2562 6402 5122

288224512 22 =− (resp. , , ). If 
someone develop an algorithm to find collision, then the probability 
of find the second preimages is  (resp. 

, , ). 

2562 6402 5122

23528853 22 −− =
2352− 2822− 2822−

5. The probability of random guess of finding second preimages is 
(resp. , , ). 2242− 2562− 3842− 5122−

 



3.5 Finding Collisions in Dynamic SHA 
To a hash function f(·), it need satisfy: 

  It is hard to find different M and M’  s.t. f(M) = f (M’). 
 
There are five ways to find Collisions of a hash function: 

1, Fix message M, and find different message M’ that has hash value 
H=f(M). then the problem become find Second Preimages of the 
hash function. 

2. Find out the relationship between the (M, M’) and the difference 
△H=f(M)-f(M’). And find out (M,M’) that make △H=0. To do this, 
someone will set up some system of equations obtained from the 
definition of the hash function, then trace forward and backward 
some initial bit differences that will result in fine tuning and 
annulling of those differences and finally obtain collisions. It need 
know the unchangeable formulas that represent hash function f. In 
Dynamic SHA, when message is changed, the calculation maybe 
different. To get unchangeable formulas that represent hash function 
f, it need get ANFs for Dynamic SHA. And the ANFs for function R 
have up to (resp. ) monomials.  2562 5122

3. To get unchangeable formulas that represent hash function f. It can 
constitute Arithmetic functions to represent Dynamic SHA. And the 
Arithmetic functions that represent function R is exponential 
function with round-off instruction. Or someone had to constitute 
high degree Arithmetic function to represent function R. And the 
degree of the Arithmetic function is up to 256-degree(resp. 
512-degree), and have up to (resp. ) monomials. 2562 5122

4. Guess the parameters of function R. This way is select a part in the 
message value space. And the message space is divided into  
(resp. ) parts. In different part, the calculation is different. In a 
part, the average number of message value is  (resp. 

). Then the average number of collisions for a hash 
value is (resp. , , ), it less than 

(resp. , , ). If attacker selects a part, he will 
have a calculation. To a calculation, the average number of 

2352
2822

277235512 22 =−

7422821024 22 =−

53224277 22 =− 212 3582 2302
288224512 22 =− 2562 6402 5122



collisions for a hash value is 288224512 22 =− (resp. , , ). If 
someone develop an algorithm to find collision, then the probability 
of find the collision is 

2562 6402 5122

23528853 22 −− = (resp. , , ). 2352− 2822− 2822−

5. The attack base on the birthday paradox. the workload for birthday 
attack is of O( ) (resp. O( ) O( ) O( )). 1122 1282 1922 2562

 

3.6 Finding collisions in the reduced compression function of 
Dynamic SHA 
If the bits in message are mixed one time, the system will be weak, 
someone can backward Dynamic SHA as table 3.2 show. 
 
If there are more than 32 rounds, the bits in message are mixed at least 
twice, if attacker backward Dynamic SHA as table 3.2 show, he will have 
a system of 32 equation with 16 unknown variables, The probability of 
there is solution for the system is (resp. ). And the message 
space is divided into  (resp. ) parts, in a part, there are  
(resp. ) message values. The average number of collisions is  
(resp. , , ). To a calculation, The average number of collisions 
is  (resp. , , ). If an algorithm is developed to find 
collision for a calculation, then the probability of find the collision is 

(resp. , , ).  

5122− 10242−

1552 1862 3572
8382 1332
1012 4542 3262

2882 2562 6402 5122

1552− 1552− 1862− 1862−

 

4 Improvements 
There are some improvements for Dynamic SHA: 
 
1. To reduce the times that message bits mixed, the message words are 
mixed three times. To get higher security, it can increase the number of 
message words mixed times. It will increase the times that message bits 
are mixed. 
 

2. Function G can be design as data-dependent function. And it will 
increase system calculation and the number of the parts that message 
value space had been divided.  

An examlep as follow: 



The new function G operates on three words x1,x2, x3, 
produces a word y as output. function G  include two function. 

And function G1 operates on two words x1,x2 and produce an 
integer t. function G1 as follow: 
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Table 4.1. Function G1 for Dynamic SHA 

Function G2 operates on three words x1,x2, x3 and an integer t 
that produced in function G1, function G2 as follow: 
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Table 4.2 function G2 for Dynamic SHA 

The ANFs and Arithmetic functions that represent message 
expansion has up to  monomials. The degree of Arithmetic 
functions that represent message expansion is up to 65(resp.129), and has 
up to  monomials. 

)2.(2 12965 resp

)2.(2 12965 resp

 
3. In Keyed Hash function, the initial hash value is random variable to 
attacker. If Dynamic SHA is used in Keyed Hash function, by theorem 3, 
it is easy know that the probability of hash value is (resp. 

).  

2242−

2562− 3842− 5122−

There are some ways that we can adopt to get random initial hash 
value, for example: cIVIV ii += −1 ,  is i-th initial hash value, c is 
constant and c is odd number. To do this, it need new communication 

iIV



protocol. 
 

4. If some algorithms that based on Arithmetic functions are developed to 
break Dynamic SHA. The message expansions will increase the degree of 
the Arithmetic function that represents Dynamic SHA. If the message 
expansions is data depend function, the degree of the Arithmetic function 
that represents the message expansions maybe be up to 512(resp.1024). It 
will increase the ability that resists differential analysis 

The message expansion maybe makes some hash values have more 
probability than other hash value. With improvement 3, all hash value 
will have same probability. 

An examlep as follow: 
Use a data-depend function as message expansion and the iterative 

part include 64 rounds. The message expansion and the fourth iterative 
part as follow: 
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Table 4.3. message expansion for Dynamic SHA 

150 ≤≤ iwi  are message words and 3116 ≤≤ iwi  are message 
expansion words, and a new constant bbcdcfTT 183 = (resp. 

) will be used, and the iterative part as table 4.4. 97667183 edabbcdcfTT =

 The ANFs and Arithmetic functions that represent message 
expansion has up to  monomials. The degree of 
Arithmetic functions that represent message expansion is up to 
512(resp.1024). 

)2.(2 1024512 resp



2.  For t=0 to 63 

{     ),,,,,,,( hgfedcbaRT =

gh =  

fg =  

ef =  

de =  

431)3,,,( >>∧ ++∧= tt TTWtcbaGd  

bc =  

ab =  

Ta =  

} 

Table 4.4 the iterative part for Dynamic SHA 

 

5 Conclusions 
Ronald L Rivest[14] had designed RC5, RC5 include data-depend 

function, it make it hard to analyse RC5. And William Stallings[15] has 
mentioned that data-depend function will make cipher system has good 
nonlinear, and composite function of Boolean functions and Arithmetic 
functions also make cipher system has good nonlinear. Dynamic SHA 
carry out the two suggestions. It make Dynamic SHA is more nonlinear 
than SHA-2.  

Data-depend function function R divided the message space into 
many parts, in different part, the calculation is different.  

And based on components from the family SHA-2, I have 
introduced the principle in the design of Dynamic SHA: When message is 
changed, different rotate right operation maybe done. And I bring in data 
depend function R to realize the principle. The principle enabled us to 
build a compression function of Dynamic SHA that the iterative part has 
48 rounds, it is more robust and resistant against generic multi-block 
collision attacks, and it is resistant against generic length extension 
attacks. 
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Appendix 1: Constitute Boolean functions to represent function. 
We can use Algebraic Normal Form (ANF) to represent function. Gupta 
and Sarkar[13] have studied it. 
Let n≥r≥1 be integers and let  be a vector valued 
Boolean function. The vector valued function  can be represented as 
an r-tuple of Boolean functions , where 

, and the value of  equals the 
value of the s-th component of . The Boolean functions 

 can be expressed in the Algebraic Normal Form (ANF) 
as polynomials with n variables  of kind 

rnF }1,0{}1,0{: →

F

),...,,( )()2()1( rFFFF =

),...,2,1}(1,0{}1,0{:)( rsF ns =→ ),...,,( 21
)(

n
s xxxF

),...,,( 21 nxxxF

),...,,( 21
)(

n
s xxxF

nxxx ,...,, 21 ⊕⊕⊕⊕ nnxaxaa ...110  
, where nnnnnn xxxaxxaxxa ,...,,...... 21,...,2,11,1212,1 ⊕⊕⊕⊕⊕ −− }1,0{∈λa . Each ANF has 

up to  monomials, depending of the values of the coefficients .  n2 λa

 

Function R 
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7 and x8 and 
produces a word y as output. So we have , It is easy to 
know that one-bit different in words x1, x2, x3, x4, x5, x6, x7 will make 
the different rotate right operation be done. So the bit in output maybe 
changed. And when one-bit different in word x8, the bit in output maybe 
changed. So the ANFs to represent function R has up to  monomials, 
where w is bit length of the word. 

wwR }1,0{}1,0{: 8 →×

w×82

 



Appendix 2: Constitute Arithmetic functions to represent 
function. 
Gupta and Sarkar [13] had studied how to use Algebraic Normal Form 
(ANF) to represent function. In a similar way, all function will be 
represented as polynomials. 
 
In appendix 2, the following operations are used: 
1.  is absolute value of )(xabs x  
2. x  is round-off instruction on x  
3. “+” is arithmetic addition. 
4. “-” is arithmetic subtraction. 
5. “×” is arithmetic multiplication. 
 

1. Constitute Arithmetic functions to represent Boolean 
function: 
In Boolean function, 1 is True, 0 is False. 
 
1. To one bit word. The Boolean function can represented with arithmetic 
functions as follow: 

operand function 
arithmetic 
function 

x,y yxz ⊕=  yxyxz ××−+= 2

x,y yxz ∧=  yxz ×=  
x,y yxz ∨=  yxyxz ×−+=  
x xz ¬=  xz −=1  

Tables B.1 represent Boolean function with arithmetic function 
To Boolean polynomial, it can replace every calculation of polynomial 
base on table B.1. 
 
2. To n-bit word. 
If there are three n-bit words x, y, z. if there exist ),( yxfz =  where f is 
Boolean function that in table B.1. 
x, y, z are n-bit words. Let 
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where  is i-th bit of word x, y, z. There exists iii zyx ,, ),( iii yxfz = , where 
. 10 −≤≤ ni

To Boolean polynomial, it can replace every calculation base on table B.1 
for every bit of variables. 
 
3. If function F includes a series functions  as follow: 10,..., −tff
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Then it can represent as follow: 
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Base on above-mentioned three ways, it can represent Boolean function 
with arithmetic functions. And there exists: 
Theorem 1. If , there exists . }1,0{∈x 0>= kxxk

Proof.  
If x=0,  xx kk === 00

If x=1,                                         □ xx kk === 11

 

2. Constitute Arithmetic functions to represent function with 
ANF 
Functions  can be expressed in the ANF as polynomials 
with n variables  of kind 

rnF }1,0{}1,0{: →

nxxx ,...,, 21 ⊕⊕⊕⊕⊕⊕⊕ −− nnnnnn xxaxxaxaxaa 1,1212,1110 ......  
, where . If replace every calculation in the ANF base on 

table B.1 and simplified by theorem 1, it can constitute Arithmetic 
functions to represent ANF. The Arithmetic functions will be polynomials 
with n variables n of kind 

nn xxa ...1,...,2,1⊕ }1,0{∈λa

xxx ,...,, 21 nnnnnnnn xxbxxbxbxbb ××++××++×++×+ −− ............ 1,...,2,11,1110 , 
where  are integer. The Arithmetic functions have up to  
monomials. The degree of Arithmetic functions is up to n. And there 
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3. Constitute Arithmetic functions to represent SHR operation: 
The shift right operation  can be represented as follow: )(xSHRk

)0.2(
2

)( k
k xxSHRy ==  

 

4. Constitute Arithmetic functions to represent data-depend 
function G: 
The function G can be represented as follow: 
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By Theorem 1 and table B.1, function  can be represented as 
follow: 
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iii xxx 3,2,1  is i-th bit of x1, x2, x3. In system (2.2), it is known that 
 are cubic equations, and has 7, 3, 6, 6 monomials. It is easy to know 

that the equation (2.1) is cubic equation. It is hard to represented equation 
(2.1) with linear function. And there exists: 
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And c is constant. 
 

5. Constitute Arithmetic functions to represent data-depend 
function R: 
There are two ways to constitute Arithmetic functions to represent 
data-depend function R: 



1. Constitute ANFs that represent function R. And replace the Boolean 
function base on table B.1. In this way, it will constitute huge Arithmetic 
function. The ANFs represents function R has up to (resp. ) 
monomials. By theorem 1 and the input has 261(resp. 518) bits, so the 
degree of the Arithmetic function represents function R is up to 256(resp. 
512), and has up to (resp. ) monomials. There exiset: 

2562 5122
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where c is constant,  is i-th input bit of function R, bn is bit number of 
input, and bn equal 256(resp. 512). 

ix

 

2. At first, there exist rotate right (circular right shift) operation 
, where x is n-bit word, and )(xROTRk nk <≤0 . It can represent 

 as follow: )(xROTRy k=

)12(
2

2

)3.2(2)2
2

(
2

)(

−×−×=

××−+=

=

−

−

n
k

kn

knk
kk

k

xx

xxx
xROTRy

 

If function  is not data-depend function, the k in 
equation (2.3) is constant, and equation (2.3) is linear equation. The 
derivative function of linear equation is constant. This means the 
difference of function value depend on the difference of input and the 
difference of function value dose not depend on the input. In SHA-2, the 
ROTR operation is not data-depend function, it can constitute linear 
equation to represent the ROTR operation in SHA2. 

)(xROTRy k=

If function  is data-depend function, the k in equation 
(2.3) is variable, and equation (2.3) is exponential function. And equation 
(2.3) will be exponential function with round-off instruction. It is hard to 
represent exponential function with linear equation. The derivative 
function of exponential function is exponential function. This means the 
difference of function value depend the difference of input and input. 
When the input changes, the different of function value maybe change. In 
Dynamic SHA, function R is data-depend function. And if use equation 

)(xROTRy k=



(2.3) represents function R, the k is function of working variables a,b,c, d, 
e, f, g, and  as table B.2, the equation (2.2) will be 
complex exponential function. After several rounds, equation (2.3) will 
be iteration function with equation (2.3), it will be very huge and 
complex, and there exists no mathematical theory that reduces the size of 
equation (2.3). It is hard to analyses Dynamic SHA that includes function 
R.  
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Table B.2. function K for Dynamic SHA 

 

Compare the Arithmetic function that represent SHA2, The Arithmetic 
function that represent functions in Dynamic SHA include exponential 
function. Or the Arithmetic function that represents functions in Dynamic 
SHA has higher degree than the Arithmetic function that represents 
functions in SHA2. This make it is harder to analyses Dynamic SHA. 



Appendix 3: Function G and Function R. 
 

Let  is probability of )(xp x . 
 

Function G 
Function G operates on three words x1,x2, x3 and an integer t, produces a 
word y as output. t is constant, x1,x2, x3 are w-bit words and . 
And function G as follow: 
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If x1, x2, x3 are random and uncorrelated. There is: 
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To a given y’, there are  2-tuple (x1,x2), there is relation:  w×22
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it can compute the value for x3. x1, x2, x3 are random and uncorrelated 
variable, there is 

wxpxpxp −=== 2)3()2()1(  
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If x1, x2, x3 are random and uncorrelated, function G will produce 
random word and . wyp −=2)(

 

Function R 
Function y=R(x1,x2,x3,x4,x5,x6,x7,x8) operates on eight words 
x1,x2,x3,x4,x5,x6,x7 and x8, produce a word as output as table 2.3. x1, 
x2, x3, x4, x5, x6, x7, x8 are w-bit words. If x1, x2, x3, x4, x5, x6, x7, x8 
are random and uncorrelated. 
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To given value t0’, There is  7-tuple (x1’,x2’,x3’,x4’,x5’,x6’,x7’), 
There is relation: 

w×72

0)6)5)4)3)21(((((7 txxxxxxx ⊕+⊕+⊕+= . it can compute 
the value for x7. and x1, x2, x3, x4, x5, x6, x7 are random and 
uncorrelated variable. There exists:  
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t0 is w-bit word, let t is -bit word, let: t0=( ) and 
t=( ),  is i-th bit of t0 and t, and there is  

w
2log 10 0,...,0 −wtt

1log0
2

,...,
−wtt ii tt ,0

Dynamic 
SHA-224/256 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

31262114944

30252013833

29241912722

1628231811611

1527221710500

000000
000000
000000

0000000
0000000
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Dynamic 
SHA-384/512 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

59534741352923171155

58524640342822161044

635751453933272115933

625650443832262014822

615549433731251913711

605448423630241812600
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0000000000

00000000000
00000000000

00000000000
00000000000
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And there is relation: 

Dynamic 
SHA-224/256 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

31262114944

30252013833

29241912722

1628231811611

1527221710500

000000
000000
000000

0000000
0000000
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Dynamic 
SHA-384/512 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

59534741352923171155

58524640342822161044

635751453933272115933

625650443832262014822

615549433731251913711

605448423630241812600

0000000000
0000000000

00000000000
00000000000

00000000000
00000000000
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To a given t’=( ), there is   

. To a given  

( ), it can compute the  for ( ). And 
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x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words, and t is 
produced from x1, x2, x3, x4, x5, x6, x7. To , there is 
relation . To a given value y’, there are w value t, to a 
given t’, it can compute the value for x8. And there is: 

)8(xROTRy t=

)(8 yROTRx tw−=

www

i i iiii wwxptpxtypyp
w

−−−−

=

−

=
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0

12
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If x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words, 
function R will produce random word and . wyp −=2)(

 
In function R, one bit difference in x1, x2, x3, x4, x5, x6, x7, different 
ROTR will be done, this will make every bit in x8 maybe changed. 



Appendix 4: Some thing about Dynamic SHA 
1. Why Dynamic SHA use function G and function R 
As mentioned at appendix 3, if the variables are random word, function G 
and R will produced random word. 

Function G operates on three words, produces a word as output. 
What function G does is produce confusion word. 

Function R operates on eight words, produces a word as output. What 
function R do is confuse the place of bit. 

The reason that Dynamic SHA use function G and function R is: 
1. To get better property of spreading, Dynamic SHA use function G 

and R. 
2. With function G, function R makes it hard to find out the 

relationship between message change and bit place change. If 
function G is data-depend function, function G and R will make it 
hard to find out the relationship between message value and what 
logical function is called and where the bit is placed.  And it is 
hard to analyze data-depend function with differential analysis. It 
needs construction Arithmetic function to describe function, the 
degree of the Arithmetic function is up to 256(resp. 512). Or 
construction exponential function to describe function R. And the 
ANFs that describe function R has up to (resp. ) 
monomials. 

2562 5122

 
2. Why there are 48 rounds in Dynamic SHA  

The reason that there are 48 rounds in Dynamic SHA is as follow: 
1. It is easy to know mix message words too many times will reduce 

the randomness of variable of function G and R. So the message bits are 
mixed no many times in Dynamic SHA. 

2. It is easy to backward function R and G, so it must repeatedly mix 
message words. When someone backward iterative steps by guessing 
message word, then he will has one system include equations like (1), the 
system has 48 equations with 16 unknown variables. 

So message words will be mixed three times in Dynamic SHA, and 
in one round, one message word will be mixed. So there are 48 rounds in 



Dynamic SHA. 
 

3. Why there is no message expansion part in Dynamic SHA  
Mixing message words many times will reduce the randomness of 

variable of function G and R. and the degree of Arithmetic function that 
describe function R is up to 256(resp.512), and there are up to (resp. 

) monomials in the Arithmetic function. It is enough now. 

2562
5122

 
4. It is hard to analyses Dynamic SHA 

Dynamic SHA include function R. To analyses Dynamic SHA, it 
need unchangeable representation of function R. As mentioned in 
Appendix 1 and Appendix 2, the ANFs that describe function R has up to 

,(resp. ) monomials, and the Arithmetic functions that describe 
function R is exponential function with round-off instruction like 
equation (2.3) or arithmetic function that the degree is up to 256 (resp. 
512). 

1602 3202

 
5. Avalanche of Dynamic SHA. 
From the definition of function R, it is enough to known that all bits in 
working variables a,b,c,d,e,f,g will affect all bits in temporary words T.  

After 16 rounds, all message bits are mixed. There are 32 rounds 
after all message bits are mixed. And after call function R 9 times, all bits 
in working variables that before 17-th round will affect all bits in 
working variables after 26-th round. Some bits in message will not affect 
all bits in last hash value. So all message bits will affect all bits in last 
hash value. 



Appendix 5: Spreading of Dynamic SHA  
Let: 

1. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). Where a(i), b(i), c(i), 
d(i),e(i), f(i), g(i), h(i) are working variables at i-th round. 

2.MW1=(W(0),W(1),W(2),W(3),W(4),W(5),W(6),W(7)), 
MW2=(W(8),W(9),W(10),W(11),W(12),W(13),W(14),W(15)) 
W(j) is the message word. 

3. i51hv(i)MW2)(MW1,H i ≤= . 
 

Divide the iterative part into some parts, and a part includes 8 rounds. 
The iterative part will be as table E.1. hv(-1) is initiation of eight working 
variables 
   

MW2 

MW2 
MW2 

MW1 MW1 
hv(-1) hv(7) hv(15) hv(23)

hv(31) hv(39) hv(47)
MW1 

 

 

 

 

 

Table E.1.  Iterative part of Dynamic SHA 

And there is: 

hv(47)MW2)(MW1,H
hv(39)MW2)(MW1,H
hv(31)MW2)(MW1,H
hv(23)MW2)(MW1,H
hv(15)MW2)(MW1,H

47

39

31

23

15

=
=
=
=
=

 

At first there are two theorems: 
 

Theorem 2. Let: 
1. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). Where a(i), 

b(i), c(i), d(i),e(i), f(i), g(i), h(i) are working variables at 
i-th round. working variables are b-bit word. 

2.MW=(W(i),W(i+1),W(i+2),W(i+3),W(i+4),W(i+5),W(i+6),
W(i+7)), where W(j) is the word mixed in j-th round. 

3. H(hv(i-1),MW)=hv(i+7) 
hv(i), MW are random and uncorrelated. 



Then there are: 
(1),p(hv(i+7))=  

b×−82

(2),p(hv(i+7)|MW)=  
b×−82

(3),p(hv(i+7)| hv(i-1))=  
b×−82

 
Proof.  

(1),(2) 
Before i-th round, we have (hv(i-1),MW), after 8 rounds, MW is 

mixed, then we have hv(i+7),  so we have .  bbH ×× → 816 }1,0{}1,0{:
There are  MW. To given MW’, there is 

 and : 

b×82
7)hv(i1))-(hv(i' +=MWH bb

MWH ×× → 88
' }1,0{}1,0{:

To given hv(i-1)’, there is relation , 
it can compute the value for hv(i+7). 

7)hv(i)1)'-(hv(i' +=MWH

To given hv(i+7)’, it is easy to backward iterative steps as table 3.2 
show. Then there is relation 1)-hv(i7))(hv(i'' =+MWH , it can 
compute the value for hv(i). 

hv(i), MW are random and uncorrelated, there is 
, . So there is: 

bihvp ×−=− 82))1(( bMWp ×−= 82)(

bbbb
i i i

i i ii

ihvp
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(3) 
To given hv(i-1)’: 
To a given hv(i+7)’, it is easy to backward iterative steps as table 3.2 

show. We will have a system of 8 equations with 8 unknown variables. It 
is easy to compute the value for MW. 

To a given MW’, it is easy to compute the value hv(i+7). 
MW are random, there exist  bMWp ×−= 82)(
So there exist: 
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   □ 
 
By theorem 2, it is easy to know that: 

In 8 round, to a given hv(i-1)’, mix different message words MW, 
the hv(i+7) will be different. 

In 8 round, mix given message words MW’, if the hv(i-1) is 
different, the hv(i+7) will be different. 

 
The relationship is as Table E.2, jihv )1( −  is j-th value in hv(i-1) space. 

 is j-th value in hv(i+7) space.  is j-th value in MW space. jihv )7( + jMW
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)( jklastMW

)12( 8 −×bklast
MW

)0(klastMW  

)12( 8 −×bkjMW  

)( jkjMW

)0(kjMW

)12(0 8 −×bkMW  

0)1( −ihv

 

….. ….. 

….. ….. 

jihv )1( −

128)1(
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0)7( +ihv
 

jihv )7( +

 

128)7(
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Table E.2 relationship between hv(i-1), hv(i+7), MW 

 

Theorem 3. In Dynamic SHA, there exist: 
(1) p(hv(j))=  b×−82
(2),p(hv(j)|MW1)=  

b×−82
(3),p(hv(j)|MW2)=  

b×−82
,......2,1,0815 =×+= kkj  

 



Proof.  
hv(-1), MW1 and MW2 are random and uncorrelated, so there exist: 

p(hv(-1)) =  b×−82
p(MW1) =   b×−82
p(MW2) = . b×−82

 
To simplification, Let F(hv(i-8),MW)=hv(i), MW is mixed words MW1 
or MW2. 
 

To a given hv(i)’ ,......2,1,0815 =×+= kki , there are  
2-tuple(MW1,MW2). 

b×162

To a given 2-tuple(hv(i)’,MW1’), there are  MW2. To a given 
2-tuple (hv(i)’,MW2’), there are  MW1. 

b×82
b×82

To a given 3-tuple(hv(i)’,MW1’,MW2’), It is easy to backward 
iterative steps, and it is easy to compute the value for hv(-1), and the 
hv(-1) make hv(i)')MW2',MW1'(hv(-1),H i = .  

So there exist: 
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                                                        □ 

 
Theorem 4. In Dynamic SHA, to a given hv(-1), there exist: 

(1) p(hv(23)| hv(-1))=  b×−82

 



Proof.  To simplification, Let F(hv(i-8),MW)=hv(i), MW is mixed 
words MW1 or MW2. 
 

To a given 2-tuple (hv(23)’,hv(-1)’), there are  MW1. b×82
To a given 2-tuple (hv(23)’, MW1’), by theorem 2, there is p(hv(23)| 

MW1) = , so to a given 2-tuple(hv(23)’, MW1’), there is 

 hv(15) that make F(hv(15),MW1’)= hv(23)’. 

b×−82
122 88 =× ××− bb

To a given 2-tuple (hv(-1)’, MW1’), from the definition of iterative 
steps, it is enough to know that there is a hv(7) that make 
F(hv(-1)’,MW1’)= hv(7). 

To a given 2-tuple (hv(7)’, hv(15)’), by theorem 2, there is p(hv(15)| 
hv(7)) = , so to a given 2-tuple(hv(7)’, hv(15)’), there is 

 MW2 that make F(hv(7)’, MW2) = hv(15)’ . 

b×−82
122 88 =× ××− bb

So there exist: 
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                                                       □ 

By theorem 3 and 4, it is enough to know that: 
1. When hv(-1) is random variable, the probability of hash 

value is . b×−82
2. To a given hv(-1), the probability of different hash value 

maybe different.  
 
After 23-th round, the message has been mixed, the mixed message 

words and working variables value are not uncorrelated, it is hard to 
analyze the probability of hash value. To get better property of spreading, 
Dynamic SHA adopts ways as follow:  

1. Function G and R are used in Dynamic SHA. When the variables of 
function G, R are random and uncorrelated, function G, R will 
produce random value. 


