
Obtaining Universally Composable Security:

Towards the Bare Bones of Trust∗

Ran Canetti†

December 15, 2007

Abstract

A desirable goal for cryptographic protocols is to guarantee security when the protocol is composed
with other protocol instances. Universally Composable (UC) security provides this guarantee in a strong
sense: A UC-secure protocol maintains its security properties even when composed concurrently with
an unbounded number of instances of arbitrary protocols. However, many interesting cryptographic
tasks are provably impossible to realize with UC security in the standard, “plain” model of computation.
Impossibility holds even if ideally authenticated communication channels are provided. In contrast, it
has been demonstrated that general secure computation can be obtained in a number of idealized models.
Each one of these models represents a form of trust that is put in some of the system’s components.

This survey examines and compares some of these trust models, both from the point of view of their
sufficiency for building UC secure protocols, and from the point of view of their practical realizability.
We start with the common reference string (CRS) model, and then describe several relaxations and
alternatives including the Defective CRS model, the key registration models, the hardware token model,
the global and augmented CRS models, and a timing assumption. Finally, we briefly touch upon trust
models for obtaining authenticated communication.

1 Introduction

Designing protocols that guarantee security in open, multi-protocol, multi-party execution environments is a
challenging task. In such environments a protocol instance is executed concurrently with an unknown number
of instances of the protocol, as well as arbitrary other protocols. Indeed, it has been demonstrated time and
again that adversarially-coordinated interactions between different protocol instances can compromise the
security of protocols that were demonstrated to be secure when run in isolation (see, e.g., [gk89, ddn00,
ksw97, dns98, klr06, Can06]).

A natural approach for guaranteeing security of protocols in such complex execution environments is to
require that protocols satisfy a notion of security that provides a general secure composability guarantee.
That is, it should be guaranteed that a secure protocol maintains its security even when composed with (i.e.,
runs alongside) arbitrary other protocols. Such a general notion of security is provided by the universally
composable (UC) security framework [c01], which provides a very general composability property: A UC
secure protocol is guaranteed to maintain its security (in the sense of emulating an ideally trusted and secure
service) even when run concurrently with multiple copies of itself, plus arbitrary network activity.

Which cryptographic tasks are realizable by protocols that guarantee UC security? Are existing proto-
cols, which are known to be secure in a stand-alone setting, UC secure? When the majority of the parties
are honest (i.e., they are guaranteed to follow the protocol), the general feasibility results for stand-alone
secure computations can be extended to the case of UC security. In fact, some known protocols for gen-
eral secure function evaluation turn out to be UC secure. For instance, the [bgw88] protocol (both with

∗This survey complements a talk given at Asiacrypt 2007.
†IBM T.J. Watson Research Center. Email: canetti@csail.mit.edu. Supported by NSF grant CFF-0635297 and US-Israel

Binational Science Foundation Grant 2006317.

1

and without the simplification of [grr98]), together with encrypting each message using non-committing
encryption [cfgn96], is universally composable as long as less than a third of the parties are corrupted,
and authenticated and synchronous communication is available. Using [rb89], any corrupted minority is
tolerable. Asynchronous communication can be handled using the techniques of [bcg93, bkr94]. Note that
here some of the participants may be “helpers” (e.g., dedicated servers) that have no local inputs or outputs;
they only participate in order to let other parties obtain their outputs in a secure way.

However, things are different when honest majority of the parties is not guaranteed, and in particular in
the case where only two parties participate in the protocol and either one of the parties may be corrupted:
It turns out that many interesting tasks are impossible to realize in the “bare” model of computation.
Impossibility holds even if ideally authenticated communication is guaranteed. (In keeping with common
terminology, we use the terms plain protocols and protocols in the plain model to denote protocols that
assume ideally authenticated communication but no other idealization.) For instance, basic cryptographic
tasks such as Bit Commitment, Coin-Tossing, Zero-Knowledge, or Oblivious Transfer cannot be realized
by plain protocols, when naturally translated to the UC framework. Impossibility also extends to many
other tasks [cf01, c01, ckl03, ddmrs06], including multi-party extensions of these primitives, whenever
the honest parties are not in majority.

One potential approach for circumventing these impossibility results is to come up with relaxed notions of
security that would still guarantee meaningful composable security, and at the same time would be realizable
by plain protocols. Indeed, some relaxed notions along these lines were proposed in e.g. [ps04, bs05, mmy06,
mpr06]. It turns out, however, that such an approach will necessarily result in notions of security that either
do not provide general composability guarantees, or alternatively are too weak to guarantee even stand-alone
security as in, say, [c00]. Specifically, we any protocol that continues to realize some task, according to the
notion of [c00], and continues to do so even when composed with arbitrary protocols, is guaranteed to realize
the same task with UC security [l03, l04, Can06].

Another approach is to stick with UC security, but consider protocols that rely on some trust assumption
on the system. Here the meaningfulness of the security guarantee hinges on the “reasonability” of the trust
assumption, or in other words on the ability to realize the assumption in actual systems.

This survey studies some trust assumptions (or, models) that were recently proposed and shown to suffice
for realizing essentially any cryptographic task in a universally composable way. The various trust models
(also called “set-up models” in jargon) are compared to each other, and the relative strengths and weaknesses
are discussed.
Organization. The survey is organized as follows. Section 2 provides a brief review of the UC security
framework. Section 3 reviews the basic impossibility result for obtaining UC commitment in the plain model.
Section 4 reviews the common reference string (CRS) model. We then study several relaxations of the CRS
model, including the Defective CRS (aka “Sunspot”) model (Section 5) the Key Registration model (Section
6), and the Global Augmented CRS model (Section 7 reviews). We then turn to trust models of a different
flavor: a model that puts trust in tamper-proof hardware (Section 8), and a model that trusts that messages
are delivered with some bounded delays (Section 9). Section 10 briefly discusses trust models for the purpose
of obtaining authenticated communication. Section 11 concludes and discussed some open problems.

2 UC security: A brief review

This section briefly reviews the UC framework. As in many other frameworks (e.g., [gl90, mr91, b91,
c00, pw00, pw01]), the security of protocols with respect to a given task is defined via the “trusted party
paradigm” [gmw87], where the protocol execution is compared with an ideal process where the outputs are
computed by a trusted party that sees all the inputs. That is, a protocol is said to securely carry out a given
task if running the protocol with a realistic adversary amounts to “emulating” the ideal process with the
appropriate trusted party. We call the algorithm run by the trusted party an ideal functionality.

The UC framework substantiates this approach as follows. First, the process of executing a protocol in
the presence of an adversary and in a given computational environment is substantiated. Next, the “ideal
process” for carrying out the task is substantiated. Finally, one defines what it means for an execution of
the protocol to “mimic” the ideal process. We sketch these three steps.

2

The model of protocol execution. The model for executing a multiparty protocol π consists of a system
of computing elements (modeled as interactive Turing machines, or ITMs) (Z,A,M1,M2, ...) where Z and
A are adversarial entities called the environment and adversary, respectively, and the machines M1,M2, ...
represent parties that run an “extended instance” of π. (An instance of protocol π is a set of ITMs that run
π and in addition have a common identifier, called the session ID. The number of parties in an instance may
vary from instance to instance, as well as during the lifetime of an instance.) Intuitively, the environment
represents all the other protocols running in the system, including the protocols that provide inputs to,
and obtain outputs from, the protocol instance under consideration. The adversary represents adversarial
activities that are directly aimed at the protocol execution under consideration, including attacks on protocol
messages and corruption of protocol participants.

An execution of the system consists of a sequence of activations of the individual elements, where the
environment is activated first, and in each activation the active element determines the next element to be
active, by sending information to it. This information may be labeled as either input, output, or protocol
message. We impose the following restrictions on the way in which the above system runs. The environment
Z is allowed to provide only inputs to other machines. A party of π may send messages to A, or give inputs
to the environment. The adversary A may give output to Z, send messages to other parties, or corrupt
parties. (Corrupting a party is modeled via sending a special message to that party.)

Let execπ,A,Z(z) denote the random variable (over the local random choices of all the involved machines)
describing the output of environment Z when interacting with adversary A and parties running protocol
π on input z as described above. Let execπ,A,Z denote the ensemble {execπ,A,Z(z)}z∈{0,1}∗ . We restrict
attention to the case where the environment outputs only a single bit; namely, the ensemble execπ,A,Z is
an ensemble of distributions over {0, 1}.
Subroutines. For the purpose of formulating the ideal process and the notion of protocol composition it
will be convenient to allow designating an ITM as a subroutine of another ITM. If an ITM M is a subroutine
of M ′ then M ′ can give input to M and M can give output to M ’. Note that M and M ′ may have different
session ID and run different codes. The above model of protocol execution is then extended in the natural
way to protocols where the parties have subroutines, with the important restriction that the environment
only provides inputs to and receives outputs from the parties of a single instance of π. In particular, the
environment does not directly communicate with any subroutine of a party of that single instance.
Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the protocol
execution to an ideal process for carrying out the task at hand. For convenience of presentation, we formulate
the ideal process for a task as a special protocol within the above model of protocol execution. (This avoids
formulating an ideal process from scratch.) A key ingredient in this special protocol, called the ideal protocol,
is an ideal functionality that captures the desired functionality, or the specification, of the task by way of a
set of instructions for a “trusted party”.

That is, let F be an ideal functionality (i.e., an algorithm for the trusted party). Then an instance of the
ideal protocol idealF consists of dummy parties, plus a party F that’s a subroutine of all the main parties.
Upon receiving an input v, each dummy party forwards v as input to the subroutine F . Any subroutine
output coming from F is forwarded by the dummy party as subroutine output for the environment. We
note that F can model reactive computation, in the sense that it can maintain local state and its outputs
may depend on all the inputs received and all random choices so far. In addition, F may receive messages
directly from the adversary A, and may contain instructions to send messages to A. This “back-door
channel” of direct communication between F and A provides a way to relax the security guarantees provided
F . Specifically, by letting F take into account information received from A, it is possible to capture the
“allowed influence” of the adversary on the outputs of the parties, in terms of both contents and timing. By
letting F provide information directly to A it is possible to capture the “allowed leakage” of information on
the inputs and outputs of the parties.
Protocol emulation. It remains to define what it means for a protocol to “mimic” or “emulate” the ideal
process for some task. As a step towards this goal, we first formulate a more general notion of emulation,
which applies to any two protocols. Informally, protocol π emulates protocol φ if, from the point of view of
any environment, protocol π is “just as good” as φ, in the sense that no environment can tell whether it is
interacting with π and some (known) adversary, or with φ and some other adversary. More precisely:

3

Definition (protocol emulation): Protocol π UC-emulates protocol φ if for any adversary A there exists an
adversary S such that, for any environment Z the ensembles execπ,A,Z and execφ,S,Z are indistinguishable.
That is, on any input, the probability that Z outputs 1 after interacting with A and parties running π differs
by at most a negligible amount from the probability that Z outputs 1 after interacting with S and φ.

Once the general notion of protocol emulation is defined, the notion of realizing an ideal functionality is
immediate:
Definition (realizing functionalities): Protocol π UC-realizes an ideal functionality F if π emulates
idealF , the ideal protocol for F .

2.1 The composition theorem

As in the case of protocol emulation, we present the composition operation and theorem in the more general
context of composing two arbitrary protocols. The case of composing ideal protocols follows as a special
case.
The universal composition operation. The universal composition operation is a natural generalization
of the “subroutine substitution” operation for sequential algorithms to the case of distributed protocols.
That is, let ρ be a protocol that contains instructions to call protocol protocol φ as a subroutine, and let π
be a protocol that UC-emulates φ. The composed protocol, denoted ρπ/φ, is the protocol that is identical
to ρ, except that each instruction to call protocol φ is replaced with an instruction to call protocol π with
the same parameters an inputs. Similarly, any output from a party running π is treated as an input form a
party running φ. In particular, if some party running ρ calls multiple instances of φ, differentiated via their
session IDs, then the corresponding instance of πρ/φ will use multiple instances of ρ.
The composition theorem. In its general form, the composition theorem says that if protocol π UC-
emulates protocol φ then, for any protocol ρ, the composed protocol ρπ/φ emulates ρ. This can be interpreted
as asserting that replacing calls to φ with calls to π does not affect the behavior of ρ in any distinguishable
way.

There is one caveat: For this result to hold we need that protocols π and ρ are “nice” in that only
the main parties of the protocol have I/O with the outside world. More precisely, say that a protocol π is
subroutine respecting if only the main parties of any instance of π receive input from external parties and
send output to external parties. In particular, subroutines of the main parties, and subroutines thereof, do
not directly get inputs from or send outputs to an external party. Then:
Theorem (universal composition): Let ρ, φ, π be subroutine respecting protocols such that ρ uses φ as
subroutine and π UC-emulates φ. Then protocol ρπ/φ UC-emulates ρ. In particular, if ρ UC-realizes an ideal
functionality G then so does ρπ/φ.

A first, immediate corollary of the general theorem states that if protocol ρ makes subroutine calls to
protocol idealF , the ideal protocol for F , and protocol π UC-realizes F , then the composed protocol ρπ/φF

UC-emulates ρ.Another corollary is that if ρ UC-realizes an ideal functionality G, then so does ρπ/φ.
Remark: On the universality of universal composition. Many different ways of “composing together”
protocols into larger systems are considered in the literature. Examples include sequential, parallel, and
concurrent composition, of varying number of protocol instances, where the composed instances are run
either by the same set of parties or by different sets of parties, use either the same program or different
programs, and have either the same input or different inputs. A more detailed discussion appears in [Can06].

We observe that all of these composition methods can be captured as special cases of universal composi-
tion. That is, any such method for composing together protocol instances can be captured by an appropriate
“calling protocol” ρ that uses the appropriate number of protocol instances as subroutines, provides them
with appropriately chosen inputs, and arranges for the appropriate synchronization in message delivery
among the various subroutine instances. Consequently, it is guaranteed that a protocol that UC-realizes an
ideal functionality F continues to UC-realize F even when composed with other protocols using any of the
composition operations considered in the literature.

4

2.2 Generalized UC security

In the UC framework, as presented so far, the UC theorem applies only for protocols which are subroutine
respecting. This simplifies the model and the analysis of protocols within it, since it allows considering only
a single execution of the analyzed protocol with an adversary and environment. However, this modeling does
not allow arguing about security in those interesting cases where the same computational entity is used as
a subroutine within multiple protocol instances.

The generalized UC (GUC) framework [cdpw07] allows arguing about such situations. Specifically, the
model of protocol execution is modified so that the environment can create and interact with other entities,
in addition to the adversary and the parties of a single instance of the analyzed protocol, π. These additional
entities may in turn provide inputs to and get outputs from participants in π and their subroutines. Say that
protocol π GUC-emulates protocol φ if π UC-emulates φ with the modified protocol execution model. In
[cdpw07] it is shown that, within the GUC framework, the UC theorem holds even with respect to protocols
that are not subroutine respecting:
Theorem (generalized universal composition): Let ρ, φ, π be protocols such that ρ uses φ as subroutine
and π GUC-emulates φ. Then protocol ρπ/φ GUC-emulates ρ. In particular, if ρ GUC-realizes an ideal
functionality G then so does ρπ/φ.

Two results surveyed here use this generalized model, for different purposes. One is the modeling of the
augmented CRS model in [cdpw07], with the purpose of modeling trusted information that’s available to
more than one protocol instance. The other is the modeling of “defective” reference strings in [cps07], for
the purpose of capturing reference strings whose distribution is controlled by the environment.

3 Prologue: Impossibility of UC commitment

We recall some basic results regarding realizability of functionalities in the UC framework. These results
shape the search for better trust assumptions.

In a nutshell, the natural formulations of Commitment, Zero-Knowledge, Coin Tossing, or Oblivious
Transfer as ideal functionalities within the UC framework turn out to be “complete” for UC realizability. That
is, UC-realizing any one of these functionalities is necessary and sufficient for obtaining general realizability
results for practically any ideal functionality.

In other words, there exist ideal functionalities, called Fcom, Fzk, Fcoin,Fot, that naturally capture
the security requirements from the corresponding primitives, and such that it is possible to UC-realize any
“well-formed” ideal functionality by protocols that use any one of these functionalities as subroutines (see,
e.g. [clos02]).

Furthermore, it is impossible to UC-realize any one of these functionalities via two-party protocols in the
plain model.

Here we briefly recall the impossibility result for UC-realizing the ideal commitment functionality, Fcom.
Impossibility for the other primitives follow similar lines; some can even be obtained by reduction to the
case of Fcom. Let us first recall the formulation of Fcom.
The ideal commitment functionality. The ideal commitment functionality, Fcom, formalizes the “sealed
envelope” intuition in a straightforward way. That is, when receiving from the committer C an input
requesting to commit to value x to a receiver R, Fcom records (x,R) and notifies R and the adversary that
C has committed to some value. (Notifying the adversary means that the fact that a commitment took
place need not be hidden.) The opening phase is initiated by the committer inputting a request to open the
recorded value. In response, Fcom outputs x to R and the adversary. (Giving x to the adversary means that
the opened value can be publicly available.)

In order to correctly handle adaptive corruption of the committer during the course of the execution,
Fcom responds to a request by the adversary to corrupt C by first outputting a corruption output to C, and
then revealing the recorded value x to the adversary. In addition, if the Receipt value was not yet delivered
to R, then Fcom allows the adversary to modify the committed value. This last stipulation captures the fact
that the committed value is fixed only at the end of the commit phase, thus if the committer is corrupted
during that phase then the adversary might still be able to modify the committed value. (Corruption of the

5

receiver does not require any move.)
Fcom is described in Figure 1. For brevity, we use the following terminology: The instruction “send a

delayed output x to party P” should be interpreted as “send (x, P) to the adversary; when receiving ok from
the adversary, output x to P .”

Functionality Fcom

1. Upon receiving an input (Commit, x) from party C, record (C, R, x) and generate a delayed output
(Receipt) to R. Ignore any subsequent (Commit...) inputs.

2. Upon receiving an input (Open) from C, do: If there is a recorded value x then generate a delayed output
(Open, x) to R. Otherwise, do nothing.

3. Upon receiving a message (Corrupt, C) from the adversary, output a Corrupted value to C, and send x
to the adversary. Furthermore, if the adversary now provides a value x′, and the (Receipt) output was
not yet written on R’s tape, then change the recorded value to x′.

Figure 1: The Ideal Commitment functionality, Fcom

Impossibility of realizing Fcom in the plain model. Roughly speaking, the requirements from a
protocol that UC-realizes Fcom boil down to the following two requirements from the ideal-process adversary
(simulator) S. (a). When the committer is corrupted (i.e., controlled by the adversary), S must be able to
“extract” the committed value from the commitment. That is, S has to come up with a value x such that
the committer will almost never be able to successfully decommit to any x′ 6= x. This is so since in the ideal
process S has to explicitly provide Fcom with a committed value. (b). When the receiver is uncorrupted, S
has to be able to generate a “simulated commitment” c that looks like a real commitment and yet can be
“opened” to any value, to be determined at the time of opening. This is so since S has to provide adversary
A and environment Z with the simulated commitment c before the value committed to is known. All this
needs to be done without rewinding the environment Z.

Intuitively, these requirements look impossible to meet: A simulator that has the above abilities can be
used by a dishonest receiver to “extract” the committed value from an honest committer. This intuition
can indeed be formalized to show that in the plain model it is impossible to UC-realize Fcom by a two-party
protocol. Essentially, the proof proceeds as follows. Let π be a protocol that UC-realizes Fcom. Consider an
execution of π by an adversarially controlled committer C and an honest receiver R, and assume that the
adversary merely sends messages that are generated by the environment, and delivers to the environment
any message received from R. The environment, ZC , secretly picks a random bit b at the beginning and
generates the messages for C by running the protocol of the honest committer for b and R’s answers. Once
ZC received a “receipt” output from R, it starts running the honest opening protocol in the name of C.
Finally, ZC outputs 1 iff the b′ that R outputs equals the secret bit b. We know that the in an execution of
π with honest receiver and committer, in the opening stage the receiver always outputs the bit committed
to by the committer. However, since π UC-realizes Fcom, there should exist an ideal-model adversary S that
interacts with Fcom and generates a view for ZC that is indistinguishable from a real execution with π. In
particular, it must also be the case that b = b′ almost always even in the ideal process. For this to hold, it
must be that S must have given to Fcom the correct bit b at the commitment stage. Now, given S, we can
construct another environment, ZR, and a corrupted receiver AR, such that ZR successfully distinguishes
between an execution of π and an interaction with Fcom and any adversary SR. ZR and AR proceed as
follows: ZR chooses a random bit b and hands b as input to the honest committer C. It then waits to receive
a bit b′ from AR (which controls the receiver). ZR outputs 1 iff b = b′. AR proceeds as follows: Recall that S
can “extract” the committed bit b via simple interaction with the committers messages, without rewinding
or any additional information. Therefore, AR can simply run S and guess b almost always. In contrast,
when ZR interacts with Fcom, the adversary’s view is independent of b, and thus b = b′ with probability
exactly one half.

In a nutshell, what allows the proof to go through is the fact that S can extract the committed bit by
simple interaction with an honest committer. This allows the adversary AR to run S and extract the hidden
bit as well.

6

4 The Common Reference String model

The common reference string model, first proposed in [bfm88] and used extensively since, assumes that
the parties have access to a common string that is guaranteed to come from a pre-specified distribution.
Furthermore, it is guaranteed that the string was chosen in an “opaque” way, namely that no information
related to the process of choosing this string is available to any party. A very natural distribution for the
common string, advocated in [bfm88], is the uniform distribution over the strings of some length. Still, it is
often useful to consider reference strings that are taken from other distributions.

In the Zero-Knowledge context of [bfm88], the fact that the reference string comes from an external
source that is unrelated to the actual computation is captured by allowing the simulator to choose the
reference string as it wishes — as long as the adversary cannot distinguish this “simulated string” from a
“real string” taken from the prescribed distribution. Indeed, it is this extra freedom given to the simulator
which makes this model powerful.

Within the present framework, the CRS model can be captured in a natural way by modeling the reference
string as coming from an appropriate ideal functionality. More specifically, we formulate functionality Fcrs,
presented in Figure 2 below. The functionality is parameterized by a distribution D and a set P of recipients
of the reference string. Upon invocation, it first draws a value r from distribution D. Next, on input from
a party P ∈ P, FD

crs returns r to P .
Letting the adversary know r models the fact that r is public, and cannot be assumed secret. Prohibiting

parties not in P (and, in particular, the environment) from obtaining r directly from Fcrs models the fact
that r is treated as local to a specific protocol instance, and is intended to be used only within this protocol
instance. (We further elaborate on this point in Section 7.) Other protocol instances should use independent
“draws” from distribution D. This restriction on the use of the reference string limits the applicability of
the CRS model: To realize Fcrs in reality, the participants of each protocol execution need to somehow “get
together” and obtain a reference string that they all trust to be taken from the specified distribution. The
next sections discuss trust assumptions that are aimed at mitigating this limitations in a number of different
ways.

Functionality FD,P
crs

1. When receiving input (CRS,sid) from party P , first verify that P ∈ P; else ignore the input. Next, if there

is no value r recorded then choose and record a value r
R← D. Finally, send a delayed output (CRS,sid, r)

to P .

Figure 2: The Common Reference String functionality

From Fcrs to Fcom. Several protocols that UC-realize Fcom given access to Fcrs are known. Here we briefly
sketch the protocol of [cf01]. What “saves” the simulator in the CRS model from the above impossibility
result is the following observation, which parallels the original CRS model of [bfm88]: When interacting with
a commitment protocol that used Fcrs, the environment learns about the value of the reference string only
from the adversary. This means that, in the ideal process for Fcom, the simulator can choose the reference
string on its own. Consequently, the simulator can know some “trapdoor information” associated with the
reference string, and even change its distribution slightly.

The [cf01] commitment protocol uses this observation as follows. The reference string consists of a
public key e of an encryption scheme and a claw-free pair of permutations f0, f1 with trapdoor. (That is,
given only the description f0, f1 it is infeasible to find x0, x1 such that f0(x0) = f1(x1), but given a trapdoor
t one can efficiently invert, say, f0.) Now, to commit to bit b, the committer chooses a random value r and
sends the commitment message (fb(r), Ee(r0, id), Ee(r1, id)) where rb = r, r1−b = 0, and id is an identifier
for the session. (Typically, id would include the identities of the committer and receiver, plus additional
commitment-specific information.) To open to bit b, the committer sends r and the randomness used for
encrypting r; this is the first or second encryption, depending on b.1 Now, in a standard execution of the

1The actual protocol is slightly different, to account for adaptive corruptions.

7

protocol the commitment is committing (due to the claw-freeness of f0, f1), and hiding (due to the security of
the encryption scheme). However, in a simulated execution the simulator can know both t and the decryption
key associated with e. It can thus easily generate commitment strings that can be opened both ways, and
at the same time it can easily extract the hidden value committed in an honestly generated commitment.
When the encryption scheme is secure against chosen ciphertext attacks, it can be shown that the simulator
can successfully extract the hidden value even when the commitment string is chosen adversarially. This
ideas are at the basis of the proof of security of the protocol.

We note that the above protocol can generate multiple commitments using a single reference string. In
other words, it actually realizes a “multi-session version” of Fcom, where a single instance allows multiple
parties can commit and open multiple commitments. (This multi-session version is called Fmcom in the
literature.) This somewhat alleviates the need to agree on a different reference string for each protocol
instance, since a single instance of the above protocol suffices for generating commitments for an entire
system. However, the solution is far from satisfying: First, strictly speaking, all protocol instances that use
the same commitment protocol now have some joint state and can no longer be analyzed separately and be
composed later. Second, no security guarantee is given with respect to other protocols that use the same
reference string in other ways than via that global instance of the commitment protocol. The first issue is
handled by the Universal Composition with Joint State (JUC) theorem of [cr03]. The second issue is more
subtle and is addressed in Section 7.

5 Dealing With a “Defective” Reference String

The CRS model guarantees that the reference string is drawn from a pre-specified distribution. This is a
very convenient abstraction for the purpose of designing protocols. Indeed, all existing protocols use this
guarantee in a crucial sense: Security analyses quickly fall apart whenever the distribution of the reference
string is changed even slightly.

This situation is quite limiting. In particular, it seems to rule out “physical implementations” where
the reference string is taken to be the result of joint measurement of some physical phenomenon such as
astronomic measurements, fluctuations of the stock market, or even network delays across the Internet.
Indeed, while it is reasonable to believe that such phenomena are largely unpredictable and uncontrollable,
namely they have “high entropy”, it is a stretch of the imagination to believe that they are taken from a
distribution that is known to and useful for the protocol designer.

Can composable security be obtained if we only have an imperfect reference string, or alternatively a
reference string that are adversarially controlled to some extent? More specifically, are there protocols that
UC-realize, say, Fcom in such a setting?

A first indication that this might not be an easy task is the result of Dodis et. al. [dops04] that
demonstrates the impossibility of NIZK in a relaxed variant of the CRS model in which the distribution of
the reference string can be arbitrary subject to having some minimal min-entropy. However, this result does
not rule rule out composable protocols; more importantly, it does not consider the case where the reference
string is guaranteed to be taken from an efficiently samplable distribution. Indeed, for such distributions
deterministic extractors are known to exist (under computational assumptions) [tv00]. Thus, one might
expect it to be possible to “compile” any protocol in the CRS model (or at least protocols that can do with
a uniformly distributed reference string) into a protocol that uses a reference string that is taken from any
efficiently samplable distribution that has sufficient min-entropy: First have the parties use a deterministic
extractor to transform the reference string into a string that is almost uniformly distributed. Next, run the
original protocol. Since the extracted string is almost uniform, one might expect the original analysis to
work in the same way.

However, deterministic extractability turns out to be insufficient for this purpose. In fact, it turns out
that if one relaxes Fcrs so as to allow the distribution to be adversarially determined, then UC-realizing Fcom

becomes impossible [cps07]. Impossibility holds even if the chosen distribution is guaranteed to have full
min-entropy minus a polynomially vanishing fraction, even if the distribution is guaranteed to be sampled
via an algorithmic process, namely via a sampling process that has a relatively succinct description, and
even when this process is guaranteed to be computationally efficient.

8

As a recourse, one may restrict attention to the case where the algorithm for sampling the reference
string is known to the adversaries involved. (Still, it is of course unknown to the protocol.) Here it turns
out to be possible to UC-realize Fcom, as long as the reference string is taken from a distribution that is
guaranteed to have a polynomial time sampling algorithm, a short description, and super-logarithmic min-
entropy. Furthermore, all three conditions are simultaneously necessary, in the sense that impossibility holds
as soon as any one of the conditions is relaxed [cps07].

It may appear over-optimistic to assume that the physical (or man-made) phenomena used to generate
the reference string are governed by distributions where the sampling algorithm is computable in polynomial
time. Indeed, why should Nature be governed by succinct and efficient algorithms? However, beyond the
technical fact that these restrictions are necessary, one can view our analysis as a proof that any successful
attack against the proposed protocols demonstrates that either the underlying hardness assumptions are
violated, or else that the process for choosing the reference string is not efficiently computable, or has long
description. This might be an interesting revelation in itself. Alternatively, the positive result may be
interpreted as addressing situations where the process of choosing the reference string is influenced by an
actual attacker. Here the guarantee that the distribution has some min-entropy represents the fact that the
attacker’s influence on the sampling process is limited.
A more detailed description. We describe the results of [cps07] in some more detail. Three relax-
ations of FP,D

crs are formulated. The first relaxation, called Fbbsun, proceeds as follows. (Here sun stands
for “sunspots”, which is the term used in the first works that propose the CRS model when referring to
astronomic observations [bfm88, f88] and bb stands for “black-box”). Instead of treating the distribution D
as a fixed, public parameter, let the environment determine the distribution by providing a description of a
sampling algorithm for D. Then, Fbbsun chooses a sufficiently long random string ρ and computes the refer-
ence string r = D(ρ). In addition, Fbbsun lets the adversary (and simulator) obtain additional independent
samples from the distribution “on the side”. These samples are not seen by the environment or the parties
running the protocol.

Three parameters of Fbbsun turn out to be salient. First is the min-entropy, or “amount of random-
ness” of the reference string (measured over the random choices of both the environment and the sunspot
functionality). Next is the runtime, or computational complexity of the sampling algorithm D. Last is the
description-size of D (namely, the number of bits in its representation as a string); this quantity essentially
measures the amount of randomness in the reference string that comes from the random choices of the envi-
ronment. All quantities are measured as a function of the length n of the reference string; that is, we treat
n as the security parameter. We have:
Theorem: There exist no two-party protocols that UC-realize Fcom when given access to of Fbbsun. This
holds even if the distribution of the reference string is guaranteed to have min-entropy greater than n− nε,
and even if both the description size and the computational complexity of the provided sampling algorithm
are guaranteed to be at most nε, for any ε > 0. �

Next a more restricted setting is considered, where the adversary has access to the “code”, or description
of the sampling algorithm D. This is modeled by having the functionality that generates the reference
string explicitly send the description of D to the adversary. (Note that this relaxation is meaningful only for
sampling algorithms that can be described in poly(n) bits, else the adversary cannot read the description.)
Call this functionality Fgbsun (the gb stands for “gray box”). The third variant, called Fsun, gives to the
adversary also the local random choices used to generate the reference string. It turns out that this variant
provides an incomparable setup guarantee to that of Fgbsun. (This is so since the setup functionality is
invoked directly by the environment. Consequently, the functionality exists both in the real-life and in the
ideal models.)
Theorem: There exist no two-party protocols that UC-realize Fcom when given access to either Fgbsun or
Fsun. This holds even if either one of the following holds

1. The computational complexity of the sampling algorithm can be super-polynomial in n, as long as
the distribution of the reference string is guaranteed to have min-entropy n − poly log n, and the
description size of the provided sampling algorithm is guaranteed to be at most poly log n (assuming
one-way functions with sub-exponential hardness).

9

2. The description size of the sampling algorithm is at least µ(n) − log n, as long as the distribution of
the reference string is guaranteed to have min-entropy µ(n) = n and the computational complexity is
guaranteed to be at most O(n).

3. The distribution of the reference string has min-entropy at most log n, as long as the description length
is O(1) and the computational complexity is O(n). �

On the other hand, we have:
Theorem: Assume there exist collision-resistant hash functions, dense crypto-systems and one-way func-
tions with sub-exponential hardness. Then there exists a two-party protocol that UC-realizes Fmcom, when
given access to O(1) instances of either Fgbsun or Fsun, as long as it is guaranteed that the min-entropy
of the reference string is at least µ(n) = poly log n the computational complexity of the provided sampling
algorithm is at most poly(n) and its description size is at most µ(n)− poly log n. �

Furthermore, the protocol from Theorem 3 withstands even adaptive party corruptions, with no data erasure,
whereas Theorems 1 and 2 apply even to protocols that only withstand static corruptions.

In other words, under computational assumptions, Theorem 2 and 3 provide an essentially tight char-
acterization of the feasibility of UC protocols, in terms of the min-entropy, computational complexity and
description length of the reference string. Informally,

UC-security of non-trivial tasks is possible if and only if the reference string has min-entropy at
least µ(n) = poly log n, and is generated by a computationally-efficient sampling algorithm with
description length at most µ(n)− poly log n.

Techniques for the impossibility results. The impossibility results combine the [cf01] proof of im-
possibility of UC-realizing Fcom in the plain model with techniques from [gk89]. Recall that the model
does not let the environment see the reference string directly, which in principle allows the simulator to
present the environment with any string of its choosing and claim that this is the reference string chosen
in the execution. To mitigate this freedom, the environment chooses a special distribution D that makes
sure that the string presented by the simulator as the actual reference string can only be one of the strings
that the simulator received as “extra samples” from the functionality. Since the simulator can only ask for
a polynomial number of such samples, it can be seen that a dishonest verifier can still use the simulator to
extract the committed bit from an honest committer, much as in the proof of [cf01], and with only polyno-
mial degradation in success probability. All impossibility results use this idea, with different techniques or
choosing the distribution D so as to obtain the desired effect.
Protocol techniques. To explain the main idea behind the protocol, it is useful to first sketch a simpler
protocol that is only secure with respect to static corruptions. Also, the protocol aims to realize the zero-
knowledge functionality, Fzk, rather than Fmcom. The idea is to use a variation on Barak’s protocol [b01]:
Let L be an NP language and assume that a prover P wishes to prove to a verifier V that x ∈ L, having
access to a reference string r that is taken from an unknown distribution with min-entropy at least µ = nε

. Then, P and V will engage in a witness-indistinguishable proof that “either x ∈ L or the reference string
r has a description of size µ/2”. (As in Barak’s protocol, the description size is measured in terms of the
Kolmogorov complexity, namely existence of a Turing machine M with description size µ/2 that outputs r
on empty input. Also, in order to guarantee that the protocol is simulatable in polynomial-time M should be
polynomial time.) Soundness holds because in a real execution of the protocol, r is taken from a distribution
with min-entropy at least µ, so the second part of the “or” statement is false with high probability. To
demonstrate zero-knowledge, the simulator generates a simulated reference string r̃ by running the sampling
algorithm D for the distribution on a pseudorandom random-input. That is, the simulator chooses a random
string ρ̃ of length, say, µ/2− |D| (where |D| denotes the description size of D) and computes r̃ = D(G(ρ̃)),
where G is some length-tripling pseudo-random generator. Now, r̃ indeed has description of size µ/2 (namely,
ρ̃ plus |D| plus the constant-size description of G); furthermore, the simulator knows this description. Also,
since both D and the environment are polynomial time, the simulated string r̃ is indistinguishable from the
real string r.

The above protocol allows for straight-line simulation. It is not yet straight-line extractable, but it can be
modified to be so using the techniques of [bl04]. Still, it is only secure against static corruptions of parties.

10

In order to come up with a protocol that withstands adaptive corruptions a somewhat different technique is
used, which combines the above idea with techniques from [cdpw07]. First, they move to realizing Fmcom.
They then proceed in several steps: The first step is to construct a commitment scheme that is equivocal and
adaptively secure. This is done using Feige and Shamir’s technique [fs89] for constructing equivocal com-
mitments from Zero-Knowledge protocols such as the one described above. Next, the constructed equivocal
commitment scheme is used in a special type of a coin-tossing protocol, and use the obtained coin tosses as
a reference string for a standard UC commitment protocol such as [cf01].

The protocol allows two parties to perform multiple commitment and decommitment operations between
them, using only two reference strings —one for the commitments by each party. This means that in a multi-
party setting it is possible to realize any ideal functionality using one reference string for each (ordered) pair
of parties, regardless of the number of commitments and decommitment performed. Furthermore, each
reference string needs to be trusted only by the two parties who use it.

6 The Key Registration Model

The CRS model has the advantage that it only requires the parties to obtain a single short string. In
particular, it does not require parties to identify themselves or to go through a registration process before
participating in a protocol. Thus, in settings where it is reasonable to assume that such a reference string is
physically available, this model is very attractive. However, when the reference string is being generated by
a computational entity that may be corrupted or subverted, the CRS modeling is somewhat unsatisfactory,
in that it puts complete trust in a single entity. In fact, this entity, if subverted, can completely undermine
the security of the protocol by choosing the reference string from a different distribution, or alternatively
by leaking to some parties some secret information related to the string. Furthermore, it may be able do so
without being detected.

The key registration functionality, Fks, formulated in [bcnp04] and presented in Figure 3, is written in
a way that can be realized by real-world mechanisms that do not require all participants to put full trust in
a single entity. We first describe the functionality and its use, and then discuss how it can be realized.
Fks is parameterized by a set P of parties and a deterministic function f : {0, 1}∗ → {0, 1}∗, that repre-

sents a method for computing a public key given a secret (and supposedly random) key. The functionality
allows parties to register their identities together with an associated “public key”. However, Fks provides
only relatively weak guarantees regarding this public key, giving the adversary considerable freedom in deter-
mining this key. (This freedom is what makes Fks so relaxed.) Specifically, the “public key” to be associated
with a party upon registration is determined as follows. The functionality keeps a set R of “good public
keys”. Upon receiving a registration request from party P ∈ P, the functionality first notifies the adversary
that a request was made and gives the adversary the option to set the registered key to some key p that is
already in R. If the adversary declines to set the registered key, then the functionality determines the key
on its own, by choosing a random secret r from a given domain (say, {0, 1}k for a security parameter k) and
letting p = f(r). Once the registered key p is chosen, the functionality records (P, p) and returns p to P and
to the adversary. Finally, if p was chosen by the functionality itself then p is added to R. If the registering
party is corrupted, then the adversary can also specify, if it chooses, an arbitrary “secret key” r. In this
case, P is registered with the value f(r) (but r is not added to R).

A retrieval request, made by a party in P, for the public key of party P is answered with either an error
message ⊥ or one of the registered public keys of P , where the adversary chooses which registered public
key, if any, is returned. (That is, the adversary can prevent a party from retrieving any of the registered
keys of another party.)

Notice that the uncorrupted parties do not obtain any secret keys associated with their public keys,
whereas the corrupted parties may know the secret keys of their public keys. This means that protocols
designed in this model cannot use the secret keys. Still, security is guaranteed even if corrupted parties
obtain their secret key. Furthermore, Fks gives the adversary a fair amount of freedom in choosing the
registered keys. It can set the keys associated with corrupted parties to be any arbitrary value (as long as
the functionality received the corresponding private key). The adversary can also cause the keys of both
corrupted and uncorrupted parties to be identical to the keys of other (either corrupted or uncorrupted)

11

Functionality FP,f
ks

Ff
ks proceeds as follows, given set P of identities, function f and security parameter k. At the first activation a

set R of strings is initialized to be empty.

Registration: When receiving input (Register, sid) from a party P , verify that that P ∈ P; else ignore the
input. Next, send (Register, sid, P) to the adversary, and receive a value p′ from the adversary. Then,

if p′ ∈ R then let p ← p′. Else, choose r
R← {0, 1}k, let p ← f(r), and add p to R. Finally, record (P, p)

and return (sid, p) to P and to the adversary.

Registration by a corrupted party: When receiving input (Register, sid, r) from a corrupted party P ∈
P, record (P, f(r)). In this case, f(r) is not added to R.

Retrieval: When receiving a message (Retrieve, sid, P) from party P ′ ∈ P, send (Retrieve, sid, P, P ′) to
the adversary and obtain a value p in return. If (P, p) is recorded then return (sid, P, p) to P ′. Else,
return (sid, P,⊥) to P ′.

Figure 3: The Key Registration functionality

parties. Still, Fks guarantees two basic properties: (a) the public keys of good parties are “safe” (in the
sense that their secret keys were chosen at random and kept secret from the adversary), and (b) the public
keys of the corrupted parties are “well-formed”, in the sense that the functionality received the corresponding
private keys.

In [bcnp04] it is shown how to UC-realize Fmcom given access to Fks. A non-interactive protocol for
realizing Fzk given access to ks is also shown. The protocol for realizing Fmcom is essentially identical to
the [cf01] protocol described in section 4; the only difference is that the claw-free pair f0, f1 is now the
public key of the receiver, whereas the encryption key e is now the public key of the committer. Intuitively,
this works since the committer is only concerned that the secret decryption key associated with e remains
unknown, whereas the receiver is only concerned that the trapdoor t of f0, f1 remains unknown. We note,
however, that this protocol remains secure only for non-adaptive party corruption.
Realizing Fks. Fks can be realized in a number of different ways. First, we observe that FP,f

ks can
be realized in the FP,D

crs -hybrid model, where D = Dk is the distribution of f(r) for r that is uniform in
{0, 1}k. The protocol is straightforward: On input either (Register, sid) or (Retrieve, sid, P), party P
sends (CRS, sid) to Fcrs and returns the obtained value.
Realizing Fks given a distributed registration service. Consider a setting where the parties have
access to registration servers where parties can register and obtain public keys that were chosen at random
according to a given distribution (i.e., the public key is f(r) for an r

R← {0, 1}k). Alternatively, parties can
choose their keys themselves and provide them to the server. Note that here each party needs to put full
trust (to keep its key secret) only in the server it registers with. The trust put in other servers is much lower
- it only needs to be trusted that the public keys obtained from these servers are “well formed”.
Realizing Fks using traditional proofs of knowledge. Finally, it is possible to realize Ff

ks via traditional
(non-UC) proofs of knowledge of the private key, under the assumption that the proofs of knowledge occur
when there is no related network activity. (Intuitively, in this case it is ok to “rewind” the environment, as
necessary to prove security of the traditional proof of knowledge. A more formal treatment might assume
access to the non-concurrent functionality in [c01].)

7 Globally Available Trusted Information

All the trust models considered so far model the trusted information as information that’s available only to
the participants of a single protocol instance. This means that, in order to implement such a model, one
has to generate a fresh reference string (or fresh public keys) for each instance of a protocol that uses it.
Furthermore, this has to be done in a way that makes the reference string available only to the protocol
participants. While such implementations are possible (say, via joint measurements of physical phenomena

12

at the onset of an execution), this is a severe limitation. In particular, this modeling stands in contrast
with the prevalent intuitive perception of the reference string (or public key infrastructure) as a “global”
construct that is chosen in advance and made available to all throughout the lifetime of the system.

To exemplify this point, consider the “non-transferability” (or, “deniability”) concern, namely allowing
party A to interact with party B in a way that prevents B from later “convincing” a third party, C, that
the interaction took place. Indeed, if A and B interact via an idealized “trusted party” that communicates
only with A and B then deniability is guaranteed in a perfect, idealized way. Thus, intuitively, if A and B
interact via a protocol that emulates the trusted party, then deniability should hold just the same. When
the protocol in question uses no trusted information, or alternatively trusted information that’s local to each
protocol instance, this intuition works, in the sense that UC-realizing such a trusted party automatically
implies non-transferability. However, when the trusted information is available globally, this is no longer the
case: There are protocols that emulate such a trusted party but do not guarantee non-transferability.

For instance, consider the case of Zero-Knowledge protocols, namely protocol that emulate the trusted
party for the “Zero-Knowledge functionality”: Zero-Knowledge protocols in the plain model are inherently
deniable, but all existing Zero-Knowledge protocols in the CRS model are completely undeniable whenever
the reference string is public knowledge (see [p03]).

Non-transferability is not the only concern that remains un-captured in the present formulation of se-
curity in the CRS model. For instance, the protocol in [cf01] for realizing the single-instance commitment
functionality becomes malleable as soon as two instances use the same reference string; indeed, to avoid this
weakness a more involved protocol was developed, where multiple commitments can explicitly use the same
reference string in a specific way. Other demonstrations of this point are given in [yyz07a].
The global CRS model. Taking a second look at the way we modeled trusted information so far, the
main reason for the inability to capture globally available trusted information is the fact that so far the
trusted information is modeled as coming from a subroutine of the given protocol execution and is made
available only to the participants of that execution. In particular, the trusted information does not formally
exist in the ideal process. A natural way to capture globally available trusted information is thus to model
this information as coming from an entity that interacts not only with the participants in a specific execution
of the analyzed protocol, but also with other parties (or, in other words, with the external environment).
This in particular means that the trusted information is available not only as part of the protocol execution,
but also in the ideal process, where the protocol is replaced by the trusted party.

More precisely, modify the CRS functionality, Fcrs, as follows: Instead of giving the reference string only
to the adversary and the parties running the actual protocol instance, the new “global CRS” functionality,
Fgcrs, will give the reference string to all parties and in particular to the environment. (Technically, in order
to model Fgcrs one has to use the generalized UC security notion, as sketched in Section 2.2. Indeed, it is
for this reason that the generalized model was first formulated.)

Technically, the effect of this modeling is that now the simulator (namely, the adversary in the ideal
process) cannot choose the reference string or know related trapdoor information. In a way, proofs of
security in the new modeling, even with trusted set-up, are reminiscent of the proofs of security without
trusted set-up, in the sense that the only freedom enjoyed by the simulator is to control the local random
choices of the uncorrupted parties. Indeed, as shown in [cdpw07], the impossibility result of [cf01] extends
to show that no two-party protocol can UC-realize Fcom even when having access to a variant of Fcrs that
gives the reference string to the environment. The proof further extends to rule out any trusted set-up
functionality that makes all of its inputs and outputs available to the environment.
New trust assumptions and constructions. Still, it turns out to be possible to come up with models of
globally available trusted information that lend to reasonable implementation in practice, and at the same
time are sufficient for UC-realizing Fcom. We briefly sketch three such models.

The first such model lets parties have access to the “globally available version” of the key registration
functionality, Fks, from Section 6. That is, the only difference from Fks is that in the global variant, Fgks,
the registration is done once per party throughout the lifetime of the system, and the public key can be
used in all instances of all the protocols that the party might run. In particular, public keys are directly
accessible by the environment, even in the ideal process. It turns out that one of the [bcnp04] protocols
for UC-realizing Fcom given Fks continues to work even when Fks is replaced by Fgks, as long as party

13

corruptions are non-adaptive and party-wise (namely, for each PID, either all the parties with that PID are
corrupted, or none are.) However, when party corruptions can be adaptive, and the adversary can observe
the past internal data of corrupted parties, this protocol becomes insecure. To address this concern, a more
sophisticated protocol is constructed in [cdpw07].

A second model assumes that the parties have access to a global functionality, called Facrs for “augmented
CRS (ACRS)”, that is reminiscent of the CRS model, but is somewhat augmented so as to circumvent the
impossibility result for plain CRS. That is, as in the case of Fgcrs, all parties and the environment have
access to a short reference string that is taken from a pre-determined distribution. In addition, the ACRS
model allows corrupted parties to obtain “personalized” secret keys that are derived from the reference string,
their public identities, and some “global secret” that’s related to the public string and remains unknown.
It is stressed that in the formal model only corrupted parties may obtain their secret keys. This effect of
this modeling is that protocol may not include instructions that require knowledge of the secret keys, and
yet corrupted parties are assumed to have access to their secret keys. A protocol for UC-realizing Fcom

given Facrs is constructed in [cdpw07]. (in fact, this protocol UC-realizes even the multi-commitment
functionality, Fmcom) The main additional technique on top of the protocol using Fgks is a new identity-
based trapdoor commitment (IBTC) protocol. (IBTC protocols in the Random Oracle model appear in
[zss 03, am04].)

“Real world implementations” of Fgks and Facrs can involve trusted entities (say, “post offices”) that
only publicize the public values. These entities will also agree to provide the secret keys to the corresponding
parties upon request, with the understanding that once a party gets hold of its key then it alone is responsible
to safeguard it and use it appropriately (much as in the case of standard PKI). In light of the insufficiency
of a only public and globally available trusted information, this seems to be a minimal requirement from the
trusted module.

8 The Hardware Token Model

All the trust models considered so far model situations where the parties have access to information that is
provided by trusted external entities, or by observing external physical phenomena. This section describes
a model, introduced by Katz in [k07], that represents a different type of trust: The model assumes that
there exist computing devices that can be programmed by one party and then handed over to another party
to be executed in a “tamper-proof” way, and without a direct communication link with external entities.
No other trust assumptions are made; in particular, the protocol participants need not obtain any trusted
information from external entities.

Formally, the model is captured via an ideal functionality, Fwrap, that allows one party to specify code
that is then executed by another party. Fwrap is presented in Figure 4.

Functionality Fwrap

1. Upon receiving an input (Create-Token, SID, M, B) from party A, initialize a local instance of ITM M ,
and generate a delayed output (Token,A) to B. Ignore any subsequent (Create-Token, SID, ...) inputs.

2. Upon receiving an input (Run,SID, x) from party B, run M on input x from its current local state, record
the updated local state, and return (Output,SID, y) to party B, where y is the current local output of
M .

Figure 4: The Hardware Token functionality, Fwrap

Note that Fwrap does not provide the executing party, B, with any information about the code M that it
is running, nor can B influence that code. Furthermore, M can maintain local state between calls and make
private random choices. These features represent the “tamper-proofness”, or “virtual black box” guarantees
that are given to party A. On the other hand, Fwrap does not provide any information to party A. This
guarantees to party B that M communicates only with B and has no “side channels” for communicating
with A or other parties.

14

It is stressed again that Fwrap can be realized in reality without requiring the parties to trust any third
parties. Still, Katz shows that it suffices for realizing Fcom:
Theorem: [k07] Under the Decisional Diffie-Hellman assumption, there exists a protocol that realizes Fcom

having access to Fwrap. �
Some interesting remaining questions include obtaining the result of the theorem based under more

general assumptions, and extending the modeling and construction to capture a “globally available token”
that can be used for multiple protocols.
The “signature card” model. Another trust model, formulated in Hofheinz et. al [hmu06], represents
a situation where each party is equipped with a “tamper proof signature card” that runs some secure
signature algorithm in a trusted way. In addition, the public key associated with each card is globally
known. In[hmu06] it is shown how to realize Fcom in this model. We note however that these results are
subsumed by the modeling and results in [k07]. The main difference being that in the [hmu06] model all
parties need to trust that the hardware token is running some pre-specified program. In contrast, in the
[k07] model parties need not trust the program of the hardware they ar running.

9 A Timing Assumption

Yet another approach for putting trust in some parts of the system in order to guarantee composable security
is to make assumptions on the relative delays of messages in the network. More precisely, it is assumed that
all messages sent are eventually delivered unmodified within some time bound, and in addition there is
a bound on the amount of relative “drift” between local clocks of parties in the system. In [lpt04] it is
shown how to UC-realize Fcrs and Fcom in such a setting. Also here, the parties need not trust any piece of
information that comes from external parties or sources.

The fact that a timing assumption suffices for UC-realizing, say, Fcrs, is not surprising in of itself: Assume
for instance that the network is completely synchronous, and furthermore no party (not even corrupted
ones) receives messages sent in round i before the last chance to send out its messages for round i. Then a
simple, unconditionally secure two-party protocol for UC-realizing Fcrs would be to simply have each of the
two parties send a random string of the appropriate length at a certain round, and then let the reference
string be the bitwise xor of the two strings. In [lpt04] it is shown, via a sophisticated protocol and under
standard hardness assumptions, how to obtain a similar effect while making (much) weaker synchronization
assumptions on the system.

It is interesting to note that the timing assumptions have to hold only during the execution of the
protocol for UC-realizing Fcrs. Once the reference string is fixed, no timing assumptions are needed. Also,
since there is no trusted piece of information to be passed around, this approach bypasses the issue of
whether this information is available globally or only locally. In particular it has no “transferability” issues
and provides complete “deniability”.

10 Realizing authenticated communication

The treatment of Sections 3 through 9 concentrates on the case of ideally authenticated networks, where
messages are not modified en route and arrive with an authentic sender identity. More precisely, the parties
are assumed to have access to multiple copies of an ideal functionality, Fauth, that, roughly, takes input
(sid,B,m) from party A, and provides output (sid,A, m) to B, where sid is a session identifier.

As observed in [c04], it is impossible to UC-realize Fauth in the “bare” model with no trust assumptions.
Still, Fauth can be UC-realized, via standard authentication mechanisms, when given access to an ideal func-
tionality that allows parties to register public values associated with their identities [c04]. It is stressed that
this functionality, Freg, does not verify knowledge of any secret information associated with the registered
value; it merely provides a registration (or, “bulletin-board”) service.

Akin to the formulation of the traditional CRS model, the formulation of Freg in [c04] makes the
registered keys available only to the parties that run the specific protocol instance. Implementing Freg is
thus susceptible to the same limitations that apply to implementing Fcrs (see Section 7): Essentially, a

15

new instance of the registration service is needed for each new protocol instance. In particular, similarly
to the case of Fcrs, when the [c04] protocol for UC-realizing Fauth uses a “global” registration service
that’s available to arbitrary protocols, authentication becomes “transferable”. (In fact, a publicly verifiable
signature by the sender on the transmitted information becomes available.) This stands in contrast to the
fact that ideal authentication using Fauth does not allow for such “transferability”.

Modeling authenticated communication in the presence of registration services that make the registered
keys available globally in the system is an interesting challenge. One direction is to model the security
guarantees provided by standard authentication mechanisms (such as the simple signature-based mechanism
studied in [c04]) in the presence of globally available public keys. These guarantees are naturally described
by means of an ideal authentication functionality that allows for transferability even in ideal process. Another
direction is to study protocols that UC-realize the original, non-transferable version of Fauth even when the
public keys are made globally available. This is an interesting venue for current and future research.

11 Conclusion and open problems

We have exemplified the need for modeling situations with “trusted set-up”, namely where some parts of the
system are trusted in certain respects. We have also studied a variety of such models. These models differ
both from the point of view of the guarantees provided to protocols designed in these models, and from the
point of view of the requirements from actual implementations.

While some progress has been made in the past few years towards understanding how to formulate models
that allow bypassing the strong impossibility results regarding composable security, how to develop protocols
in these models, and how to implement such models in reality, much remains to be understood. Some specific
questions include:

1. Finding protocols that use current trust models more efficiently. Finding easier and more secure ways
to implement existing trust models in practice. Finding new trust models that allow for more efficient
protocols and/or easier implementations.

2. Finding a characterization of the trust models that allow for UC-realizing, say, Fcom (or any other ideal
functionality that allows for UC-realizing general ideal functionalities). We’ve seen that trust models
can have very different flavors and characteristics. Are there some salient properties that are common
to all and are necessary and/or sufficient for UC-realizing Fcom?

3. Are there trust models where the provided information is globally available, that still allow for UC-
realizing Fcom, and also allow for adversarial control over the provided information, akin to Fsun? Are
there trust models that allow for adversarial control over the trusted information, and at the same
time allow for UC-realizing authenticated communication?

4. Are there general relationships between trust models that allow for UC-realizing authenticated com-
munication and trust models that allow for UC-realizing Fcom?

5. More generally, how can we better model the information shared between protocol instances in arbitrary
systems? Is globally available information the only information that can be shared, or are there other
ways to share state and information? How to capture these? An indication that in some situations
protocols indeliberately (but inevitably) share more information than just the public information is
given in [yyz07b].

References

[am04] G. Ateniese and B. de Medeiros. Identity-based Chameleon Hash and Applications. Proc. of Financial
Cryptography, 2004. Available at http://eprint.iacr.org/2003/167/.

[b01] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pp. 106–115, 2001.

16

[bcnp04] B. Barak, R. Canetti, J. B. Nielsen, R. Pass. Universally Composable Protocols with Relaxed
Set-Up Assumptions. 45th FOCS, pp. 186–195. 2004.

[bl04] B. Barak and Y. Lindell. Strict polynomial-time in simulation and extraction. SIAM J. Comput,
33(4):738–818, 2004.

[bs05] B. Barak and A. Sahai, How To Play Almost Any Mental Game Over the Net - Concurrent Compo-
sition via Super-Polynomial Simulation. 46th FOCS, 2005.

[b91] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a Faulty
Minority. J. Cryptology, (1991) 4: 75-122.

[bcg93] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computation. 25th Symposium
on Theory of Computing (STOC), 1993, pp. 52-61. Longer version appears in TR #755, CS dept.,
Technion, 1992.

[bgw88] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. 20th Symposium on Theory of Computing (STOC), ACM,
1988, pp. 1-10.

[bkr94] M. Ben-Or, B. Kelmer and T. Rabin. Asynchronous Secure Computations with Optimal Resilience.
13th PODC, 1994, pp. 183-192.

[bfm88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In STOC
88, pages 103–112, 1988.

[c00] R. Canetti. Security and composition of multi-party cryptographic protocols. J. Cryptology, Vol. 13,
No. 1, winter 2000.

[c01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Extended abstract in 42nd FOCS, 2001. A revised version (2005) is available at IACR
Eprint Archive, eprint.iacr.org/2000/067/ and at the ECCC archive, http://eccc.uni-trier.de/eccc-
reports/2001/TR01-016/.

[c04] R. Canetti. Universally Composable Signature, Certification, and Authentication. 17th Computer
Security Foundations Workshop (CSFW), 2004. Long version at eprint.iacr.org/2003/239.

[Can06] Ran Canetti. Security and composition of cryptographic protocols: A tutorial. SIGACT News, Vol.
37, Nos. 3 & 4, 2006. Available also at the Cryptology ePrint Archive, Report 2006/465.

[cdpw07] R. Canetti, Y. Dodis, R. Pass and S. Walfish. Universally Composable Security with Pre-Existing
Setup. 4th theory of Cryptology Conference (TCC), 2007.

[cfgn96] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Computation. 28th Symposium
on Theory of Computing (STOC), ACM, 1996. Fuller version in MIT-LCS-TR 682, 1996.

[cf01] R. Canetti and M. Fischlin. Universally Composable Commitments. Crypto ’01, 2001.

[ckl03] R. Canetti, E. Kushilevitz, Y. Lindell. On the Limitations of Universally Composable Two-Party
Computation without Set-up Assumptions. EUROCRYPT 2003, pp. 68–86, 2003. Extended version
at the eprint archive, eprint.iacr.org/2004/116.

[clos02] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally composable two-party and multi-party
secure computation. 34th STOC, pp. 494–503, 2002.

[cps07] R. Canetti, R. Pass, a. shelat. Cryptography from sunspots: How to use an imperfect reference
string. 39th Symposium on Theory of Computing (STOC), ACM, 2007.

[cr03] R. Canetti and T. Rabin. Universal Composition with Joint State. Crypto’03, 2003.

17

[ddmrs06] A. Datta, A. Derek, J. C. Mitchell, A. Ramanathan and A. Scedrov. Games and the Impossibility
of Realizable Ideal Functionality. 3rd theory of Cryptology Conference (TCC), 2006.

[dops04] Y. Dodis, S. Ong, M. Prabhakaran, and A. Sahai. On the (im)possibility of cryptography with
imperfect randomness. In FOCS 04, pages 196–205, 2004.

[ddn00] D. Dolev. C. Dwork and M. Naor. Non-malleable cryptography. SIAM. J. Computing, Vol. 30, No.
2, 2000, pp. 391-437. Preliminary version in 23rd Symposium on Theory of Computing (STOC), 1991.

[dns98] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages 409–418,
1998.

[fs89] U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. In CRYPTO, pages
526–544, 1989.

[f88] F. Forges. Can sunspots replace a mediator? J. of Math. Ec., 17(4):347–368, 1988.

[grr98] R. Gennaro, M. Rabin and T Rabin. Simplified VSS and Fast-track Multiparty Computations with
Applications to Threshold Cryptography, 17th PODC, 1998, pp. 101-112.

[gk89] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM. J.
Computing, Vol. 25, No. 1, 1996.

[gmw87] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game. 19th Symposium on
Theory of Computing (STOC), 1987, pp. 218-229.

[gl90] S. Goldwasser, and L. Levin. Fair Computation of General Functions in Presence of Immoral Majority.
CRYPTO ’90, LNCS 537, 1990.

[hmu06] D. Hofheinz, J. Muller-Quade, and D. Unruh. Universally Composable Zero-Knowledge Arguments
and Commitments from Signature Cards. Tatra Mountains Mathematical Publications, 2005.

[k07] J. Katz. Universally Composable Multi-party Computation Using Tamper-Proof Hardware. In Euro-
crypt ’07, pages 115-128, 2007.

[klr06] E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Protocols and Security
Under Composition. 38th STOC, pages 109-118, 2006.

[ksw97] J. Kelsey, B. Schneier, D. Wagner. Protocol Interactions and the Chosen Protocol Attack. Security
Protocols Workshop 1997: 91-104

[l03] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Computation.
43rd FOCS, pp. 394–403. 2003.

[l04] Y. Lindell. Lower Bounds for Concurrent Self Composition. 1st Theory of Cryptology Conference
(TCC), pp. 203–222. 2004.

[lpt04] Y. Lindell, M. Prabhakaran, Y. Tauman. Concurrent General Composition of Secure Protocols in
the Timing Model. Manuscript, 2004.

[mmy06] T. Malkin, R. Moriarty and N. Yakovenko. Generalized Environmental Security from Number
Theoretic Assumptions. 3rd Theory of Cryptology Conference (TCC), 2006, pp. 343-359.

[mpr06] S. Micali, R. Pass, A. Rosen. Input-Indistinguishable Computation. In 47th FOCS, pages 367-378,
2006.

[mr91] S. Micali and P. Rogaway. Secure Computation. unpublished manuscript, 1992. Preliminary version
in CRYPTO ’91, LNCS 576, 1991.

[p03] R. Pass. On Deniabililty in the Common Reference String and Random Oracle Model. In Proc. of
Crypto, LNCS 2729, pp. 216–337, 2003.

18

[pw00] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems.
7th ACM Conf. on Computer and Communication Security (CCS), 2000, pp. 245-254.

[pw01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to
secure message transmission. IEEE Symposium on Security and Privacy, May 2001. Preliminary ver-
sion in http://eprint.iacr.org/2000/066 and IBM Research Report RZ 3304 (#93350), IBM Research,
Zurich, December 2000.

[ps04] M. Prabhakaran, A. Sahai. New notions of security: achieving universal composability without trusted
setup. 36th STOC, pp. 242–251. 2004.

[rb89] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with Honest Majority.
21st Symposium on Theory of Computing (STOC), 1989, pp. 73-85.

[tv00] L. Trevisan and S. Vadhan. Extracting randomness from samplable distributions. In FOCS 00, pages
32–42, 2000.

[yyz07a] A. Yao, F. F. Yao and Y. Zhao. A Note on Universal Composable Zero Knowledge in Common
Reference String Model. TAMC’07, pages 462-473, 2007.

[yyz07b] A. Yao, F. F. Yao and Y. Zhao. A Note on the Feasibility of Generalized Universal Composability.
TAMC’07, pages 474-485, 2007.

[zss 03] F. Zhang, R. Safavi-Naini and W. Susilo. ID-Based Chameleon Hashes from Bilinear Pairings.
Available at http://eprint.iacr.org/2003/208/.

19

