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Abstract. We describe a new method for constructing Brezing-Weng-
like pairing-friendly elliptic curves. The new construction uses the min-
imal polynomials of elements in a cyclotomic field. Using this new con-
struction we present new “record breaking” families of pairing-friendly
curves with embedding degrees of k ∈ {16, 18, 36, 40}, and some interest-
ing new constructions for the cases k ∈ {8, 32}.

1 Introduction

Cryptosystems such as the Elliptic Curve Digital Signature Algorithm, Elliptic
Curve Diffie Hellman and ElGamal Elliptic Curve Encryption require randomly
generated elliptic curves for their implementation while cryptosystems such as
short digital signatures, identity-based encryption and one-round three-way key
exchange, require pairing-friendly elliptic curves. These curves have special prop-
erties which most randomly generated curves will not have. The interest in recent
times is to explore various methods of constructing pairing-friendly elliptic curves
with prescribed embedding degrees, ideally to make them readily available, more
efficient and more secure.
Let G1 and G2 be finite cyclic additive groups of prime order r and G3 be a
finite cyclic multiplicative group of prime order r. A bilinear pairing is a map
e : G1 x G2 → G3 that satisfies the following properties:

1. (bilinear): e(aP, bQ) = e(P,Q)ab, for all P ∈ G1 and Q ∈ G2 and for all
a, b,∈ Zr

2. (non-degenerate): there exists P ∈ G1 and Q ∈ G2 such that e(P, Q) 6= 1
3. (Computable): e can be efficiently computed.
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The traditional cryptographic pairings are the Weil and the Tate pairings, al-
though recently the η (aka the twisted Ate [14]) and Ate pairings have become
popular. In terms of efficiency it is generally accepted that the Tate pairing is
superior to the Weil pairing. The algorithm for the calculation of the Tate pair-
ing requires a Miller loop, followed by a final exponentiation. The η and Ate
pairings are more efficient variants of the Tate pairing, which often require only
a reduced number of iterations of the Miller loop.
These pairings change the elliptic curve discrete logarithm problem (ECDLP)
on elliptic curves over a prime field E(Fp) into the discrete logarithm problem
in some extension field Fpk . As such, for the pairing-based cryptosystems to be
secure, the ECDLP in E(Fp) of Fp rational points on E and the DLP in the
multiplicative group F∗pk must both be hard [10]. The parameter k is called the
embedding degree.
On a non-supersingular elliptic curve while G1 may be generated by a point over
the base field E(Fp), points in G2 may be represented as points on a twisted
curve over an extension field E(Fpk/d), where d | k and d = 2 for the quadratic
twist is always possible for even k. The use of even k also enables the useful
denominator elimination optimisation for the calculation of the pairing [3], and
so this is generally regarded as a good idea.

1.1 Organisation of the paper

The paper is organized as follows: In Section 2 we describe some of the con-
structions in the literature. The main contribution of this paper is presented in
Sections 3 and 4 where we describe our method and where we give examples of
the application of the new method to construct pairing-friendly elliptic curves
with various embedding degrees k. We demonstrate the utility of the method by
constructing new “record breaking” families of pairing-friendly elliptic curves of
embedding degrees 16, 18, 36 and 40.

2 Pairing-friendly elliptic curves

The embedding degree in our context is formally defined as follows [9].

Definition 2.1 Let E be an elliptic curve defined over a prime finite field Fp.
Let r be a prime dividing #E(Fp). The embedding degree of E with respect
to r is the smallest positive integer k such that r | pk − 1.

The definition explains that k is the smallest positive integer such that the
extension field Fpk , contains a set of rth roots of unity. The problem is: given
k, find a prime p and elliptic curve E, defined over the finite field Fp, such
that #E(Fq) has a large prime factor r and the curve has embedding degree
k with respect to r [9]. In pairing based cryptography, when curves have small
embedding degrees and a large prime order subgroup they are known as pairing
friendly elliptic curves.



Since #E = p+1− t, where t is the trace of the Frobenius, then by a simple
substitution [3] this condition is equivalent to

(t− 1)k ≡ 1 mod r

So t−1 is a k-th root of unity modulo r. Note that it is not sufficient just to find
values of r, p and t which satisfy these conditions: It is also necessary to be able
to construct the associated elliptic curve. The only known method for doing this
is the method of Complex Multiplication (CM). The CM method requires that
4p− t2 should be of the form Dy2, where for practical reasons the discriminant
D must be less than about 1010. This is a very restrictive condition, and so
pairing-friendly elliptic curves are not so easy to find.
We observe here that whereas the calculation of the Tate pairing requires about
log(r − 1) iterations of the Miller loop using a double-and-add algorithm [8],
the Ate pairing requires only log(t − 1) iterations, and t is commonly much
smaller than r as a consequence of the Hasse condition (t ≤ 2

√
p). In fact

using the generalised Ate pairing [24] it is possible to use a loop with only
log((t − 1)c mod r) iterations for some 0 < c < k, although on the face of it
this might not appear advantageous (but see below). Note that the Ate pairing
requires a “reversal of roles” for G1 and G2 in the pairing algorithm, with some
loss of efficiency. The η pairing does not require this reversal, but requires log((t−
1)c.(k/d) mod r) iterations for the Miller loop, but again on the face of it this is
not of much use, certainly for the quadratic twist, as (t − 1)k/2 = r − 1 mod r
which is no improvement on the Tate pairing. But again – see below.
Some of the proposed strategies for constructing pairing-friendly elliptic curves
are as follows. Miyaji, Nakabayashi and Takano [17] developed the MNT curves.
They were also the first to describe a procedure for generating ordinary elliptic
curves of low embedding degree. The method used to construct MNT curves
was limited to curves of prime order, and to embedding degree k ≤ 6. Also the
curves tended to have a large discriminant D.
Cocks and Pinch [6] presented their general method of constructing curves of
arbitrary embedding degree k. In their construction they fixed an embedding
degree k, a subgroup size r, and a complex multiplication discriminant D to
determine a prime p such that there exists a pairing-friendly elliptic curve E
over a finite field. They were able to construct elliptic curves with an arbitrary
embedding degree.
Barreto, Lynn and Scott [4] described a simple algrebraic construction for certain
pairing friendly families of elliptic curves with low discriminant, for example
D = 3. These families describe r, p and t as simple polynomials r(x), p(x) and
t(x) with integer coefficients. This idea was generalized and extended by the
work of Brezing and Weng [5].
Barreto and Naehrig [2], building on earlier work by Galbraith, McKee and
Valenca [12], presented a method of constructing elliptic curves of prime order
and embedding degree k = 12 and D = 3. The construction lead to a very
efficient implementation of such curves [8].



In addition Freeman [9], presented a general method of constructing families of
elliptic curves with prescribed embedding degree and prime order. The method
was demonstrated by constructing curves of embedding degree 10.
Of particular interest to our discussion is the strategy of constructing complete
cyclotomic families as proposed by Brezing and Weng [5]. This construction
basically uses the Cocks and Pinch idea with polynomials.
The interesting point in the Brezing-Weng method is that it reduces the ratio
between the bit lengths of the finite field and the order r of the subgroup with
embedding degree k. This is measured by using a parameter ρ, defined as log p

log r .
For example the Cocks-Pinch method invariably produces curves with ρ ∼ 2,
which is rather inefficient. It is observed that curves with small ρ-values are
desirable in speeding up the arithmetic on the curves in the underlying field.
We would much prefer ρ ∼ 1, which is already achieved by the MNT, BN and
Freeman constructions, for the cases k ∈ {3, 4, 6, 10, 12}.
Brezing and Weng define polynomials to represent the parameters p, t, and r.
The following definition of pairing-friendly elliptic curves is an adaptation from
[10]:

Definition 2.2 Let t(x), r(x), and p(x) be polynomials with rational coeffi-
cients. For a given positive integer k and square free integer D, the triple
(t(x), r(x), p(x)) represents a family of elliptic curves with embedding degree
k and discriminant D if the following conditions are satisfied:
a. p(x) represents primes.
b. r(x) = e · r̃(x), where r̃(x) represents primes and e ∈ N is a constant.
c. r(x) divides p(x) + 1− t(x).
d. r(x) divides Φk(t(x)− 1), where Φk is the kth cyclotomic polynomial.
e. the equation Dy(x)2 = 4p(x)−t(x)2 has infinitely many integer solutions

in x.

In point (b) we note that it is not necessary that r(x) represent primes as long as
r(x) = e · r̃(x), where r̃(x) represents primes. This was first pointed out in [11].
A polynomial g(x) of even degree with rational coefficients represents primes if
g(x)

1. is a non-constant polynomial
2. has a positive leading coefficient
3. represents an integer value for some x ∈ Z and
4. for some x1 ∈ Z and x2 ∈ Z, we have gcd (g(x1), g(x2)) = 1
5. is an irreducible polynomial.

Furthermore, part (c) of Definition 2.2 ensures that, if p(x) is prime for some
value of x, then r(x)|#E(Fp(x)). If r(x) = p(x) + 1 − t(x), for the values of x
for which p(x) and r(x) are both prime, then #E(Fp) is also prime [10]. The
ρ-value for a family of curves is defined as follows [10]:

Definition 2.3 Let t(x), r(x), p(x) ∈ Q[x], and suppose (t(x), r(x), p(x)) repre-
sents a family of elliptic curves with embedding degree k. The ρ-value of the



family represented by (t(x), r(x), p(x)) is given by ρ = limx→∞
log(p(x))
log(r(x)) =

deg(p(x))
deg(r(x)) .

Note that the value of p(x) is the size of the field while the value of r(x) is the
size of the group in which we wish to do our cryptography.
The algorithm for the Brezing-Weng construction is summarised in the following
theorem [10]:

Algorithm 2.4 For a fixed positive integer k and positive square-free integer
D, execute the following steps:

1. Choose a number field K containing
√−D and a primitive kth root of

unity ζk.
2. Find an irreducible (but not necessarily monic) polynomial r(x) ∈ Z[x]

such that Q[x]/r(x) ∼= K.
3. Let t(x) ∈ Q[x] be a polynomial mapping to ζk + 1 ∈ K.
4. Let y(x) ∈ Q[x] be a polynomial mapping to ζk−1√−D

∈ K.
5. Let p(x) ∈ Q[x] be given by (t(x)2+Dy(x)2)/4. If p(x) and r(x) represent

primes, then the triple (t(x), r(x), p(x)) represents a family of curves with
embedding degree k and discriminant D.

The ρ-value for this family is given by the following

ρ = deg p(x)
deg r(x) .

Pairing-friendly elliptic curves constructed using this method have their ρ-values
less than 2. In the ideal situation ρ has a value of 1. It is useful then, to find curves
with small ρ-value for various embedding degrees k because different embedding
degrees are useful for different applications [10].
The challenging part in the Brezing-Weng construction is finding the polynomial
r(x) satisfying the following conditions, the existence conditions:

1. K ∼= Q[x]/r(x) contains ζk and
√−D

2. r(x) = e · r̃(x), where r̃(x) represents primes and e ∈ N is a constant
3. p(x) represents primes and
4. t(x) represents integers.

A polynomial is said to represent integers if it takes on integer values. In all
previous examples, r(x) has been chosen to be a cyclotomic polynomial. In
many cases the Brezing and Weng method results in curves with discriminant
D = 1 or D = 3. Curves with these discriminants are not only easier to find
using the CM method (as clearly D is very small), they also permit very
efficient implementations, particularly of the η and Ate pairings. For the case
D = 1 the elliptic curve supports quartic twists (d = 4) if 4 | k, and for
the case D = 3 the curve supports cubic (d = 3) and sextic (d = 6) twists
for 3 | k and 6 | k respectively. For example where D = 3 and k = 12 [2],
it is possible to implement the group G1 as points on E(Fp) over the base
field and G2 as points over the sextic twist, that is as points on E(Fk/6

p ) = E(F2
p).

The Miller loop control polynomial m(x) is selected as follows [24], [18]:



1. Tate pairing: mr(x) = r(x)− 1
2. Generalised Ate pairing: mA(x) = (t(x)− 1)c mod r(x)
3. Generalised η pairing: mη(x) = (t(x)− 1)c·(k/d) mod r(x).

For the generalised Ate and η pairings c is chosen so that m(x) is the poly-
nomial of least degree. Note that the η pairing is only a contender when higher
order twists are possible, with d ∈ {3, 4, 6}.
Before proceeding we make a general, if rather obvious, point about working
with polynomials with respect to an irreducible polynomial, rather than with
integers with respect to a prime modulus. A power of a field element with respect
to a prime modulus, will typically be a number the same size in bits as the
modulus. However when working modulo an irreducible polynomial, the power
of a field element will be a polynomial of degree at least one less than that of
the irreducible polynomial. With some extra “luck” it may even be much less
than this. Indeed it is exactly this kind of luck which results in Brezing and
Weng curves often having a ρ value much less than 2, and closer to 1, (unlike the
Cocks-Pinch method). This can also be exploited to reduce the workload of the
pairing’s final exponentiation [8]. And as Naehrig and Barreto [18] point out, it
can also result in a shorter than expected Miller loop for both the Ate and η
pairing. To measure the degree of loop reduction possible with respect to the
Tate pairing we introduce the parameter ω, where

ω =
deg r(x)
deg m(x)

.

3 The new construction

In the new construction we follow the strategy of Brezing and Weng. We fix the
embedding degree k and a positive square free integer D. We also set our cyclo-
tomic field to work in as K ∼= Q(ζl), where l is some multiple of the embedding
degree k. If D = 3, we set l = lcm(3, k); and if D = 1 we set l = lcm(4, k). Then
the following algorithm is followed to look for the families of curves.

Algorithm 3.1
1. Search through elements of Q(ζl) which are an integer linear combination

of a power basis {ζi
l | 0 ≤ i ≤ φ(l)− 1}.

2. For each such element, find the minimal polynomial of that element and
call it r(x).

3. Search through all primitive kth roots of unity mod r(x).
4. For each primitive kth root of unity ζk, find t(x) mapping to ζk + 1.
5. Find a polynomial mapping to

√−D.
6. Find a polynomial y(x) mapping to ζk−1√−D

.
7. Compute ρ. If the ρ-value is sufficiently small then
8. Find p(x) = (t(x)2 + Dy(x)2)/4.
9. If p(x) is irreducible then



10. Find the best Miller loop polynomial m(x) for the Ate and η pairings (if
applicable).

11. Find the smallest positive number n ∈ Z, such that n · p(x) ∈ Z[x].
12. Find the residue classes b modulo n such that p(x) ∈ Z

for x ≡ b mod n.
13. Find the subset of those residue classes for which t(x) ∈ Z

for x ≡ b mod n.
14. If r(nx + b) = er̃(x) where e is a constant and r̃(x) represents primes,

then output t(x), r(x), p(x),m(x), n, b, e.

Thus for a given value of k, (t(nx + b), r(nx + b), p(nx + b)) represents a family
of pairing-friendly elliptic curves of embedding degree k. The ρ-value for such a
family of curves is then ρ = deg p(x)

deg r(x) , and ω = deg r(x)
deg m(x) .

4 Searching for new families of pairing-friendly curves

This algorithm is potentially very time consuming, primarily due to step 1.
Our approach is to restrict the search to integer coefficients with a limit L on
their absolute size. We observe that smaller coefficients are more likely to lead
to usable solutions. But even so the search space can quickly become huge for
larger values of l. Therefore we have taken two approaches. The first performs
an exhaustive search through all coefficents between −L and +L. The second
approach is to limit the number of non-zero coefficients, to perhaps 2 or 3. By
trial and error we found that elements of Q(ζl) of this form often produced good
results.
Our search programs are written in a mixture of NTL [19] and PARI [20]. For
comparision purposes a simple NTL program to generate Brezing and Weng
families of pairing friendly curves can be found here [21].

4.1 Examples

The following examples demonstrate the construction of new families of pairing-
friendly elliptic curves. Most of our examples also improve the existing ρ-values
found in the literature. We also compute the parameters for the optimal gener-
alised η or Ate pairing in each case.

Example 4.1
We start however with the case k = 8, where we set no records in terms
of ρ, but nevertheless find some interesting new families of pairing friendly
curves. For this embedding degree there is a known Brezing and Weng family
of curves for D = 3 and l = 24 [5].



k = 8, D = 3

t(x) = x5 − x + 1

p(x) = (x10 + x9 + x8 − x6 + 2x5 − x4 + x2 − 2x + 1)/3

r(x) = x8 − x4 + 1

mA(x) = x3

ρ = 5/4, ω = 8/3

Note that not only is mA(x) for the generalised Ate pairing much smaller
than r(x) − 1, it is also much smaller than t(x) − 1, as would be used for
the basic Ate pairing. This is an example of the kind of luck we referred to
above – it turns out that (t(x)− 1)3 mod r(x) ≡ x3 which has a degree not
only less than r(x), but also less than t(x).

Such a pairing suffers from the fact that we cannot use a higher order twist
for G2, which must therefore be represented by points on E(Fp4).

However for a family of curves with k = 8 and D = 1 the quartic twist for
G2 would be possible. Using our proposed method we have l = 8. Note that
ζ8 − 2ζ3

8 ∈ Q(ζ8) has minimal polynomial r(x) = x4 − 8x2 + 25.

In this field we find that (2x3−11x)/15 is a primitive 8th root of unity. So we
let t(x) = (2x3−11x+15)/15. With this we get y(x) = (x3+5x2+2x−20)/15
and p(x) = (x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x + 125)/180. When x ≡
±5 mod 30, t(x) represents integers, p(x) and r(x)/450 represent primes. So
both of (t(30x± 5), r(30x± 5), p(30x± 5)) represent a family of curves with
embedding degree 8. In both cases we have

k = 8, D = 1

t(x) = (2x3 − 11x + 15)/15

p(x) = (x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x + 125)/180

r(x) = x4 − 8x2 + 25

n = 30, b = ±5, e = 450

mη(x) = (x2 − 4)/3

ρ = 3/2, ω = 2.

Here the ρ and ω values are both inferior to the previous case. Observe that
the η pairing is now as good as the Ate pairing, and so it is to be preferred
as it is more convenient and efficient for implementation [15], and G2 can
be represented by points over the smaller extension field Fp2 . However this
construction does not set any new records as similar families of curves are
already reported in [10], Example 6.18, and in [22] (although our ω value is
an improvement on that reported in [1] and [15]) .



Example 4.2
Fix the embedding degree k = 16 and D = 1 and set K ∼= Q(ζ16). Now
−2ζ5

16 + ζ16 ∈ Q(ζ16) has minimal polynomial r(x) = x8 +48x4 +625. When
x ≡ ±25 mod 70, t(x) represents integers, p(x) and r(x)/61250 represent
primes. So both of (t(70x± 25), r(70x± 25), p(70x± 25)) represent a family
of curves with embedding degree 16. In both cases we have

k = 16, D = 1

t(x) = (2x5 + 41x + 35)/35

p(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x + 3125)/980

r(x) = x8 + 48x4 + 625

n = 70, b = ±25, e = 61250

mη(x) = (x4 + 24)/7

ρ = 5/4, ω = 2.

This is a improvement over the old record value of ρ = 11/8.

Example 4.3
Fix the embedding degree k = 18 and D = 3 and set K ∼= Q(ζ18). Consider
−3ζ5

18 + ζ2
18 ∈ Q(ζ18). This has minimal polynomial r(x) = x6 + 37x3 + 343.

When x ≡ 14 mod 42, t(x) represents integers, p(x) and r(x)/343 represent
primes. So (t(42x+14), r(42x+14), p(42x+14)) represents a family of curves
with embedding degree 18. We have

k = 18, D = 3

t(x) = (x4 + 16x + 7)/7

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21

r(x) = x6 + 37x3 + 343

n = 42, b = 14, e = 343

mη(x) = x3 + 18

ρ = 4/3, ω = 2.

This is a significant improvement in ρ over the old record value of 19/12.

Until now there has not been a good choice of pairing-friendly family of curves
which are a good fit for the AES-256 level of security, for larger values of k.

Example 4.4
For the embedding degree k = 32, there is a Brezing and Weng family of
curves with ρ = 17/16 and ω = 32/3 for the Ate pairing, but with D = 3,
the “wrong” discriminant (3 - k) for a simpler form of G2 [10]. Here we
suggest an alternative.



Fix embedding degree k = 32 and D = 1 and set K ∼= Q(ζ32). Consider
−3ζ32 +2ζ9

32 ∈ Q(ζ32). This has minimal polynomial r(x) = x16 +57120x8 +
815730721. When x ≡ ±325 mod 6214, t(x) represents integers, p(x) and
r(x)/93190709028482 represent primes. So both of (t(6214x±325), r(6214x±
325), p(6214x±325)) represent a family of curves with embedding degree 32.
In both cases we have

k = 32, D = 1

t(x) = (−2x9 − 56403x + 3107)/3107

p(x) = (x18 − 6x17 + 13x16 + 57120x10 − 344632x9 + 742560x8 + 815730721x2

− 4948305594x + 10604499373)/2970292

r(x) = x16 + 57120x8 + 815730721

n = 6214, b = ±325, e = 93190709028482

mη(x) = (x8 + 28560)/239

ρ = 9/8, ω = 2.

Example 4.5
Fix the embedding degree k = 36 and D = 3 and set K ∼= Q(ζ36). Consider
2ζ36 + ζ7

36 ∈ Q(ζ36). This has minimal polynomial r(x) = x12 + 683x6 +
117649. When for example x ≡ 287 mod 777, t(x) represents integers, p(x)
and r(x)/161061481 represent primes. (There are other classes mod 777 that
work.) So (t(777x + 287), r(777x + 287), p(777x + 287)) represents a family
of curves with embedding degree 36. In both cases we have

k = 36, D = 3

t(x) = (2x7 + 757x + 259)/259

p(x) = (x14 − 4x13 + 7x12 + 683x8 − 2510x7

+ 4781x6 + 117649x2 − 386569x + 823543)/28749

r(x) = x12 + 683x6 + 117649

n = 777, b = 287, n = 161061481

mη(x) = (x6 + 323)/37

ρ = 7/6, ω = 2.

Again this is an improvement in ρ over the old record value of 17/12.

Example 4.6
Fix the embedding degree k = 40 and D = 1 and set K ∼= Q(ζ40).
Consider −2ζ40 + ζ11

40 ∈ Q(ζ40). This has minimal polynomial r(x) =
x16 +8x14 +39x12 +112x10−79x8 +2800x6 +24375x4 +125000x2 +390625.
When for example x ≡ ±1205 mod 2370, t(x) represents integers, p(x) and
r(x)/2437890625 represent primes. (There are other classes mod 2370 that
work.) So both of (t(2370x ± 1205), r(2370x ± 1205), p(2370x ± 1205)) rep-
resent a family of curves with embedding degree 40. In both cases we have



k = 40, D = 1

t(x) = (2x11 + 6469x + 1185)/1185

p(x) = (x22 − 2x21 + 5x20 + 6232x12 − 10568x11 + 31160x10

+ 9765625x2 − 13398638x + 48828125)/1123380

r(x) = x16 + 8x14 + 39x12 + 112x10 − 79x8

+ 2800x6 + 24375x4 + 125000x2 + 390625

n = 2370, b = ±1205, e = 2437890625

mη(x) = (x10 + 3116)/237

ρ = 11/8, ω = 8/5.

Again this is an improvement in ρ over the old record value of 23/16.

5 Conclusion

We have presented a new algorithm to construct pairing-friendly elliptic curves
by using ideas from the Brezing-Weng method. The main idea in the construction
is to use a polynomial other than the cyclotomic polynomial Φl(x) to define the
cyclotomic field Q(ζl). The method uses elements of a cyclotomic field other than
roots of unity to find an irreducible polynomial r(x). This has been illustrated
by constructing new families of pairing-friendly elliptic curves of degrees 8, 16,
18, 32, 36 and 40. In most of these cases the method improves the previously
best known ρ-values. As pointed out in [15] sometimes the η pairing is to be
preferred over the Ate pairing [18]. This is also the case for our curves.
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