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Abstract

Research on secure multiparty computation has mainly concentrated on the case where the
parties can authenticate each other and the communication between them. This work addresses
the question of what security can be guaranteed when authentication is not available. We
consider a completely unauthenticated setting, where all messages sent by the parties may be
tampered with and modified by the adversary without the uncorrupted parties being able to
detect this fact. In this model, it is not possible to achieve the same level of security as in the
authenticated-channel setting. Nevertheless, we show that meaningful security guarantees can
be provided: Essentially, all the adversary can do is to partition the network into disjoint sets,
where in each set the computation is secure in of itself, and also independent of the computation
in the other sets. In this setting we provide, for the first time, non-trivial security guarantees
in a model with no setup assumptions whatsoever. We also obtain similar results while guaran-
teeing universal composability, in some variants of the common reference string model. Finally,
our protocols can be used to provide conceptually simple and unified solutions to a number
of problems that were studied separately in the past, including password-based authenticated
key exchange and non-malleable commitments. As an application of our results, we study the
question of constructing secure protocols in partially-authenticated networks, where some of the
links are authenticated and some are not (as is the case in most networks today).
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1 Introduction

In the setting of secure multiparty computation, a set of parties with private inputs wish to jointly
compute some function of their inputs in a secure way. Loosely speaking, the security requirements
are that nothing is learned from the protocol other than the output (privacy), and that the output
is distributed according to the prescribed functionality (correctness). These security properties
must be guaranteed even when some subset of the parties and/or an external adversary maliciously
and actively attack the protocol with the aim of compromising the uncorrupted parties’ security.
Since its introduction in the 1980’s [32, 23, 2, 14], the research in this area has not subsided. The
area has produced a rich body of work that deals with many aspects of the problem, including defi-
nitional issues, general feasibility results, protocols with low round and communication complexity,
protocols that rely on a wide variety of computational assumptions, lower bounds, and security
under composition.

A common approach in this body of work is to treat the authenticated communication aspect
of the problem as extraneous to the actual protocol design. That is, practically all the existing
protocols assume that the parties can communicate in an ideally authenticated way: the adversary
is assumed to be unable to send messages in the name of uncorrupted parties, or modify messages
that the uncorrupted parties send to each other. This means that authentication must be provided
by some mechanism that is external to the protocol itself.

The “ideally authenticated channels” abstraction has proven to be a powerful and useful tool
in the design and analysis of protocols. Indeed, authenticated communication can be obtained in
multiple very different ways that need not affect the design of higher-layer protocols. However,
this abstraction is also somewhat limiting, since it makes full authentication a pre-requisite to
any meaningful solution to a multi-party computation problem. In contrast, it may be useful to
provide some security guarantees even when full authentication is not available. That desire is
highlighted by the fact that authentication is a non trivial and intricate guarantee to obtain (or to
even precisely specify) in some salient settings. In particular, any authentication solution (perhaps
short of dedicated physically authenticated channels) relies in an essential way on some sort of trust
in external computational entities, such as certification authorities or Kerberos-like authentication
servers. This leads us to the following question:

What security can be obtained in a network without any authentication mechanism?

In addition to being a natural and interesting question on its own, studying this question enhances
our understanding of the role of authentication in secure computation, even when authentication
is possible. In fact, as seen below, our answer provides a general methodology for incorporating
different authentication mechanisms in protocols. This methodology is based on incorporating the
authentication within the protocol itself, rather than confining it to a separate module. Using this
methodology, we construct conceptually simple protocols for seemingly unrelated tasks such as
password-based key exchange and non-malleable commitment.

Security without authentication: the approach at a glance. For simplicity, we begin by
considering the special case of two-party protocols in an unauthenticated network. An immediate
but important observation is that an adversary in such a network can simply “disconnect” the
uncorrupted parties completely, and engage in completely separate executions with each one of the
two parties, where in each execution the adversary plays the role of the other party. Such an attack
is unavoidable since, without authentication, the parties have no way of distinguishing the case
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where they interact with each other from the case that they each interact separately with a third
party (in this case, the adversary). Our aim is to guarantee that this is the only attack that the
adversary can carry out. More specifically, our notion of security guarantees that the adversary is
limited to pursuing one of the two following strategies:

1. Message relaying: In this strategy, the adversary honestly relays the communication between
the two parties, allowing them to perform their computation as if they were communicating
over an authenticated channel. (As always, the adversary may still drop messages at will.)

2. Independent executions: In this strategy, the adversary intercepts the communication between
the parties and engages in “independent” executions with each of them. That is, for parties A
and B, the adversary can run an execution of a secure protocol with A while playing B’s role,
and an execution of a secure protocol with B while playing A’s role. Furthermore, the two
executions are independent, except for potentially determining the inputs to one execution
as a function of the inputs and outputs of the other execution. A bit more precisely, if we
think of each execution as emulating an ideal interaction with a trusted party for the task at
hand, then it is guaranteed that the overall interaction emulates an ideal model where A and
B interact with two separate trusted parties.

This guarantee is extended in a natural way to the case of multi-party protocols. Specifically,
an adversary can always partition the uncorrupted parties into disjoint subsets. Then, given this
partition, the adversary can run separate (and independent) executions with each subset in the
partition, where in an execution with a given subset H of the parties, the adversary plays the roles
of all the parties outside of H. We guarantee that this is the only attack the adversary can carry
out. That is, we consider an adversary who interacts with a set of parties who are each willing to
run a single execution with each other. Then, although the adversary can actually run a different
execution with each subset of the parties, we guarantee that:

1. Once a subset of uncorrupted parties is chosen, it is fixed for the duration of the protocol,

2. The subsets of uncorrupted parties are disjoint, and

3. The overall interaction emulates an ideal model where each subset H interacts with its own
separate trusted party, where the parties not in H are played by the adversary. In particular,
this implies that the only dependence between the subsets is due to the capability of the
adversary to choose its inputs as a function of the outputs that were already generated by
other executions. (In essence, the interaction within each subset of parties is the same as
when there are authenticated channels.)

We note that the basic idea of limiting the adversary to either “message relaying” or “running
independent sessions” originates in the notion of non-malleability [15]. Indeed, the protocols in
[15] essentially provide these guarantees for the specific tasks of commitments and zero-knowledge
proofs. Viewed this way, the contribution of the present work is in extending this idea to general two-
party and multi-party computation. This contribution is twofold: first, we formalize this concept
for general computation; second, we show how realize it via a natural (yet somewhat surprising)
combination of techniques.
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1.1 Our results in more detail

We instantiate the above approach in three different settings. The first setting provides the parties
with no trusted set-up whatsoever. Here we obtain a notion of security which we call bounded
UC. This notion is strictly stronger than the basic notion of security of [4, 19] (but still weaker
than full-fledged UC). Essentially, bounded-UC security guarantees that security is preserved under
unlimited non-concurrent composition, plus a limited form of concurrent composition. To the best
of our knowledge, this is the first work to formulate this notion, which seems to be of general
interest.

The second setting assumes the common reference string (CRS) model as in [5, 8, 12]. Here each
protocol instance is guaranteed to have a dedicated reference string that’s taken from predetermined
distribution. In this setting we obtain full-fledged universally composable (UC) secure computation
[5]; namely the protocols are guaranteed to remain secure when concurrently composed with any
other set of protocols or network activity.

The third setting assumes the augmented CRS (ACRS) model as in [7]. Here a single reference
string is used by all protocol instances in the system; in addition, adversarial parties are allowed
to obtain some personalized trapdoor information on the reference string. Here too we obtain full-
fledged UC secure computation. (To allow modeling a global reference string we use the generalized
UC framework [7].) See more discussion on the CRS and ACRS models at the end of this section.

Both the definitional approach and the high-level structure of the construction are similar for
all three settings. We thus present them together. We first provide more details on the new notion
of security. Next, we review the construction (which is actually quite simple, conceptually).

The notion of security. As sketched earlier, the basic definitional idea is to require that running
the protocol will amount to “emulating” the following ideal process: The adversary chooses (in an
adaptive way throughout the computation) disjoint subsets of parties. Once a subset is fixed, the
uncorrupted parties in the subset interact with a trusted party that is “dedicated” to this subset,
where the rest of the parties (i.e., the parties that complete this subset to the full set of parties) are
played by the adversary. The idea here is that the ideal process limits the adversary to the “trivial”
and unavoidable behavior of “honestly” running different executions with different subsets, while
determining future inputs to the various execution based on the legitimate outputs it received so
far from all executions.

One way to formalize this idea is to formulate a special-purpose ideal process that captures
the above process. However, using such a formalism may make it harder to compose protocols
analyzed in this model with other protocols (such as partial authentication protocols) in order to
guarantee some sort of combined security properties. We thus use a somewhat different approach,
that allows us to keep the ideal process the same as in standard definitions, and thus use existing
composability results. Specifically, instead of letting the adversary invoke multiple instances of the
trusted party, we keep to the standard formulation where all parties interact with a single trusted
party. We then modify the program of the (single) trusted party, namely the ideal functionality,
to mimic an interaction with multiple separate trusted parties, consistently with the adversarially
defined subsets.

A bit more precisely, for any functionality F to be realized by two or more parties, we define
a relaxed version of F called split-F , or sF , which is an interactive functionality and works as
follows. Functionality sF lets the adversary define disjoint sets of parties, called authentication
sets. Then, a separate and independent instance of the original functionality F is locally invoked
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for each authentication set. In an ideal execution of an instance of F for a given authentication
set, functionality sF allows the adversary to play the roles of all the parties not in the set; i.e.,the
adversary provides the inputs of these parties and receive their outputs.

As an example, consider the two-party case. Here the adversary can either choose a single
authentication set containing both parties, or it can choose two authentication sets, each containing
a single party. In the first case it cannot do anything more than in the authenticated channels model.
In the second case it must run an independent and separate execution with each party.

We can now informally state our two main theorems. Following the theorem statements we
discuss some properties of the results. We note that both theorems hold only for functionalities
satisfying certain syntactic conditions, as defined in [12].

Theorem 1 (unauthenticated bounded-UC computation) Assume the existence of collision-
resistant hash functions and enhanced trapdoor permutations (see [19, Appendix C.1]) and consider
the stand-alone model with no setup whatsoever. Then, for any probabilistic polynomial-time mul-
tiparty functionality F there exists a protocol that securely realizes the split functionality sF , with
bounded-UC security in the presence of static, malicious adversaries.

Theorem 2 (unauthenticated UC and gUC computation) Assume the existence of enhanced
trapdoor permutations. Then for any ideal functionality F there exist protocols that realize the split
functionality sF with UC security in the CRS model, or alternatively with gUC security in the
ACRS model, in the presence of static, malicious adversaries. Assuming the existence of enhanced
non-committing encryption (as in [12]), this holds even with respect to adaptive adversaries and
without data erasures.

Before turning to the constructions, let us point out that an effort was made to present the
proofs of these two theorems (i.e., the different constructions and their analyses) using a single
framework that allows expressing within it different composability guarantees and use different
trust models. Such combined analysis is both simpler and clearer than proving each result in a
different formal framework. In particular, substantial parts of the constructions and analyses are
the same in both proofs. Using a single framework allows us to avoid re-doing these parts anew for
each proof.

The construction. The protocol is comprised of two stages. In the first stage, an attempt is
made to establish “pseudo-authenticated” channels. In the second stage, a concurrently composable
secure protocol is run on top of these “pseudo-authenticated” channels. The crux of the analysis is
to show that the combination of the pseudo-authenticated channels with concurrently composable
protocols that make cryptographic use of some public information on the channels, suffices for
guaranteeing our notion of security. More precisely, assume that there is a set of parties where
the parties know each other’s identity and wish to engage in a single protocol execution with each
other over an unauthenticated network. The protocol proceeds as follows.

Stage 1 – link initialization: In this stage, each party Pi generates a pair of signing and veri-
fication keys (si, vi) of a standard signature scheme and sends the verification key vi to the
parties in the set. Next, after receiving verification keys vj from all parties, Pi signs (using its
secret key si) the sequence of all keys received, together with the names of the corresponding
senders, and sends the signature σi to all other parties. Finally, each Pi waits to receive sig-
natures from all parties, and checks that all the signatures refer to the same set of verification
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keys. If all checks verify, then Pi uses the signature keys to set up an authenticated channel
with each other party, and continues to the next stage, where all messages are sent over these
authenticated channels.

The idea behind this step is as follows. Let Pi and Pj be uncorrupted parties, let vi be the
verification key sent by Pi to Pj , and let vj be the key sent by Pj to Pi. Since these keys
are sent over unauthenticated channels, there is no guarantee that Pj will actually receive vi

rather than some v′i 6= vi generated by the adversary (and likewise for Pi). However, it is
guaranteed that if Pi and Pj receive each other’s real keys then the subsequent communication
between them will be authenticated.

Furthermore, at the end of this stage, the parties hold public values that correspond to the
subsets of parties among which the authentication succeeded. That is, let Si denote the
sequence of public keys that Pi received from the other parties, including itself. (If Pi did not
successfully complete the first stage, then Si =⊥.) Then, Si = Sj 6= ⊥ if and only if both Pi

and Pj completed the first state, and they have each other’s correct public keys. This means
that the set of uncorrupted parties which completed the first stage is partitioned into disjoint
subsets (called authentication subsets), where Si = Sj if and only if Pi and Pj are in the same
set, and where in each set all the parties can communicate in an authenticated way. We call
the Si values session identifiers (SIDs). The SIDs will be used in a crucial way in the second
stage of the computation, to provide the necessary “binding” between the authentication and
the computation stages.

Stage 2 – secure computation using the generated links: In this stage, the parties essen-
tially run a generic multiparty computation protocol that assumes authenticated channels, on
top of the pseudo-authenticated channels generated in the first stage. There are two impor-
tant caveats though: First, standard, stand-alone security is not enough. The protocol must
be concurrently composable. Second, each party uses the SID generated in the first stage as
its session identifier in the second stage.

The rationale here is as follows: Recall that in this stage the uncorrupted parties are par-
titioned to authentication subsets, identified by the SIDs, where the communication within
each subset is essentially authenticated. Consequently, one can regard the entire interaction
as concurrent execution of several instances of the protocol, where each instance is associated
with a different SID. However, since the protocol is concurrently composable, each one of
these instances maintains its own security.

We use different protocols for the bounded-UC, UC or generalized UC results. For the
bounded-UC case, we use the general construction of Pass [28], which guarantees concur-
rent composition of a pre-defined number of protocol executions. (This bounded concurrency
guarantee suffices in our case, since the number of executions that can run concurrently is
bounded by the number of parties.) This protocol can run in the bare model, namely on top
of the pseudo-authenticated channels provided by the first stage, with no additional setup.

To obtain UC security in the common reference string (CRS) model, we use the construction
of [12]. To obtain generalized UC in the ACRS model we use the construction of [7]. The
protocol that uses the CRS model is guaranteed to compose securely with any other set of
arbitrary protocols or network activity that does not use the same reference string. The
protocol that uses the ACRS model guarantees secure composition even with protocols that
use the same (augmented) reference string.
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Note that the three constructions differ only in one building block, namely in how the zero-
knowledge functionality is realized. In particular, the three constructions use the SIDs gen-
erated in the first stage in a similar way, in order to guarantee “independence” between
executions; this “independence” is crucial for secure concurrent composability.

We remark that many of the techniques used here have appeared in some form or other in the
literature. The idea of using “self-signed messages” with ephemeral public keys in order to bind
between various components of a protocol or a message has been used multiple times, often in the
context of guaranteeing non-malleability (see e.g. [15]). Also the idea of exchanging ephemeral
verification keys in order to reach a weak flavor of authentication or agreement in a multiparty
setting has appeared in multiple places, e.g. [9] and [17] (albeit without signing the sequence of
public keys or using this sequence in a subsequent protocol). On the other hand, the present use
of concurrent composability, together with the method of assigning unique SIDs that can also be
used to enforce authenticity within sessions, is new to the best of our knowledge.

Before proceeding to sketch some applications and additional results, we discuss the following
properties of the main results.

Agreement is not obtained. We stress that although Theorems 1 and 2 constitute “general
feasibility results”, the security guarantee obtained is far weaker than that of the authenticated
channels model. For example, agreement-type problems cannot be solved in this model. Indeed the
split-functionality formalization explicitly removes all flavor of agreement, since uncorrupted parties
in different authentication subsets run independent executions and so clearly are not guaranteed
to agree on anything.

Honest majority is meaningless. We note that, unlike the setting of authenticated channels,
here it does not help to assume that a large fraction of the parties are uncorrupted. This is due
to the fact that the adversary can always choose all the subsets to be small, thereby ensuring an
uncorrupted minority in each execution. In particular, it is impossible to prevent an adversarial
early abort, and neither fairness nor output delivery can be guaranteed in this setting. Indeed,
Theorems 1 and 2 hold irrespective of the number of corrupted parties, and do not guarantee
fairness or reliable output delivery.

Separating entity authentication from session authentication. One aspect of our results
is a more explicit distinction between entity authentication and session authentication in secure
computation. Entity authentication provides a party A with a guarantee that the messages that it
received in the name of party B were indeed sent by B. In contrast, session authentication only pro-
vides A with the guarantee that it interacts with the same entity throughout the protocol execution
(the “session”). Party A does not know the identity of the party with whom it holds the channel;
however, it knows that if the party is uncorrupted, then the adversary cannot interfere with any
messages that are sent on the channel. While this distinction appears in certain forms in the liter-
ature (e.g. [15, 31]), here it is made more explicit. Indeed, our results can be viewed as explicitly
formalizing and achieving session authentication without entity authentication. This separation
may be quite useful, since it allows entity authentication methods to be carried out separately
from session authentication, and in many different ways. Specifically, within the same execution,
different parties may use different authentication mechanisms like passwords, digital signatures,
interactive authentication protocols, group-based authentication (potentially with anonymity guar-
antees), and so on. In particular, the application to password-based key exchange, described in the
next subsection, can be regarded as an instantiation of this methodology.
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Concurrency in a stand-alone world. From the above informal description of our protocol we
see that, in the unauthenticated channels setting, obtaining even stand-alone security inherently
requires withstanding adversaries that run concurrent executions of the protocol with different sets
of uncorrupted parties.

However, an important observation here is that when there are n uncorrupted parties, the adver-
sary can force at most n concurrent executions (because the sets are disjoint and each uncorrupted
party runs only once). It therefore follows that we only need security under bounded concurrency,
which is fortunately much easier to achieve. (See [26] for impossibility results for the setting of
unbounded concurrency in the plain model, in contrast to the feasibility results of [28] for bounded
concurrency.)

On the CRS and ACRS models. Recall that the CRS and ACRS models postulate existence
of a string that’s available to all parties, and is guaranteed to be sampled from some predetermined
distribution. Still, the guarantees provided by the two models are incomparable: On the one hand,
in the CRS model it is assumed that each protocol instance has its own dedicated reference string,
which was chosen independently of the strings used in other instances. In contrast, in the ACRS
model only a single string is used for all the protocol instances in the system. On the other hand,
The ACRS model provides an additional “interface”, whereby corrupted parties may obtain some
“trapdoor information” on the string. We stress though that this trapdoor information only comes
up in the analysis and is not available to protocols designed in this mode. In particular, any protocol
designed for either the CRS or the ACRS model can be analyzed in either model.

To justify the use of the CRS and ACRS models, we recall that obtaining UC security for a
wide array of tasks is impossible in the plain model [8, 5, 11], even if authenticated communication
is provided. Similarly, obtaining UC security with respect to globally available trusted information
is impossible when the information is strictly public, as in the CRS model [7].

Another justification for the CRS and ACRS models is that they are essentially “orthogonal” to
the trust models needed for authentication: On the one hand, the CRS and ACRS models require
all parties to have access to and trust a single entity, or a string. On the other hand, they do not
require individual parties to register themselves in any way. In contrast, setting up authenticated
communication essentially requires each party to register individually (say, to obtain a certificate
for its public key), and maintain some related secret information known only to itself. In particular,
it is impossible to construct authenticated channels in either the CRS or the ACRS models without
additional trust.

1.2 Additional Results and Applications

We list some additional results and applications of our main results. Very recently, Camenisch
et. al. have further extended the results here (especially for the case of password and credential
based identification and key exchange), providing significantly more efficient protocols than the
ones here [3].

Password-based authenticated key-exchange. Password-based key exchange is the problem
where two parties, who share only a short secret string with limited entropy (e.g., a password), wish
to agree on a full-fledged cryptographic key over an unauthenticated channel. This problem proved
quite tricky to formalize. Furthermore, provably secure password-based key exchange protocols
have been relatively involved, using multiple underlying primitives in special ways. See e.g. [10]
and the references within for various definitional efforts and constructions.
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The core of the problem here is that since the password is a “weak secret” that can be guessed
with noticeable probability, it is impossible to guarantee full authentication. Still, one wants to
capture the fact that some weak form of authentication is indeed achieved. Informally, the standard
requirement here is that the adversary will be essentially limited to the trivial and unavoidable
attack of running the program of an uncorrupted party with a randomly guessed password. This
attack works only in the event that the password guess happened to be correct; the probability
of this event depends only on the entropy of the password, rather than on the protocol itself.
In particular, verifying each additional password guess will necessitate another execution of the
protocol.

The literature contains a number of quite different ways for formalizing the above requirement,
with varying degrees of restrictiveness and security guarantees. The definitional framework de-
veloped here can be used to provide a natural and strong formalization of the this requirement.
Furthermore, our general constructions immediately yields conceptually simple password-based key
exchange protocols, based on general assumptions, with strong security and composability proper-
ties.

In more detail, consider the following functionality Fpw. Each party provides an input (a
“password”); if the inputs are equal, then Fpw provides each party with a long random value (a
“cryptographic key”); if the inputs are not equal, then Fpw hands ⊥ to each party. Of course, the
inputs we are referring to here are the parties’ secret passwords. Fpw guarantees both agreement
and secrecy for the generated key, thus any protocol that realizes it would be sufficiently secure.
However, Fpw is too strong and is not realizable in our unauthenticated setting. (In particular it
does not enable the adversary to make “online password guesses”, which are inherently possible in
password based key-exchange schemes.) We thus resort to realizing the split functionality sFpw.
Indeed, a protocol that securely realizes sFpw guarantees a strong notion of security: The adversary
is limited to either including both parties in the same authentication set (which corresponds to pro-
viding them with a random and secret joint key), or having each party be in its own authentication
set (in which case the adversary is limited to a single password guess in the name of each party).

We note that this definition is essentially the same as that proposed in [10]. It is interesting to
note that the definition of [10], which was developed specifically for password-based key exchange,
can be obtained by applying the general methodology of split functionalities to a variant of the
classic “equality testing” function.

Our general constructions solves the password-based key exchange problem in a conceptually
simple way. They improve on previous ones as follows. Applying Theorem 1 we obtain secure
password-based authenticated key-exchange in a setting with no setup assumptions. The only
previously-known protocols to achieve this (without using random oracles) are [20, 27]. Comparing
our result to [20, 27] we have the following advantages. First, we obtain a stronger security guarantee
for the parties. Specifically, we guarantee exactly two password guesses per execution, rather than a
constant or even polynomial number of guesses. Furthermore, these guesses are explicit (see [10] for
a discussion about why this is advantageous). Second, our solution directly generalizes to password
authentication protocols for multiple parties (whereas previous solutions only work for two parties).

Applying Theorem 2, we obtain UC-secure password-based authenticated key-exchange in the
common reference string model. This problem was previously considered by [10], who present
highly optimized protocols based on specific assumptions. In contrast, we obtain less efficient
protocols, based on general assumptions. However, our protocol is secure even in the case of
adaptive corruptions, and is the first to achieve this. That is:

8



Theorem 3 (password-based key exchange) Assume the existence of collision-resistant hash
functions and enhanced trapdoor permutation and consider the stand-alone model with no setup
whatsoever. Then there exists a protocol that realizes the password-based key exchange functionality
of [10] with bounded-UC security in the presence of static corruptions.

Furthermore, in the CRS and ACRS models there exist protocols that realize the password-based
key exchange functionality of [10] with UC and gUC security, respectively, in the presence of static
corruptions. Assuming the existence of enhanced non-committing encryption, this holds even with
respect to adaptive adversaries and without data erasures.

Partially authenticated networks. So far, we have discussed a completely unauthenticated
setting, and have contrasted it to the standard completely authenticated setting. However, the
most realistic setting in today’s Internet is that of a partially authenticated network, where some of
the parties are connected via authenticated links and others are not. In addition, the authentication
on these links may be unidirectional or bidirectional. For example, the most common case in the
Internet today is one where servers have digital certificates for public (signature) keys as part of an
implemented public-key infrastructure, whereas clients do not (but sometimes do have passwords).
While this setting is addressed by some key exchange protocols (e.g. [24, 31]), the option of running
protocols for general secure computation in this setting has not been considered. For instance, we
should be able to use a secure auction protocol, even if the only party who has a certificate is the
auctioneer. Our results extend this setting. In particular, it allows to obtain secure computation
in partially authenticated networks, while utilizing the authenticated links that do exist. This
is a much more realistic setting than the standard one that requires that all pairs of parties are
connected via authenticated channels.

Alternative authentication mechanisms. Passwords are just one mechanism for authenticat-
ing parties. The same methodology can be used to obtain secure protocols for other, non-standard
ways for parties to authenticate each other. The only requirement for accommodating these meth-
ods is that they can be described by an efficient functionality (and thus can be incorporated into
stage 2 of the protocol). For example, we can accommodate “fuzzy” authentication where parties
are authenticated if they pass at least k out of n “authentication tests”, such as remembering the
names of at least three of your childhood friends. Our solutions can also work in the case where
parties are considered authenticated if they can perform some non-trivial computational task, like
the “proof of work” in the anti-spam work of [16]. Finally, our protocols can be used to address
cases where two or more parties wish to authenticate themselves to each other based on useful data
which they hold, as in the case of peer-to-peer and overlay networks. This last type of authentica-
tion may also be used to guarantee anonymity, say when the same piece of identifying information
is available to a set parties, and the participant does not wish to reveal its individual identity within
that set.

Non-malleable commitments. Finally we remark that non-malleable commitments [15] can
be obtained using our results in a similarly simple manner. Namely, define F to be a two-party
functionality that on input m from one party outputs f(x) to the other party, where f is some
non-interactive (and potentially malleable) commitment function. Then, a protocol that securely
realizes sF constitutes a non-malleable commitment. This protocol does not improve on other
known protocols. Nonetheless, it demonstrates the power of our general framework.

Organization. The rest of the paper is organized as follows. Section 2 overviews the models of
computation considered (bounded-UC, standard UC and generalized-UC). Section 3 formalizes the
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notion of split functionalities described above. The main theorems are then stated and proved in
Section 4. Section 5 concludes with our results regarding partially authenticated networks.

2 The Model of Computation

This section briefly summarizes the basic model of unauthenticated, asynchronous computation,
presents the notions of UC, gUC and bounded UC security, and reviews the composition theorem.
We also present the notion of multi-emulating protocols and multi-realizing ideal functionalities.
This notion plays a central role in our security analysis of Section 4

We consider a completely unauthenticated, asynchronous, and unreliable communication net-
work. This is modeled by postulating that the adversary gets hold of all messages sent by the
parties. It is then up to the adversary to deliver whatever messages it wishes to parties; the de-
livered messages need not be related to the messages sent in any way. This of course means that
messages can be duplicated, re-ordered, dropped and modified to the adversary’s liking. Also the
real source of a message is not known to the recipient. This modeling is essentially the same as in [5].
(In contrast, the models in [4] and [19, Chapter 7] concentrate on synchronous and authenticated
communication.)

This section contains a sketch of the model and definitions. Full details appear in [4, 5, 19].
We first present the model of computation, ideal protocols, and the general definition of securely
realizing an ideal functionality. Next we present hybrid protocols and the composition theorem.
See [5] for a more detailed description of all these notions.

2.1 The basic model

Protocol syntax. Following [22], both protocols and adversarial entities are represented as
interactive Turing machines (ITMs). Specifically, an ITM has three tapes that can be written to
by other ITMs: the input and subroutine output tapes model inputs from other programs running
within the same “entity” (say, the same physical computer), and the incoming communication tapes
model messages received from the network. In addition, an ITM has an identity tape that can be
written to only once upon creation. The identity tape contains the program of the ITM (in some
canonical representation) plus an identity string. Writing into a tape of another ITM is done via a
special external write operation, whose effect is described below.

Systems of ITMs. As a preliminary step towards defining security of protocols, we sketch the
“mechanics” of a joint execution of multiple communicating ITMs. A basic concept here is an ITM
instance (ITI) which represents a process in a distributed system. An instance is captured by the
program it is running, and an identity that distinguishes it from other processes (ITIs) that run
the same program. Formally, an ITI of an ITM M is a pair (M, ID), where ID ∈ {0, 1} is the
contents of the identity tape.

A system of ITMs is defined via a pair (M,C), where M is an ITM and C : {0, 1}∗ → {0, 1}∗
is a control function that determines the effect of the external write commands. An execution of a
system (M, C) of ITMs, on input x, consists of a sequence of activations of ITIs, as follows. Initially,
the system consists of a single ITI with program M , some fixed identity (say, ID = (0, 0)), and
some input value x written on the input tape. This ITI, called the initial ITI, is then activated.
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Each activation of an ITI (M, ID) is a sequence of configurations of M , until an external write
commands is executed or an inactive state is reached. The execution ends when the initial ITI
halts. The output of an execution is the output of the initial ITI.

It remains to specify the effect of the external-write operation. This operation specifies a target
ITI (namely, program and identity), a tape out of {input, communication, subroutine output}, and
data to be written. When an external-write operation is carried out, the control function C is
applied to the sequence of external write requests in the execution so far. Then:1

1. If C returns 1 then:

(a) If an ITI with the same identity as the target ITI does not exist in the system then a
new ITI with the specified program and identity is created and added to the system.
This allows dynamic generation of new ITIs during the execution.

(b) If the target tape is the input or subroutine output tape then the identity and program
of the writing ITI is added to the message. This allows an ITM to verify the true identity
and program of its subroutines and callers.

(c) If an ITI with the same identity and program as those specified in the external write
command exists in the system, then the specified data is written to the specified tape of
this (unique) ITI.

(d) If an ITI with the specified identity exists, but this ITI is running a different program
than the one specified, then: If the specified tape is the communication tape, then the
specified data is written to the communication tape of the target ITI in the same way as
in item 1c. If the specified tape is the input or subroutine tape then no data is written
and the writing ITI transitions to a special error state.

In either case, the active ITI becomes inactive and the target ITI is activated.

2. If C returns 0, or the active ITI entered an inactive state, then the initial ITI is activated.

3. If C returns another value, then this value is interpreted as a description of an ITM M . The
effect is the same as in Case 1, except that the program of the target ITI is taken to be
M rather than the value specified in the external write command. (This technical detail is
needed for the notion of protocol emulation to make sense.)

Subroutines. An ITI µ is a subroutine of ITI µ′ in an execution if µ wrote to the input tape of
µ or µ′ wrote to the subroutine output tape of µ′. µ is a descendant of µ′ if it is a subroutine of µ′

or of another descendant of µ′.

Protocols and protocol instances (sessions). To define protocol instances we let the identity
of each ITI to consist of two fields: the session-identifier (SID) field, and a party identifier (PID) field.
This way, a protocol instance is determined by a program (ITM) and a session identifier. That
is, the instance s of protocol M in a given configuration of a system of ITMs is the set of ITIs
that have program M and SID s. The party identifier of an I is often associated with a physical
computer or a trust domain within which the ITI is running; however, the model does not enforce
this convention.

1A more formal description in terms of sequences of configurations can be extracted from this description.
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Polynomial Time ITMs. We consider ITMs that run in probabilistic polynomial time (PPT),
where PPT is defined as follows: An ITM M is PPT if there exists a constant c > 0 such that,
for any ITI µ with program M , at any point during its run, and for any contents of the random
tape, the overall number of steps taken is at most nc, where n is the overall number of bits written
to the input tape of µ minus the overall number of bits written by µ to input tapes of other ITIs.
(The purpose of this definition is to have syntactically verifiable conditions which guarantee that
running a system of ITMs does not consume “super-polynomial resources”. In particular, it can be
seen that an execution of a system of ITMs, where the initial ITM is PPT, and the control function
is polytime computable, can be simulated on a standard PPT Turing machine.)

2.2 Defining security of protocols

Protocols that securely carry out a given task are defined via comparison with an ideal process
for carrying out the task. Formalizing this concept consists of three elements: defining the process
of executing a protocol in the presence of an adversarial environment; defining what it means for
one protocol to “emulate” another protocol; and defining the “ideal process” for carrying out the
task in terms of a special idealized protocol. A protocol is said to securely carry out the task if it
emulates the idealized protocol for that task.

We provide three different formalizations of this idea, resulting in our three different measures of
security: global UC, UC and bounded UC. The three formalizations differ only in the first element
described above, namely in how the process of protocol execution is formalized. We first fully define
UC security. Next we describe the other two notions.

The model for protocol execution (UC security). The model for executing a protocol π is
parameterized by a security parameter k ∈ N, and three ITMs: the ITM π, an ITM A called the
adversary, which represents the adversarial activity against a single instance of π, and an ITM Z,
called the environment, which represents the rest of the system. Specifically, to run protocol π on
input x, execute the system of ITMs (Z, CA,π). It remains to describe the control function CA,π,
namely the external write capabilities of each ITI.

In essence, the definition of the control function captures a model where a single instance of π
interacts with Z and A. Z controls the inputs to parties and reads the outputs. All communication
(via the communication tapes) must pass through A. In addition, the ITIs running π can create
subroutine ITIs, can write to the input tapes of the subroutines, and receive outputs from the
subroutine on the subroutine output tapes of the calling parties. More precisely:

External writes by the environment: The environment can write only to input tapes of other ITIs.
The program of the first ITI invoked by the environment is set (by the control function) to
be the program of the adversary A. The programs of all the other ITIs that the environment
writes to are set to be the protocol π.2 In addition, the session IDs of all the ITIs invoked
by the environment (other than the adversary) must be the same. That is, let s denote the
SID of the first ITI to be invoked with program π. Then all the remaining ITIs invoked by
the environment must have SID s. Consequently, all the ITIs invoked by the environment,
except for the adversary, belong to the same instance of π.

2The reason for having the control function (rather than the environment) determine the program π is to allow a
situation where the program π is changed into another program π′ without having the environment being necessarily
aware of the change. This detail is necessary for the definition of protocol emulation to make sense.
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External writes by the adversary: The adversary can write only to the communication tapes of
ITIs.

External writes by other ITIs: An ITI µ other than the environment and the adversary can write
to the input and subroutine output tapes of any ITI other than the environment. ITIs whose
SID is the same as the SID s chosen by the environment may also write to the subroutine
output tape of the environment. In addition, µ can write to the communication tape of the
adversary.

For measuring runtime, we use the convention that the first input to be written to an ITI must
start with 1k, where k is the security parameter. (Note that an ITI might be invoked by writing
to a tape other than the input tape, e.g. it may be invoked by the adversary. In this case the ITI
may still have some constant runtime, depending on its bounding polynomial.)

Let execπ,A,Z(k, z) denote the output distribution of environment Z when interacting with
parties running protocol π on security parameter k and input z. Let execπ,A,Z denote the ensemble
{execπ,A,Z(k, z)}k,z∈{0,1}∗ .

Protocol emulation. Informally, we say that a protocol π emulates protocol φ with UC security
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with S and parties running π, or
it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol π is ‘just as good’ as interacting with φ. This notion is formalized
as follows. A distribution ensemble is called binary if it consists of distributions over {0, 1}. That
is:

Definition 4 Two binary distribution ensembles {X(k, a)}k∈,a∈{0,1}∗ and {Y (k, a)}k∈,a∈{0,1}∗ are

called indistinguishable (written X
c≡ Y ) if for any c, d ∈ N there exists k0 ∈ N such that for all

k > k0 and for all a ∈ {0, 1}kd
we have

|Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < k−c.

Definition 5 (Protocol emulation) Let π and φ be protocols. We say that π emulates φ with
UC security if for any adversary A there exists an adversary S such that for any environment Z
that outputs a value in {0, 1} we have

execφ,S,Z
c≡ execπ,A,Z .

Ideal functionalities and ideal protocols. A key ingredient in the ideal process for a given
task is the ideal functionality that captures the desired behavior, or in other words, the specification
of that task. An ideal functionality is modeled as an ITM (representing a “trusted party”) that
interacts with the ITIs of some protocol instance, and also with the adversary.

For convenience, the process for realizing an ideal functionality is represented as a special type
of protocol, called an ideal protocol. In the ideal protocol IF for ideal functionality F all parties
simply hand their inputs to an ITI with program F , session ID that is equal to the local session
ID, and party ID set to some fixed value, say ⊥. Whenever a party in IF receives a value from
F on its subroutine output tape, it immediately copies this value to the subroutine output tape
of the ITI that invoked it. We call the parties of the ideal protocol dummy parties. We use the
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convention that the PID of a dummy party includes the entire identity of its calling ITI. (This
convention allows ideal functionalities to makes decisions based on the true identities of the ITIs
in the protocol instance that called the current instance of IF .)

Definition 6 (Realizing functionalities) Let π be a protocol, and let F be an ideal functionality.
We say that π realizes F with UC security if π emulates IF , the ideal protocol for F , with UC security.

Generalized UC (gUC) Security. The model of protocol execution in the definition of UC
security allows a protocol instance to communicate with the rest of the system only via the inputs
from the environment and outputs to the environment. This does not capture situations where
many (or all) protocol instances access some common, global entity that’s trusted to run some
predefined program. gUC allows modeling such situations. This is done by lifting the restriction
on the identities and protocols that the environment may invoke. That is, for gUC security the
environment can invoke ITIs with arbitrary (PPT) program and identities.

To have a meaningful notion of protocol emulation, we allow the environment to single out
a single protocols instance out of the environment’s subroutines, and leave the program of this
instance empty, say by replacing it with a special symbol ⊥. The control function CA, π will then
let the program of the ITIs in this instance be π. Let execgUC

π,A,Z be the same as execπ,A,Z , with
the exception that the execution model is modified as described here.

Bounded UC Security. Bounded-UC security is a restricted version of UC security, where the
environment can pass to the adversary only an a priori bounded amount of information during
the execution. Specifically, after the initial input that the environment sends to the adversary, the
overall length of all later inputs to the adversary is upper bounded by l(k), where k is the security
parameter and l() is some polynomial, which is a parameter of the definition. There is no bound
on the amount of information that the adversary may provide the environment. Let execp

π,A,Z be
the same as execπ,A,Z , with the exception that the environment is bounded as described here.

We note that bounded UC models a type of bounded concurrent composition, and, among other
things, implies security in the ordinary model of stand-alone computation. For sake of concreteness,
we concentrate on l(n) = O(n log n), where n is the number of parties in the protocol instance.
(This choice of the bounding function is rather arbitrary and is derived from the properties of the
actual protocol described we analyze in this work.)

Definition 7 (Protocol emulation: gUC and bounded-UC) Let π and φ be protocols. We
say that π emulates φ with gUC security (resp., with p-security) if for any adversary A there exists an
adversary S such that for any environment Z that outputs a value in {0, 1} we have execgUC

φ,S,Z
c≡

execgUC
π,A,Z (resp., execp

φ,S,Z
c≡ execp

π,A,Z).

The definition of realizing ideal functionalities with UC security is generalized analogously.

Party corruptions: The above model does not provide an explicit party corruption operation.
Instead, we model corruption via a special (corrupt) message written by the adversary on the
incoming communication tape of the corrupted ITI. The ITI’s response is, in general, up to the
program of the ITI. For the purpose of this work we use the following conventions, which are
intended to capture the standard Byzantine corruptions model:
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1. Except for ideal protocols, an ITI that receives a (corrupt) message first writes a (corrupted)
output on the subroutine output tapes of all the ITIs of which the corrupted ITI is a sub-
routine, and then sends all its current state to the adversary. All future received inputs and
subroutine outputs are reported to the adversary. All incoming communication is interpreted
as instructions by the adversary to generate input or subroutine output to other ITIs; these
instructions are carried out.

2. For ideal protocols, we instruct dummy ITIs to ignore (corrupt) messages, with the intention
that these messages should be sent directly to the ideal functionality. There are no restrictions
on the behavior of ideal functionalities upon receiving corrupt inputs; this behavior is part of
the security specification of the task being captured.

Discussion:

• Clearly, if π gUC emulates φ then it UC emulates φ. Similarly, if π UC emulates φ then it
p-UC emulates φ for any polynomial p() .

• While the dummy adversary remains universal in the case of gUC emulation, it does not in
general hold in the case of bounded UC security.

• Say that a protocol instance is subroutine respecting if no descendant µ of an ITI of this
protocol is also a descendant of an ITI µ′ where µ′ is not an ITI of this instance or a descendant
thereof. We note that, as long as the analyzed protocol is subroutine respecting, gUC security
is identical to UC security.

• For sake of concreteness, we assume that the function p bounding the communication of the
environment in bounded-UC security is l(n) = O(n log n), where n is the number of parties.
(This choice of l(n) is rather arbitrary and is derived from the properties of the actual protocol
in use.)

Universal Composition. Let ρ be a protocol that uses one or more instances of some protocol φ
as a subroutine, and let π be a protocol that emulates φ with UC security. The composed protocol
ρπ/φ is constructed by modifying the program of ρ so that calls to φ are replaced by calls to π.
Similarly, subroutine outputs coming from π are treated as subroutine outputs coming from φ. The
universal composition theorem says that protocol ρπ/φ behaves essentially the same as the original
protocol ρ.

In the case of UC security, the theorem applies only to subroutine respecting protocols. In the
case of gUC security, the restriction is dropped and the theorem holds with respect to any protocol.
In the case of bounded UC security, only limited forms of composability (such as non-concurrent
composability) are known. We do not state them here. That is:

Theorem 8 (universal composition [5]) Let π, φ, ρ be protocols, such that π emulates φ with
gUC security (resp., with UC security and both π and φ are subroutine respecting). Then the
protocol ρπ/φ emulates ρ with gUC security (resp., with UC security). In particular, if ρ realizes an
ideal functionality Fwith gUC security (resp., UC security) then so does ρπ/φ.

15



2.3 Multi-Realizing Ideal Functionalities

Informally, a protocol π n-emulates protocol φ if running n concurrent instances of π, on potentially
different inputs and by potentially different parties, amounts to emulating n independent instances
of φ.

More precisely, we first concentrate on defining UC n-emulation. The cases of n-emulation with
gUC and bounded UC security are dealt with later. As a first step, we consider environments Z
that can interact with some number, n, of concurrent instances of the protocol in question. We call
such environments n-instance environments. That is, an n-instance environment can invoke ITIs
with up to n different SIDs. To facilitate the analysis, we also put the following syntactic restriction
on the SIDs: All SIDs should be of the form (sid, ssid), where the first component sid is the same
for all instances. We then modify the model of executing a protocol π so that the program of all
the ITIs invoked by the environment, other than the adversary, is fixed (by the control function)
to be π.

We now say that protocol π n-emulates protocol φ with UC security if for any adversary A there
exists an adversary S such that for any n-instance environment Z we have execπ,A,Z

c≡ execF ,S,Z .
If π n-emulates φ for any n =poly(k) then we say that π poly-emulates φ. π n-realizes (poly-

realizes an ideal functionality F if π n-emulates (poly-emulates) the ideal protocol IF .
n-emulation with gUC security is defined analogously. That is, say that an ITI invoked (by

the environment) is special if its program is set to be ⊥. Then, we modify the gUC model of
protocol execution so that the environment invokes special ITIs with up to at most n different
SIDs, and furthermore these SIDs comply with the technical restriction described above. The
model of executing π then replaces the program of all these ITIs with π. The rest of the definition
is the same as for the case of UC security.

n-emulation with bounded UC security is the same as n-emulation with UC security, with the
exception that the communication from the environment to the adversary is restricted as in the
case of plain emulation with bounded UC security.

We note that, as long as no two ITIs in different instances of protocol π have the same ITI as
a subroutine, the UC theorem asserts that if π emulates protocol φ with UC security then π also
poly-emulates φ. The same holds for gUC security.

3 Split Functionalities

We define what it means to realize an ideal functionality in an unauthenticated network without any
setup. As sketched in the Introduction, realizing a functionality in the unauthenticated model is
defined by requiring that the protocol actually realizes a relaxed variant of the functionality, called
a “split functionality.” (More motivational discussion on this choice appears there.) Recall that
split functionalities enable the ideal-model adversary to split the uncorrupted parties into disjoint
sets, called authentication sets, in an adaptive way. The parties in each authentication set H then
run a separate ideal execution with the trusted party where in each execution the adversary plays
the roles of all the parties not in H.

A little more precisely, we assume that the parties know in advance the set U of parties with
which they wish to interact. In each execution of an authentication set H the adversary plays the
roles of the parties in U −H. (Throughout, we use the term “party P” to mean “an ITI with PID
P”, where the SID is clear from the context.) We wish to make the following guarantees:
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1. An authentication set must be fixed before any computation in the set begins (and thus an
authentication set cannot be chosen on the basis of the inputs of the uncorrupted parties in
that set);

2. The authentication sets are disjoint. This guarantees that all the parties in an authentication
set have consistent views of the interaction. In particular, each party participates in only one
execution.

3. The computation within each set is secure in the standard sense, i.e. as in the case that
authenticated channels are assumed. In particular it is independent of the computations
in other sets, except for the inputs provided by the adversary, which can be correlated to
the outputs that it has received from computations with other authentication sets that have
already been completed.

For simplicity, we assume that the authentication sets given by the adversary do not include cor-
rupted parties. Alternatively, we modify the disjointment requirement to say that the intersection
of any two authentication sets contains only corrupted parties.

The split functionality sF . We now proceed to formalize the above. Let F be an ideal
functionality. We define the relaxation of F , called split-F or sF , in Figure 1. For convenience, we
let the SID of sF explicitly contain the list of parties (i.e., PIDs) that the initiator of this instance
wished to interact with.

In the initialization stage of sF , the adversary adaptively chooses subsets of uncorrupted parties.
(The adaptivity relates to the fact that an authentication set can be chosen and even a full execution
completed, before the next authentication set is chosen). The adversary can choose any subsets
that it wishes, as long as they are disjoint (or, rather, as long as the intersection of any two
authentication sets contains only corrupted parties).

sF requires the adversary to provide a unique identifier, sidH , for each authentication set H.
This identifier is used to differentiate between the various copies of F . Furthermore, this identifier
is outputted explicitly to all the parties in this set. This is an important security guarantee: while
the parties do not know, of course, which are the authentication sets, they have “evidence” of the
set they are in. In particular, a global entity that sees the outputs of all parties can determine the
authentication sets from the outputs alone. (From a technical point of view, this provision forces
the adversary in the ideal process to mimic the same partitioning to authentication sets as the
adversary in the real protocol execution.)

In the computation stage of the functionality, each set H is provided with a different and
independent copy of F . This means that each set H essentially runs a separate ideal execution of
F . In each such execution, the parties P ∈ H provide their own inputs, and the adversary provides
the inputs for all P ′ ∈ U −H. This reflects the fact that in each execution, the roles of the parties
outside of the authentication set are played by the adversary. Similarly, the parties P ∈ H all
receive their specified outputs as computed by their copy of F . The adversary receives all of its
own outputs, as well as the outputs of the parties P ∈ U −H. We stress that there is no sharing
of state between the different copies of F run by sF .

Note that each instance of sF has a session identifier, sid, which is separate from the identifiers
of the various authentication sets. This convention makes sure that all participants agree on the
set U of intended participants. It is also consistent with the UC framework, which requires each
instance of a functionality or a protocol to have its own unique identifier.
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Functionality sF

Given functionality F , functionality sF proceeds as follows:
Initialization:

1. Upon receiving an input (Init, sid) from a party P (i.e., from an ITI with SID
sid and PID P ), interpret sid = (U, sid′), where U is a set of IDs that includes P .
Send (Init, sid, P) to the adversary.

2. Upon receiving a message (Init, sid, P ′,H, sidH) from the adversary, verify that
H ⊆ U , that P ′ ∈ H, and that for all previously recorded sets H ′, it holds that
either (1) H∩H ′ contains only corrupted parties and sidH 6= sidH′ , or (2) H = H ′

and sidH = sidH′ . If any condition fails then do nothing. Otherwise, record the
pair (H, sidH), output (Init, sid, sidH) to P ′, locally initialize a new instance of
the original functionality F with session identifier sidH , and provide this instance
of F , denoted FH , with the current set of corrupted parties. From now on let the
adversary play the role of the parties in U −H in FH .

Computation:

1. Upon receiving an input (Input, sid, v) from party P ′, find the set H such that
P ′ ∈ H, and forward the message v from P ′ to FH . If no such H is found then
ignore the input.

2. Upon receiving a message (Input, sid,H, P ′, v) from the adversary, if FH is ini-
tialized and P ′ ∈ U − H, then forward v to FH as if coming from party P ′.
Otherwise, ignore the message.

3. When an instance FH generates an output v for party P ∈ H, output v to P .
When the output is for a party P ′ ∈ U −H or for the adversary, send the output
to the adversary.

Corruption:

1. Upon receiving a (corrupt, P) message from the adversary, record P as corrupted
and forward this message to all currently active instances of F .

Figure 1: The split version of ideal functionality F

Also, when initializing a new copy of F , functionality sF lets this copy know the current set
of corrupted parties. This too is done for consistency with the UC framework, which models
party corruption in the ideal process via special messages sent from the adversary to the ideal
functionality.

4 Unauthenticated Secure Computation

We restate more formally the two main theorems from the Introduction. Here the term “well
formed” is taken from [12]. It indicates some mild syntactic restrictions that rule out unrealistic
functionalities that “abuse the model”.3 The remainder of this section is dedicated to proving the

3The restrictions are of three types: One type rules out functionalities that pass information from one party to
another without allowing the adversary to delay the process. A second type forces revealing certain information to
the adversary upon party corruption. A third type forces revealing some information on the inputs of the parties
(such as their lengths) to the adversary.
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two theorems.

Theorem 9 (Theorem 1 – restated): Assume existence of collision-resistant hash functions and
enhanced trapdoor permutations. Then, for any well-formed probabilistic polynomial-time multi-
party functionality F there exists a protocol that realizes the split functionality sF with bounded-UC
security, in the presence of static, malicious adversaries and with no setup whatsoever.

Theorem 10 (Theorem 2 – restated): Assume existence of enhanced trapdoor permutations. Then
for any well-formed ideal functionality F there exists a protocol that realizes the split functionality
sF with UC security in the CRS model, or alternatively with gUC security in the ACRS model,
in the presence of static, malicious adversaries. Assuming existence of enhanced non-committing
encryption, this holds even with respect to adaptive adversaries and without data erasures.

The rest of this section is dedicated to proving these two theorems.

4.1 Proof Overview

We first provide an overview of the proofs. The proofs consist of a number of steps, where all steps
but one are joint for the two theorems.

Obtaining Link initialization. The First step in the proof is to securely implement the link
initialization stage sketched in the introduction. We start by defining the abstract properties
needed from this link initialization protocol by means of an appropriate ideal functionality. This
ideal functionality, called the split authentication functionality, Fsa, is in fact the split version of
the standard authenticated message transmission functionality, Fauth. We show that the link
initialization protocol sketched in the introduction realizes the split authentication functionality
with UC security and no setup.

Multi-session security. The Second step in our proof asserts that, when authenticated com-
munication is available, any multi-party functionality can be n-realized, where n is the number
of parties that the functionality interacts with. This is done thrice: First we observe that, with
no additional setup, for any well-formed functionality and any n the [28] protocol n-realizes the
functionality with bounded-UC security. This result follows directly from the proof in [28]. Next,
we observe that the construction and proof in [7] imply that any well-formed functionality can be
poly-realized in the ACRS model with gUC security. Finally, we demonstrate that the [12] protocol
poly-realizes any well formed functionality with UC security. To obtain this result, we somewhat
strengthen the analysis there. (The analysis there does not apply to our setting since the [12]
protocol uses a trusted common reference string (CRS), and therefore in a setting where multiple
protocols sessions run concurrently we have multiple sessions of the protocol that use the same
joint subroutine (the reference string). This means that the UC composition theorem cannot be
immediately used to argue multi-session security.)

We note that this is the only step in the proof which is different for the cases of bounded-UC ,
UC and gUC security. The remainder of the proofs are identical to each other.

Transformation from multi-session protocols to unauthenticated protocols. The third
step in the proof is a general transformation from any protocol π that poly- (resp., n-) realizes a
functionality F with UC (resp., gUC, bounded-UC) security given authenticated communication,
to a protocol ΠF that realizes sF with UC (resp., gUC, bounded-UC) security given access to Fsa.
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On a high-level, protocol ΠF proceeds as follows: Each party first runs Fsa to obtain an identifier
s, called an sub-session identifier (SSID); next it runs protocol π with s as SID. Each outgoing
message of π is forwarded to Fsa, and each incoming message from Fsa is forwarded to π.

Putting it all together. We combine the protocol ΠF and the link initialization protocol
into a protocol that realizes sF with UC (resp., gUC, bounded-UC) security in the CRS (resp.,
plain, ACRS) model. Security of the combined protocol is deduced using the universal composition
theorem.

4.2 Realizing Split Authentication

This section shows how to securely implement the link initialization stage, as sketched in the
introduction. In order to present the construction in a modular way, we capture the requirements
from the initialization stage via an ideal functionality. This ideal functionality is in fact the split
functionality of the standard authenticated message transmission functionality. We thus call it the
split authentication functionality, Fsa.

We first present Fsa. Next, we present a simple protocol that realizes Fsa with UC security in
the bare model, without any setup.

4.2.1 The Split Authentication Functionality Fsa

The split authentication functionality Fsa enables parties in the same authentication set to commu-
nicate in an authenticated way. That is, Fsa first lets the adversary define disjoint authentications
sets H. Next, if the adversary wishes to deliver a message m to a party P ′ with an alleged sender
P , then, roughly speaking, Fsa proceeds as follows:

1. If the authentication set H of P ′ is not yet determined (i.e., P ′ does not appear in any set
H), then the delivery request is ignored. Otherwise:

2. If P is not in the same authentication set as P ′, then m is delivered as requested, regardless
of whether it was actually sent by P .

3. If P and P ′ are in the same authentication set, then the message is delivered to P ′ only if it
was sent by P , and has not yet been delivered.

More precisely, Fsa is the split version of the authentication functionality, Fmauth, defined in
Figure 2. In other words, we define Fsa = sFmauth. Fmauth is essentially the “multiple-session
extension” of the standard authenticated message transmissions functionality, Fauth, defined in [5].
That is, here a single instance of Fmauth handles multiple messages among parties in a given set
P of PIDs. For concreteness, we assume that the set P is included in the SID of Fmauth, and that
each PID P ∈ P represents a full identity (i.e., SID and PID) of an ITI. (These ITIs are taken to
be members of the calling protocol instance, and will eventually receive output from Fsa.)

For ease of reference, we also give an explicit formulation of Fsa in Figure 2.

4.2.2 Realizing Fsa

In this section, we present a simple protocol for realizing Fsa in the bare model without any setup.
The protocol that we present is actually UC-secure. This will be important in our final protocol,
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Functionality Fmauth

1. Upon activation with input (Init, sid), where sid = (P, sid′) and P is a set of
PIDs, record P and forward it to the adversary.

2. Upon receiving (send, sid, P, P ′,m) from P , where P, P ′ ∈ P, send (P, P ′,m) to
the adversary and add (P, P ′,m) to an (initially empty) listW of waiting messages.
Note that the same triple (P, P ′,m) can appear multiple times in the list.

3. Upon receiving (deliver, sid, P, P ′,m) from the adversary, if P is in P and is
currently corrupted, then output (received, sid, P, P ′,m) to P ′. Else, if there
is a triple (P, P ′,m) ∈ W then remove one appearance of it from W and output
(received, sid, P, P ′,m) to P ′. Otherwise do nothing.

Figure 2: The multi-message authentication functionality Fmauth

where the protocol for computing Fsa runs alongside a general protocol for realizing some ideal
functionality.

Our protocol uses a signature scheme that is existentially unforgeable against chosen-message
attacks as in [21]. It does so in a way that is somewhat reminiscent of the technique used in [15] to
construct non-malleable encryption. On a high-level our protocol also resembles the weak Byzantine
agreement protocol of [17] (although both the goal and the actual protocol are very different). The
main idea of the protocol has already been described in the introduction. We therefore proceed
directly to its description.

Protocol 1

I. Link initialization:

1. Upon activation with input (Init, P, sid), where P is the local PID, interpret sid = (P, sid′)
where P is a set of identities, and verify that P ∈ P. If so, send (Init, sid) to each party in
P. For notational simplicity we let P = P1, ..., Pn, where n = |P|.

2. Having received an incoming message (Init, sid), party Pi interprets sid = (P, sid′). If
Pi /∈ P then Pi aborts. Else:

(a) Pi chooses a key pair (V Ki, SKi) for the signature scheme.

(b) Pi sends V Ki to all parties Pj ∈ P. (Recall that in an unauthenticated network, sending
m to Pj only means that the message (Pi, Pj ,m) is given to the adversary.)

(c) Pi waits until it receives keys from every Pj ∈ P, j 6= i, (Recall that these keys are
actually received from the adversary and do not necessarily correspond to keys sent by
other parties.) and defines sidi = 〈(P1, V K1), . . . , (Pn, V Kn)〉.

(d) Pi computes σi = SignSKi
(sidi) and sends αi = (sidi, σi) to all parties Pj ∈ P.

(e) Pi waits until it receives an αj = (sidj , σj) message from every Pj ∈ P, j 6= i. Then,
Pi checks that for every j, VerifyV Kj

(sidj , σj) = 1 and that sid1 = · · · = sidn. If all of
these checks pass, then Pi outputs (Init, sid, sidi).

II. Authenticating messages:

1. Pi initializes a counter c to zero.
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Functionality Fsa

Initialization:

1. Upon activation with input (Init, sid), where sid = (P, sid′) and P is a set of
PIDs, record P and forward it to the adversary.

2. When receiving (Init, sid, P, H, sidH) from the adversary, verify that party P ∈
P, that the list H of party identities includes P , and that for all recorded sets H ′,
either H ∩H ′ contains only corrupted parties and sidH 6= sidH′ , or H ′ = H and
sidH = sidH′ . If so, then output (Init, sid, sidH) to P and record (H, sidH) if
not yet recorded. Else, do nothing.

Message authentication:

1. When receiving (Send, sid, P, P ′,m) from P , where P ′ ∈ P, send (P, P ′, m) to the
adversary and add (P, P ′,m) to an (initially empty) list W of waiting messages.
Note that the same triple can appear multiple times in the list.

2. When receiving (Deliver, sid, P, P ′,m) from the adversary, proceed as follows:

(a) If P ′ did not previously receive an (Init, sid, sidH) output then do nothing.

(b) Else, if P is in the authentication set H of P ′, and P is uncorrupted, then:
If there is a triple (P, P ′,m) ∈ W then remove one appearance of the triple
from W and output (Received, sid, P, P ′,m) to P ′. Otherwise do nothing.

(c) Else (i.e., P ′ received (Init, sid, sidH), and either P is corrupted or P /∈ H),
then output (Received, sid, P, P ′, m) to P ′, regardless of W.

Figure 3: The split authentication functionality, Fsa

2. When Pi has input (send, sid, Pi, Pj ,m), meaning that it wishes to send a message m to Pj,
then it signs on m together with sidi, the recipient identity, and the counter value. That is,
Pi computes σ = SignSKi

(sidi,m, Pj , c), sends (Pi,m, c, σ) to Pj, and increments c.

3. Upon receiving a message (Pj ,m, c, σ) allegedly from Pj, party Pi first verifies that c did not
appear in a message received from Pj in the past. It then verifies that σ is a valid signature
on (sidi,m, Pi, c), using the verification key V Kij . If the verification succeeds, then it outputs
(received, sid, Pj , Pi,m).

We have:

Theorem 11 Assume that the signature scheme used in Protocol 1 is existentially secure against
chosen-message attacks. Then, Protocol 1 realizes Fsa with UC security in the presence of mali-
cious, adaptive adversaries, and in the bare model with no setup whatsoever.

Proof: We show that for every probabilistic polynomial-time adversary A there exists a prob-
abilistic polynomial-time ideal-process adversary (i.e., a simulator) S such that no probabilistic
polynomial-time environment Z can distinguish the case that it is interacting in the real world
with adversary A and parties running Protocol 1, from the case that it is interacting in the ideal
world with adversary S and the ideal functionality Fsa. The simulator S internally invokes A and
perfectly simulates the uncorrupted parties interacting with A. Then, when an uncorrupted party
Pi in the internal simulation by S completes its link initialization phase and outputs (Init, sid, sidi),
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simulator S determines the set H of Pi to be the set of parties for which sidi contain their “au-
thentic” verification keys. Formally, we say that V Kj is Pj ’s authentic key if it is the key generated
by Pj in the internal simulation by S. Next, when A delivers a signed message to some Pi, simu-
lator S asks Fsa to deliver the message to Pi in the ideal process only if the internally simulated
uncorrupted party would accept the signature, according to the protocol specification.

We now proceed to more formally specify S. Simulator S internally invokes a copy of all the
uncorrupted parties and runs an interaction between A and these simulated copies as follows:

1. All messages from the external Z to S are forwarded to the internal A, and all messages that
A wishes to send to Z are externally forwarded by S to Z.

2. Whenever A delivers a message (Init, sid) to an uncorrupted party Pi ∈ P, S simulates the
actions of Pi in the link initialization phase of Protocol 1.

3. Whenever an internally simulated uncorrupted party Pi completes the link initialization phase
with output (Init, sid, sidi), simulator S determines the set Hi to be the set of uncorrupted
parties Pj such that the authentic verification key sent by Pj is included in sidi. (Recall that
S internally runs all the uncorrupted parties, so it can determine whether or not the key V Kj

that it chose for Pj is included in sidi.) S then checks that for all previously computed sets
H, it holds that either:

• Hi ∩H contains only corrupted parties and sidHi 6= sidH , or

• Hi = H and sidHi = sidH .

If this holds, then S sends (Init, sid, Pi,Hi, sidi) to Fsa. Otherwise, S halts and outputs
fail1.

4. Whenever S receives a message (send, sid, Pi, Pj ,m) from Fsa where Pi is uncorrupted, simu-
lator S simulates the actions of an uncorrupted Pi sending a message m in the authentication
phase of Protocol 1.

5. Whenever an internally simulated party Pi outputs (received, sid, Pj , Pi,m) in the simulation,
S works as follows. If Pj is corrupted, then S instructs Pj to send an appropriate send message
to Fsa. If Pj is uncorrupted but not in the same authentication set as Pi, then S sends the
appropriate send message to Fsa itself. Then, S sends Fsa the message (deliver, Pj , Pi,m),
instructing it to deliver m to Pi from Pj .4 If the request is not fulfilled by Fsa then S halts
and outputs fail2.

6. Whenever A corrupts a party Pi, simulator S hands A the state of the internally simulated
uncorrupted party Pi.

It is straightforward to verify that as long as S does not output fail1 or fail2, the view of Z in the
ideal-model is identical to its view in a real execution of Protocol 1. This is due to the fact that
unless a fail occurs, S just mimics the actions of the uncorrupted parties. In addition, the local
outputs of the uncorrupted parties in the internal simulation correspond exactly to the outputs of
the actual uncorrupted parties in the ideal model. It therefore suffices to show that S outputs a
fail1 or fail2 message with at most negligible probability.

4Note that if Pj is uncorrupted and is in the same authentication set as Pi then S does not begin with a send
message, but rather immediately sends a deliver message.
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We first show that S outputs a fail1 message with at most negligible probability. Below, we
refer only to uncorrupted parties in the authentication sets because S never includes corrupted
parties in these sets. There are three events that could cause a fail1 message:

1. There exist two uncorrupted parties Pi and Pj for whom S defines sets Hi and Hj such
that Hi = Hj, and yet sidi 6= sidj: In order to see that this event cannot occur with non-
negligible probability, notice that S only defines sets Hi and Hj for parties that conclude
the Link Initialization portion of the protocol. Furthermore, it places Pi and Pj in the same
set only if they received each others authentic verification keys. By this behavior of S, we
have that if Hi and Hj are defined, and Hi = Hj , then Pi received Pj ’s authentic key and
vice versa. Now, Pj only concludes this phase with output if sidi = sidj (where sidj is the
identifier it locally defined and sidi is the identifier it received from Pi), and if the verification
of sidi with the verification key of Pi passes. If the event we are considering here occurred
with non-negligible probability, then sidi 6= sidj , and so in the internal simulation by S, we
have that Pi never signed on the identifier that Pj received in the name of Pi. Thus, A
must have forged a signature, and it can be used to break the signature scheme. (The formal
reduction to the security of the signature scheme is straightforward and is therefore omitted.)

2. There exist two sets Hi 6= Hj whose intersection contain uncorrupted parties: Let Pi ∈ Hi∩Hj

be an uncorrupted party. Then, using the same arguments as above, except with negligible
probability, Pi must have the same sidi as all the uncorrupted parties in Hi and all the
uncorrupted parties in Hj . Thus, all of the parties in Hi ∪ Hj have the same sidi. Since
this sidi is comprised of the parties verification keys, it must hold that all parties in Hi ∪Hj

received each other’s authentic verification keys. By the construction of S, it therefore holds
that Hi = Hj .

3. There exist two sets Hi 6= Hj, and yet sidi = sidj: We have already seen that by the
construction of S, if sidi = sidj then Hi = Hj . This case therefore never occurs.

It remains to show that S outputs fail2 with at most negligible probability. This occurs if S sends
a (deliver, Pj , Pi,m) message to Fsa where Pi is uncorrupted, and the message is not actually
delivered to Pi. By the definition of Fsa (and in general split functionalities), this can only occur
if Pj is uncorrupted, and Pi and Pj are in the same authentication set H. (We ignore trivialities
here like the case that H is not defined.) In order to see this, notice that if Pj is corrupted, then
S first instructs it to send a send message to Fsa and so S’s deliver message would not be ignored.
The same is true in the case that Pi and Pj are not in the same authentication set (because then
S first sends the send message itself). Now, if Pi and Pj are in the same authentication set, then
they both hold each others “authentic” verification keys (as shown above). Furthermore, the deliver
message of S is only ignored if Pj did not previously send an appropriate send message to Fsa.
Now, by the simulation strategy of S, it only generates a signature on a message in the internal
simulation if a send message was sent in the ideal world; see step 4 of S. Furthermore, by step
5 of S, it only issues a deliver message to Fsa if the internally simulated Pi outputs a received in
the protocol simulation. Recall that this occurs only if Pi received a message together with a valid
signature on that message.

Combining the above, we have that S can only output fail2 if:

1. No (send, sid, Pj , Pi,m) message was issued in the ideal world, and thus S did not generate a
signature (using Pj ’s authentic key) on the message (sidi,m, Pi, c), and
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2. S issues a (deliver, sid, Pj , Pi,m) message, which only occurs if Pi received a valid signature
on (sidi,m, Pi, c) in the internal simulation.

It therefore follows that A must have forged a signature relative to the uncorrupted Pj ’s authentic
key. As above, such an adversary can be used to break the signature, and the actual reduction
is straightforward. We note that in the case that the same message m is sent multiple times, the
above argument remains the same while using the counter to argue that m cannot be delivered more
times than it was sent. (Otherwise, there is a different message-pair (m, c) that was never signed
upon by S.) We conclude that the views of Z in the two interactions are statistically close.

4.3 Realizing Multi-session Functionalities with Authenticated Communication

We show that, when authenticated communication is available, the “multi-session version” of any
ideal functionality can be realized by an appropriate “multi-session protocol”. Said otherwise, it
is possible to multi-realize any ideal functionality. This is proven thrice: once with bounded-UC
security with no additional setup, once with UC security in the CRS model, and once with gUC
security in the ACRS model.

We remark that, with respect to party corruptions, multi-session security provides a somewhat
stronger guarantee than needed: The multi-session model allows the adversary to corrupt different
sets of parties in different instances of the protocol under consideration. In contrast, for realizing
split functionalities we are only interested in the case where the same set of parties (ie, the same
set of PIDs) are corrupted in all sessions. Still, as shown in this section, known solutions do achieve
this stronger property.

Multi-Realizing Functionalities With Bounded-UC Security. Although the formalism in
[28] is quite different than the one here, the protocol there and its proof directly extends to give the
following theorem. We note that this protocol can handle any polynomial bound on the amount of
communication from the environment to the adversary, as long as the bound is known in advance;
indeed, the protocol depends on this bound.

Theorem 12 ([28]) Assume the existence of collision-resistant hash functions and enhanced trap-
door permutations. Then, for any well-formed probabilistic polynomial-time ideal functionality F ,
and for any n that is polynomial in the security parameter k, there exists a protocol π that n-
realizes F with bounded-UC security, in the presence of static, malicious adversaries and with no
setup other than authenticated communication.

4.3.1 Realizing Multi-Session Functionalities With UC and gUC Security

Due to the impossibility of realizing large classes of ideal functionalities with UC (or gUC) security
in the plain model, where the only available trusted set-up is authenticated communication [8, 5, 11],
we resort to protocols that use some additional trusted set-up. Specifically, we consider two trusted
set-up models: the common reference string (CRS) model, and the augmented CRS (ACRS) model.

In the UC framework, the CRS model is formalized via an ideal functionality, Fcrs, that
proceeds as follows. Fcrs is parameterized by a probabilistic polynomial-time function D (which
represents a sampling algorithm that induces the distribution of the reference string), and an SID
that encodes the set of “legitimate users” of this instance of Fcrs. Initially, Fcrs chooses a random
value s, sets the reference string to be S = D(s), and sends S to the adversary. It then returns S
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to any party that asks for the reference string, if the SID of the requesting party is the legitimate
one.

Restricting the set of legitimate recipients of the reference string plays a crucial role in the
feasibility results in the CRS model. (Without it, protocols that use Fcrs would not be subroutine
respecting, and thus the UC theorem should not apply to them.) However, this restriction results in
a discrepancy between the formal modeling and the common view of a reference string as a “public
piece of information” that is available to and usable by anyone, even by uncorrupted participants
in arbitrary other protocols.

The ACRS model is geared towards avoiding this discrepancy. However, it does so at the price
of some additional trust put in the ideal functionality. Specifically, the ACRS model is formalized
via an ideal functionality, Facrs, that interacts with any ITI (even ITIs wit ha different SID).
It proceeds as follows/ Facrs is parameterized by functions D and t. Similarly to Fcrs, Facrs
initially chooses a random secret s, sets the reference string to be S = D(s), and sends S to the
adversary. It then returns S to any party that asks for the reference string, regardless of the identity
or program of that party. In addition, whenever a corrupted party with identity ID asks for its
trapdoor, Facrs responds with t(s, ID).

We give two general feasibility results, one using the Fcrs model, and one using the Facrs
model. The results are incomparable: On the one hand, Fcrs is parameterized so that only the
participants in a single instance of the analyzed protocol have access to the reference string, while
Facrs allows any party in the system access to the reference string. On the other hand, Facrs
is parameterized with a “trapdoor function” t that requires it to continue interacting with the
adversary throughout the lifetime of the system. For notational simplicity, from now on the “CRS
model” is intended to mean the model with access to Fcrs that gives the reference string only to
the parties of a single instance of the analyzed protocol. The “ACRS model” means the model
where all parties have access to a single instance of Facrs.

Theorem 13 Assume the existence of enhanced trapdoor permutations and non-committing en-
cryption. Then, for any well-formed probabilistic polynomial-time ideal functionality F there exists
a protocol π that poly-realizes F with UC security, in the CRS model and assuming authenticated
communication in the presence of adaptive, malicious adversaries. Furthermore, protocol π is such
that all instances of π use only a single instance of Fcrs.

Theorem 14 Assume the existence of enhanced trapdoor permutations and non-committing en-
cryption. Then, for any well-formed probabilistic polynomial-time ideal functionality F there exists
a protocol π that poly-realizes F with gUC security, in the ACRS model and assuming authenticated
communication in the presence of adaptive, malicious adversaries.

Theorem 14 follows immediately from the general feasibility result of [7]. This is so since, by
the UC theorem, n-realizing F with gUC security is equivalent to simply realizing F with gUC
security. Proving Theorem 13 is somewhat more involved.
Proof of Theorem 13: We start from the general feasibility result in [12]:

Theorem 15 ([12]) Assume the existence of enhanced trapdoor permutations and non-committing
encryption. Then, for any well-formed ideal functionality F there exists a protocol that realizes F
with UC security in the CRS model, assuming authenticated communication and in the presence of
adaptive, malicious adversaries.
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Let closF denote the protocol in [12] for realizing functionality F . As mentioned above,
here Fcrs provides the reference string only to parties of a single instance of closF (This is
essential for guaranteeing that closF is subroutine respecting. In fact, as shown in [7], the result
of Theorem 15 would be impossible if Fcrs were to provide the reference string to other parties.)
Consequently, Theorem 13 cannot be derived via a simple application of Theorem 15. In particular,
Theorem 15 provides no security guarantees for the case where multiple instances of closF use the
same reference string (namely, the same instance of Fcrs). Instead, we observe that the specific
structure of closF guarantees that closF actually poly-realizes F (namely, multiple instances of
closF emulate multiple independent instances of F), even when all instances of closF use the
same instance of Fcrs.5

Specifically, recall that a key component in closF is the multi-instance commitment function-
ality, Fmcom. In fact, closF can be viewed as consisting of two separate parts:

Low-level component: A protocol πc for realizing Fmcom assuming access to Fcrs. This pro-
tocol provides the functionality of multiple independent ideal commitments, by arbitrarily
chosen sets of parties. This is done using a single instance of Fcrs.

High-level component: A protocol ΠF for realizing any functionality assuming access to Fmcom.
This protocol does not access Fcrs at all.

In other words, closF = Ππc
F . Furthermore, Fmcom has the property that having access to multiple

instances of Fmcom has the same effect as having access to a single instance of Fmcom. Indeed,
in both cases the provided functionality is that of multiple independent ideal commitments. Also,
protocol πc has the property that each commitment is handled by a separate subroutine, such that
the subroutines share no state other than the joint access to Fcrs.

We conclude that for any n, running n independent instances of closF , where each instance
uses a different instance of Fmcom, has the same effect as running the same n instances of closF ,
where all instances use the same joint instance of Fmcom. We can then use the UC theorem to
replace this joint instance of Fmcom by a (single instance of) a protocol that realizes Fmcom. We
thus obtain a protocol that uses a single instance of Fcrs and has the same effect as n independent
instances of closF . In particular, this protocol realizes n independent instances of F .

This argument can made more formal via the universal composition with joint state (JUC)
theorem. Recall that the multi-session extension F̂ of an ideal functionality F is the functionality
that provides the same interface as that of multiple independent instances of F . (Technically, since
all these instances of F are handled within the same instance of F̂ , they all must use the same
SID. They are differentiated using another identifier, called the sub-session identifier, SSID.) The
JUC theorem says the following: Let π be a protocol that uses multiple independent instances
of functionality F , and let ρ be a protocol that realizes F̂ with UC security. Then the protocol,
denoted π[ρ], where all the calls of π to all the instances of F , are replaced by calls to a single
instance of ρ, emulates the original protocol π with access to multiple instances of F .

To use the JUC theorem, we observe that the multi-session extension of Fmcom is essentially
the same functionality as a single instance of Fmcom. (Technically, the multi-session extension of

5A natural way to determine whether a protocol π uses a CRS where each instance of π uses a different instance
of the CRS, or alternatively whether all instances of π use the same CRS, is via the SID of Fcrs. For instance, if π
calls Fcrs with an some fixed SID then this would result in having all instances of π use the same instance of Fcrs.
Alternatively, if π calls Fcrs with an SID that includes also the SID of the current instance of π then this would
result in invoking a new instance of Fcrs for each instance of π.
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Fmcom has an additional SID, but this SID can be chosen to be some fixed known value, say 0).
It follows that protocol πc defined above realizes also the multi-session extension F̂mcom. It then
follows from the JUC theorem that for any protocol α that uses multiple instances of Fmcom, the
protocol α[πc] emulates α. Now, fix some ideal functionality F , and let π̂F denote the protocol that
runs multiple instances of πF , where each instance of πF uses a dedicated instance of Fmcom. We
now have:

1. Protocol π̂
[πc]
F describes multiple instances of the [12] construction, where all instances use

the same instance of Fmcom, and thus the same instance of Fcrs.

2. From the JUC theorem, we have that protocol π̂
[πc]
F emulates protocol π̂F .

3. From the analysis of [12], we have that protocol π̂F realizes F̂ .

4. From the transitivity of emulation, we have that π̂
[πc]
F realizes F̂ .

We conclude that protocol closF poly-realizes F with UC security, even when all instances of
closF use the same instance of Fcrs.

4.4 Realizing General Split Functionalities

This section presents a general transformation from any protocol πF that n-realizes F given au-
thenticated communication to a protocol ΠF that realizes sF given access to Fsa. More precisely,
we assume that all participants of each instance of πF use a single instance of Fmauth for all
communications. This instance has SID sid ◦ 0, where sid is the SID of the current instance of πF .

The transformation preserves access to the underlying setup. That is, the transformed protocol
ΠF uses an underlying ideal functionality G only if πF uses G. Furthermore, the transformation
uses protocol πF and its potential subroutines (except Fmauth) in a “black-box way”; namely, ΠF

accesses only the inputs and outputs of πF , as well as the interface of πF with Fmauth.
Protocol ΠF is quite simple: each party first runs Fsa to obtain an SSID ssid. Next it runs

protocol πF with the SID of πF set to ssid. Each outgoing message of πF is forwarded to Fsa, and
each incoming message from Fsa is forwarded to πF . For simplicity we assume that F (And πF )
comply with the convention that the set P of participating PIDs in an instance is included in the
SID. (This in particular means that P is fixed at the onset of the protocol.) The protocol is given
in Figure 4.

Lemma 4.1 Let G be a (setup) functionality, let F be an n-party ideal functionality, and let πF be
a protocol that securely n-realizes F with bounded-UC (resp. UC, gUC) security, using authenticated
communication (i.e., Fmauth) and an instance of G. Then, protocol ΠF in Figure 4 uses only an
instance of Fsa and an instance of G, and securely realizes the split functionality sF with bounded-
UC (resp. UC, gUC) security.

Proof: Assume that for any adversary A′ there exists an ideal-process adversary (i.e., a simulator)
S ′ such that no environment Z ′ that invokes up to n protocol instances, and complies with the
restrictions of bounded-UC (resp., UC, gUC) security, can tell with non-negligible probability
whether it is interacting with parties running protocol πF and adversaryA′, or with F and simulator
S ′, i.e.,

idealF ,S′,Z′
c≡ execπF ,A′,Z′ .
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Protocol ΠF

Let πF be a protocol as described above, that has access to functionality G and assumes
authenticated communication. Protocol ΠF proceeds as follows, using ideal access to
Fsa and G.

1. Upon receiving input (Init, P, sid), where P is a PID, party P calls Fsa with
input (Init, P, sid ◦ 1). (That is, P concatenates 1 to sid to create a different
SID.)

2. Upon receiving output (Init, sid ◦ 1, sidH) from Fsa, store sidH and output
(Init, sid, sidH) to ITI P . (Here we use the convention that the PID P encodes
a full identity (i.e., SID and PID) of an ITI.)

3. Upon receiving (Input, sid, x), party Pi inputs x to the ITI running πF , with SID
(sid, sidH) and PID Pi.

4. Upon receiving output (received, sid, Pj , Pi,m) from Fsa, Pi forwards
(Pj , Pi,m) to (πF , (sid, sidH), Pi), i.e., to the ITI running πF , with SID (sid, sidH)
and PID Pi, as if coming from Fmauth.

5. When the ITI (πF , (sid, sidH), Pi) sends the message (Pi, Pj , m) to party Pj using
Fmauth, provide the input (send, sid, Pi, Pj ,m) to Fsa.

6. Finally, whenever the ITI (πF , (sid, sidH), Pi) output a value y, outputs y.

Figure 4: The protocol ΠF for realizing sF in the unauthenticated model, given protocol πF for
multi-realizing F with authenticated communication.

We show that ΠF realizes sF with UC (resp, gUC, bounded-UC) security. That is, we show
that for any adversary A there exists an ideal-process adversary S such that no environment Z,
that complies with the restrictions of bounded-UC (resp., UC, gUC) security, can tell with non-
negligible probability whether it is interacting with parties running protocol ΠF and adversary A,
or with sF and simulator S. That is, we show that

idealsF ,S,Z
c≡ exec

Fsa
ΠF ,A,Z .

The construction of S and its analysis proceeds in a number of steps. We note that the same
simulator S works for UC, gUC and bounded UC security.

1. Given an adversary A that interacts with protocol ΠF , running on unauthenticated channels,
we construct an adversary A′ that interacts with protocol πF running on authenticated chan-
nels. Furthermore, whereas A only interacts with a singe instance of protocol ΠF , A′ might
interact with up to n concurrent executions of the protocol πF .

2. Since πF securely n-realizes F (i.e., securely realizes F also under n concurrent executions), we
deduce the existence of some ideal-model adversary S ′ such that the output of any bounded-
UC (resp., UC, gUC), n-instance environment Z ′ that interacts with S ′ and multiple instances
of F is indistinguishable from the output of Z ′ when interacting with A′ and πF .

3. Next we transform the (concurrent) ideal model adversary S ′ into an ideal model adversary
S for the ideal execution of sF (i.e., the ideal unauthenticated execution).
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4. We show that the output of any bounded-UC (resp., UC, gUC), environment Z that interacts
with S and sF over unauthenticated communication is indistinguishable from the output of
Z when interacting with A and ΠF . This is done as follows: Given an environment Z (that
expects to interact with A and ΠF ), we construct an n-instance environment Z ′ (that expects
to interact with A′ and πF ), such that Z ′ distinguishes between an interaction with A′ in πF

and an interaction with S ′ and F with essentially the same probability that Z distinguishes
between an interaction with A in ΠF and an interaction with S and sF . Furthermore, if Z
complies with the restrictions of bounded-UC (resp., UC, gUC) security, then so does Z ′.

The Authenticated Concurrent Execution. We first describe the construction of adversary
A′, given adversary A. To give a better intuitive picture of the proof, we also present the construc-
tion of the environment Z ′ along with the construction of A′, in spite of the fact that Z ′ appears
only later in the course of the proof (see the above outline).

The interaction of environment Z ′, adversary A′, and protocol πF perfectly mimics the inter-
action of Z, A, and protocol ΠF . In particular, Z ′ and A′ internally run Z and A and internally
emulate Fsa for them. Note however that whereas Z only invokes one execution of the protocol
ΠF , Z ′ might instead invoke up to n different concurrent execution.

In order to succeed, Z ′ and A′ need to “coordinate their actions”. They do so by sending
messages between each other. As a convention, we let all such “internal” message sent between Z ′
and A′ begin with the string Internal; for simplicity we furthermore assume that Z and A never
communicate using messages that begin with this prefix. Looking forward, these “internal-message”
will also be useful to us for constructing the ideal unauthenticated adversary S. On an intuitive
level, these messages correspond to the “interface” of sF . In order to ensure that this proof also
holds for the setting of bounded-UC, we also need to make sure that there is a fixed upper bound
on the length of all messages sent by Z ′ to A′. We proceed with the description of Z ′ and A′.
Constructing Z ′. For any given environment Z, define the environment Z ′ that internally in-
corporates Z and proceeds as follows.

Outgoing communication from Z ′:
1. Whenever Z wishes to give input (Init, sid) to party P of session sid of πF (i.e., to an ITI

running πF with PID Pi and SID sid), Z ′ forwards the message (Internal-Init, P, sid) to
the adversary A′.

2. Whenever Z wishes to give input (Input, sid, x) to party P of session sid of πF , Z ′ verifies
that it has previously stored a tuple (P, sid, sidH ,H) for some sidH . If so, then Z ′ inputs x
to party P of session sid of πF . Otherwise Z ′ ignores and continues to run Z.

3. Whenever Z wishes to input any other value to P , Z ′ ignores and continues to run Z.

4. Whenever Z wishes to input any value to the adversary A, Z ′ inputs this value unmodified
to A′.

5. Finally, whenever Z halts outputting z, Z ′ also halts outputting z.

Observe that the messages sent by Z ′ to A′ are comprised of the Internal-Init messages and
the messages that the original Z sends to A. The overall length of the Internal-Init messages
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is at most n log n, where n is the number of parties (this is due to the fact that for n executions it
suffices to take identifiers sid of length log n). This implies that if the overall communication from
the original Z to A is O(n log n), then so is the overall communication from Z ′ to A′. Thus, if Z
and A are in the setting of bounded-UC, then so are Z ′ and A′.

Incoming message to Z ′:
1. Whenever Z ′ receives an output of the type (Internal-Init, sid, P, H, sidH) from A′, it

stores the tuple (P, sid, sidH ,H), and feeds the tuple (Init,sid, sidH) to Z as if it came
from P with session id sid.

2. All other messages that Z ′ receives from A′ are directly forwarded to Z.

3. Any output received from party P with session id (sid, sidH) are forwarded unmodified to Z
as if it came from P with session id sid.

Constructing A′. For any given adversary A that interacts with ΠF , define the adversary A′,
which interacts with πF . (Recall that πF uses Fmauth, so A′ can cause messages to be delivered
only by interacting with Fmauth.) A′ internally runs an instance of A, plus an instance of Fsa.
All messages that Fsa wishes to send to the adversary are directly forwarded to A. Likewise, all
messages that A wishes to send to Fsa are directly forwarded to this emulated version of Fsa.
More precisely:

1. Upon receiving (Internal-Init, P, sid) from the environment, A′ locally initializes an in-
stance of Fsa and feeds it with input (Init, sid◦1) as if it came from party (P, sid). Messages
from Fsa to the adversary are delivered to A.

2. Whenever A sends (Init, sid◦1, P,H, sidH)to Fsa, A′ forwards this message to the internal
instance of Fsa. When this local instance of Fsa outputs (Init, sid ◦ 1,H, sidH) to P , A′
outputs (Internal-Init, sid, P, H, sidH) to the environment.

3. Whenever A wishes to send (deliver, sid ◦ 1, P, P ′, m) to Fsa, A′ forwards this message to
Fsa. When Fsa outputs (Received, sid◦1, P, P ′,m) to P ′, A sends the message (deliver, sid◦
0, P, P ′,m) to Fmauth.

4. Whenever A wishes to corrupt a party (P, sid) in ΠF , A′ forwards this corruption instruction
to the internal instance of Fsa, and corrupts (P, sid) in πF .

5. Whenever A wishes to deliver any other message to an uncorrupted party, the message is
ignored.

6. When receiving a message (P, P ′,m) from Fmauth, A′ feeds the local instance of Fsa with
input (Send, sid ◦ 1, P, P ′,m) coming from P .

It directly follows from the construction of A′ and Z ′ that the view of Z running within Z ′ is
distributed identically to the view of Z in the execution of ΠF . I.e.,

exec
Fsa
ΠF ,A,Z = execπF ,A′,Z′ (1)
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The Ideal Concurrent Execution. Since protocol πF n-realizes F , it follows that for every
adversary A′, there exists some ideal model adversary S ′ such that for every environment Z ′′ that
is allowed to open up at most n sessions of F , it holds that,

execπF ,A′,Z′′
c≡ idealF ,S′,Z′′

This, in particular, implies that for every Z that opens at most one session of F it holds that,

execπF ,A′,Z′
c≡ idealF ,S′,Z′ (2)

where Z ′ is as defined above.

The Ideal Unauthenticated Execution. We finally construct the simulator S out of the
simulator S ′. Essentially, S mimics for Z an execution within Z ′, when Z ′ interacts with S ′ and
multiple concurrent instances of IF . More precisely, consider the following simulator S for the ideal
unauthenticated model. S internally incorporates S ′ and proceeds as follows.

1. Whenever S receives a messages (Init, sid, P ) from sF , it forwards (Internal-Init, P, sid)
to S ′ (as if it came from the environment).

2. Whenever S ′ wishes to send the message (Internal-Init, sid, P, H, sidH) to the environ-
ment, S sends the message (Init, sid, P, H, sidH) to sF .

3. Whenever S ′ wishes to send message x to the instance of F with session id (sid, sidH), S
sends (Input, sid, H, x) to sF . (The set H associated with sidH can be determined from the
previous (Internal-Init) outputs of S ′.)

4. When receiving from sF an output v directed at party P in instance H, S forwards to S ′ an
output v for party P , coming from FH . (Note that in this case P is corrupted.

5. When S ′ corrupts party P (by sending (corrupt, P) messages to the the instances of F), S
sends a (corrupt, P) message to sF . (Note that, by the validity of S ′, we have that S ′ must
corrupt the same PID P in all instances of F together, except for negligible probability.) The
response of sF is then forwarded to S ′.

Analysis of S. We claim that the output of Z,S in the sF-hybrid model is statistically close to the
output of Z ′, S ′ in the concurrent F-hybrid model. The only difference between those executions
is that sF might ignore certain inputs, and not forward them to the respective instance of F . This
happens only if one of the following two events occur:

1. Upon receiving a message from an uncorrupted party that is not part of any specified set H.

2. Upon receiving a message (Init, sid, Pi,H, sidH) from the adversary, that is “mal-formed”.
This happens if:

(a) Pi has not previously sent an (Init, sid) message,

(b) Pi is not part of the set H,

(c) sF has previously received another pair (sidH′ ,H ′) such either 1) H 6= H ′ and their
intersection contains uncorrupted parties, or 2) H and H ′ are equal, but sidH 6= sidH′ .
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Observe that inputs of the first type (i.e., messages from an uncorrupted party that is not part
of any specified set H) are ignored also in the execution of Z ′ and S ′ in the concurrent F-hybrid
model. This follows since Z ′ ignores all inputs that Z wishes to send to parties Pi that are not
part of a set H that has been previously recorded.

We conclude that the only difference between the execution of Z,S in the sF-hybrid model
and the execution of Z ′, S ′ in the concurrent F-hybrid model, is that sF ignores calls when
the second event occurs. However, we show that the first event only happens with negligi-
ble probability. Recall that by construction of A′, A′ never outputs “mal-formed” messages of
the form (Internal-Init, sid, P,H, sidH) to Z ′ (since A′ only stores a pair (sidH ,H) if Fsa
would have done so, which by the definition of Fsa implies that only “well-formed” messages
(Internal-Init, sid, P,H, sidH) will be output to Z ′). Therefore, by the validity of S ′ (Equation
2), the probability that S ′ outputs a mal-formed message (Internal-Init, sid, P, H, sidH) in an
execution with Z ′ is negligible. By the construction of S, it follows that the probability that S (when
interacting with Z) send a malformed message (Init, sid, P, H, sidH) to sF is negligible (recall
that S only sends the message (Init, sid, P,H, sidH) if S ′ sends (Internal-Init, sid, P, H, sidH)
to Z ′).

We conclude that the probability the second event happens in an execution of Z,S, sF is
negligible. Since the execution of S ′,Z ′ with multiple F is otherwise identical to the execution of
S,Z, sF , we conclude that,

idealF ,S′,Z′
s≡ idealsF ,S,Z (3)

By combining Equations (1), (2) and (3), we have shown that

exec
Fsa
ΠF ,A,Z = execπF ,A′,Z′

c≡ idealF ,S′,Z′
s≡ idealsF ,S,Z

This completes the proof of Lemma 4.1.

4.5 Putting it all together

Recall that by Theorem 11 there exists a protocol ρ that realizes Fsa with UC security. The
protocol ρ requires the existence of signature schemes that are secure against a chosen message
attack, which can be based on the existence of one-way functions. Using the UC theorem we obtain
that protocol Πρ

F (i.e., the protocol obtained from ΠF by replacing each instance of Fsa with an
instance of ρ) emulates protocol ΠF with gUC security. Since emulation with gUC security implies
emulation with UC and with bounded-UC security, we obtain:

Lemma 4.2 Let F be ideal functionality that can be realized with bounded-UC (rep., UC, gUC)
security, given authenticated communication. Then, assuming the existence of one-way functions,
there exists a protocol that securely realizes the split functionality sF with bounded-UC (rep., UC,
gUC) security.

Finally, Theorem 1 is obtained by combining Theorem 12 and Lemma 4.2. Theorem 2 is
obtained by combining Theorems 13, 14, and Lemma 4.2.

5 Partially Authenticated Networks

A natural and realistic question is what security guarantees can be obtained in partially authen-
ticated networks. In such a network some parties share an authenticated link between them and
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some don’t. In fact, some parties may have a link that is authenticated only in one direction.
For example, if a server’s public key is published then the link from this server to any client is
authenticated while the link from the client to the server is not authenticated. Another situation
where this may arise is when all links are authenticated using passwords taken from a domain
which is not too large. If the number of links is large relative to the size of the password domain,
then, even if one uses state-of-the-art password-based key exchange protocols, the adversary will
still be able to compromise some of the links. Moreover, the uncorrupted parties will not be able to
know which links were compromised and which were not. Note also that in the realistic situation
where passwords used to authenticate different links are correlated, so will be the distribution of
compromised links.

G-authenticated networks. All these considerations lead us to define partially authenticated
networks in a more general way. Specifically, we consider the notion of an authentication graph
G which is an n vertex directed graph (where n is the number of parties). An edge (i, j) is in
the graph if the communication from Pi to Pj is authenticated. That is, we place (i, j) ∈ G if
both Pi and Pj are uncorrupted and if we’re guaranteed that whenever Pj accepts a message m
from Pi then Pi indeed sent this message at some earlier point in time. (As usual we let the
adversary delete and eavesdrop to messages from Pj to Pi; we only assume that she cannot forge
or duplicate such messages.) We call such a network G-authenticated. In particular the model of
unauthenticated networks we considered in the previous section corresponds to a ∅-authenticated
network (where ∅ denotes the empty graph), and the standard authenticated-channels model of
previous works corresponds to a Kn-authenticated network (where Kn is the complete n-vertex
graph). A bit more formally, a G-authenticated network is captured via a relaxed version of
the multi-message authentication functionality, Fmauth. Specifically, given a graph G, the G-
authentication functionality, FG

mauth (see Figure 5) is identical to Fmauth except that it guarantees
security only for messages from party Pi to party Pj where (i, j) ∈ G.

Functionality FG
mauth

1. Upon activation with input (Init, sid), where sid = (P, sid′) and P is a set of
PIDs, record P and forward it to the adversary.

2. Upon receiving (send, sid, Pi, Pj ,m) from Pi, where Pi, Pj ∈ P, send (Pi, Pj ,m)
to the adversary and add (Pi, Pj ,m) to an (initially empty) list W of waiting
messages. Note that the same triple (Pi, Pj ,m) can appear multiple times in the
list.

3. Upon receiving (deliver, sid, Pi, Pj ,m) from the adversary, if Pi is in P and is
currently corrupted, or (i, j) ∈ G, then output (received, sid, P,Pj ,m) to Pj .
Else, if there is a triple (Pi, Pj ,m) ∈ W then remove one appearance of it from W
and output (received, sid, Pi, Pj ,m) to Pj . Otherwise do nothing.

Figure 5: The multi-message authentication functionality with respect to authentication graph G

Our formalism fixes the authentication graph ahead of time, rather than letting it be determined
dynamically as the computation proceeds. However, this is not a limitation since we will see that
the parties running the protocol need not be aware of the particular current authentication graph.
That is, our protocols are oblivious of the authentication graph and give a security guarantee that
becomes stronger as the graph becomes more dense. In particular, if the authentication graph is
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the complete graph then our our protocol realizes the original functionality rather than its split
version. (Technically speaking, FG

mauth may be created by the adversary or environment, who set
it up with the appropriate graph G.)

G-valid sets and the functionality sGF . We say that a subset H ⊆ [n] is G-valid if H does
not have an incoming edge from its complement [n] \ H. That is, for every (i, j) ∈ G, if j ∈ H
then i ∈ H. Note that in a G-authenticated network, members of a G-valid set H cannot verify
authenticity of messages coming from outside the set H and hence an adversary can always split
the uncorrupted parties G-valid sets H1, ...,Hk and run the computation in each set independently,
as long as all the sets are G-valid. More formally, our notion of security will be this: we define
the functionality sGF to act exactly as sF except that it only accepts G-valid sets H from the
adversary. That is, we only change Step 2 in the Initialization part of Fsa (see Figure 1) to accept
a set H only if H is consistent with G. (Recall that for the purpose of determining validity, we
remove the corrupted parties from the sets H1, ...,Hk.)

We note that sGF presents the same interface as sF to the uncorrupted parties, but presents a
reduced interface to the adversary (prohibiting her from sending sets that are not G valid). Thus,
any protocol that securely realizes sGF also securely realizes sF (but possibly not vice versa).

Our results. We show that if the real network is G-authenticated, then our protocols not only
securely realize the functionality sF but in fact also the functionality sGF . Furthermore, the
protocols are oblivious of G, and only their analysis depends on G. That is, we prove the following
strengthened versions of Theorems 9 and 10 respectively:

Theorem 16 (Partially authenticated computation): For any n-party well-formed PPT function-
ality F and for every n-vertex graph G, the protocol from Section 4 with access to FG

mauth realizes
the functionality sGF with bounded-UC (resp., UC, gUC) security, in the presence of static (resp.,
adaptive) adversaries, under the same computational assumptions as in Theorems 1 and 2.

The key observation to proving Theorem 16 is that in a G-authenticated network (namely, with
access to FG

mauth), Protocol 1 actually UC-securely implements not only Fsa but in fact also
Fsa,G, where Fsa,G is again defined as a variant of Fsa which only accepts G-valid sets (i.e., Fsa,G

is equal to sGFmauth). That is, we prove the following theorem:

Theorem 17 Assume that the signature scheme used in Protocol 1 (see Page 21) is existentially
secure against chosen-message attacks. Then, Protocol 1 with access to FG

mauth realizes Fsa,G with
UC security in the presence of malicious, adaptive adversaries, without any additional setup.

Proof: Loosely speaking, the reason is the following: suppose that the edge (i, j) is in the au-
thentication graph G. Then in Protocol 1 party i will receive the correct public key V Kj of party
j. Thus, if party i finishes the protocol, then this means that it received the signature of Party j
on sidi which means that they are in the same authentication set.

Formally, it suffices to prove is that, except with negligible probability, the simulator S con-
structed in the proof of Theorem 11 never queries the functionality with a set H that is not G-valid.
(This is so since in this case Fsa and Fsa,G behave in exactly the same way.)

Indeed, let H = Hi be a set sent by the simulator S to the ideal functionality in Step 3 of
its operation. Note that Hi is chosen by some uncorrupted party Pi which completed the link
initialization phase (Phase I) of the protocol, and it is defined to be the set of all j such that the
authentic verification key sent by party Pj is in sidi.
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Now suppose that there is an edge (i′, j) in G such that j ∈ H. We need to prove that
i′ ∈ H. The fact that (i′, j) ∈ G implies that both Pi′ and Pj are uncorrupted and that link is
authenticated. Hence sidj contains the valid verification key of Pi′ . Now because sidi contains the
authentic verification key of Pj , and because Pi completed the link initialization phases successfully,
the security of the signature scheme implies that with very high probability the value sidij that
Pi receives is equal to sidj . Hence, it contains the authentic verification key of Pi′ . Since the link
initialization phase is completed by Pi only if for all j, sidij = sidi, in particular it holds that sidi

contains the authentic verification key of Pi′ . However, this implies that i′ ∈ H. (A more formal
reduction to the security of the underlying signature scheme follows the lines of the reduction in
the case of Fsa.

Proving Theorem 16 from Theorem 17. Theorem 17 implies Theorem 16 in an analogous way
to the way that, in the completely unauthenticated case, Theorem 11 implies Theorems 9 and 10.
As there, the main part is the following extension of Lemma 4.1:

Lemma 5.1 Let F be an n-party ideal functionality, and let πF be a protocol that securely n-
realizes F with bounded-UC (resp. UC, gUC) security, using FG

mauth for graph G. Then, protocol
ΠF in Figure 4 using only an instance of Fsa,G, securely realizes the split functionality sGF with
bounded-UC (resp. UC, gUC) security.

Proof: The proof closely follows the proof of Lemma 4.1. That is, we convert an adversary A and
environment Z that invoke a single execution of ΠF in the Fsa,G-hybrid model to an adversary
A′ and environment Z ′ that invoke up to n concurrent executions of π in the fully authenticated
communication model. We then use the simulator S ′ for A′,Z ′ to construct a simulator S for
A in the Fsa,G-hybrid model. The conversion is almost the same as in the proof of Lemma 4.1,
except that now A′ emulates the uncorrupted action of Fsa,G rather than Fsa. The only thing we
need to worry about is to ensure that S asks Fsa,G a query with a set H that is not G-valid only
with negligible probability. However, as there, this follows since the adversary A′ by construction
never asks such queries, and the simulator cannot deviate from this behavior except with negligible
probability.

Plugging Theorem 17 into Lemma 5.1, we obtain Theorem 16. Note that all our protocols are
oblivious of the underlying authentication network G.

Implications. It suffices to have a G-authenticated network for some connected graph G in order
to carry out multiparty computation. Specifically, if there is one uncorrupted party with a digital
certificate for a public-key infrastructure that can be used for generating a secure channel, then it
is possible to achieve secure computation for all parties. Importantly, it is not necessary to know
which party is uncorrupted. Thus, if there are a few such parties, all we need to assume is that
at least one is uncorrupted. This can be used in real-world settings to obtain secure multiparty
computation (e.g., auctions) where pairwise authenticated channels do not (and are unlikely to)
exist.
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