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Abstract

We study the role of help in Non-Interactive Zero-Knowledge protocols and its relation to
the standard interactive model. In the classical case, we show that help and interaction are
equivalent, answering an open question of Ben-Or and Gutfreund ([BGO03]). This implies a new
complete problem for the class SZK, the Image Intersection Density. For this problem, we also
prove a polarization lemma which is stronger than the previously known one.

In the quantum setting, we define the notion of quantum help and show in a more direct way
that help and interaction are again equivalent. Moreover, we define quantum Non-Interactive
Zero-Knowledge with classical help and prove that it is equal to the class of languages that have
classical honest-Verifier Zero Knowledge protocols secure against quantum Verifiers ([Wat06,
HKSZ07]). Last, we provide new complete problems for all these quantum classes.

Similar results were independently discovered by Dragos Florin Ciocan and Salil Vadhan.
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1 Introduction

In the setting of Zero-Knowledge, the Prover can prove to the Verifier that the answer to an instance
of a problem, e.g. an NP problem with a witness w, is Yes without giving any other information. In
particular, the person that receives the proof does not learn anything about w or any other witness.
In order to create this kind of proofs, the Prover and the Verifier interact with each other. The
condition "without giving any other information" has been formalized in [GMR89, GMW91| and
this security condition has been defined in the computational and the information-theoretic setting.

We are interested in the information-theoretic setting and the class SZK (Statistical Zero-
Knowledge) where an exponentially small amount of information is leaked. This class has been
widely studied and many properties thereof are known (eg. [Oka96, Vad99]). Some non-interactive
models have also been defined where there is a single message from the Prover to the Verifier. If
the Prover and Verifier do not share anything in the beginning of the protocol, then the resulting
class is no larger than BPP. However, we can enhance the model, either by having the Prover
and Verifier share a uniformly random string (the NISZK class, see [DMP88], [GSV99]) or some
limited trusted help (the NISZ K, class).

The class NISZ K|, was introduced by Ben-or and Gutfreund [GBO0|. In this setting, the Prover
and Verifier receive in the beginning of the protocol some help from a trusted third party, the Dealer.
The Dealer has polynomial power, hence the help is "limited", however he knows the input to the
problem. They showed that help does not add anything if we allow interaction (SZK = SZK)).
They also described a complete problem for the class NISZK|,, the Image Intersection Density
(IID), and showed that NISZK C NISZKy, € SZK, in other words that help can always be
replaced by interaction. They also claimed to prove the opposite inclusion, SZK C NISZK\,
however they later retracted from this claim ([BGO3]).

In this paper, we start by proving that indeed help and interaction are equivalent in Zero-
Knowledge proofs, i.e. SZK = NISZK);, (Section 4). Our result can be thought of as showing
that the power of SZK lies only in the fact that there is a trusted access to the input (from the
Verifier or from the Dealer). It will hopefully provide some more insight into the relation between
the classes NISZK and SZK, which is a main open question in the area. Moreover, we show
that the I1D problem remains complete for a wider range of parameters. For the proof we use a
polarization lemma that is based on new bounds on the Statistical Difference problem (Appendix
A).
In 2002, Watrous defined a quantum analog of Zero-Knowledge proofs (|[Wat02]) and studied
the quantum class QSZ K. Since then, there has been a series of works that deal with the power
and limitations of quantum Zero-Knowledge proofs (|[Kob03, Wat06, Kob07]) as well as attempts
to find classical interactive protocols that remain zero-knowledge even against quantum adversaries
([Wat06, HKSZ07]).

In the second part of our paper, we start by studying the class QNISZK that was defined by
Kobayashi in [Kob03]. Using new results from [BT07], we give two complete problems for this class,
the Quantum Entropy Approximation (QEA) and the Quantum Statistical Closeness to Uniform
(QSCU). These complete problems are the quantum equivalents of the complete problems for
NISZK. However, due to the fact that quantum expanders are different than classical ones, the
proof is different than in the classical case (Section 5).

In addition, we study the role of help in quantum Zero-Knowledge protocols. We define the
notion of quantum help and show in a straightforward way that it is again the case that help and
interaction are equivalent. We also define quantum Zero-Knowledge with classical help, provide a



complete problem for the class and deduce that the message of the Prover can also be classical.
This allows us to prove that this class is equivalent to the class of languages that have classical
interactive protocols that remain zero-knowledge even against quantum honest Verifiers (Section 6).

2 Preliminaries

We start by describing some operations on probability distributions and proceed to provide defini-
tions for classical and quantum Zero Knowledge classes and their complete problems.
2.1 Operations on Probability distributions

Let X : {0,1}" — {0,1}™ be a polynomial size circuit. The distribution encoded by X is the
distribution induced on {0,1}™ by evaluating X on a uniformly random input from {0,1}". We
abuse notation and denote this distribution by X, in other words, X is both a circuit that encodes
a distribution and the distribution itself. Also, Py, is the set of probability distributions on {0, 1}".

Denote by SD(X,Y) the Statistical Difference between X and Y, SC(X,Y") their Statistical
Closeness, Disj(X,Y) the Disjointness of X according to Y and mut-Disj the mutual Disjointness
between X and Y.

e SD(X,Y) =13 |z —yl =1—3, min(z;, y;)

e SC(X,Y)=1-SD(X,Y) =), min(x;,y;)

o Disj(X.Y) = gz |{i € {0,1}" | ¥j € {0,1}", X () # Y (j)}

e mut -Disj(X,Y) =min(Disj(X,Y), Disj(Y, X))

Note that Disj(X,Y) < SD(X,Y) and that Disj(X,Y") # Disj(Y, X) but mut-Disj(X,Y) =mut-
Disj(Y, X).
Tensor Product X ® Y corresponds to the distribution (X,Y). If X € P, and Y € P, then
X®Y € Puim. We denote X®* the distribution that results by tensoring X k times.
Prop 1 (Direct Product Lemmas). Let X,Y any probability distributions. Then,

1. SD(X,Y) =0 = 1—2exp ¥°/2 < SD(X®F YEF) < k6

2. Disj(X,Y) =8 = Disj(X® Y®k) =1 (1 - §)*
XORing Distributions We define the XOR operator which acts on a pair of distributions and
returns a pair of distributions. Let (4, B) = XOR(Xo, X1). Then,

A : pick b €r {0, 1}, return a sample of X, ® X,
B : pick b €r {0, 1}, return a sample of X}, ® Xj

Prop 2 (XOR Lemmas). Let X,Y probability distributions and (A, B) = XOR(X,Y). Then,
1. SD(X,Y) =6 = SD(A,B) = §?
2. mut-Disj(X,Y) =8 = mut-Disj(A, B) = 6>



Flat Distributions Let X a distribution with entropy H(X). Elements x; of X such that
|log(zi) + H(X)| < k are called k-typical. We say that X is A-flat if for every ¢ > 0 the probability
that an element chosen from X is ¢ - A-typical is at least 1 — 9—t*+1,

Prop 3 (Flattening Lemma). Let X : {0,1}" — {0,1}™ a circuit that encodes a distribution. Then
X®k s k- n-flat.

2-Universal hashing functions A family H of 2-Universal hashing functions from A — B is
1

such that for every two elements x,y € A and a,b € B Pryc,n| h(z) = a and h(y) = b] = BE-
Prop 4 (Leftover hash lemma). Let H a samplable family of 2-Universal hashing functions from
A — B. Suppose X is a distribution on A such that with probability at least 1 — 0 over x selected
from X, Pr[X = x| <¢/|B|. Consider the following distribution

Z : choose h «— H and v «— X. return (h,h(x))

Then, SD(Z,I) < O(6 + €'/3), where I is the Uniform distribution on H x B.

2.2 Classical Zero Knowledge

Zero Knowledge proofs are a special case of interactive proofs. Here, we also want that the Verifier
learns nothing from the interaction other than the fact that x € IIy when it is the case. The way
it is formalized is that for x € Iy, the Verifier can simulate his view of the protocol defined by all
the messages sent during the protocol as well as the verifier’s private coins.

Definition 1. II € SZK iff there exists an interactive protocol (P, V') that solves I1 such that there
exists a function S computable in polynomial time and a function p € negl(k) < 1/poly(k) that has
the following property :

vz e Ty, SD (S(x, 1%), (P, v>v) < u(k)

S is called the simulator. We also have the following non-interactive variants of SZK:
e NISZK : We suppose here that the Prover and the Verifier additionally share a truly random
string 7. We want the Verifier to be able to simulate both the random string and the message mp
from the Prover on Yes instances.

Definition 2. Il € NISZK iff with a truly random shared string r, there exists an non-interactive
protocol (P, V') that solves I1 such that there exists a function S computable in polynomial time and
a function u € negl(k) < 1/poly(k) that has the following property :

Vz € Iy, SD (S(x, 1%), (r, mp(r, x))) < u(k)

e NISZK|,, : We suppose here that the Prover and the Verifier additionally share a string h that
is generated by a trusted third party (the dealer) using some coins unknown to the verifier and the
prover. This string is called the help and can depend on the input. We want the Verifier to be able
to simulate both the help and the Prover’s message on Yes instances.

Definition 3. Il € NISZK, iff there exists a non-interactive protocol (D, P, V) that solves 11
where :



o The prover and the verifier share some help h which is a random sample of D depending on
the input.

e There exists a function S computable in polynomial time and a function p € negl(k) <
1/poly(k) that has the following property :

V€ Iy, SD (S(x, 1%y, (h,mp(h,x))) < u(k)

2.3 Quantum Statistical Zero Knowledge

Quantum Statistical Zero Knowledge proofs are a special case of Quantum Interactive Proofs. We
can think of a quantum interactive protocol (P, V)(x) as a circuit (Vi (z), Pi(x),..., Vi(z), Pp(z))
acting on V@ M ® P. V are the Verifier's private qubits, M are the message qubits and P are
the Prover’s private qubits. V;(z) (resp. Pj(z)) represents the i** action of the Verifier (resp. the
Prover) during the protocol and acts on V ® M (resp. M ® P). 3; corresponds to the state that
appears after the i*" action of the protocol.

In the Zero-Knowledge setting, we also want that the Verifier learns nothing from the interaction
other than the fact that € Iy when it is the case. The way it is formalized is that for z € Ily,
the Verifier can simulate his view of the protocol. We are interested only in protocols where the
Verifier and the Prover use unitary operations.

Let (P,V) a quantum protocol and f; defined as before. The Verifier’s view of the protocol is
his private qubits and the message qubits. view pyy(j) = Trp(0;). We also want to separate the
Verifier’s view whether the last action was made by the Verifier or the Prover. We note pg the input
state, p; the Verifier's view of the protocol after P; and &; the Verifier’s view of the protocol after
V.

We say that the Verifier’s view can be simulated if on an input z, there is a negligible function
i such that Vj we can create o; with quantum polynomial computational power such that

oy — viewy,p(j)|l < u(|z|)

Note that for a state o such that [|o — p;|| < pu(|x]) it is easy to see that o’ = V;+1‘7Vi:-1 is close
to &iy1 = Vi+1Pin‘:_1 in this sense that ||’ — &41|| < p(]z]). Therefore we just need to simulate the
0i’s.

Definition 4. A protocol (P,V') has the zero-knowledge property for 11 if for each input x € Ily,

there is a negligible function p such that Vj we can create o; with quantum polynomial computational
power such that

loj = pill < pllzl)

This formalizes the fact that on Yes instances, the Verifier does not learn anything from the
protocol except the fact that the input is a Yes instance.

Definition 5. II € QSZK iff there exists a quantum protocol (P, V') that solves 11 and that has the
zero-knowledge property for I1.

In the setting of Quantum Non-Interactive Statistical Zero-Knowledge, first defined by Kobayashi
[Kob03], the Prover and Verifier share a maximally entangled state ), |i)|7) and then the Prover
sends a single quantum message to the Verifier.



Definition 6. Il € QNISZK iff, when the Prover and Verifier share the mazimally entangled
state Y . |i)|i), there exists a quantum non-interactive protocol (P, V') that solves I and that has the
zero-knowledge property for I1.

The notion of quantum help is more intricate and will be the subject of Section 6.

2.4 Complete problems for Zero-Knowledge classes

The complete problems for the Zero-Knowledge classes are promise problems. A promise problem
IT is defined by two disjoint sets Iy and IIy. An instance X of II is an element of IIy U Ily. We
say that II reduces to Q2 (II < Q) iff there exists a poly-time computable function f such that

Xelly = f(X)EanndXEHN = f(X)EQN

If IT < © then IT is no-harder than 2. We can define the complement problem 11 as follows :
IIy = 1Iy and Iy = IIy. In what follows, X,Y are circuits encoding probability distributions.

SZ K-complete problems :

Statistical Difference (SD) Entropy Difference (ED)

(X,Y) € SDy = SD(X,Y) >2/3  (X,Y)€ EDy = H(X)—H(Y)>1

(X,Y)€SDy = SD(X,Y)<1/3 (X,Y)€EEDy= H(Y)-H(X)>1

NISZ K-complete problems :

Entropy Approximation (EA') Statistical Closeness to Uniform (SCU)

XeFEA, = HX)>t+1 X e SCUy = SD(X,I)<1/n
XeFAy=HX)<t-1 X eSCUy = SD(X,I)>1—1/n

NISZK),-complete problem :
Image Intersection Density (1ID)

(X,Y) € IIDy = SD(X,Y) < 1/n?
1—

1
(X,Y) € IIDy = Disj(X,Y) >1—1/n?

Let us also define another problem related to 11D which is not complete:

Mutual Image Intersection Density (mut-1ID)
(X,Y) € mut-IIDy = SD(X,Y) < 1/n?
(X,Y) € mut-IIDy = mut-Disj(X,Y) >1—1/n?

Note that we can change the parameters to other parameters a and 3. For example, SD®”?
corresponds to : (X,Y) € SD®’ — SD(X,Y) > a and (X,Y) € SDY’ — SD(X,Y) < g



Similarly, we can define the quantum equivalent problems QSD, QED, QEA! and QSCU.
In this case, X,Y are the density matrices that correspond to the output qubits of the circuits,
SD(X,Y) is the trace distance and the entropy is the von Neumann entropy.

3 A new polarization lemma for the //D problem

The Zero-Knowledge protocols usually require from the promise problems some parameters that are
exponentially close to 0 or 1. Polarizations are reductions from promise problems with worse param-
eters to promise problems that can be solved by the protocol. For example, there is a polarization
for the SD problem which transforms SD% with a2 > b to SD1=2 27" for any k € poly(n).

The best polarization that was known for I1D was that I1DY/"*1=1/7* yeduces to I1D? "1-27"
and henceforth I1D'/"*1=1/7* ig complete for NISZK, ([BG03]). We will show here that 11D%"
is complete for NISZK);, with b > 2a (a and b are constants). We first improve an upper bound
on statistical difference and then use it to prove this new polarization lemma for the I1D problem.
The proofs are presented in Appendix A.

To prove a polarization lemma on the SD problem, the following bounds were used :

Fact 1 ([Vad99]). Let X,Y two probability distributions st. SD(X,Y) =4¢. Then
1—2exp *9°/2 < SD(X®F YEF) < k6
We can improve the upper bound on Statistical Difference to
SD(X®F v®k)y <1 - (1-0)* <ké
by using the following lemma (proof in Appendix A).

Lemma 1. Let X, Y, Z, T four probability distributions with SD(X,Y) = 61 and SD(Z,T) = 02.
Then,
SD(X@Z,Y@T) <1- (1 —(51)(1—(52) =01 + 99 — 0109

Using the new upper bound, we prove in Appendix A that
Theorem 1. IID%" is NISZK), complete for any a,b with b > 2a (a,b constants).

In the next section ,we will use this polarization lemma to show that NISZK, = SZK. This
will, in turn, imply that IID*’ is complete for b> > a using the polarization used for the SD
problem. Our initial polarization is still interesting because it shows that problems like I D1/10:3/10
are in SZ K, something which was not known before.

4 Equivalence of help and interaction in Statistical Zero-Knowledge

We show here that help and interaction are equivalent in the Statistical Zero-Knowledge setting
Theorem 2. SZK = NISZK},

Proof. We know that NISZK\;, € SZK because I1D, the complete problem of NISZK),, trivially

reduces to SD, the complete problem of SZK. In what follows we also prove the opposite inclusion,
i.e. SZK C NISZK);, (Lemma 2). O



In [GBO00], the authors claimed to have proven this theorem, but due to a flaw they retracted
it in [BG03]. Their reduction from the SZK-complete problem ED to IID was in fact only a
reduction to SD. Nevertheless, inspired by their method we show a reduction from EA to IID.

In order to prove that help can replace interaction we start by reducing the SZK-complete
problem ED to several instances of EA and EA. We know that EA € NISZK i (since by definition
NISZK C NISZKj,) so it remains to show the following two things:

1. EA € NISZK}, : In order to this, we use similar tools to the ones in [Vad99] and especially
the "Complementary use of messages" originally used in [Oka96].

2. NISZK);, has some boolean closure properties : this will allow us to reduce ED to a single
instance of IID.

4.1 FEA belongs to Non-Interactive Statistical Zero-Knowledge with help

To show that FA € NISZK),, we reduce the E A problem to the I1D problem which is complete
for NISZK),.

Let X an instance of ﬂt, i.e. an instance of FA with approximation parameter t. Let k =
poly(m), where m is the input size and define X’ = X® with s = 4km?. Note that the input size
of X" ism' = sm and H(X') = sH(X). We have

Claim 1. Let Z = X' ® I, where I is the uniform distribution. We can create Z' in polynomial
time such that :

o X € EAy = SD(Z,7') < 279®)
o X € EAy = Disj(2,2") > 1—2-2k)

Proof. Construct Z’ as following:
Z': choose 7 € {0,1}™, 2 = X'(r), h € Hpststmts v Er {0, 1}, veturn (x, (h, h(r, u))).

Note that Z’ is of the form Z' = X’ ® A so we need to show that, when fixing x € X', we
have either SD(I, A) small (in the Yes instance) or Disj(I, A) large (in the No instance). From the
Flattening lemma (see Preliminaries) we have

Fact 2.
1. X' is A-flat with A = 2vkm?. s was chosen such that s = 2VkA.
2. Let x — X'. Prlz is \/IEA—typz'cal] > 1 — 2 k),

For x € X', let wt(x) = log|{r | X'(r) = x}|. When = € X' is fixed, the number of different
possible inputs (r,u) that are hashed is owh@)+st  From the flattening lemmas, it is easy to see that
if H(X) <t—1 then wt(x) will be large with high probability whereas if H(X) >t + 1 then wt(z)
will be small with high probability. In more detail,



(1)

HX)<t-1.
For all z € X’ which are vVkA-typical we have |log =1 |{r | X'(r) = z}| + H(X")| < VEA.

gm/

Hence,

wt(z) >m' — sH(X) = VEA >m' —st+s— VEA >m' — st + VEA.
Therefore, the number of inputs (r,u) such that X’(r) = x and u € {0,1}*! is greater than
om'+VEA > gm'tk By the leftover hash lemma (see Preliminaries), SD((h,h(r,u)),I) <
O(2~%k)). By Fact 2, the probability of a vVEkA-typical  is larger than > 1 — 27k) and
hence we can conclude that SD(Z, Z") < 2-k)

H(X) >t +1.
For all € X’ which are vVEA-typical we have

wt(x) <m' —sH(X) +VEA <m' —st —s+ VEA <m' — st — VEA.

Therefore, the number of inputs (r,u) such that X’(r) = z and u € {0,1}*" is smaller than
om'=VEA < 9m'~k Gince we hash at most 2™ ¥ values into 0,13 we get only a 27% fraction
of the total support and hence Disj(I,h(r,u)) > 1 — 2% By Fact 2, the probability of

a \/EA—typical x is larger than > 1 — 2-k) and hence we can conclude that Disj(Z,7") >
1 — 270k,

From the distribution X, we have created Z, Z’ in polynomial time such that :

o X € EAy = (2,7') € II Dy.

o X € EAy = (Z,7') € IIDy.

So EA < IID and from the completeness of 11D for NISZK,, we have EAc NISZK,.

4.2

Closure properties for NISZK),

Closure properties have been widely used in the study of Zero-Knowledge classes (see [DDPY94] or
[SV98]). Every promise problem II € NISZKj, reduces to the I1D promise problem and hence,
we just have to concentrate on this problem. Note that this problem is very similar to the SD
promise problem and hence we use similar techniques to those used to show closure properties for
SZK from the SD problem. In our case, we just need to show some limited closure properties that
will be enough to prove that ED € NISZK),.

Definition 7. Let II', ..., TI* some promise problems. We define AND(I', ... I¥) :

(XY, ., Xk e AND(IT, ... ) TIF)y = Vi€ {1,...,k} X' €I},

(XY, X¥) e ANDILL, ... TTF)y = Ji € {1,...,k} X* €Il},

In the AN D definition, we assume k to be of size polynomial in the input size, i.e. k € poly(n).

Definition 8. Let II,Q two promise problems. We define OR(IL, ) :



e (X,)Y)eOR(IL,Q)y =X elly orY € Qy

e (X,)Y)eOR(II,Q)y = X €lly and Y € Qu

We will show that NISZK), is closed under AN D and OR which is enough for our purposes.
Claim 2. NISZK, is closed under AND.

Proof. Let TI',... 11 in NISZK), and (A', ..., AF) an instance of AND(IT', ... TI¥). We reduce
each II¢ to the IID problem which means that we transform each A’ into a pair of distributions
(XY such that A" € IIY, = (X', Y?) € IIDy and A® € 1IY, = (X', Y") € IIDy. Let X =
X'@ - -@XFand Y =Y'® .- @ Y*. We first polarize each pair (X?,Y?) such that (X? Y?) €
TIDY/"*k1=1/n% (which is possible since k € poly(n)). Then, we use the following fact from [Vad99]
and [BGO3|:

Fact 3. e SD(X,Y) <>, SD(X"Y")
e Disj(X,Y) > max; Disj(X*,Y?)

From this fact, we can easily see that (A',...,A%) ¢ AND(II',... II*)y = (X,Y) € IIDy
and that (A',..., A*) ¢ ANDII,...,I*)y = (X,Y) € IIDy, which concludes our proof. O

Claim 3. NISZK, is closed under OR.

Proof. Let II,Q2 € NISZK|j,. Let I an instance of Il and J an instance of {2. We reduce I to a pair
of distributions (X{,Yy) such that I € Iy = (X{,Yy) € IIDy and I € IIy = (X{,Yy) € IIDy.
Similarly, we reduce J to a pair of distributions (X7{,Y]{). By using fact 7 from Appendix A, we
create (Xo,Yp) and (X1,Y7) that are instances of mut-71DY3(1=1/m) o e TTD1/20.1/3 (for
sufficiently big n). Now, consider the following two distributions

A : pick b €r {0,1}, return a sample of X, ® Y.
B : pick b €g {0, 1}, return a sample of X} ® Yj.

This is a generalization of the XOR transformation and was used in [Vad99] to show closure
properties for SZK. We now use the following fact

Fact 4. [Vad99] and [BGO3]
° SD(A,B) = SD(X(),YE)) * SD(Xl,Yl)

o mut-Disj(A, B) = mut-Disj(Xo, Yy) * mut-Disj(X1,Y1)

From this, we can easily see that (Xo,Yp) € mut—IIDi,/m’l/3 or (X1,1) € mut—IID}l,/m’l/g =

(A,B) € IIDY/**'? Similarly, if (Xo,Yp) € mut-TTDY "' and (X1,v1) € mut-11DY*'? =
(A,B) € mut—IID]lV/QO’l/g. We have therefore reduced OR(IL, ) to a single instance of mut-
IIDY20.1/9  Since mut-11DY/291/9 < [1DY/20.1/9 and by our new polarization lemma, IIDY20.1/9 ¢

NISZK), we conclude that OR(I1, Q) € NISZK,. O



4.3 Help can replace interaction

We can now prove that help can replace interaction and hence conclude the proof of Theorem 2.

Lemma 2. SZK C NISZK),

Proof. We show that ED € NISZKj,, which will allow us to conclude since ED is complete for
SZK. Let (X,Y) an instance of ED.

Fact 5 ([Vad99]). Let X' = X®3 and Y' = Y®3. Let n the output size of X' and Y'. It holds that :

(X,Y) e EDy & Vte {1,....n} (X' € EAy) Vv (Y’ € EAL)
(X,Y)€EDy < 3te{l,...,n} |(X' € EAY) A (Y' € EAL)

This fact comes from the following observation: if (X,Y) € EDy then H(X') > H(Y') + 3
and hence, there exists t € [n] such that H(X') > t+ 1 and H(Y') <t — 1. On the other hand, if
HY"Y>H(X')+3thenVt, HX')<t—1or HY')>t+1.

We have already shown that FA and FA are in NISZK, in- Moreover, we have closure under
OR, and hence for all ¢ there exists a promise problem Il € NISZK in and an input At such that

(X',Y'") € OR(EA',EAY)y = At € 11,
(X',Y') € OR(EA', EAY)y = A! € IIY,

Therefore, L
(X,Y) € EDy =Vt e {1,...,n}A" € II},
(X,Y)e EDy =3t € {1,...,n} A €I},
and from the closure under AND we conclude that ED € NISZK |- O

This theorem has some interesting corollaries.

Corollary 1. NISZK|;, has all the properties of SZK like closure under complement or closure
under boolean formula.

It is interesting to find a non-interactive class that has all the properties of SZK. It means that
the power of SZK lies only in the fact that there is a trusted access to the distributions (from the
Verifier or from the Dealer).

Corollary 2. The IID problem is complete for SZK.

We have here a new complete problem for SZK. This problem is easier to manipulate and could
be used to find other results about SZK.

5 Complete problems for QNISZK

In this section we study complete problems for the class QNISZK. Note that Kobayashi showed
a complete problem for the case of Non-Interactive Perfect Zero-Knowledge, however was unable to
extend his proof to the case of Statistical Zero-Knowledge.
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We continue this line of work and give two complete problems for QNISZK, the Quantum
Entropy Approzimation and the Quantum Statistical Closeness to Uniform. These are the natural
generalizations of the NISZ K-complete problems EA, SCU. Ben-Aroya and Ta-Shma showed that
QEA reduced to QSD. In fact, during their proof, they showed that QEA € QSCU®*® but these
parameters a, b were not good enough to show that QEFA € QNISZK. We will modify their proof
to show that QFA € QNISZK and then conclude using similar techniques than the ones used in
the classical case (see [GSV99| as well as the analysis of QNISZK done by Kobayashi [Kob03]).
The proof will follow from the following three lemmas.

Lemma 3. QFA € QNISZK.

Proof. We modify the proof of [BT07] to show that QEA € QNISZK. Let X an instance of QE A
with input size m and I the totally mixed state.

Claim 4 (|BT07]). We can create X' such that
o X € QEAy = SD(X',I) < 5¢
e X € QEAN = SD(X',T) > ;1

2gm

where g > 2log(1/¢) 4 log(gm) + O(1) and also ¢ > /log(1/€)\/qn + 1.

We apply this claim with the following parameters : fix ¢ = 27% with k € poly(n) and then
q € poly(n) that satisfies the constraints. Let X’ be the resulting distribution. Now let r =
8k(gm)? € poly(n) and Y = X'®". By using bounds on Statistical Difference, we have

e X € QFAy = SD(X',T) < 5re < 27U
e X CcQFAN = SD(X'T) >1—27"%

Kobayashi showed in [Kob03] that QSCU? " 1-2"" ¢ QNISZK and hence by our claim that
QEA < QSCU? "1=27" we conclude that QEA € QNISZK. 0

Lemma 4. QSCU < QFA.

Proof. We use the following fact about the relation of trace distance and von Neumann entropy

Fact 6. Let X a quantum state of dimension n.
LI X =0l <a=SX)>n(l—a—1/2").
2. | X =Tl > 8= S(X) <n—log(113).

Let X a quantum mixed state of dimension n > 16. || X —I|j; < 1/n = S(X) > n — 2.
|IX =14 >1—1/n= S(X) <n—4. When n < 16, we can solve QSCU polynomially. We have
a reduction from QSCU to QEA. O

Lemma 5. Every problem in QNISZK reduces to QSCU.
Proof. The proof of hardness for QNIPZK extends naturally to this problem. We will not repeat
the proof here. The interested reader can see [Kob03] for this proof. O

11



It now follows immediately that
Theorem 3. QFA and QSCU are complete for QNISZK.

Proof. QSCU is hard for QNISZK and QSCU < QFE A so both problems are hard for QNISZK.
QRFEA € QNISZK and QSCU x QFA so they are both in QNISZK. O

6 Help in quantum Non-Interactive Zero-Knowledge protocols

In classical Non-Interactive Zero-Knowledge, the Prover and Verifier start with a shared uniformly
random string, which is independent of their input. Classical help was a natural generalization of
this and was defined as a shared string created by a trusted third party with polynomial power (the
Dealer) who has access to the input.

In quantum Non-Interactive Zero-Knowledge, the Prover and Verifier share a maximally entan-
gled state ), |4)|é), with the Prover having the first register and the Verifier the second. Note that
this state is pure and independent of the input x.

Help with unitaries We define quantum help as a generalization of the maximally entangled
state. We suppose here that there is a trusted Dealer with quantum polynomial power that performs
a unitary U, and creates a state hpy in the space P x V. The Prover gets hp = Try(hpy) and the
Verifier gets hy = Trp(hpy). Note that the state hpy is a pure state and depends on the input.

Definition 9. We say that I1 € QNISZK), if there is a non-interactive protocol (D, P,V) that
solves 11 with the Zero-Knowledge property, where the Verifier and the Prover share a pure state
hpy created by a Dealer D that has quantum polynomial power and access to the input. They also
start with qubits initialized at |0). We denote by (D, P, V') the entire protocol.

Next, we prove that help and interaction are equivalent in the quantum setting, but with a much
easier proof than in the classical case.

Theorem 4. QNISZK), = QSZK
Proof. We start by showing that QNISZK), C QSZK. Let Il € QNISZK;, and (D, P, V') denote

the protocol. Since hpy is a pure state, we can create another protocol (]5, 17> where the Verifier
takes the place of the Dealer. Because the Dealer is a unitary (and has no private qubits), this can
be done. The protocol is the same so soundness and completeness are preserved. The first message
in (P, V) can be simulated because the circuit of the Dealer is public and computable in quantum
polynomial time. The second message in <§, ‘7> can be simulated because of the Zero-Knowledge
property of the protocol (P, V).

The inclusion QSZK C QNISZK|, is immediate, since there exists a two message protocol for
a QSZ K-complete problem (see [Wat02]). The first message of the Verifier can be simulated by the
Dealer’s help. O

Using non-unitaries The unitary restriction is natural when dealing with quantum Zero-Knowledge
classes. However, unitary help does not allow the dealer to keep some information private. In fact,
we can imagine a stronger quantum help, where the Dealer can perform any quantum operation in
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order to create the help. For example, he can create a quantum state, keep part of it to himself and
share the rest of the state between the Prover and the Verifier.

It is not hard to see, that in this way, the dealer can create an even stronger type of classical
help, namely where he can give secret correlated messages to the Verifier and the Prover. Since we
know that NISZKSPC = AM (see [PS05]) we can conclude that non-unitary help is very strong.
Note also that with non-unitaries we don’t know if help and interaction are equivalent. The case
of Quantum Zero Knowledge protocols with non-unitary players is indeed very interesting and we
refer the reader to [CK07| for more results.

6.1 Quantum Non-Interactive Zero-Knowledge with classical help

We now define two "hybrid" classes, where the Prover and Verifier are quantum, however in the
beginning of the protocol they only share classical information. These classes have very interesting
connections to the class of languages that possess classical zero-knowledge protocols secure against
quantum adversaries, i.e. the class studied by Watrous [Wat06] and Hallgren et ol [HKSZ07]. We
start by providing some appropriate definitions.

Definition 10. We say that a circuit C is e-probabilistic if
Ve, 3y, Pr(C(z)=y)>1—¢
This y will be called the natural image of v and will be noted Natc(x)
We now define g-samplable distributions as follows:

Definition 11. A distribution D € P is called g-samplable if it can be represented by a 27"-
probabilistic circuit C (k € poly(n)) with classical input and output and such that in order to
compute C(z) for any x, we need a BQP machine.

To deal with g-samplable distributions, we also extend the definition of Disjointness to proba-
bilistic circuits.

Definition 12.

Disi(X.Y) = 5o 3 max(Pr(Y(y) = X(r))
re{0,1}m

Disj(X,Y) must be understood as follows : "If I take a random x of X, and I'm given a y (poten-
tially the best), what is the probability that Y (y) =z 2"

Note that when the second distribution (Y) is described by a deterministic circuit then this
notion of disjointness is equivalent to the original one.

From this fact, we will show a simple relationship between Statistical Difference and Disjointness.
In the case of deterministic distributions, we know that Disj(X,Y) < SD(X,Y).

Lemma 6. Let (X,Y) be 2 e-probabilistic circuits. We have : Disj(X,Y) < SD(X,Y) + 2e.

Proof. Let (X,Y) be 2 e-probabilistic circuits. We define Y as following : Y (r) = Naty(r). We
can easily see that SD(Y,Y) < € and that Disj(X,Y) < Disj(X,Y) + €. From this, we conclude
that :

Disj(X,Y) < Disj(X,Y)+e < SD(X,Y)+¢e< SD(X,Y) + 2¢

13



Note that 27 "-probabilistic circuits behave similarly (with exponentially small difference) to
deterministic circuits. This means that we can apply polarization lemmas and extend all the com-
pleteness theorems that were shown with classical distributions to g-samplable distributions. We
can now study QNISZK|.,.

Definition 13. We say that 11 € QNISZ K\, if there exists a non-interactive protocol (P, V) that
solves 11 with the Zero-Knowledge property where the Verifier and the Prover start with some classical
help h distributed over a distribution D prepared by a trusted Dealer with quantum polynomial power.
We want the dealer D and the simulation S to be q-samplable distributions. The prover and the
verifier also start with |0) qubits. We denote (D, P, V) the entire protocol.

Let us define the problem I1D?: Let X,Y two g-samplable probability distributions which are
describes by 27 "™-probabilistic circuits

e (X,Y)elIID} = SD(X,Y)<1/4

e (X,Y)eIID} = Disj(X,Y)>3/4

We prove that this problem is complete for QNISZ K|, by the following two lemmas.
Lemma 7. IID? € QNISZK|,.

Proof. Let (X,Y) an instance of I1D?. Using our polarization lemma, we construct (X', Y”) such
that (X,Y) € IID} = SD(X',Y') < 27% and (X,Y) € IID% = Disj(X',Y') > 1 — 27 for some
k € poly(n). We use the same protocol as for the classical case:

Protocol in QNISZK|, for the I1D? problem

H : create 2’ +— X’ and reveal it.
P : send r such that Y'(r) = 2/.

V : Verify that Y/(r) = 2/

This protocol is the same as the one used in [BG03|. Note that the completeness and soundness
correspond exactly to the Disjointness of the two distributions and hence they follow from Lemma
6. Moreover, working on g-samplable distributions doesn’t change the Zero-Knowledge property
and hence it follows immedaitely from [BGO03|. O

Lemma 8. Every problem in QNISZK,y, reduces to 11D1

Proof. The proof of Ben-Or and Gutfreund that 11D is hard for NISZ K|j, can be naturally extended
to the case where the Verifier and the Dealer are BQP machines by taking into account that the
distributions are now ¢-samplable.

Consider a promise problem II € QNISZK|,. Let (D, P,V) be a non-interactive protocol for
IT with completeness c(k), soundness s(k)and simulator deviation p(k) with 1 — c(k), s(k), u(k) €
negl(k). Let x an instance of II. Consider now the two following distributions :

Dy : run the Dealer D on .
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D; : run the simulator k£ € poly(n) times on x with the same coins to get k samples (h, mp).
Note that these copies are the same with exponentially high probability because the simulator is
2-9()_probabilistic. Run the accepting procedure A on each copy of (z,h,mp). Output h if V
accepts the majority of the times and L otherwise.

e If x € Ily then the Verifier will accept the majority of times with probability (1 — 2_O(k))
because of completeness. In this case, the distribution D; is equal to the simulation of the
help, which has statistical difference p(k) from the real help. Since the distribution Dy is the
distribution of the real help, we have SD(Dy, D1) < pu(k)+27°®) < 1/4 and (D, D1) € I1DY.

e Let x € IIx and B be the set of help strings, such that h € B = 3 mp Pr[A(z,h,mp) =
Yes] > 1/3 where A is the verifying procedure of V. The probability that Dy produces a
sample h € B (and therefore a sample in BU{_L}) is < 3s(k) due to the soundness condition.
It also holds that the probability that D; produces a sample in BU{ L} is > 1—0O(27%). This
can seen as follows: the probability that Dy outputs h € B is equal to the probability that the
Verifier accepts the majority of times, when running A k times with h € B, which happens with
probability at most 2-°*) We conclude that Disj(Dg, D1) > (1 — 2@k (1 — 3s(k)) > 3/4
and (Do, Dy) € I1DY,

Since the Dealer and Simulator are g-samplable, the distributions Dy and D; are also g-samplable.
O

and hence D; is 2-9®)_probabilistic
From Lemma 7 and Lemma 8, we have

Theorem 5. 11D is complete for QNISZK|y,.

Similarly, we can define Quantum Non-Interactive Zero-Knowledge where the Prover and the
Verifier share a classical random string. We denote this class QNISZK,. Let us define SCUY as
the statistical closeness to uniform applied on a g-samplable distribution. By the same arguments
SCU1 is complete for QNISZK|,.

Using these complete problems, we have the following interesting corollary
Corollary 3. In QNISZK|,. and QNISZ K|, the Prover sends a classical message.

Proof. This is true because there is a protocol for I1D? and SCU? where the Prover sends a classical
message and these two problems are complete. O

Now denote by SZK, the class SZK where the Verifier and simulation use quantum polyno-
mial power. In other words, this is the class of languages that have classical protocols which are
Zero-Knowledge against quantum Verifiers. Similarly, define the classes HVSZK, and NISZK};, 4
(where both the Verifier and the Dealer use quantum power). The class SZK, was studied by Wa-
trous (|Wat06]) and Hallgren et al [HKSZO07]. It remains open to show whether these three classes
are equal to each other, which is true when the Verifier is classical.

Note that by corollary 3, we have that QNISZK|y,, = NISZK},, Using our analysis of
NISZK),, we can show the following :

Theorem 6. NISZKy, , = HVSZK,



Proof. Similar to the case of HVSZK, we can show that SD? is complete for HV SZK, (see also
[Vad99]) where SD? is the natural extension of SD applied to g-samplable distributions. From
section 4, we know a reduction from SD to IID. The same reduction works from SD? to I1DY
so HVSZK, C QNISZK|y, = NISZK), 4. Because I1D? trivially reduces to SD?, we have
HVSZK, = NISZK, . O

7 Conclusion and further work

Our work settles the question of the role of help in Zero-Knowledge protocols by showing that it
is equivalent to interaction. In other words, we showed that the only thing that is important to
create a statistical Zero-Knowledge proof is a trusted access to the input (from the Dealer or from
the honest Verifier). This will hopefully shed some light into the relation of Non-Interactive and
Interactive Zero-Knowledge, which still remains open.

In the quantum setting, we gave the first formal definition of help for Zero-Knowledge protocols.
We showed that quantum help is also equivalent to interaction and that the case of classical help is
closely related to the class of languages that have classical zero-knowledge protocols secure against
quantum Verifiers. It would be interesting to see if quantum help could also give some interesting
results concerning the class SZ K, and especially whether SZK, = HVSZK,.
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A Details of the polarization of /1D

Proof. (Lemma 1) Define ws(X) = >, g x; to be the weight of X € P, on the set S C {0,1}",
S(X,Y) = {i € {0,1}"| x; < y;} and S(X,Y) the complement. Fix X,Y,Z, T four probability
distributions with ¢; = 1-8; = SC(X,Y), ca = 1-62 = SC(Z,T) and ¢ = 1-0 = SC(XRZ, Y ®T).
Let A = S(X,Y), A = S(Z,T), A and A’ the complementary sets, a1 = wa(X), f1 = wa(Y),
ag =wa(Z) and B2 = wa (T). We have :

a1 :Zmin(:ci,yi) =wA(X)+twgp(Y)=a1+1- 5 and ca=ax+1-/[s

1

We now show that ¢ > cico.

c = Zmin(xizj,yitj)

4,3

= Z min(x;z;, yitj) + Z min(x;z;, yit;)
i€A,jeA icAjeA
+ Z min(z;2;, yitj) + Z min(z;2;, yit;)

€A jEA icA,jEAT

> Z x;izj + Z xity + Z Yizj + Z yitj
icAjeA’ i€AjeA! i€cAje Al i€cAjeAl

> ajag+ (1= F2) +ax(l—61) + (1= B1)(1 - Bo)

> e

By replacing the statistical closeness by the statistical difference, we get
o< 1—(1—(51)(1—(52)
O

Proof. (Theorem 1) Let two constants a,b’ such that 1 > & > 2a > 0. First note that I1D%" is
hard for NISZ K|, by making a reduction from IIDY/n*1=1/n* 4nq hence, we just need to reduce

IIDY to IIDY/"*1=1/n* et b = b'/2. We do this reduction in three steps:

1. It holds that TTD*" < mut-ITD*". This point was proven in [BG03] and will not be proven
here again.

2. We show that mut-IID%" < mut-ITD?~*%+ with o > 0 and ¢ = @

3. We show that mut-17D?~®¢+e g []p1/n*1-1/n%,
As we said, the first reduction was proven in [BG03|. We will just remind here the construction.

Fact 7. Let (Xo,X1) € IID* . Construct (A, B) as following :

A : pickr €r {0,1} and b €g {0,1}, return (Xp(r),b).
Xp

b
B : pickr €g {0,1} and b € {0,1}, return (Xp(r),b)

We have : (Xo,X1) € IID%” = (A,B) € mut-IID%" and (X0, X)) € IID% = (A, B) €
mut-IT D%
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We show the second reduction by the following lemma:

Lemma 9. Let a,b such that b > a. There exists o > 0 such that mut -IID*® < mut -IID?~ ¢+

Proof. Let X,Y two distributions and a, b with b > a such that SD(X,Y) < a or mut-Disj(X,Y) >
b. We are going to construct a pair of distributions (A, B) with the property that either SD(A, B) <
¢ — a or mut-Disj(A, B) > ¢ + «. Let I and I such that I', TV ¢ Im(X) U Im(Y). We define the
following distribution:

Ar . x(x) = With probability u return X (z) else return I'.
Similarly, we define the distributions Ar .y (), A 4 x (z). We have
e SD(X,Y)<a = SD(Arux,Aruy) < u?a+2u(l —u) = f(u,a).
e mut-Disj(X,Y) >b = mut-Disj(Arux, Aruy) > u?b+ 2u(l —u) = f(u,b)
e SD(X,Y)<a = SD(Arux,Aruy) <u?a+2u(l —u)+ (1 —u)? = g(u,a)
e mut-Disj(X,Y) >b = mut-Disj(Aru x, Aruy) > u?b + 2u(l — u) + (1 — u)? = g(u,d)

Let 6 = (a+b)/2. If § = ¢, then the distributions X,Y already have the desired property.
If 6 > ¢ then from the fact that the function f is continuous, f(0,0) = 0 and f(1,d) = ¢, we
conclude that there exists a constant ug € [0, 1] such that f(ug,d) = ¢. The pair of distributions
(Ar,uo,x» Aruo,y) has the desired property

o SD(X,Y) <a == SD(Arug,x; Aruey) < upa+ 2uo(l — ug) = ¢ — ug?3%.
o mut-Disj(X,Y) > b = mut-Disj(Aru x, Arugy) > udb + 2up(1l — ug) = ¢ + ud 252
Similarly, for the case § < ¢ we use the distributions (Ar , x, A1 4,y) and the function g. O

In order to show our third reduction, we need the following claim : Let X and Y two probability
distributions. Denote (U,V) = XOR(X,Y) and let T : P, x P, — Ps, X Py, be the operator
TX,Y)=UUV&V).

Claim 5. Let (A,B) =T(X,Y)
SD(X,Y)<a= SD(A,B) <1—(1—a?)?

mut -Disj(X,Y) > 8 = mut -Disj(A, B) > 1— (1 — 3%)?

Proof. The proof follows from our new upper bound on SD, the Direct Product Lemma, and the
XOR Lemma.

SD(A,B) = SDU®U,VeV) < 1-(1-8D(U,V))? = 1-(1-(SD(X,Y))%?
< 1-(1-a?)?
mut-Disj(A,B) = 1— (1 —mut-Disj(U,V))? = 1— (1 — (mut-Disj(X,Y))?)?
> 1—(1-p6%)?
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We now have:

Lemma 10. Lel ¢ = % For any o > 0 (constant), mul-IID?=%%+e < [[DY/n*1-1/n*

Proof. Let f(x) = 1 — (1 — 22)? and U;y1 = f(U;). The fixed point of f is ¢ = @ By a
straightforward study of f, we can see that if Uy < ¢ — « then U < 1/712 and if Uy > ¢ + o then
Up > 1—1/n? with k = poly(n).

Let (A%, BY) = T*(X,Y). By the previous Claim, we know that SD(A*, B*) and mut -Disj(A*, BY)
behave like U;. Then, for (A, B) = T*(X,Y) we know that the size of the final distribution is
n - 2% = poly(n) and

SD(X,Y)<¢—a = SD(A, B)<1/n?
mut-Disj(X,Y) > ¢+a = mut-Disj(A,B)>1—1/n?
= Disj(A,B) >1—1/n?
This concludes the proof. O

Putting these three reductions together we have that for 1 > &' > 2a > 0:
2

11D < mut -IID% < mut -I1D?~%¢+e g [pl/n*i-1/n

We can therefore conclude that I7D*Y is complete for NISZ K|, when b > 2a. O
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