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tions from which prime-order elliptic curves of embedding degrees k =
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this lower bound with experimental data.
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1 Introduction

For an elliptic curve E defined over a finite field IFq, let #E(IFq) = n = hr be
the number of IFq-rational points on E, where r is the largest prime divisor of
n, and gcd(r, q) = 1. The set of all points of order r in E(ĪFq) forms a subgroup
of E(IFq) denoted by E[r]. For such an integer r, a bilinear map can be defined
from a pair of r-torsion points of E to the group µr of rth roots of unity in ĪFq,
by

er : E[r] × E[r] 7→ µr.

In fact, the multiplicative group µr in the above mapping lies in the extension
field IFqk where k is the least positive integer satisfying k ≥ 2 and qk ≡ 1
(mod r). The above mapping is called the Weil pairing, and the integer k is
called the embedding degree of E.

Pairings such as the Weil pairing (other proposed pairings include the Tate
pairing, the Eta pairing [2], or the Ate pairing [8]) are used in many crypto-
graphic applications such as identity based encryption [4], one-round 3-party
key agreement protocols [9], and short signature schemes [3]. The computation
of pairings requires arithmetic in the finite field IFqk . Therefore, k should be
small for the efficiency of the application. On the other hand, the discrete loga-
rithm problem (DLP) in the order-r subgroup of E(IFq) can be reduced to the
DLP in IFqk [14]. Therefore, k must also be sufficiently large so that the DLP in
IFqk is computationally hard enough for the desired security. In particular, it is
reasonable to ask for parameters q, r and k so that the DLP in E(IFq), and the



DLP in IFqk have approximately the same difficulty. Given the best algorithms
known and today’s computer technology to attack discrete logarithms in elliptic
curve groups and in finite field groups, the 80-bit security level can be satisfied
by choosing r ≈ 2160, and qk ≈ 21024. If E/IFq is of prime order, then r ≈ q, and
thus the 80-bit security level can be achieved if q ≈ 2170 and k = 6.

Now, Miyaji, Nakabayashi, and Takano [15] gave a characterization of prime-
order elliptic curves with embedding degree k = 3, 4 and 6, in terms of necessary
and sufficient conditions on the pair (q, t) where t = q + 1 − #E(IFq), the trace
of E over IFq. Such elliptic curves, if ordinary (i.e., when gcd(q, t) = 1), are
nowadays commonly called MNT curves.

The only known method to construct MNT curves is to compute suitable
integers q and t such that there exists an ordinary elliptic curve E/IFq of prime
order and embedding degree k, and to then use the Complex Multiplication
method (or CM method) [1] to find the equation of the curve E over IFq. In fact,
all methods known so far to construct ordinary elliptic curves of any order and
small embedding degree use the CM method; see [5] for a comprehensive survey.
A central equation in this context is the CM equation

4q − t2 = DY 2 (1)

where D is a positive integer and Y ∈ ZZ. If D is square-free, we call D the
Complex Multiplication discriminant (or CM discriminant, or briefly discrimi-
nant) of E. Given current algorithms and computing power, the CM method is
practical if D < 1010 (see [5] for a discussion of this bound).

From (1) Miyaji, Nakabayashi, and Takano [15] derived Pell-type equations,
which we subsequently call MNT equations (see Section 2). For a fixed em-
bedding degree k ∈ {3, 4, 6} and CM discriminant D, solving the corresponding
MNT equation leads to candidate parameters (q, t) for prime-order elliptic curves
E/IFq of trace t = q+1−#E(IFq), embedding degree k and discriminant D. As,
by nature of generalized Pell equations, the solutions of an MNT equation (if
sorted by bitsize and enumerated) grow exponentially, MNT curves are very rare.
In fact, Luca and Shparlinski [12] gave a heuristic argument that for any upper
bound z, there exists only a finite number of MNT curves with discriminant
D ≤ z, regardless of the field size. On the other hand, specific sample curves of
cryptographic interest have been found, such as MNT curves of 160-bit, 192-bit,
or 256-bit prime order ([18, 21]).

Contribution of this paper. First, we further analyze the solutions of the
MNT equations and establish that the MNT curves of embedding degree 6 are
given through the solutions in one of the two (if any) solution classes of the MNT
equation (Section 3). Based on this analysis we give a complete algorithm (in
the appendix) to calculate such solutions that lead to potentially prime-order
elliptic curves; we could not find such an explicit algorithm anywhere in the
literature. We also point out a one-to-one correspondence between MNT curves
of embedding degree 4 and MNT curves of embedding degree 6 (Proposition 1).

Second, building on the work by Luca and Shparlinski [12] who gave a heuris-
tic upper bound on the expected number E(z) of MNT curves with embedding



degree 6 and bounded discriminant D ≤ z, we provide a heuristic lower bound
for E(z) (Section 4.2). Specifically, we show that for large enough z we have

E(z) ≥ 0.49
√

z
(ln z)2 , which nicely complements the Luca-Shparlinski result that

E(z) ≪ z/(log z)2 and corrects the guess [12, p. 559] that E(z) ≤ zo(1). Here
and throughout, log z denotes the natural logarithm of z.

Finally, we give numerical data on E(z) over finite fields of bounded char-
acteristic, and compare those data with our new lower bound (Section 4.3). At
least for this experimentally verifyable range, our lower bound, once corrected
by a constant factor, seems to quite well capture the number of MNT curves of
discriminant D ≤ z.

Acknowledgements. The authors thank Florian Luca and Igor Shparlinski
for their feedback on an earlier version of this paper, which helped us to improve
the statement and proof of Theorem 3.

2 MNT curves and their Pell equations

The Miyaji-Nakabayashi-Takano characterization [15] of MNT curves is summa-
rized in the following theorem.

Theorem 1. Let E/IFq be an ordinary elliptic curve defined over a finite field
IFq. Let n = #E(IFq) be a prime and k the embedding degree of E.

1. Suppose q > 64. Then k = 3 if and only if q = 12l2 − 1 and t = −1 ± 6l for
some l ∈ ZZ.

2. Suppose q > 36. Then k = 4 if and only if q = l2 + l + 1 and t = −l, l + 1
for some l ∈ ZZ.

3. Suppose q > 64. Then k = 6 if and only if q = 4l2 + 1 and t = 1 ± 2l for
some l ∈ ZZ.

Note that for each elliptic curve characterized by Theorem 1 we have exactly
two representations. For example (k = 4), if t = −l and q = l2 + l + 1 for some
integer l, we can also write l′ = −l − 1 and t = l′ + 1 and q = l′2 + l′ + 1. (See
also Proposition 4.)

The characterization from Theorem 1 implies a one-to-one correspondence
between MNT curves with embedding degree k = 4 and MNT curves with
embedding degree k = 6.

Proposition 1. Let n > 64 and q > 64 be primes. Then n and q represent an
elliptic curve E6/IFq with embedding degree k = 6 and #E6(IFq) = n if and only
if n and q represent an elliptic curve E4/IFn with embedding degree k = 4 and
#E4(Fn) = q.

Proof. Let n > 64 and q > 64 represent an elliptic curve E6/IFq with k = 6 and
#E6(IFq) = n = q + 1 − t. By Hasse’s theorem we have t2 ≤ 4q. Now,

t2 ≤ 4q ⇔ t2 ≤ 4(t − 1 + n)

⇔ (t − 2)2 ≤ 4n. (2)



Let n′ = q, q′ = n, and t′ = q′ + 1 − n′. Then t′ = 2 − t, and by (2), t′ satisfies
the Hasse bound with q′ = n. So let E4 be an elliptic curve over IFq′ with n′

points. Now, by Theorem 1(3) q = 4l2 + 1 for some integer l. If t = 1 − 2l, then
q′ = q + 1 − t = (2l)2 + 2l + 1 and t′ = 2l + 1, and thus by (2) of Theorem
1, E4/IFq′ has embedding degree k′ = 4. Replacing l by −l in the last sentence
settles the other case, t = 1 + 2l.

To prove the converse, let n, q be primes greater than 64 representing an
elliptic curve E4/IFq with embedding degree k = 4 and n points, and let t =
q + 1−n. Then by Theorem 1(2) t = l + 1 or t = −l for some l ∈ ZZ. Since both
n, q are odd primes, t must be odd. Thus, l is even if t = l + 1, and l is odd if
t = −l. In the first case, l = 2m and t = 1+2m for some integer m, while in the
second case, we can write l = 2(−m) − 1 and t = 1 + 2m for some m ∈ ZZ. We
now proceed just as in the first part (starting after (2)).

Now, let us parametrize MNT curves by (q(l), t(l)) where q(l) and t(l) are as
in Theorem 1. Then, after some elementary manipulation of the corresponding
CM equations 4q(l) − t(l)2 = DY 2, one can obtain generalized Pell equations
which we call the MNT equations. In particular:

1. The MNT equation for k = 3 is X2 − 3DY 2 = 24, where t(l) = 6l − 1 and
X = 6l + 3, or t(l) = −6l − 1 and X = 6l − 3.

2. The MNT equation for k = 4 is X2 − 3DY 2 = −8, where t(l) = −l and
X = 3l + 2, or t(l) = l + 1 and X = 3l + 1.

3. The MNT equation for k = 6 is X2 − 3DY 2 = −8. where t(l) = 2l + 1 and
X = 6l − 1, or t(l) = −2l + 1 and X = 6l + 1.

The MNT method then consists of the following: Fix k. Choose D < 1010.
Solve the MNT equation to (hopefully) find pairs (q, t) such that q is a prime
power and of the desired bitlength, and q + 1 − t is prime. Finally, use the CM
method to construct the actual curve.

3 Solving the MNT equations

For solving the MNT equations, we need some facts from the theory of Pell
equations and continued fractions. We refer to Mollin’s book [16] for more details.

Let m ∈ ZZ, D ∈ IN and D not a perfect square. Then a generalized Pell
equation can be given as follows

X2 − DY 2 = m. (3)

If x ∈ ZZ, y ∈ ZZ and x2 − Dy2 = m then we use both (x, y) and x + y
√

D
to refer to a solution of (3), since x + y

√
D is an element in the quadratic

field Q(
√

D) with norm x2 − Dy2 = m. Let α = x + y
√

D be a solution to
(3). If gcd(x, y)=1 then α is called a primitive solution. Two primitive solutions
α1 = x1 + y1

√
D and α2 = x2 + y2

√
D belong to the same class of solutions if

there is a solution β = u + v
√

D of X2 − DY 2 = 1 such that α1 = βα2. Now,
if α = x + y

√
D then let α′ denote the conjugate of α, that is, α′ = x − y

√
D.



If a primitive solution and its conjugate are in the same class then the class
is called ambiguous. If α = x + y

√
D is a solution of (3) for which y is the

least positive value in its class then α is called the fundamental solution in its
class. Note that if the class is not ambiguous then the fundamental solution is
determined uniquely. If the class is ambiguous then adding the condition x ≥ 0
defines the fundamental solution uniquely. Finally, if α = x + y

√
D is a solution

of (3) for which y is the least positive value and x is nonnegative in its class then
α is called the minimal solution in its class, and it is determined uniquely. If
(x, y) is a minimal solution to X2 − DY 2 = m, and (u, v) is a minimal solution
to U2 − DV 2 = 1 then all primitive solutions (xj , yj) in the class of (x, y) are
generated as follows:

xj + yj

√
D = ±(x + y

√
D)(u + v

√
D)j , where j ∈ ZZ. (4)

The following proposition determines whether the given two solutions of a
Pell-type equation are in the same class.

Proposition 2 ([16], Proposition 6.2.1). Let x1 + y1

√
D and x2 + y2

√
D be

primitive solutions of X2 −DY 2 = m. They are in the same class if and only if
both

(x1x2 − y1y2D)/m ∈ ZZ and (y1x2 − x1y2)/m ∈ ZZ. (5)

Consequently, there are only finitely many classes of primitive solutions of X2−
DY 2 = m.

Next, we show that under certain circumstances Pell-type equations cannot
have elements from an ambiguous class as solutions. We will use this result in
Section 3.1.

Lemma 1. Let m ∈ ZZ, m ≡ 0 (mod 4), and let D be an odd positive integer,
not a perfect square. Then, the set of solutions to X2 − DY 2 = m does not
contain any ambiguous class.

Proof. Suppose that there is an ambiguous class of solutions. Then there exists
a primitive solution α = x + y

√
D such that α and α′ are in the same class.

Since m is even and D is odd and gcd(x, y) = 1, y must be odd. By Proposition
2, (x2 + y2D)/m = (m + 2y2D)/m must be an integer. In particular, 2y2D/m
is an integer. But this is a contradiction since 4|m while y and D are odd.

If α = (x, y) is any solution in a given solution class of X2 −DY 2 = m then
it is known ([17], Theorem 4.2) that there exists an integer P0 which satisfies
−|m|/2 < P0 ≤ |m|/2 and

P0 +
√

D = (x + y
√

D)(s + t
√

D) (6)

for some unique element s+ t
√

D. In this case α = (x, y) is said to belong to the
element P0.

Remark 1. If α belongs to P0 and the class containing α is not ambigious, then
α′ = (x,−y) belongs to −P0. This can be seen by conjugating (6) and then
multiplying it by −1, which gives −P0 +

√
D = (x − y

√
D)(−s + t

√
D).



3.1 Embedding degree k = 6

In this section we analyze the MNT equation for the case k = 6: X2 − 3DY 2 =
−8. We let D′ = 3D and for future reference rewrite the equation as

X2 − D′Y 2 = −8. (7)

We will show that for finding all computable MNT curves with k = 6 the fol-
lowing applies:

1. D′ should be fixed such that 0 < D′ < 3 ·1010 and D′/3 is squarefree. – This
is required for the CM method.

2. D′ ≡ 9 (mod 24) and −2 is a square modulo D′ (Proposition 3).
3. If there is a solution to X2−D′Y 2 = −8 then it is enough to find, if it exists,

only one minimal solution, say (x0, y0) (Theorem 2, Proposition 4).
4. Let (u, v) be a minimal solution to U2−D′V 2 = 1 and (xj , yj) = ±(x0, y0)(u, v)j

the set of all solutions in the same class as (x, y). Then it is enough to con-
sider only one of the solutions (xj , yj) and −(xj , yj) (Proposition 4).

Proposition 3. Assume E/IFq (q > 64) is an MNT curve with embedding de-
gree k = 6 and CM discriminant D that is constructible with the MNT method.
Let D′ = 3D. Then (7) must have only primitive solutions. Further, D′ ≡ 9
(mod 24), and −2 must be a square modulo D′.

Proof. If there exists E/IFq with k = 6 then by Theorem 1(3) there exists some
integer l satisfying 4q − t2 = 12l2 ± 4l + 3. As the CM equation (1) needs to
hold, this implies 4l(3l ± 1) + 3 = DY 2, and so DY 2 ≡ 3 (mod 8). Hence,
D ≡ 3 (mod 8), and D′ ≡ 9 (mod 24). Now, let (x, y) be a solution of (7)
with gcd(x, y) = d > 1 and let x = dx′, y = dy′. Since d2(x′2 −D′y′2) = −8 and
D′ is odd, we must have d = 2. Then x′2 − D′y′2 = −2 and thus x′2 − y′2 ≡ 6
(mod 8). But this congruence has no integer solutions, and so any solution of
(7) must be primitive. Finally, reducing (7) modulo D′ proves that −2 must be
a square modulo D′.

By Proposition 3, the MNT curves with k = 6 can only be obtained through
the primitive solutions of the equation

X2 − D′Y 2 = −8, where D′ ≡ 9 (mod 24). (8)

Lemma 2. If (x, y) is a primitive solution to (8), then x and y must both be
odd.

Proof. First note that D′ is odd. Thus, if y is even then x must be even, and is
(x, y) is not primitive. So y must be odd. Suppose now that y is odd and x is
even. But then 4 | D′, a contradiction.

Remark 2. For any solution (x, y) of (7) with x odd we must have x ≡ ±1
(mod 6). (Reducing (7) modulo 3 yields x2 ≡ 1 (mod 3).)



Theorem 2. Equation (8) either does not have any solution or it has exactly
two classes of solutions. In particular, if α is a solution of (8) then α and its
conjugate α′ represent the two solution classes.

Proof. If (8) does not have any solution then we are done. Therefore, we shall
assume that α is a solution belonging to some class, say P0. Then, by Lemma 1
and Remark 1, α′ is a solution belonging to −P0. If these are the only two solution
classes then we are done. So assume that there are more than two solution classes.
Now, by the choice of P0 we have P 2

0 − D′ ≡ 0 (mod 8), and −4 < P0 ≤ 4.
Thus, since D′ ≡ 1 (mod 8), the only possible values for P0 which represent
the different classes of solutions are P0 = ±1,±3. So let α, α′, β, β′ correspond
to the P0 values 1,−1, 3,−3, respectively.

Since α is a solution belonging to class P0 = 1 we can write for some integers
s1, t1 that

1 +
√

D′ = α(s1 + t1
√

D′), (9)

and thus by conjugation (see Remark 1)

1 −
√

D′ = α′(s1 − t1
√

D′). (10)

Now, let D′ ≡ 1 (mod 8) and let α = x + y
√

D′. Consider the quadratic
field Q(

√
D′), and its ring of integers R. The prime ideal generated by 2 factors

in R as

2R = 〈2,
1 +

√
D′

2
〉〈2,

1 −
√

D′

2
〉 (11)

([13, Theorem 25]). Note that α/2 and α′/2 are both algebraic integers in
Q(

√
D′) since, by Lemma 2, x and y have the same parity. Also the princi-

pal ideals generated by α/2 and α′/2 are prime ideals since both have norm

2 in Q(
√

D′). Therefore, (9) and (10) give the inclusion 〈2, 1+
√

D′

2 〉 ⊆ 〈α
2 〉 and

〈2, 1−
√

D′

2 〉 ⊆ 〈α′

2 〉, respectively. In fact, we even have equality in both inclusions
since all four ideals are nonzero prime ideals, that is,

〈α
2
〉 = 〈2,

1 +
√

D′

2
〉 and 〈α

′

2
〉 = 〈2,

1 −
√

D′

2
〉.

We now apply a similar reasoning to β and β′. Since β is a solution belonging
to class P0 = 3 there exist integers s2 and t2 such that

3 +
√

D′ = β(s2 + t2
√

D′),

that is,

2 − 1 −
√

D′

2
=

β

2
(s2 + t2

√
D′),



and using β
2 · β′

2 = −2 we obtain

1 −
√

D′

2
= −β

2
(
β′

2
+ s2 + t2

√
D′).

Consequently, 〈2, 1−
√

D′

2 〉 ⊆ 〈β
2 〉, and similarly, also 〈2, 1+

√
D′

2 〉 ⊆ 〈β′

2 〉. Again,
all four ideals are nonzero prime ideals so that we have indeed equality in both
inclusions. Therefore,

〈2,
1 +

√
D′

2
〉 = 〈α

2
〉 = 〈β

′

2
〉 (12)

and

〈2,
1 −

√
D′

2
〉 = 〈α

′

2
〉 = 〈β

2
〉. (13)

It follows from (12) that

1 +
√

D′ = β′(
s3 + t3

√
D′

2
) (14)

for some integers s3, t3 of the same parity. In fact, s3 and t3 must be odd since
α and β′ belong to different solution classes. Similarly, it follows from (13) that

3 +
√

D′ = α′(
s4 + t4

√
D′

2
) (15)

for some odd integers s4 and t4. Now write D′ = 8n + 1 for some integer n. If
n is odd, then we multiply (14) with its conjugate to obtain s2

3 − t23D
′ = 4n. So

s2
3−t23 ≡ 4 (mod 8), which does not have any solution for odd values of (s3, t3).

If n is even, then multiplying (15) with its conjugate gives s2
4 − t24D

′ = 4(n− 1),
that is, s2

4 − t24 ≡ 4 (mod 8) which does not have any solution for odd values
of (s4, t4). Consequently, the assumption that there are more than two solution
classes was wrong. This completes the proof.

Proposition 4. Assume (8) has a solution, and let S and S′ denote the two
solution classes. Let E and E ′ denote the sets of elliptic curves of embedding
degree 6 that correspond to the solutions in S and S′, respectively, using the
correspondence from Section 2: if (x, y) ∈ S (or S′) and x ≡ 1 (mod 6), let
l = (x− 1)/6 and Ex be the elliptic curve over IFq with trace t where q = 4l2 +1
and t = 1+2l, while if (x, y) ∈ S (or S′) and x ≡ −1 (mod 6), let l = (x+1)/6
and Ex be the elliptic curve over IFq with trace t where q = 4l2+1 and t = 1−2l.
Then E = E ′.

Proof. Let E/IFq ∈ E with trace t, and #E(IFq) = n. Then there exists a pair
(x, y) ∈ S such that x ≡ ±1 (mod 6). Suppose first that x ≡ 1 (mod 6),
and l = (x − 1)/6. Then q = 4l2 + 1, t = 1 − 2l and n = 4l2 + 2l + 1. Now
let (x′, y′) = (−x, y). Since the set of solutions to (8) does not contain any
ambiguous class (Lemma 1), we have (x′, y′) ∈ S′. Further, x′ ≡ −1 (mod 6).
Now let l′ = (x′ + 1)/6, and q′ = 4l′2 + 1, t′ = 1 + 2l′, n′ = 4l′2 + 2l′ + 1. Let



E′
x ∈ E ′ be the corresponding elliptic curve over IF′

q with trace t′ and n′ points.
Since l′ = −l and thus q′ = q, t′ = t and n′ = n, we have (up to isogenies)
Ex′ = E. The analogous reasoning applies for the case x ≡ −q (mod 6). Thus,
E ⊂ E ′. The converse follows with the same argument.

Summing up, we showed that MNT curves with k = 6 are completely charac-
terized through certain primitive solutions of the corresponding MNT equation,
X2 − 3DY 2 = −8. Moreover, we showed that this MNT equation either has
no primitive solutions or has exactly two solution classes. In the latter case, we
proved that the two solution classes lead to the same set of elliptic curves and so
it is enough to consider only one of the two solution classes. Also, we gave some
necessary conditions on D for the existence of solutions to the MNT equation.

3.2 Embedding degree k = 4

The case of MNT curves with embedding degree k = 4 is completely covered
by combining the above analysis for the k = 6 case with the explicit one-to-
one correspondence of Proposition 1 between the MNT curves with embedding
degree k = 6 and those with k = 4.

3.3 Embedding degree k = 3

The analysis of this case is similar to the case k = 6. First, we let D′ = 3D and
rewrite the CM equation for k = 3 as

X2 − D′Y 2 = 24.

Below, we summarize the results from our analysis [10].

1. D′ should be fixed such that 0 < D′ < 3 · 1010 and D′/3 is squarefree.
2. D′ ≡ 57 (mod 72) and 6 is a square modulo D′.
3. If there is a solution to X2−D′Y 2 = 24 then it is enough to find, if it exists,

only one minimal solution, say (x0, y0).
4. Let (u, v) be a minimal solution to U2−D′V 2 = 1. Let (xj , yj) = ±(x0, y0)(u, v)j

be the set of all solutions in the same class as (x, y). It is enough to consider
only one of the solutions (xj , yj) and −(xj , yj).

4 Frequency of MNT curves

In this section we give estimates for the number of (isogeny classes of) MNT
curves of bounded CM discriminant. In our discussion, we focus on the case
k = 6. Following Luca and Shparlinski [12], we define E(z) to be the expected
total number of all isogeny classes of MNT curves (over all finite fields) with
embedding degree 6 and CM discriminant D ≤ z. Luca and Shparlinski [12]
gave heuristic upper bounds on E(z) which we recall in Section 4.1, while in
Section 4.2 we will give a (new) heuristic lower bound.



4.1 The Luca-Shparlinski upper bounds

Recall from Sections 2 and 3.1 that in order to find MNT curve parameters with
k = 6 (for a particular D), one needs to first find a minimal solution (x, y) of
(8) as well as the minimal solution, say (u, v), of U2 − 3DV 2 = 1. Then the
solutions (xj , yj) (j ∈ ZZ) in the same class as (x, y) would lead to an integer
lj = (xj ±1)/6 (see Lemma 2 and Remark 2). Finally, one checks if qj := 4l2j +1
and nj := qj ∓ 2lj (cf. Theorem 1(3)) satisfy the primality conditions.

Luca and Shparlinski [12] define, for a fixed discrininant D, N(D) as the
expected total number of j ∈ ZZ for which qj is a prime power and nj is a prime.
Then

E(z) =
∑

D≤z

D squarefree

N(D) .

Under the assumption that the primality properties of qj and nj are ruled by
the prime number theorem (meaning that qj and nj are prime with proba-
bilities 1/ log qj and 1/ lognj , respectively), Luca and Shparlinski show that
N(D) ≪ 1/(logD)2. They conclude that E(z) ≪ z/(log z)2. Further, Luca and
Shparlinski suggest a stronger upper bound for E(z) which relies on the conjec-
ture (see [11, p.185]) that there exists a set D of nonsquare positive integers that

has asymptotic density 1 and such that limD∈D
log log(u+v

√
3D)

log
√

D
= 1. Using this

conjecture, Luca and Shparlinski argue that N(D) ≤ 1/(D1+o(1)) for D ∈ D,
and suggest that E(z) ≤ zo(1). We will see below (Theorem 3) that this does not
hold.

4.2 A lower bound

In this section we give a lower bound for E(z). For this we are going to restrict
ourselves to solutions of the MNT equation X2 − 3DY 2 = −8 with Y = 1.

Theorem 3. Assume that the primality properties of 4l2 + 1 and 4l2 ± 2l + 1,
where l ∈ IN and such that (6l ± 1)2 = 3D − 8 for some odd squarefree integer
D, are captured by the prime number theorem. Then there exists an integer z0

such that

E(z) ≥ 0.49

√
z

(log z)2
(16)

for every z ≥ z0.

Proof. Let F(z) denote the set of odd and squarefree integers D ∈ [3, z] such
that 3D − 8 is a perfect square, and let F (z) = #F(z). For D ∈ F(z), let
xD(> 0) such that x2

D = 3D − 8, and let lD ∈ IN such that xD = 6lD + 1 or
xD = 6lD − 1. Denote qD = 4l2D + 1, and nD = 4l2D + 2lD + 1 if xD = 6lD + 1 or
nD = 4l2D − 2lD + 1 otherwise.

An easy calculation shows that if D ≤ z, then qD ≤ z/2 and nD ≤ 3z/4. As
we assume that the primality properties of both qD and nD are captured by the



prime number theorem, and since for z > 17, the number π(z) of primes ≤ z
satisfies π(z) > z/ log z, we have

Prob(qD and nD prime | qD = 4l2 + 1, nD = 4l2 ± 2l + 1, where
l ≥ 1 and (6l ± 1)2 = 3D − 8 for some squarefree D ≤ z)

> 1
log(z/2) · 1

log(3z/4) > 1
(log z)2 .

Now, by Section 2, the number G(z) of pairs (qD, nD) (D ∈ F(z)) where
both qD and nD are prime constitutes a lower bound for E(z). Thus,

E(z) ≥ G(z) ≥ F (z) · 1

(log z)2
. (17)

To find a lower bound for F (z), first note that 3D− 8 is a perfect square and D
is odd and squarefree, if and only if D = 12l2 ± 4l + 3 is squarefree (by putting
3D − 8 = (6l ± 1)2). Let f+(l) = 12l2 + 4l + 3, and F+(z) = {D ∈ [5, z] : D =
f+(l) squarefree}. As f+(l) is irreducible over ZZ[l], there are ∼ cf+

L positive
integers l ≤ L such that f+(l) is squarefree, where cf+

is a positive constant
([19, Theorem A], [6, Theorem 1]). Now, 5 ≤ D = f+(l) ≤ z if and only if

1 ≤ l ≤
√

z
12 − 2

9 − 1
6 =: L+. Thus, for each ε > 0 there exists an integer Z+ such

that (cf+
− ε)L+ < #F+(z) < (cf+

+ ε)L+ for all z ≥ Z+. Doing the analogous
with f−(l) := 12l2 − 4l + 3, and F−(z) := {D ∈ [5, z] : D = f−(l) squarefree}
and L− :=

√
z
12 − 2

9 + 1
6 we find that there exists a positive constant cf−

such

that for each ε > 0 there exists an integer Z− such that (cf−
−ε)L− < #F−(z) <

(cf−
+ ε)L− for all z ≥ Z−. Thus, since F(z) = F+(z) ∪ F−(z) ∪ {3} (disjoint),

we obtain
F (z) > (cf+

+ cf−
− 2ε)

√
z/12 (18)

for all z ≥ z0 := max{Z+, Z−}. Now, cf+
=

∏
p prime

(
1 − wf+

(p)/p2
)

where

wf+
(p) denotes the number of integers a ∈ [1, p2] for which f+(a) ≡ 0 (mod p2)

([19, 6]), and the same holds for cf−
with f+ replaced by f− throughout. It can be

readily seen that wf+
(3) = wf−

(3) = 1 and wf+
(p), wf−

(p) ∈ {0, 2} otherwise.
Further, the polynomial ax2 + bx + c has two solutions modulo p2 if and only if
a is invertible modulo p2 and b2 − 4ac is a square modulo p2. Thus, f+(l) ≡ 0
(mod p2) (p > 3) has two solutions modulo p2 if and only if −128 is a quadratic

residue modulo p2. This is the case if and only if
(

−2
p

)
= 1, which holds if and

only if p ≡ 1 (mod 8) or p ≡ 3 (mod 8). The same reasoning applies to f−(l).
Consequently,

cf+
= cf−

=
8

9
·

∏

p prime, p≡1,3 (mod 8)

(
1 − 2/p2

)
.

Now,
∏

p prime, p≤10000, p≡1,3 (mod 8)

(
1 − 2/p2

)
> 0.858146, while the tail can

be lower bounded as
∏

p prime,p>10000

(
1 − 2/p2

)
≥

∏

s>10000

(
1 − 4/s2

)
=

9999 · 10000

10001 · 10002
> 0.9996.



Hence, cf±
> 0.858146 · 0.9996 > 0.8578. Combined with (18), using ε = 0.0008,

this yields F (z) > 0.857
√

z/3 for all z ≥ z0. Used along with (17), this completes
the proof.

Remark 3. The above lower bound on E(z) can be increased by a constant
factor if also solutions to the MNT equation X2 − 3DY 2 = −8 with Y > 1
are considered. In fact, for each odd Y such that X2 ≡ 3Y 2 − 8 (mod 6Y 2)
is solvable, a lower bound for the number FY (z) of odd and squarefree integers
D ∈ [3, z] such that 3Y 2D − 8 is a perfect square, can be derived in exactly
the same way as for Y = 1. The corresponding polynomials fY,±(l) are given as
fY,±(l) = 12Y 2l2±4sl+(s2 +8)/(3Y 2), where s2 ≡ 3Y 2−8 (mod 6Y 2). They
all have (polynomial) discriminant −128, and thus the corresponding cf -values
will differ only by those factors that involve primes p|Y . In particular, including
the cases Y = 3, 9 will raise our lower bound by a factor of (1 + 1/3 + 1/9).

4.3 Experimental results on E(z)

Using the computational algebra system MAGMA [7] we implemented an al-
gorithm to calculate, for given bitsize N and upper discriminant bound z, all
(isogeny classes of) MNT elliptic curves of embedding degree 6 and discriminant
D ≤ z over a finite field q where q − 1 is an N -bit prime.

As discussed in Section 3, only those squarefree D such that for D′ = 3D we
have D′ ≡ 9 (mod 24) and

(−2
D′

)
= 1 need to be considered.

For any such D ≤ z, our algorithm (Algorithm 3 of the appendix) first calls a
Pell equation solver to compute minimal solutions (x, y) and (u, v) to (7) and to
the equation u2− 3Dv2 = 1, respectively. This Pell equation solver is Algorithm
1 (of the appendix) if 3D > 64 and Algorithm 2 (of the appendix) if 3D < 64;
both algorithms are taken from Robertson [20]. The minimal solutions (x, y) and
(u, v) are used to compute, one by one, all primitive solutions to (7). For each
such primitive solution, it is checked if it yields values for q and n such that q is
a prime power and of the desired bitsize, and n is prime.

Using Algorithm 3, we first conducted a series of experiments to check the
quality of our lower bound on E(z) (Theorem 3).

Let EB(z) denote the number of (isogeny classes of) MNT elliptic curves
with embedding degree k = 6 and CM discriminant D ≤ z over finite fields IFq

with q < 2B. Then EB(z) ≤ E(z) for all B, and E(z) = limB→∞ EB(z).
We computed EB(z) for selected values of B, by running Algorithm 3 with

input N , for all 1 ≤ N ≤ B. Table 4.3 shows the ratios of EB(z) and the lower
bound (16) for z = 2i, z ≤ 225 and B = 160, 300, 500, 700, 1000.

Let R(B, z) = EB(z)/(0.49
√

z
(log z)2 ). As we would expect, R(B, z) is increasing

for fixed z as B increases. For the smallest values of B, we also see that R(B, z)
is essentially decreasing (for fixed B) as z increases. In fact, we expect that
limz→∞ R(B, z) = 0 for any fixed value of B, as if X2 − DY 2 = −8, then the
resulting field size q(≤ 2B) is of the order of magnitude of

√
D, which implies

that EB(z) remains constant for large enough z. On the other hand, for larger



Table 1. Ratios R(B, z) of EB(z) and the lower bound (16) for E(z). Here EB(z)
denotes the number of MNT curves with k = 6 and D ≤ z over IFq with q < 2B .

R(B, z) = EB(z)/(0.49
√

z
(log z)2

), where z = 2i.

i B = 25 B = 50 B = 100 B = 160 B = 300 B = 500 B = 700 B = 1000

10 30.64 30.64 30.64 33.70 33.70 33.70 33.70 33.70
11 31.45 34.08 34.08 36.70 36.70 36.70 36.70 36.70
12 26.47 28.68 28.68 30.88 30.88 30.88 30.88 30.88
13 23.80 25.63 25.63 27.46 27.46 27.46 27.46 27.46
14 24.02 27.02 27.02 30.02 30.02 30.02 30.02 30.02
15 23.15 26.81 26.81 30.46 30.46 30.46 30.46 30.46
16 21.57 25.49 26.47 29.41 29.41 29.41 29.41 29.41
17 20.35 24.26 26.61 29.74 29.74 29.74 29.74 29.74
18 19.23 23.57 25.43 27.92 27.92 27.92 27.92 27.92
19 18.57 23.46 25.42 27.86 28.35 28.35 28.35 28.35
20 16.85 21.83 24.51 26.81 27.19 27.19 27.57 27.57
21 15.22 21.20 23.58 25.67 26.87 27.47 28.06 28.06
22 14.83 22.01 26.64 28.73 29.66 30.12 30.81 30.81
23 14.32 22.74 27.40 29.72 30.62 30.98 32.05 32.41
24 13.65 24.12 28.54 30.88 32.12 32.67 33.64 34.05
25 13.11 24.54 29.30 31.52 32.79 33.32 34.17 34.48

fixed values of B and in particular along the down-ward diagonal, R(B, z) seems
somewhat more stable (around 30, although there is an increase towards the very
end). It is tempting to conclude from this that the lower bound (16) for E(z) has
indeed the right order of magnitude, and possibly is just off by a factor of around
30. So, let us try to estimate the number of (isogeny classes of) computable MNT
elliptic curves of embedding degree 6. That is, put z0 = 1010(≈ 233), and let’s

boldly assume that E(z) = 30 · (0.49
√

z
(log z)2 ). Then E(z0) ≈ 30 · 92.4 = 2772.

For comparison, we found that E225(210) = 10, E21000(210) = 11, E225(224) = 124
and E21000(225) = 326.

As prime-order elliptic curves over fields of bitsize 155 − 170 approximately
match the security level of SKIPJACK (i.e., the 80-bit symmetric key security
level), we found it of interest to calculate the number of (isogeny classes of)
MNT elliptic curves over 155 − 170-bit fields. But the smallest discriminant for
which we found an MNT curve in the desired bit range has 21 bits, with the next
two such MNT curves appearing for 24-bit discriminants. These data certainly
do not allow for a meaningful extrapolation to z = 1010.

5 Conclusion

Our analysis in this paper brought us closer to the true nature of the function
E(z), the number of prime-order elliptic curves over finite fields with embedding
degree k = 6 (MNT curves) and discriminant D ≤ z. However, it would be nice
to be able to estimate the number of MNT curves of bounded discrimant and
given bit-size. Our experimental data for the cryptographically interesting range
are too limited to encourage any predictions.



References

1. A.O.L. Atkin and F. Morain, Elliptic curves and primality proving, Mathematics
of Computation 61 (1993), 29–68.

2. P.S.L.M. Barreto, S. Galbraith, C. O’hEigeartaigh, and M. Scott, Efficient pairing

computation on supersingular abelian varieties, Designs, Codes and Cryptography
42 (2007), 239–271.

3. H. Shacham D. Boneh, B. Lynn, Short signatures from the Weil pairing, Ad-
vances in Cryptology- ASIACRYPT 2001, Lecture Notes in Computer Science
2248 (2001), Springer, 514–532.

4. M. Franklin D. Boneh, Identity based encryption from the Weil pairing, Advances
in Cryptology- CRYPTO 2004, Lecture Notes in Computer Science 3152 (2004),
Springer, 41–55.

5. D. Freeman, M. Scott, and E. Teske, A taxonomy of pairing-friendly

elliptic curves, Cryptology ePrint Archive Report 2006/372, 2006,
http://eprint.iacr.org/2006/372/.

6. A. Granville, ABC allows us to count squarefrees, International Mathematical Re-
search Notices 19 (1998), 991–1009.

7. Computational Algebra Group, The Magma computational algebra system for alge-

bra, number theory and geometry, School of Mathematics and Statistics, University
of Sydney, http://magma.maths.usyd.edu.au/magma.

8. F. Hess, N. Smart, and F. Vercauteren, The Eta pairing revisited, IEEE Transac-
tions on Information Theory 52 (2006), 4595–4602.

9. A. Joux, A one round protocol for tripartite Diffie-Hellman, Proc. of ANTS IV,
Lecture Notes in Computer Science 1838 (2000), Springer, 383–394.

10. K.Karabina, On prime-order elliptic curves with embedding degrees 3,4

and 6, Master’s thesis, University of Waterloo, 2006, Available at:
http://uwspace.uwaterloo.ca/handle/10012/2671.

11. H. W. Jr. Lenstra, Solving the Pell equation, Not. Amer. Math. Soc. 49, (2002),
182–192.

12. F. Luca and I. E. Shparlinski, Elliptic curves with low embedding degree, Journal
of Cryptology 19 (2006), 553–562.

13. D. A. Marcus, Number fields, Springer-Verlag, New York, 1977.
14. A. Menezes, T. Okamoto, and S. Vanstone, Reducing elliptic curve logarithms to

logarithms in a finite field, IEEE Transactions on Information Theory 39 (1993),
1639–1646.

15. A. Miyaji, M. Nakabayashi, and S. Takano, New explicit conditions of elliptic curve

traces for FR-reduction, IEICE Trans. Fundamentals E84-A (2001), 1234–1243.
16. R. A. Mollin, Fundamental number theory with applications, CRC Press, Boca

Raton, New York, 1998.
17. , Simple continued fraction solutions for Diophantine equations, Exposi-

tiones Mathematicae 19 (2001), no. 1, 55–73.
18. D. Page, N .P. Smart, and F. Vercauteren, A comparison of MNT curves and su-

persingular curves, Applicable Algebra in Engineering, Communication and Com-
puting 17 (2006), 379–392.

19. G. Ricci, Ricerche aritmetiche sui polinomi, Rend. Circ. Mat. Palermo 57 (1933),
433–475.

20. J. P. Robertson, Solving the generalized Pell equation x2−dy2 = n, 2004, Available
at: http://hometown.aol.com/jpr2718/.

21. M. Scott and P.S.L.M. Barreto, Generating more MNT elliptic curves, Designs,
Codes and Cryptography 38 (2006), 209–217.



Appendix: Algorithms

We present two Pell equation solver algorithms: Algorithms 1 and 2; and one
algorithm for finding suitable MNT curve parameters for embedding degree k =
6: Algorithm 3. Our reference for the first two algorithms is Robertson’s paper
[20]. Algorithm 3 uses these two algorithms and the facts developed in this paper.

Algorithm 1 Pell Equation Solver
Input: D ∈ ZZ, m ∈ ZZ\{0} : D > m2, D is not a perfect square
Output: all minimal positive solutions (x, y) : x2 − Dy2 = m

1: B−1 ← 0, G−1 ← 1
2: P0 ← 0, Q0 ← 1, a0 ← ⌊

√
D⌋, B0 ← 1, G0 ← a0

3: i← 0
4: repeat

5: i← i + 1
6: Pi ← ai−1Qi−1 − Pi−1

7: Qi ← (D − P 2
i )/Qi−1

8: ai ← ⌊(Pi +
√

D)/Qi⌋
9: Bi ← aiBi−1 + Bi−2

10: Gi ← aiGi−1 + Gi−2

11: until Qi = 1 and i ≡ 0 (mod 2)
12: s← 0
13: for 0 ≤ j ≤ i− 1 do

14: if G2
j −DB2

j = m/f2 for some f > 0 then

15: Output: (fGj , fBj)
16: s← 1
17: end if

18: end for

19: if s == 0 then

20: Output: No solutions exist
21: end if



Algorithm 2 Pell Equation Solver 2
Input: D ∈ ZZ, m ∈ ZZ\{0} : D ≤ m2, D is not a perfect square
Output: all fundamental solutions (x, y) : x2 − Dy2 = m

1: Find a minimal solution (u, v) to U2−DV 2 = 1 using Algorithm 1 with inputs D,
1.

2: if m > 0 then

3: L1 ← 0, L2 ←
√

m(u− 1)/(2D)
4: else

5: L1 ←
√

(−m)/D, L2 ←
√

(−m)(v + 1)/(2D)
6: end if

7: for L1 ≤ y ≤ L2 do

8: if m + Dy2 is a square then

9: x←
√

m + Dy2

10: if (x, y) and (−x, y) are not in the same class then

11: Output: (x, y), (−x, y)
12: else

13: Output: (x, y)
14: end if

15: end if

16: end for



Algorithm 3 Elliptic curve parameters, embedding degree k = 6
Input: N , z
Output: EC parameters (q, n, D) where q−1 is an N -bit prime, q6 ≡ 1 (mod n)
but qi 6≡ 1 (mod n) for 1 ≤ i ≤ 5, and D ≤ z (where 4q − t2 = DY 2)
.

1: for 0 < D′ ≤ 3z, D′/3 squarefree, D′ ≡ 9 (mod 24), −2 is a square modulo D′

do

2: if D′ > 64 then

3: find a minimal solution, (x0, y0), to X2 − D′Y 2 = −8 by using Algorithm 1
with input D′, −8.

4: else

5: find a minimal solution, (x0, y0), to X2 − D′Y 2 = −8 by using Algorithm 2
with input D′, −8.

6: end if

7: find a minimal solution, (u, v), to U2 − D′V 2 = 1 by using Algorithm 1 with
input D′, 1.

8: x← x0, y ← y0

9: if x ≡ ±1 (mod 6) then

10: while |x| ≤ 2⌈N/2⌉ do

11: l← (x∓ 1)/6
12: if (N − 3)/2 ≤ log2 l < (N − 2)/2 then

13: q ← 4l2 + 1, n← 4l2 ∓ 2l + 1
14: if q and n are primes then

15: Output (q, n, D′/3)
16: end if

17: end if

18: x̃← x
19: x← xu + yvD′

20: y ← x̃v + uy
21: end while

22: end if

23: x← x0u− y0vD′, y ← uy0 − x0v
24: if x ≡ ±1 (mod 6) then

25: while |x| ≤ 2⌈N/2⌉ do

26: l← (x∓ 1)/6
27: if (N − 3)/2 ≤ log2 l < (N − 2)/2 then

28: q ← 4l2 + 1, n← 4l2 ∓ 2l + 1
29: if q and n are primes then

30: Output (q, n, D′/3)
31: end if

32: end if

33: x̃← x
34: x← xu− yvD′

35: y ← uy − x̃v
36: end while

37: end if

38: end for


