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Abstract

Among cryptographically significant characteristics of Boolean func-
tions used in symmetric ciphers the algebraic immunity and the nonlin-
earities of high orders play the important role. Some bounds on the non-
linearities of high orders of Boolean functions via its algebraic immunity
were obtained in recent papers. In this paper we improve these results
and obtain new tight bounds. We prove new universal tight lower bound
that reduces the problem of an estimation of high order nonlinearities to
the problem of the finding of dimensions of some linear spaces of Boolean
functions. As simple consequences we obtain all previously known bounds
in this field. For polynomials with disjoint terms we reduce the finding
of dimensions of linear spaces of Boolean functions mentioned above to a
simple combinatorial analysis. Finally, we prove the tight lower bound on
the nonlinearity of the second order via its algebraic immunity.

Keywords: stream cipher, nonlinear filter, algebraic attack, Boolean func-
tion, algebraic immunity, algebraic degree, nonlinearity, higher order nonlinear-
ity, annihilator.

1 Introduction

Boolean functions have wide applications in cryptography, in particular, in sym-
metric cryptography. Stream ciphers use Boolean functions as nonlinear filters
or nonlinear combiners, block ciphers use Boolean functions in S-boxes. Boolean
functions have many cryptographically important characteristics. Good char-
acteristics provide the resistance at least against known attacks. Among these
characteristics the algebraic immunity and the nonlinearity of high orders play
the important role. Recently, the significance of the algebraic immunity and the
nonlinearities of high orders and their mutual relations were described in papers
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[2, 4, 5, 6, 8]. Boolean functions with good algebraic immunity and nonlineari-
ties of high orders allow to resist against many types of known cryptographical
attacks including algebraic, correlation and linear attacks.

Some bounds between algebraic immunity and nonlinearities were obtained
in [2, 4, 5, 6, 8]. It appeared that the good algebraic immunity provides also
some guaranteed nonlinearity of rth order. These results are important since
recently it was proposed some algorithms for the calculation of algebraic immu-
nity whereas the effective calculation or estimation of high order nonlinearities
is not an easy problem.

In [5] the tight lower bound on the nonlinearity (of the first order) of a
Boolean function via the value of its algebraic immunity was obtained. The
lower bounds on the nonlinearity of the rth order via its algebraic immunity
were obtained in [2, 4, 6, 8], the strongest among them is the bound (4).

In this paper we propose the new approach that reduces the problem of an
estimation of high order nonlinearities to the problem of the finding of dimen-
sions of some linear spaces of Boolean functions. This result is given in our
Theorem 1. This Theorem gives the new universal lower bound on the rth or-
der nonlinearity of a Boolean function via its algebraic immunity. This bound
is tight, i. e. for any possible set of parameters there exists a function that
achieves this bound. We obtain all previously known bounds in this field as
simple consequences of our Theorem 1.

Next, for the functions of the special form — for the polynomials with dis-
joint terms — we prove the Theorem 2 that allows to reduce the finding of
dimensions of some linear spaces of Boolean functions mentioned above to a
simple combinatorial analysis. Using Theorem 2 we obtain in Theorem 3 the
tight lower bound on the nonlinearity of the second order via its algebraic im-
munity. The bound is tight, i. e. for all possible pairs of algebraic immunity
and the number of variables there exists a function that achieves this bound.

The rest of the paper is organized as follows. In Section 2 we give the
necessary definitions and some previously known results. In Section 3 we prove
Theorem 1 with new universal tight lower bound that reduces the problem
of an estimation of high order nonlinearities to the problem of the finding of
dimensions of some linear spaces of Boolean functions. As simple consequences
we obtain all previously known bounds in this field. In Section 4 for polynomials
with disjoint terms we prove the Theorem 2 that allows to reduce the finding of
dimensions of linear spaces of Boolean functions mentioned above to a simple
combinatorial analysis. In Section 5 we prove in Theorem 3 the tight lower
bound on the nonlinearity of the second order via its algebraic immunity.

2 Preliminaries

Let f be a Boolean function on Fn
2 . It is well known that f can be uniquely

represented by a polynomial. An algebraic degree deg(f) of f is the length of
the longest term in the polynomial of f . A Boolean function g is called an
annihilator of f if f · g ≡ 0. It is obvious that the set of all annihilators of
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f forms the linear subspace in the space of all Boolean function on Fn
2 . An

algebraic immunity AI(f) of f is the minimum degree of a nonzero function g
on Fn

2 such that g is an annihilator of f or g is an annihilator of f + 1. It is
known [3, 7] that for any f on Fn

2 the inequality AI(f) ≤ dn
2 e holds.

The weight wt(x) of a vector x ∈ Fn
2 is the number of ones in x. The distance

between two Boolean functions f1 and f2 is defined as d(f1, f2) =| {x ∈ Fn
2 |

f1(x) 6= f2(x)} |. The nonlinearity of rth order nlr(f) of a Boolean function f
over Fn

2 is called the value min
l, deg(l)≤r

d(f, l).

The nonlinearity nl(f) of f is the distance between f and the set of affine
functions, i. e. the nonlinearity of the first order.

In [4] it was proved the result equivalent to the next bound on the nonlin-
earity of the rth order:

nlr(f) ≥
AI(f)−r−1∑

i=0

(
n

i

)
. (1)

Later in [6] it was proved the lower bound on the nonlinearity (r = 1) of a
function via the value of its algebraic immunity:

nl(f) ≥ 2
AI(f)−2∑

i=0

(
n− 1

i

)
. (2)

For all possible values of algebraic immunity in [5] it were constructed func-
tions that achieve equality in this bound.

In [3] the bound (2) was generalized for the case of arbitrary r:

nlr(f) ≥ 2
AI(f)−r−1∑

i=0

(
n− r

i

)
. (3)

Note that the bound (1) does not follow the bound (3) and visa versa.
In [8] and [6] it was proved the bound

nlr(f) ≥
AI(f)−r−1∑

i=0

(
n

i

)
+

AI(f)−r−1∑
i=AI(f)−2r

(
n− r

i

)
. (4)

that is better than both bounds (1) and (3).

3 The problem reduction to the estimation of
linear subspaces dimensions

Definition 1 Let h be a Boolean function on Fn
2 . Denote by Ank(h) the linear

subspace of all annihilators of degree at most k. Denote by dk,h the dimension
of this subspace.
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Definition 2 Let C = {x1, . . . , xn} be some set of vectors in Fn
2 . For any

given k, k ≤ n, and for any vector x = (x1, . . . , xn) ∈ Fn
2 we correspond to x

the uniform linear equation with the left side generated by the substitution of
components of the vector x into the expression

a0 +
n∑

i=1

aixi +
∑

1≤i<j≤n

aijxixj + · · ·+
∑

1≤i1≤...≤ik≤n

ai1...ik
xi1 . . . xik

.

The right side of the equation is 0. Then we call a k-rank of the set C the rank
of the system of linear equations generated by such way from the vectors of the
set C. Denote this rank by rk(C).

Next, for the function f we search the annihilators of degree at most k by
the method of undefined coefficients:

g = a0 +
n∑

i=1

aixi +
∑

1≤i<j≤n

aijxixj + · · ·+
∑

1≤i1≤...≤ik≤n

ai1...ik
xi1 . . . xik

.

The function g is an annihilator of f if and only if f(x) = 1 follows g(x) = 0.
Thus, we obtain the system of linear equations.

It is easy to see that dk,f = dim(Ank(f)) =
∑k

i=0

(
n
i

)
− rk(supp(f)).

Proposition 1 Let f and f0 be Boolean functions on Fn
2 , AI(f0) ≥ k. Then

d(f, f0) ≥ dim(Ank−1(f)) + dim(Ank−1(f + 1)).

Proof. Since AI(f0) ≥ k, we have rk−1(supp(f0)) =
∑k−1

i=0

(
n
i

)
.

At the same time rk−1(supp(f)) =
∑k−1

i=0

(
n
i

)
− dk−1,f . Hence, there exist

at least dk−1,f vectors where f0 is equal to 1, and f is equal to 0.
Analogously, considering the pair of functions f + 1 and f0 + 1 we obtain

the lower bound on the number of vectors where f is 1 and f0 is 0. �

Definition 3 Let h be a Boolean function on Fn
2 . Denote by Bk(h) the linear

space of all such functions f on Fn
2 that deg(f) ≤ k and deg(fh) ≤ k.

Proposition 2 The sum of dim(Ank(f)) and dim(Ank(f + 1)) is equal to
dim(Bk(f)).

Proof. Consider the pair (g1, g2), where g1 ∈ Ank(f), g2 ∈ Ank(f + 1).
Then we have that fg1 + (f + 1)g2 = 0, it follows f(g1 + g2) = g2. We obtain
the correspondence between the pairs of functions, the first of which is from
Ank(f), the second is from Ank(f +1), and the functions from Bk(f). It is easy
to check that the correspondence is one to one. �

Lemma 1 Suppose rk(supp(f)) = wt(f) where k < dn
2 e. Then dim(Ank(f +

1)) = 0.
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Proof. The condition of the Lemma implies that for any vector x such that
f(x) = 1, there exists the function g of degree at most k such that the product
fg is 1 only at the vector x. In the opposite case there exists the function that
differs from f only at the vector x, with k-rank rk(supp(f)) = wt(f) and weight
wt(f)− 1 that is impossible.

Suppose that there exists the function f ′, deg(f ′) ≤ k and f 6= 0 such
that (f + 1)f ′ = 0. Choose the vector x such that f ′(x) = 1. The relation
supp(f ′) ⊆ supp(f) follows that there exists the function g′ of degree at most
k such that the product f ′g′ is 1 only at one vector x. At the same time the
degree of the product of two Boolean functions does not exceed the sum of its
degrees, it follows deg(f ′g′) < n that contradicts to the fact that f ′g′ is 1 only
at one vector. �

Corollary 1 Suppose dim(Ank(f)) =
∑k

i=0

(
n
i

)
− wt(f) where k < dn

2 e. Then
dim(Andn

2 e−1(f + 1)) = 0.

Corollary 2 Suppose n = 2k + 1 and Ank(f) = 0 then AI(f) = k + 1.

The Corollary 2 was proved in [1].

Proposition 3 Suppose that deg(f) ≤ dn
2 e, k ≤ dn

2 e. Then there exists the
function g such that AI(g) ≥ k and d(f, g) = dim(Bk−1(f)).

Proof. In the set of vectors where f is 1 there exist rk−1(supp(f)) vectors
such that their (k − 1)-rank is also equal to rk−1(supp(f)), denote this set of
vectors by C1. Analogously, considering the function f + 1 we obtain the set
C0 with rk−1(supp(f + 1)) vectors. Lemma 1 follows that we can supplement
the set C1 by

∑k−1
i=0

(
n
i

)
− rk−1(supp(f)) vectors which do not belong to C0 and

f is 0 at these vectors, such that the k-rank of a new set is exactly
∑k−1

i=0

(
n
i

)
.

Analogously, we can supplement the set C0 by
∑k−1

i=0

(
n
i

)
− rk−1(supp(f + 1))

vectors which do not belong to C1 and f is 1 at these vectors such that the
k-rank of a new set is exactly

∑k−1
i=0

(
n
i

)
.

It follows that it is possible to change the values of f at
∑k−1

i=0

(
n
i

)
−

rk−1(supp(f)) +
∑k−1

i=0

(
n
i

)
− rk−1(supp(f + 1)) = dim(Ank−1(f)) +

dim(Ank−1(f + 1)) = dim(Bk−1(f)) vectors and obtain the function g such
that dim(Ank−1(g)) = dim(Ank−1(g + 1)) = 0, hence, AI(g) ≥ k.�

Thus, in Propositions 1–3 we have proved that the problem of the finding
of the most strong bound for the nonlinearity of the rth order via the value
of its algebraic immunity k is completely reduced to the finding of the value
mindeg(g)≤rdim(Bk−1(g)). We formulate this statement as a theorem:

Theorem 1 Suppose that f(x1, . . . , xn) has AI(f) = k ≤ dn
2 e. Then

nlr(f) ≥ mindeg(g)≤rdim(Bk−1(g)).

Moreover, there exists the function f0, AI(f0) = k, such that

nlr(f0) = mindeg(g)≤rdim(Bk−1(g)).
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A few bounds are deduced from Theorem 1.

Proposition 4 Suppose that deg(f) = r. Then dim(Bk−1(f)) ≥
∑k−r−1

i=0

(
n
i

)
.

Proof. We take all functions of degree at most (k − r − 1). �

Corollary 3 Suppose that AI(g) = k. Then

nlr(g) ≥
k−r−1∑

i=0

(
n

i

)
.

We obtain the bound (1) from [4].

Proposition 5 Suppose that deg(f) = r. Then

dim(Bk−1(f)) ≥ 2
k−r−1∑

i=0

(
n− r

i

)
.

Proof. Without loss of generality we can assume that the polynomial of f
contains the term x1x2 . . . xr. Consider the functions of the form fg1 +(f +1)g2

where g1 and g2 are any functions of variables xr+1, . . . , xn, whose degree at most
(k − r − 1). It is easy to check that all such functions are different and belong
to Bk−1(f). �

Corollary 4 Suppose that AI(g) = k. Then

nlr(g) ≥ 2
k−r−1∑

i=0

(
n− r

i

)
.

We obtain the bound (3) from [2].

Proposition 6 Suppose that deg(f) = r. Then dim(Bk−1(f)) is not less than

k−r−1∑
i=0

(
n

i

)
+

k−r−1∑
i=k−2r

(
n− r

i

)
.

Proof. Without loss of generality we can assume that the polynomial of
f contains the term x1x2 . . . xr. Consider the functions of the form g1 + fg2

where g1 is an arbitrary function of degree at most (k − r − 1), and g2 is an
arbitrary function of variables xr+1, . . . , xn, whose degree at most (k − r − 1),
that contains only terms of the length at least k − 2r.

It is easy to check that all such functions belong to Bk−1(f). The checking
of the fact that all such functions are different is reduced to the checking that
g1 + fg2 = 0 follows g1 = 0 and g2 = 0. The equality g2 = 0 follows from the
fact that in the opposite case the function fg2 contains the term of length at
least (k− r) which was also in the polynomial of f (since deg(f1) ≤ (k− r−1)).
The equality g1 = 0 follows straightforwardly from g1 + fg2 = 0 and g2 = 0.�
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Corollary 5 Suppose AI(g) = k. Then

nlr(g) ≥
k−r−1∑

i=0

(
n

i

)
+

k−r−1∑
i=k−2r

(
n− r

i

)
.

We deduce the bound (4) from [8, 6].
Theorem 1 can give more strong corollaries. Some of them we obtain in the

following sections.

4 Exact value of dim(Bk(f)) for polynomials with
disjoint terms

Definition 4 Let a1 ≥ a2 ≥ . . . ≥ aq > 0 be the set of integer numbers such that∑q
i=1 ai ≤ n. Then it is possible to map to any vector x = (x1, . . . , xn) ∈ Fn

2

the set sa1,...,aq
(x) of integer numbers by the next way: (s1(x), . . . , sq(x)) =

(
∑a1

i=1 xi,
∑a1+a2

i=a1+1 xi, . . . ,
∑a1+...+aq

i=a1+...+aq−1+1 xi). Denote by Sa1,..., aq
(k) the set

of all vectors x ∈ Fn
2 such that st(x) = 0 for some t ≤ q, 0 < si(x) < ai for all

i < t and also k − at < wt(x) ≤ k.

Proposition 7 Suppose that any two terms in the polynomial of the function
f(x1, . . . , xn) do not contain joint variables. Let q be the number of terms in the
polynomial of f , and a1 ≥ a2 ≥ . . . ≥ aq are the lengths of these terms. Then
dim(Bk(f)) ≤

∑k
i=0

(
n
i

)
− |Sa1,..., aq

(k)|.

Proof. Without loss of generality we can assume that the function has the
form f = x1x2 · · ·xa1 + xa1+1 · · ·xa1+a2 + · · ·+ xa1+...+aq−1+1 · · ·xa1+...+aq

.
It is possible to map any vector x from Fn

2 to the term that contains all such
variables from x1, . . . , xn that correspond to ones in the vector x.

Consider the linear subspace Cf, k in the space of Boolean functions on Fn
2

stretched on the monomials corresponded to the vectors from Sa1,..., aq
(k). This

space is also the subspace in the space of functions of degree at most k. Any
nonzero function from Cf, k does not belong to Bk(f). Indeed, suppose that g ∈
Cf, k, then for any monomial from g and corresponding vector x = (x1, . . . , xn)
it is possible to assign its own t ≤ q according Definition 4 such that st(x) = 0
and 0 < si(x) < ai for i < t. Choose from the terms of the function g the
terms with the maximal length, and among them take some term xi1 . . . xih

with the minimal assigned t. Then the polynomial of the function gf contains
the term xi1 . . . xih

xa1+...+at−1+1 · · ·xa1+...+at that cannot be cancelled. Thus,
deg(fg) > k and g does not belong to Bk(f).

The dimension of Cf,k is equal to |Sa1,..., aq
(k)| that follows the conclusion

of this Proposition. �
Now we prove the converse inequality.

Proposition 8 Suppose that any two terms in the polynomial form of
f(x1, . . . , xn) do not contain joint variables. Let q be the number of terms in the
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polynomial of f , and a1 ≥ a2 ≥ . . . ≥ aq are the lengths of these terms. Then
dim(Bk(f)) ≥

∑k
i=0

(
n
i

)
− |Sa1,..., aq

(k)|.

Proof. Without loss of generality it is possible to assume that
the function has the form f = x1x2 · · ·xa1 + xa1+1 · · ·xa1+a2 + · · · +
xa1+...+aq−1+1 · · ·xa1+...+aq .

Denote by Sa1,..., aq
(k) the set of vectors x = (x1, . . . , xn), wt(x) ≤ k and

x /∈ Sa1,..., aq (k).
Suppose that x = (x1, . . . , xn) ∈ Sa1,..., aq (k). Then we map the vector x to

the function fx by the next rules:

1. If deg(xi1xi2 · · ·xiwt(x)f) ≤ k where i1, . . . , iwt(x) are the indexes of posi-
tions of ones in the vector x = (x1, . . . , xn) then fx = xi1xi2 · · ·xiwt(x) .

2. If x does not satisfy the first item and for any t ≤ q it holds 0 < st(x) ≤ ai

then fx = (xi1 · · ·xis1(k) + 1) . . . (xis1(k)+...+sq−1(k)+1 · · ·xis1(k)+...+sq(k) + 1),
where i1, . . . , is1(k)+...+sq(k) are the indexes of positions of ones in the
vector x = (x1, . . . , xn).

3. If x does not satisfy any of two previous items and st(x) = 0,
0 < si(x) < ai for all i < t, then fx = (xi1 · · ·xis1(k) +
1) . . . (xis1(k)+...+sq−1(k)+1 · · ·xis1(k)+...+sq(k)+1), where i1, . . . , is1(k)+...+sq(k)

are the indexes of positions of ones in the vector x = (x1, . . . , xn).

4. If x does not satisfy any of three previous items then st(x) = 1 for some
t ≤ q and si(k) = 0 for i = b1, . . . , bu, where bh > t (0 < si(x) < ai for
i < t and 0 < si(x) for i 6= t, b1, . . . , bu) then

fx = (xi1 . . . xis1(k) + 1) (xis1(k)+1 . . . xis1(k)+s2(k) + 1) . . .

. . . (xis1(k)+...+st−2(k)+1 . . . xis1(k)+...+st−1(k) + 1)

(xis1(k)+...+st(k)+1 . . . xis1(k)+...+st+1(k) + 1) . . .

. . . (xis1(k)+...+sq−1(k)+1 . . . xis1(k)+...+sq(k) + 1)

(xa1+...+at−1+1 . . . xa1+...+at
+ xa1+...+a(b1−1)+1 . . . xa1+...+ab1

+ . . .

. . . + xa1+...+abu−1+1 . . . xa1+...+abu
),

where i1, . . . , is1(k)+...+sq(k) are the indexes of positions of ones in the
vector x = (x1, . . . , xn).

It is possible to check that the rule given above maps any vector x =
(x1, . . . , xn) ∈ Sa1,..., aq (k) to the unique function fx.

The polynomial of fx for any vector x described above contains the term
that contains all variables which correspond to ones in the vector x; all other
terms have smaller length or lexicographically greater. It follows the linear in-
dependence of all fx corresponded to vectors x = (x1, . . . , xn) ∈ Sa1,..., aq

(k).
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Indeed, suppose that we have the vectors x1, . . . , xh ∈ Sa1,..., aq (k), choose from
them the vectors with the maximal weight , and among them the first vec-
tor in the lexicographical order. The term corresponded to this vector enters
into the polynomial of fx1 + . . . + fxh , all other terms have smaller length or
lexicographically greater. Therefore fx1 + . . . + fxh is not identically zero.

Now show that for any x = (x1, . . . , xn) ∈ Sa1,..., aq (k) the corresponding
function fx belongs to Bk(f). If the vector x satisfies the item 1, the desired
fact follows from the definition fx for such vectors. If x satisfies the item 2,
then the product of f and fx is identically zero. If x satisfies the item 3,
the product f and fx has the degree at most k, since in the opposite case
x ∈ Sa1,..., aq

(k). Suppose that x satisfies the item 4. Then we represent f as
the sum of two functions f = f1 + f2 where f1 contains the terms of f with
ordinal numbers t, b1, . . . , bu and f2 contains all remained terms. It is easy to
check that the product of f2 and fx is identically zero, and the product of f1

and fx is equal to fx since f1 enters as the last factor in fx. Taking into account
that deg(fx) = wt(x), we deduce that for any x = (x1, . . . , xn) ∈ Sa1,..., aq

(k)
the corresponding fx belongs to Bk(f).

Thus, dim(Bk(f)) ≥ |Sa1,...,aq
(k)| =

∑k
i=0

(
n
i

)
− |Sa1,...,aq

(k)|. �
We combine the propositions 7 and 8 into the next theorem.

Theorem 2 Suppose that any two terms in the polynomial of the function
f(x1, . . . , xn) do not contain joint variables. Let q be the number of terms in the
polynomial of the function f , and a1 ≥ a2 ≥ . . . ≥ aq are the lenghts of these
terms. Then dim(Bk(f)) =

∑k
i=0

(
n
i

)
− |Sa1,..., aq

(k)|.

Thus, for the quite wide class of functions we have reduced the problem of
the calculation of dim(Bk(f)) to a simple combinatorial analysis.

5 Tight bound between algebraic immunity and
nonlinearity of the second order

Remark 1 Below we assume that the binomial coefficient
(

n
m

)
is equal to 0 if

n or m are less than 0.

Proposition 9 Suppose f(x1, . . . , xn) = x1x2 + x3x4 + · · · + x2q−1x2q; Then
dim(Bk(f)) =

∑k
i=0

(
n
i

)
−

∑q−1
i=0 2i

(
n−2i−1

k−i

)
.

Proof. The set Sa1,..., aq
(k) contains

(
n−2

k

)
vectors of the weight k and

(
n−2
k−1

)
vectors of the weight k− 1 equal to zero in first two components. Summing, we
obtain

(
n−1

k

)
vectors.

The set Sa1,...,aq
(k) contains 2

(
n−4
k−1

)
vectors of the weight k and 2

(
n−4
k−2

)
vectors of the weight k − 1 equal to zero in the second pair of components
and equal to 1 in exactly one of the first two components Summing, we obtain
2
(
n−3
k−1

)
vectors.
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The set Sa1,..., aq (k) contains 2t−1
(

n−2t
k−t+1

)
vectors of the weight k and

2t−1
(
n−2t
k−t

)
vectors of the weight k − 1 equal to zero in the tth pair of com-

ponents and equal to 1 in exactly one of two components for all previous pairs
of variables. Summing, we obtain 2t−1

(
n−2t+1
k−t+1

)
vectors.

Thus, we exhaust all vectors from Sa1,..., aq
(k) and obtain that their number

is equal to
(
n−1

k

)
+ 2

(
n−3
k−1

)
+ 4

(
n−5
k−2

)
+ . . . + 2q−1

(
n−2q+1
k−q+1

)
=

∑q−1
i=0 2i

(
n−2i−1

k−i

)
.

Using the Theorem 2 we obtain the conclusion of this Proposition. �
The next proposition is analogous.

Proposition 10 Suppose f(x1, . . . , xn) = x1x2 +x3x4 + . . .+x2q−1x2q +x2q+1;
then dim(Bk(f)) =

∑k
i=0

(
n
i

)
−

∑q
i=0 2i

(
n−2i−1

k−i

)
.

Theorem 3 Suppose that the function f(x1, . . . , xn) has the algebraic immunity
AI(f) = k ≤ dn

2 e. Then

nl2(f) ≥
k−1∑
i=0

(
n

i

)
−

k−1∑
i=0

2i

(
n− 2i− 1
k − 1− i

)
.

Moreover, there exists the function f0, AI(f0) = k, such that

nl2(f0) =
k−1∑
i=0

(
n

i

)
−

k−1∑
i=0

2i

(
n− 2i− 1
k − 1− i

)
.

Proof. It is well known (see, for example, [9]), that the function of degree
at most 2 can be reduced by an affine transformation either to the form from
Proposition 9 or to the form from Proposition 10. Then these propositions and
Theorems 1 and 2 follow the conclusion of the Theorem 3. �

Table 1. The lower bounds on nl2(f) given by our Theorem 3 and by bound
(4) [8, 6].
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n AI(f) The bound of Theorem 3 The bound (4) [8, 6]

n>5 3 2 2
7 4 16 14
8 4 18 16

9 4 20 18
9 5 90 74

10 4 22 20
10 5 110 92

11 4 24 22
11 5 132 112
11 6 440 352

12 4 26 24
12 5 156 134
12 6 572 464

13 4 28 26
13 5 182 158
13 6 728 598
13 7 2004 1588
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n AI(f) The bound of Theorem 3 The bound (4) [8, 6]

14 4 30 28
14 5 210 184
14 6 910 756
14 7 2732 2186

15 4 32 30
15 5 240 212
15 6 1120 940
15 7 3642 2942
15 8 8768 6946

16 4 34 32
16 5 272 242
16 6 1360 1152
16 7 4762 3882
16 8 12410 9888

17 4 36 32
17 5 306 274
17 6 1632 1394
17 7 6122 5034
17 8 17172 13770
17 9 37434 29786

18 4 38 36
18 5 342 308
18 6 1938 1668
18 7 7754 6428
18 8 23294 18804
18 9 54606 43556
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