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Abstract. For AES 128 security level there are several natural choices

for pairing-friendly elliptic curves. In particular, as we will explain, one

might choose curves with k = 9 or curves with k = 12. The case k = 9

has not been studied in the literature, and so it is not clear how efficiently

pairings can be computed in that case. In this paper, we present efficient

methods for the k = 9 case, including generation of elliptic curves with

the shorter Miller loop, the denominator elimination and speed up of the

final exponentiation. Then we compare the performance of these choices.

From the analysis, we conclude that for pairing-based cryptography at

the AES 128 security level, the Barreto-Naehrig curves are the most

efficient choice, and the performance of the case k = 9 is comparable to

the Barreto-Naehrig curves.
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1 Introduction

Pairing computation is an important primitive in cryptographic systems. Much

work has been done on related topics, including an denominator elimination
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method [3], the selection of pairing-friendly groups [6], the construction of pairing-

friendly curves [4][7][8][10][19], the methods to shorten the Miller loop [2][9] [14]

and etc.

In [14], Hess et al. extended the ηT pairing [2] over ordinary curves, and

proposed the Ate pairing. The Miller loop in the Ate pairing can be reduced to

T , where T = t − 1 and t is the Frobenius trace of the elliptic curve. So the

performance of the Ate pairing is dependent on the selection of elliptic curves.

Duan et al. extended Brezing-Weng’s method [7] to generate curves with t ≈
r1/ϕ(k) when k = 2i · 3 [8]. Here and in the following of this paper, ϕ(x) will be

the Euler totient function, and Φk(x) be the kth cyclotomic polynomial [17].

In pairing based cryptography, it is required that r and pk should be suffi-

ciently large, and k, ρ = lg p/ lg r should be appropriately small. Here, r is the

size of the prime subgroup, Fp is the underlying field of the elliptic curve and k

is the embedding degree, which is the smallest integer that r | pk−1. An elliptic

curve satisfying these conditions is called a “pairing-friendly elliptic curve”. For

different AES security levels, we can choose different k and p to achieve the

balance of security and performance efficiency.

Although the constructed curves in [8][11] provide efficient Ate pairing im-

plementation due to the shorter loop, we extend the method to generate more

elliptic curves with embedding degree k = 3i. These curves might offer better

efficiency due to the following reasons:

1. We constructed such pairing-friendly elliptic curves with t ≈ r1/ϕ(k). It’s

well known that ϕ(3i) = 2 · 3i−1 and ϕ(2i · 3) = 2i. For embedding degrees

of cryptographic interest and the same security level, the size of r is the

same. So the Ate pairing of elliptic curves with k = 3i would require a much

shorter Miller loop.
2. By the method, the curves constructed in [8] for k = 12 have ρ = 1.5, while

the curves constructed in our extended method for k = 9 have ρ = 1.33.

This is important to save computation cost and bandwidth.

For odd embedding degrees, the denominator elimination method and the

speed up of final exponentiation can not be easily applied. And the efficiency of

pairing computation in odd embedding degrees has not been studied in detail in

the literature.

In this paper, we first extend Duan’s technique to generate curves of k = 3i

with t ≈ r1/ϕ(k). Second, we propose a method that is analogous to the denomi-
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nator elimination method using cubic twist elliptic curves. Third, we describe the

method to speed up the final exponentiation using the explicit representation

of coefficients of the final exponentiation. Finally, following Koblitz’s analysis

[15], we analyze the performance over the proposed Ate pairing-friendly elliptic

curves and Barreto-Naehrig curves [4] at AES 128 security level.

The contributions of this paper are as follows. First, we present the efficient

methods to compute the Ate pairing on elliptic curves with k = 9, and this has

not be studied in detail in the literature. Second we compare the performance

of different choices of elliptic curves under the AES 128 security level. From

the analysis, we conclude that for pairing-based cryptography at the AES 128

security level, the Barreto-Naehrig curves are the most efficient choice, and the

performance of the case k = 9 is comparable to the Barreto-Naehrig curves.

This paper is organized as follows. Section 2 introduces the mathematical

preliminaries, including the Ate pairing and the CM method for curve genera-

tion and the AES security levels. Section 3 describes the method of generating

Ate pairing-friendly elliptic curves with k = 3i. Section 4 describes the method

of denominator elimination over the proposed curves. Section 5 describes the

method to speed up the final exponentiation. Section 6 compares the efficiency

of the choices of elliptic curves under the AES 128 security level. Section 7 sum-

marizes our work.

2 Mathematical Preliminaries

In this section, we briefly recall the Ate pairing, the CM method for generating

elliptic curves and the matching of AES security.

2.1 The Ate Pairing

In this section, we briefly recall the Ate pairing [14]. Let Fp be a finite field with p

elements, where p is a prime. Let E be an ordinary elliptic curve over Fp, r a large

prime with r | #E(Fp) and let t denote the trace of Frobenius, i.e. #E(Fp) =

p+1− t. Let πp be the Frobenius endomorphism, πp : E → E : (x, y) 7→ (xp, yp).

For T = t −1, Q∈G2 =E[r]∩Ker(πp−[p]) and P ∈ G1 = E[r] ∩Ker(πp − [1]),

we have the following:

- fT,Q(P ) defines a bilinear pairing, which is called the Ate pairing.
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- let N = gcd(T k−1, pk−1) and T k−1 = LN , with k the embedding degree,

then

e(Q,P )L = fT,Q(P )c(pk−1)/N

where c =
∑k−1

i=0 T k−1−ipi ≡ kpk−1 mod r.

- for r - L, the Ate pairing is non-degenerate.

Note that the length of Miller loop of the pairing computation is determined

by the trace of Frobenius t. Therefore, choosing the elliptic curves with a small

t can speed up the pairing computation.

2.2 Complex Multiplication Method

The CM method can be used to generate elliptic curves of given order [1]. The

integer equation 4p = t2 −Dy2 is called CM equation, here D is a fundamental

discriminant. The elliptic curve has endomorphism ring equal to an order O in

number field Q(
√

D).

For completeness we recall the following lemma for construction of pairing-

friendly elliptic curves observed by Cocks and Pinch and stated in [11].

Lemma 1. Let k be a positive integer, E/Fp an elliptic curve with #E(Fp) =

hr, where r is prime, and let t be the trace of E/Fp. Assume that r - k. Then

E/Fp has embedding degree k with respect to r if and only if Φk(p) ≡ 0 mod r,or

equivalently, if and only if Φk(t− 1) ≡ 0 mod r.

This observation leads to an efficient construction algorithm due to Brezing

and Weng. In the following we briefly recall their method(Section 1 of [7]).

Given k, D and the notations as above, take a prime r that splits in O,

and r ≡ 1 mod k. Choose ζk as a primitive kth root of unity modulo r. Set

t = ζk + 1 mod r and b = ± t−2
δ mod r where δ is a square root of D modulo r.

Choose different r and ζk until NormQ(
√

D)/Q( t+b
√

D
2 ) is a prime p. Using the

CM method with D and p gives E(Fp). Then E(Fp) has a subgroup of order r,

and embedding degree k with respect to r.

For convenience, we also follow the language of “family of pairing -friendly

elliptic curves” [10] to give a definition of family of Ate pairing-friendly elliptic

curves mentioned in [11].

Definition 1. (Family of Ate Pairing-Friendly Elliptic Curves) Let p(x),

n(x), t(x), r(x) and h(x) be polynomials with integer coefficients. For a given
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positive integer k, the triple (p, r, t) represents a family of Ate pairing-friendly

elliptic curves with embedding k with respect to r if the following conditions are

satisfied:

1. n(x) = p(x)− t(x) + 1 and n(x) = r(x) · h(x);

2. r(x) and p(x) are irreducible;

3. r(x) divides Φk(t(x)− 1), where Φk is the kth cyclotomic polynomial;

4. deg(t(x)) ≤ deg(r(x)) · 1/(ϕ(k));

5. The equation Dy2 = 4p(x)− t(x)2 has infinitely many integer solutions (x,y)

for some proper discriminant D.

2.3 Matching AES Security Using Public Key Systems

In [16], Lenstra analyzed the matching of the AES security levels to public

key systems. This matching becomes important when considering the choice of

embedding degrees. For later analysis, we recall Koblitz’s table about different

security levels [15].

Table 1. Minimum bitlengths of r and pk

AES security level 80 128 192 256

bitlength of br 160 256 384 512

bitlength of bpk 1024 3072 8192 15360

γ =
b
pk

br
6.4 12 21 1

3
30

3 Generating the Ate Pairing-Friendly Elliptic Curves

with k = 3i

In this section, following Brezing and Weng’s method [7], we generate the Ate

pairing-friendly curves with k = 3i.

It is well known that Φ3i(x) = x2·3i−1
+ x3i−1

+ 1, so we have the following,

Theorem 1. Let t(x) = x + 1, r(x) = Φ3i(x), p(x) = {(x + 1)2 + [(x− 1)2 · (2 ·
x3i−1

+ 1)2/3]}/4 and D = −3, then (t, r, p) represents a family of Ate pairing-

friendly elliptic curves with embedding degree k = 3i.
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Proof. The proof of this theorem is a direct application of Brezing and Weng’s

method [7].

Let r(x) = Φ3i(x), then any integer x0 is a kth primitive root of unity modulo

r(x0). Let t = x + 1 and h1(x) ∈ Z[x] such that h1(x)2 ≡ −3 (mod r(x)). By

choosing r(x) in the above way, we have

4r(x)− 3 = (2 · x3i−1
+ 1)2 = h2

1(x).

Let b′(x) = (t− 2)h1(x) = (x− 1)(2 · x3i−1
+ 1), so that

p = NormQ(
√

D)/Q(
t + b′

D · √D

2
) =

(x + 1)2 + (x−1)2·(2·x3i−1
+1)2

3

4
.

If there exists some integer x0 such that r(x0) and p(x0) are primes, then

E(Fp(x0)) can be constructed by CM method. By the construction, (t, r, p) sat-

isfies Definition 1. ¤

Note that this theorem is an extension of Duan et al.’s result. But in their

paper [8], they did not consider the case of k = 3i.

Remark 1. It’s important that our construction gives curves with D = −3, so

that we can use cubic twist curves. The construction of Freeman in section 6.2

of [11] generates Ate pairing-friendly elliptic curves with D = −1. It is unclear

whether the method by Theorem 6.19 of [11] can give curves with D = −3. Even

if this can be done, their method gives elliptic curves with ρ = k+2
ϕ(k) , and our

constructed curves have ρ = ϕ(k)+2
ϕ(k) . Using elliptic curves with smaller ρ can

achieve more efficiency.

Here we give an example of elliptic curves constructed by our method.

Example 1. (Embedding Degree k = 9 at Security Level of AES 128)

Using the proposed construction, we can let

t(x) = x + 1;

r(x) = x6 + x3 + 1;

p(x) = {(x + 1)2 + [(x− 1)2 · (2 · x3 + 1)2]/3}/4;

In this example, we set the security level at AES 128, which requires the size of r

equals to about 256 bits, and the size of the finite field Fpk more than 3072 bits

[15]. By our construction, we have ρ = 1.33 and ω = 6 = ϕ(9). In the following
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example, r is 260 bits, p is 348 bits, and T = t− 1 is 44 bits, and the hamming

weight of T is 7. Here we choose D = −3. Then the curve will admit a cubic

twist. We can easily find the desired curve of the form y2 = x3 + 1 with

– T =C0000001831

– r =F300000B7B418039DD7C67EB89AC47F31ED80AE3BC07BE91EF26898B

BA86F4E91

– p =88B000089C5A583CC0E78CD1F13D85701832C21FCA17C75C976D037B

4E661B69A0177F059FF0B46731C3131

– ]E(Fp)=88B000089C5A583CC0E78CD1F13D85701832C21FCA1

7C75C976D037B4E661B69A0177F059FEFF46731C1900

Note that curves over Fp with the same j invariant are isomorphic over Fp.

So if the curve is of the form y2 = x3 + b, then defined over Fp, it will only have

six possible group orders. It’s easy to choose the value of b that would give the

prescribed order.

4 Denominator Elimination Using Cubic Twisted Elliptic

Curves

In this section, we propose a method to eliminate the denominator computation

in each Miller step.

4.1 Miller’s Algorithm

First, we recall Miller’s algorithm to compute the pairing.

Algorithm 1: Miller’s Algorithm for the Ate Pairing

Input: T =
∑n

i=0 li2i, where li ∈ {0, 1}. Q ∈ G2 and P ∈ G1

Output: fT,Q(P )(p
k−1)/r

1 R ← Q, f1 ← 1

2 for i = n− 1, n− 2, . . . , 1, 0 do

2.1 f1 ← f2
1 · lR,R(P )

v2R(P ) , R ← 2R

2.2 if li = 1 then

2.3 f1 ← f1 · lR,Q(P )
vR+Q(P ) , R ← R + Q

3 return f
(pk−1)/r
1
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Here, lR,Q means the line through R and Q, and vR+Q means the vertical

line through R + Q.

In [3], Barreto et al. proposed an elegant method to eliminate the denomina-

tor. They observed that when choosing a point Q defined over a proper subfield,

the valuation of the line vR+Q = xR+Q − xP would be in a proper subfield of

Fpk . Thus the denominator would become 1 when the final exponentiation is

performed.

When k = 2d is even, it is very efficient to implement such idea by using

quadratic twisted curves. Let E(Fpd) : y2 = x3 + ax + b, then the quadratic

twisted curve would be defined by E′(Fpd) : Dy2 = x3 + ax + b, where D is a

quadratic non residue over Fpd . We can first choose Q′ = (x, y) ∈ E′(Fpd), then

Q = Ψ(Q′) = (x,
√

D · y) ∈ E(Fpk). So 〈Q〉 is a subgroup with x ∈ Fpd , and

y ∈ Fpk . So vR+Q = xR+Q − xP will always lies in the proper subfield of Fpk ,

thus can be eliminated.

4.2 Denominator Elimination for Elliptic Curves with k = 3i

Admitting Cubic Twist

Up to our knowledge, there does not exist such a method when the embedding

degree is odd. So curves with odd embedding degrees are precluded in many

pairing applications. The following shows a method to eliminate the denominator

for curves with k = 3i admitting cubic twist.

Let E(Fpk/3) : y2 = x3 + b, then E admits a cubic twisted curve E′(Fpk/3) :

y2 = x3 + b/D. Here D is not a cubic residue but a quadratic residue over Fpk/3 .

The monomorphism

Ψ3 : E′(Fpk/3) → E(Fpk).

(x′, y′) → (D1/3x′, D1/2y′) = (x, y)

maps the points on the cubic twisted curve to the curve defined over the cubic

extension. Note that, in pairing implementation, we first choose Q′ ∈ E′(Fpk/3)\
E′(Fp) of prime order r. Then under this monomorphism, we have a cyclic sub-

group of order r generated by Q = Ψ3(Q′). The group 〈Q〉has the nice property

that when (x, y) ∈ 〈Q〉, then x ∈ Fpk , while y ∈ Fpk/3 . This is fundamental to

our method of denominator elimination.

Proposition 1. Let H ∈ E(Fpk) and P ∈ E(Fp). Then 1
xH−xP

= x2
H+xHxP +x2

P

(yH−yP )(yH+yP ) .
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Proof. Because H ∈ E(Fpk) and P ∈ E(Fp), then we have

y2
H = x3

H + b;

y2
P = x3

P + b;

then subtract the above two equation would lead the result. ¤.

By choosing H using the monomorphism, (yH−yP )(yH+yP ) lies in the proper

subfield of Fpk . So the denominator would become 1 in the final exponentiation

step. This observation will easily lead to the following useful lemma.

Lemma 2. Over the curves defined as above, let 〈Q〉 be the subgroup of E(Fpk)

using the above monomorphism, H ∈ 〈Q〉 and P ∈ E(Fp). Let SH(P ) = x2
H +

xHxP + x2
P . Then first part of Step 2.1 in Algorithm 1 can be replaced with

f1 ← f2
1 · lR,R(P ) · S2R(P ), and first part of Step 2.3 in Algorithm 1 can be

replaced with f1 ← f1 · lR,Q(P ) · SR+Q(P ) ¤

From the above analysis, a modification of algorithm 1 might be given in the

following:

Algorithm 2:Algorithm for Elliptic Curves over Cubic Extension

Input: T =
∑n

i=0 li2i, where li ∈ {0, 1}. Q ∈ G2 and P ∈ G1

Output: fT,Q(P )(p
k−1)/r

1 R ← Q, f1 ← 1.

2 for i = n− 1, n− 2, . . . , 1, 0 do

2.1 f1 ← f2
1 · lR,R(P ) · S2R(P ), R ← 2R

2.2 if li = 1 then

2.3 f1 ← f1 · lR,Q(P ) · SR+Q(P ), R ← R + Q

3 return f
(pk−1)/r
1

Remark 2. Algorithm 2 replaces the inversion in Algorithm 1 with one full exten-

sion field multiplication and one base field multiplication(See line 2.1 and 2.4 in

two algorithms). While the full denominator elimination totally eliminates the

inversion. So the efficiency between our denominator elimination method and

the full denominator elimination method is small. At the same security level,

the Miller loop is much shorter when the embedding degree is 9, so the efficiency

of the total Miller loop in the case of k = 9 is still comparable to the Ate paring

on elliptic curves with even embedding degrees.
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5 Explicit Coefficients for Frobenius Expansion of the

Final Exponentiation

In the section, we describe the method to speed up the final exponentiation.

5.1 Explicit Coefficients of Frobenius Expansion for k = 9

The original parameter setting can be easily derived from our construction. For

the polynomials of p and r to be primes more likely, we substitue x with 6x + 1,

so the parameters would be

t(x) = 6x + 2

r(x) = 15552x6 + 15552x5 + 6480x4 + 1512x3 + 216x2 + 18x + 1

p(x) = 559872x8+559872x7+233280x6+54432x5+7776x4+648x3+36x2+6x+1

For the final exponentiation, we need to compute f
p9−1

r . Let e = fp3−1, so

the hard part of the exponentiation is to compute e = p6+p3+1
r ∈ Fp[x], since we

don’t use this value to do arithmetic, we omit the explicit polynomial of e.

We expand e under base p, so we have e = a5p
5+a4p

4+a3p
3+a2p

2+a1p
1+a0.

We show that ai can be defined explicitly as follows:

a5 = 36x2

a4 = 216x3 + 36x2

a3 = 1296x4 + 432x3 + 36x2

a2 = 7776x5 + 3888x4 + 648x3 + 72x2

a1 = 46656x6 + 31104x5 + 7776x4 + 1080x3 + 72x2

a0 = 279936x7 + 233280x6 + 77760x5 + 14256x4 + 1512x3 + 72x2 + 3

These can be easily verified by an explicit computation.

5.2 Speeding up the Final Exponentiation Using Explicit Expansion

In this section, we show that the explicit polynomials provide a method to com-

pute the final exponentiation. It is used by Scott in the case of the Barreto-

Naehrig curves(MIRACL) [20].

Let k be the embedding degree, define Dk = Max{deg(a0), · · · , deg(aϕ(k)−1)}.
We describe the method in the following algorithm.

Algorithm 3: Algorithm for Compute ge = g
Pϕ(k)−1

i=0 aip
i
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Input: g, e

Output: ge

1 Compute and store Mi = gxi

for i = 0, 1, · · · , Dk;

2 Compute and store Si = gai for i = 0, 1, · · · , ϕ(k) − 1 from Mi and the

explicit polynomials;

3 Compute S0 · Sp
1 · · · ·Spϕ(k)−1

ϕ(k)−1 ;

Given gxi

, it is easy to compute gai

in the cost of some limited storage using

the explicit polynomials, because there exist relations with the coefficients of ai.

A direct method to use these relations is to compute a5 first, then compute a4,

a3, a2, a1, and finally a0. During the computation, store the intermediate results

for later use. So to estimate the cost of computing all these gai

, it is sufficient to

count the total length of the binary representation of the coefficients of a0. We

will discuss this in detail in the following section.

And since all the exponentiation in the pairing computation are in the cy-

clotomic subgroup GΦk(p), the Frobenius map is cheap.

So the dominant steps of the final exponentiation in this method are com-

puting the exponent gxi

. Using the standard binary method, the cost is about

Dk log x square and multiplication operations.

The bit-length of the hard part of the final exponentiation e is estimated

by ϕ(k) log p − log r. In the case of k = 9, the bit length of the hard part of

final exponentiation is about 1796, which means that by naive implementation,

it would require about 1796 exponentiation steps. But since the bit-length of x is

only 41. So by Algorithm 3, the dominant steps only require 287 exponentiation

steps. When x is of low hamming weight, in most of the steps, only squaring is

performed. This method greatly improve the speed of the final exponentiation.

6 Efficiency Analysis at AES 128 Security Level

In this section, we compare the efficiency of different choices of curves under the

AES 128 security level.

6.1 AES Security Levels and Different Embedding Degrees

As in Table 1, when implementing cryptographic protocols, one must pay atten-

tion to the balance between efficiency and security. In the table, it seems that
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k = 6, 12, 24 offer a perfect matching to AES 80, 128, 192. But the embedding

degrees are derived under an important assumption.

Assumption 1 Let the curves defined by E(Fp) and r is the size of the prime

subgroup. Then we assume that r ≈ p.

Generating pairing-friendly curves of prime order for more general k is still

an open question [4][11][10].

The Barreto-Naehrig curves [4] have prime order and some other advantages.

But the Frobenius trace is t ≈ r1/2, which requires a longer Miller loop for the

Ate pairing.

On the other side the existing Ate pairing-friendly elliptic curves do not

have prime order group. Up to our knowledge, the existing Ate pairing-friendly

elliptic curves are curves in [8] and the curves summarized in section 8.4 of [11].

For curves in [8], we have ρ = ϕ(k)+2
ϕ(k) . Curves in section 8.4 of [11] have ρ between

k+2
ϕ(k) to ϕ(k)+2

ϕ(k) depending on the various methods. And the curves constructed in

this paper have same ρ value as [8] too. But as k = 3i, this ρ would be relatively

small.

So for the Ate pairing implementation, we must reconsider this table using

the existing elliptic curves in the literature. And we do our following analysis

accordingly. Table 2 shows the matching to the AES security levels. And we see

that for pairing base cryptography at AES 128 security level, these three families

of elliptic curves are the natural choices.

Table 2. Security Matching for the AES 128

Curves embedding degree k bits of r bits of q bits of qk

Ate Friendly 9 256 342 3076

Ate Friendly 12 256 384 4608

Barreto-Naehrig 12 256 256 3072

6.2 Efficiency Estimation of the Ate Pairing Computation

In this subsection, we compare the efficiency of the above three cases. we compare

the total computational cost of the Miller loop and the final exponentiation.



13

The Cost of the Miller Loop For k = 9 we consider the curves admitting

cubic twist, and for k = 12 we consider the curves admitting sextic twist. These

curves have the similar equation: y2 = x3 + b. They are curves with j invariant

equal to zero. Following the analysis in [14], let CA
Full denote the cost of Miller

loop in Ate pairing computation using affine coordinate, Mk, Sk and Ik denote

the multiplication, squaring and inversion in the finite field Fpk respectively.

Using our proposed denominator elimination method in section 4. we have

CA
Full = (2S3 + 3M3 + I3 + 6M1 + S9 + 2M9)log2T k = 9

CA
Full = (2S2 + 3M2 + I2 + 2M1 + S12 + M12)log2T k = 12

For the case k = 9, compare line 2.1 in algorithm 1 and 2. In algorithm 2, line

2.1 requires one more M9 and one more 3M1. So we have the estimation formula

above.

Following the rough estimation of extension field arithmetic. In the case of

k = 9, we assume M9 = S9,M1 = S1 and M9 = 25M1, S9 = 25S1. In the case

of k = 12, we assume M12 = S12,M1 = S1 and M12 = 45M1, S12 = 45S1 [14].

Here, we assume 1I1 = 10M1

In the double step of each Miller loop, the case k = 9 requires 130M1 and

the case k = 12 requires 121M1. (Here we only consider the double step, because

we can choose x of low hammming weight)

The Cost of the Final Exponentiation We use algorithm 3 to compute the

hard part of the final exponentiation. The case for the Barreto-Naehrig curves

has been implemented, and the case for the Ate pairing-friendly elliptic curves

with k = 12 is similar.

Firstly, we need to compute the easy part, which need 9M1+I9+M9, 36M1+

3M12 + I12, and 36M1 + 3M12 + I12 respectively.

For step 1, because we are able to generate curves with x of low hamming

weight, we assume only squaring is required in the binary method.

Ate friendly k = 9 Dk = 7, log x = 41 the computation cost 287S9

Ate friendly k = 12 Dk = 5, log x = 64 the computation cost 320S12

Barreto-Naehrig curve k = 12 Dk = 3, log x = 64 the computation cost 192S12
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For step 2, as mentioned in Section 5.2, we first need to count the binary

representation of the coefficients of a0, which is the exponentiation steps we need.

Then for each two monomials of these ai’s, one extension field multiplication Mk

is needed. So for step 2, we need 88(S9 + 1/2M9) + 16M9 for the case of k = 9.

The cost for the other two cases are 35(S12+1/2M12)+5M12, 18(S12+1/2M12)+

7M12 + 24M1 respectively.

For step 3, the Frobenius map of raising to pi would cost kM1. So the cost

would be 45M1, 36M1 and 36M1. Computing the final value ge = needs (φ(k)−
1)Mk, so the cost is 5M9, 3M12 and 3M12 respectively.

Note that in the final exponentiation all the computation is performed in the

cyclotomic subgroup Gφk(p). When k is even, we can use the method introduced

by Granger et.al. [12] to estimate S12 = 30M1. For k = 9, we do not have an

analogue method.

The Total Cost Comparision The following table summarizes our efficiency

consideration and thus show the theoretical results on the Ate pairing computa-

tion. The size of p is different for such elliptic curves, so let M denote the 32×32

bit multiplication operation.

Table 3. Efficiency Comparision at AES 128

Curve Exponen Miller Total Basic Multiplication

Ate friendly k = 9 11185M1 5590M1 17650M1 4428600M

Ate friendly k = 12 12039M1 7744M1 19783M1 6172296M

Barreto-Naehrig k = 12 7398M1 15488M1 22886M1 4119480M

From the table, we see that at the AES 128 security level, the most efficient

choice is the Barreto-Naehrig curves, but the efficiency of the proposed Ate

pairing friendly elliptic curves with k = 9 is comparable to the Barreto-Naehrig

curves. Note also that in this estimation, we use the computation in the torus

[12] to speed up exponentiation in the k = 12 case, but we have not considered

any trick in the k = 9 case. Further research might find similar methods for the

computation in the cyclotomic group Gφ9(p), this might further speed up pairing

computation in the case k = 9.
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7 Conclusion

In this paper, we consider the computation of the Ate pairing over the proposed

curves with k = 9, including the generation of such curves, the denominator

elimination and the speed up of the final exponentiation. Our proposed methods

make the performance of such curves comparable to the Barreto-Naehrig curves

at AES 128 security level.
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