
A Critical Analysis and Improvement of AACS Drive-Host

Authentication

Jiayuan Sui and Douglas R. Stinson
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, N2L 3G1, Canada

jsui@cs.uwaterloo.ca dstinson@uwaterloo.ca

Abstract

This paper presents a critical analysis of the AACS drive-host authentication scheme. A few
weaknesses are identified which could lead to various attacks on the scheme. In particular, we
observe that the scheme is susceptible to unknown key-share and man-in-the-middle attacks.
Modifications of the scheme are suggested in order to provide better security. A proof of security
of the modified scheme is also presented. The modified scheme achieves better efficiency than
the original scheme.

1 Introduction

Advanced Access Content System (AACS) is a content distribution system for recordable and
pre-recorded media. It has been developed by eight companies: Disney, IBM, Intel, Matsushita
(Panasonic), Microsoft, Sony, Toshiba, and Warner Brothers. Most notably, AACS is used to
protect the next generation of high definition DVD optical discs such as Blu-Ray and HD-DVD
discs.

To design a media protection scheme that is able to run on open platforms like PCs, designers
have to make sure that the scheme is not susceptible to the “Virtual Device Attack”. A virtual
device mimics a physical hardware device in all aspects so that the CPU is tricked into believing
that a device exists when actually it does not. To deploy a virtual device attack on a media system
such as the DVD playback system, the attacker can build software that implements a virtual DVD
drive. The content of the optical disk is moved onto the computer hard drive as a disk image. The
attacker can then play back this “DVD disk” through the virtual DVD drive on a legitimate DVD
player software.

The attacker can certainly duplicate the image into multiple copies and disseminate them ille-
gally, even though he never learns the content of the DVD in the clear. In order to defend against
this attack, the drive has to have the ability to prove to the host (the playback software or the
operating system, etc.) that it is a legitimate drive. This can be done through a cryptographic
authentication protocol.

AACS drive-host authentication scheme achieves mutual authentication, which means that not
only the drive proves to the host its legitimate identity but also the host has to prove its identity
to the drive. After the drive and the host complete a successful session, a shared secret key is

1

established between them. Therefore, AACS drive-host mutual authentication protocol is combined
with a key agreement protocol. The shared secret key is then used for message authentication
purposes.

In this paper, we present a rigorous analysis of the AACS drive-host authentication scheme.
Specifically, we identify a few weaknesses present in the scheme which could lead to various attacks.
Modifications of the scheme are suggested in order to provide better security. We also give a proof
of security of our modified scheme.

1.1 Mutual Authentication Protocol and Key Agreement Protocol

In a mutual authentication protocol, the two participating entities need to prove their identities
to each other. If an entity has successfully proven its identity to the other entity, the other entity
is required to “accept”. A session of a mutual authentication protocol is a successfully completed
session if both participants have accepted by the end of the session. Mutual authentication protocols
can be devised by using either symmetric or asymmetric key cryptographic primitives. This book
chapter [8, Chapter 9] provides some good studies on mutual authentication protocols.

After two entities have authenticated themselves to each other, most likely they will want to
communicate with each other. It therefore makes sense to combine a key agreement protocol with
a mutual authentication protocol, because a shared secret key provides confidentiality and/or data
integrity to both communicating entities. In a key agreement protocol, both entities contribute
information which is used to derive a shared secret key. A key agreement protocol will most often
be asymmetric.

A key agreement protocol is said to provide implicit key authentication to both entity A and
entity B if A is assured that no one other than B can possibly learn the value of a particular secret
key. Note that this property does not necessarily mean that A is assured of B actually possessing
the key nor is A assured that B can actually compute the key. A key agreement protocol with
implicit key authentication is called an authenticated key agreement (AK) protocol.

A key agreement protocol is said to provide implicit key confirmation if A is assured that B can
compute the secret key while no others can. A protocol provides explicit key confirmation if A is
assured that B has computed the secret key and no one other than B can compute the key. A key
agreement protocol that provides key confirmation (either implicit or explicit) to both participating
entities is called an authenticated key agreement with key confirmation (AKC) protocol. In general,
explicit key confirmation is achieved by using the newly derived key to encrypt a known value and
to send it to the other entity. In most cases, using a key agreement protocol with implicit key
confirmation is sufficient. For more information on key agreement protocols, please refer to [8,
Chapter 11].

1.2 Organization

In Section 2, we introduce the AACS drive-host authentication scheme. Our analysis of the AACS
drive-host authentication scheme is presented in Section 3, where we identify several weaknesses in
the scheme and provide corresponding improvements. In Section 4, we give a proof of security of
the improved drive-host authentication scheme, followed by a conclusion in Section 5.

2

2 Description of AACS Drive-Host Authentication scheme

2.1 The basic procedure

When using AACS in a PC-based system where the drive and the host are separate entities, both
the drive and the host are issued certificates from the AACS LA (AACS Licensing Administrator).
This allows either entity to decide whether or not the other is trustworthy and in compliance with
the AACS specifications. These certificates, called the drive certificate and host certificate, each
contain fields stating the capabilities of the device, a unique identifier, the device’s public key, and
a signature from the AACS LA verifying the integrity of the certificate produced using an AACS
LA private key. Both the drive and the host have the corresponding AACS LA public key. A
full description of the certificate format can be found in the AACS Introduction and Common
Cryptographic Elements specification [1, Chapter 4].

Authentication between the drive and host occurs each time new media is placed into the drive.
This is necessary, due to the fact that the new disc may contain updated revocation lists. Each
compliant disc contains a data structure called the Media Key Block (MKB), which holds the
necessary information needed to derive the keys to decrypt the content. It also contains the latest
Drive Revocation List (DRL) and Host Revocation List (HRL) which, respectively, contain a list
of IDs of the revoked drives and a list of IDs of the revoked hosts. A drive may only communicate
with a host that has not been revoked, and a host may only communicate with a drive that has
not been revoked.

The following is a flow representation of the AACS drive-host authentication scheme (a detailed
description can be found in [1, Section 4.3]). The numbers on each line correspond to the number
given to that step in [1, Section 4.3].

The AGID sent in step 5 is the Authentication Grant Identifier, which is used to identify a
specific session in the case where a drive can support connections from multiple hosts.

Drive Host

1. MKB // Compare version of stored
DRL to DRL in MKB. If DRL
in MKB is not newer, use
stored DRL.

2. If DRL in MKB is newer, ver-
ify DRL signature. Use DRL
in MKB. Abort if signature is
not valid.

3. Compare version of stored
HRL to HRL in MKB. If HRL
in MKB is not newer, use
stored HRL.

3

4. If HRL in MKB is newer, ver-
ify HRL signature. Use HRL
in MKB. Abort if signature is
not valid.

5. AGID //

6. Generate 160-bit nonce Hn.

7. Hn‖Hcertoo

8. Verify host certificate type
and length. Abort on failure.

9. Verify signature on host cer-
tificate. Abort on failure.

10. Check HRL and abort if Host
ID is found.

11. Request nonce Dn and drive
certificate.

12. Generate 160-bit nonce Dn.

13. Dn‖Dcert //

14. Verify drive certificate type
and length. Abort on failure.

15. Verify signature on drive cer-
tificate. Abort on failure.

16. Check DRL and abort if Drive
ID is found.

17. Request a point on the elliptic
curve Dv and its signature.

18. Generate 160-bit random
value Dk.

19. Calculate Dv = DkG where G
is the base point of the elliptic
curve.

4

20. Calculate Dsig as the sig-
nature of Hn‖Dv using the
drive’s private key.

21. Dv ,Dsig //

22. Verify Dsig and abort on fail-
ure.

23. Generate 160-bit random
number Hk.

24. Calculate Hv = HkG.

25. Calculate Hsig as the sig-
nature of Dn‖Hv using the
host’s private key.

26. Hv ,Hsigoo

27. Verify Hsig and abort on fail-
ure.

28. Calculate Bus Key Bk as the
128 least significant bits of
x-coord(DkHv).

29. Calculate Bus Key Bk as the
128 least significant bits of
x-coord(HkDv).

After successfully completing the drive-host authentication algorithm, the drive and the host
have established a shared bus key based on an elliptic curve Diffie-Hellman key agreement protocol
[6]. It is interesting to note that while this key could be used to encrypt messages between the drive
and host, it is not actually used for this purpose. Instead, the bus key is used solely for message
authentication by including a MAC for any message traveling between the drive and the host. The
current AACS specifications do not require either the drive or the host to be capable of encrypting
and decrypting bus messages, however there is a flag in each certificate stating whether or not an
entity is capable of performing bus encryption.

2.2 Requesting media-specific information

In the previous section, we saw how the drive and the host established a shared bus key. This bus
key is used to ensure that communications between the drive and the host remain unaltered. In
this section, we describe how the bus key is used when requesting certain values from the disc, such
as the volume ID or the binding nonce. These are necessary when decrypting a disc, as they are
used to derive the title key, which in turn is used to decrypt the content.

5

The protocol is simply a direct exchange of messages using MACs to ensure that the message
is authentic. Figure 1 demonstrates the process in a protocol diagram. When the host makes a
request for M , the drive reads it from the disc, computes a MAC using the bus key, and sends M
in plaintext along with the MAC. Upon receiving the M , the host verifies the MAC and decides
whether or not the message is valid.

Drive Host

//Establish Bus Key BKoo

Request Moo

Read M from media.
Calculate Dm = CMAC(BK ,
M).

M || Dm //

Calculate Hm = CMAC(BK ,
M).
Verify Hm = Dm.

Figure 1: Protocol for Transferring Media-Specific Information.

3 Analysis of AACS Drive-Host Authentication scheme

In this section, we analyze the AACS drive-host authentication scheme. Several weaknesses are
identified which could lead to various attacks, and corresponding improvements are provided to
strengthen the original scheme.

3.1 Weakness 1: The DRL and HRL might not get updated.

This weakness is found in the first four steps of the drive-host authentication scheme. Suppose that
the DRL on the MKB is newer than the DRL stored in the host. A malicious party, Oscar, can
change the MKB version number to an older one, and send the modified MKB′ to the host. This
modification might not be detected during the authentication procedure because, according to the
specification, the host first checks the MKB version number, and if the version number is older
than its DRL’s, it skips over step 2, which involves verifying the signature on the DRL of MKB.

Drive Oscar Host

MKB−−−−−−−−−−−−−−−−→ MKB′
−−−−−−−−−−−−−−−−→

If the drive has already been revoked, it could maliciously alter the MKB version number in
order not to let the host update its DRL, so that it can keep interacting with the host.

6

Drive Host
1. MKB // Verify MKB and DRL signa-

tures. Abort if signatures are
not valid.

2. Compare version of stored
DRL to DRL in MKB. If DRL
in MKB is not newer, use
stored DRL. Otherwise, use
DRL in MKB.

3. Verify MKB and HRL signa-
tures. Abort if signatures are
not valid.

4. Compare version of stored
HRL to HRL in MKB. If HRL
in MKB is not newer, use
stored HRL. Otherwise, use
HRL in MKB.

Figure 2: Improved First Four Steps.

The altered MKB might eventually be detected when the host processes the MKB during content
decryption. However, it is undesirable for a revoked drive to be able to talk to the host until then.

The fix to this weakness is simple: The host verifies the MKB and DRL signatures before
checking the version numbers. The same modification can be made to the drive side. Figure 2
shows the modification.

3.2 Weakness 2: The scheme is susceptible to Unknown Key-Share attack

Suppose A and B are two honest participating entities trying to set up a shared secret key through
a key agreement protocol, and O is an active malicious entity. An unknown key-share attack on a
key agreement protocol is an attack through which O causes one of the two honest entities, say A,
to believe that it shares a key with O, but it actually shares the key with the other honest entity B,
and B believes that the key is shared with A. So, at the end of the protocol, O can act on behalf
of B to interact with A. There are a number of papers studying unknown key-share attack and its
application on a number of protocols, e.g. [2], [3], [5], [7], and [9].

We can simplify the original flow representation of the drive-host authentication scheme, as
shown in Figure 3, by taking into consideration only the core steps involved in authentication and
key agreement. A similar flow diagram is also provided in [1, Section 4.3].

1. Host initiates a session with Drive. It sends a random nonce Hn and its certificate Hcert to
Drive. Drive verifies the signature of the Host certificate using the AACS LA public key. If
the verification fails, Drive shall abort this authentication procedure.

7

Drive Host

1.
Hn, Hcert←−−−−−−−−−−−−−−−−

2.
Dn, Dcert−−−−−−−−−−−−−−−−→

3. Dv=DkG
Sigdrive(Hn||Dv), Dv−−−−−−−−−−−−−−−−→

4.
Sighost(Dn||Hv), Hv←−−−−−−−−−−−−−−−− Hv=HkG

5. Bk=DkHv=DkHkG Bk=HkDv=HkDkG

Figure 3: Simplified AACS Drive-Host Authentication Protocol.

2. Drive replies to the Host with a random nonce Dn and its certificate Dcert. Host verifies the
signature of the Drive certificate using the AACS LA public key. If the verification fails, Host
shall abort this authentication procedure.

3. Drive generates a 160-bit random number Dk and uses it to calculate a point on the elliptic
curve Dv (G is the base point of the elliptic curve). Drive then creates a signature of the
concatenation of the nonce Hn and Dv. Drive sends the digital signature and Dv to Host.
Host verifies the signature, and aborts the session on failure.

4. Host generates a 160-bit random number Hk and uses it to calculate a point on the elliptic
curve Hv. Host then creates a signature of the concatenation of the nonce Dn and Hv. Host
sends the digital signature and Hv to Drive. Drive verifies the signature, and aborts the
session on failure.

On the last step, both Drive and Host calculate the shared secret bus key Bk.
An attacker, DriveOscar, which is also a legitimate drive, can use a parallel session to deploy an

unknown key-share attack. Figure 4 shows the diagram of the attack.
The attack works in this way:

1. Host initiates a session with DriveOscar. It sends its random nonce Hn and certificate Hcert

to DriveOscar.

2. DriveOscar relays the traffic to Drive as if Host is initiating a session with Drive. Drive receives
Hn and Hcert and verifies that Hcert is valid.

3. Drive sends back its random nonce Dn and certificate Dcert to Host, which of course get
intercepted by DriveOscar.

4. DriveOscar relays the random nonce Dn to Host, however, it does not relay the Drive’s cer-
tificate. Instead, it sends its own certificate DO cert to Host. Host receives DO cert as well as
Dn. It is tricked into believing that DriveOscar has generated this random nonce. Host veri-
fies DriveOscar’s certificate, and the verification should pass because DriveOscar is a legitimate
drive.

8

Drive DriveOscar Host

1.
Hn, Hcert←−−−−−−−−−−−−−

2.
Hn, Hcert←−−−−−−−−−−−−−

3.
Dn,Dcert−−−−−−−−−−−−−→

4.
Dn,DO cert−−−−−−−−−−−−−→

5. Dv=DkG
Sigd(Hn||Dv), Dv−−−−−−−−−−−−−→

6.
Sigdo(Hn||Dv), Dv−−−−−−−−−−−−−→

7.
Sigh(Dn||Hv), Hv←−−−−−−−−−−−−− Hv=HkG

8.
Sigh(Dn||Hv), Hv←−−−−−−−−−−−−−

9. Bk=DkHv=DkHkG Bk=HkDv=HkDkG

Figure 4: Unknow Key-Share Attack on AACS Drive-Host Authentication Protocol.

5. Following the AACS drive-host authentication protocol, Drive generates a random number
Dk and calculates a point on the elliptic curve Dv. Drive then creates a signature of the
concatenation of the nonce Hn and Dv. Drive sends the digital signature and Dv to Host.

6. DriveOscar relays Dv to Host. However, it creates its own signature of the concatenation of
the nonce Hn and Dv using its private key. It can do so because both Hn and Dv are available
to it. It sends this signature instead of Drive’s signature to Host. Host verifies the signature
using DriveOscar’s public key obtained from DO cert. The verification should pass.

7. Host generates a random number Hk and calculates a point on the elliptic curve Hv. Drive
then creates a signature of the concatenation of the nonce Dn and Hv. Drive sends the digital
signature and Hv to DriveOscar.

8. DriveOscar relays the traffic to Drive. Drive verifies the signature, and the verification should
pass.

By the time the session is complete, Drive has accepted Host, and it can calculate the shared
bus key Bk. On the other hand, Host does not accept Drive because it simply does not know the
existence of Drive from this interaction. Instead, it has accepted DriveOscar. Host can also calculate
the same shared bus key Bk.

Although DriveOscar does not know the secret bus key Bk in the end, it has tricked Host into
believing that it shares the bus key with Host. Host thinks that it is talking to DriveOscar while
actually it is interacting with Drive.

This attack could practically be exploited. For example, suppose that DriveA is revoked. Then
it can employ this attack to ask DriveB, which is not revoked, to impersonate it. Since the host

9

only sees DriveB’s certificate, the authentication procedure should complete successfully. In this
way, DriveA can still interact with the host after the authentication procedure. It has effective
bypassed the authentication procedure.

Such an attack is enabled due to the fact that in the last two flows DriveOscar can simply copy
the traffic. This problem can be fixed by including the entity IDs in the signature. (See Section
3.4).

3.3 Weakness 3: The scheme is susceptible to Man-In-The-Middle attack

The adversarial goal in an attack to a mutual authentication protocol is to cause an honest partici-
pant to “accept” after a flow in which the adversary is active. To consider a mutual authentication
protocol secure, it has to satisfy the following conditions:

1. Suppose A and B are the two participants in a session of the protocol and they are both
honest. Suppose also that the adversary is passive. Then A and B will both “accept”.

2. If the adversary is active during a given flow of the protocol, then no honest participant will
“accept” after that flow.

Figure 5 shows an attack which might not be as powerful and practical as the previous one.
Nonetheless, it shows a weakness in this protocol.

Drive Oscar Host

1.
Hn, Hcert←−−−−−−−−−−−−−−−− Hn, Hcert←−−−−−−−−−−−−−−−−

2.
Dn,Dcert−−−−−−−−−−−−−−−−→ D′

n,Dcert−−−−−−−−−−−−−−−−→

3. Dv=DkG
Sigd(Hn||Dv), Dv−−−−−−−−−−−−−−−−→ Sigd(Hn||Dv), Dv−−−−−−−−−−−−−−−−→

4. Host has “accepted”, Oscar wins
Sigh(D′

n||Hv), Hv←−−−−−−−−−−−−−−−− Hv=HkG

Bk=HkDv=HkDkG

Figure 5: A Trivial Man-In-The-Middle Attack

In this case, Oscar could be a polynomial time adversary with the ability to listen and to modify
the traffic. Notice that in step 2 when Oscar relays the traffic from Drive to Host, it modifies the
random nonce Dn generated by Drive into a different one D′

n. This does not make Host terminate
the session. In step 3, after Host has successfully verified Drive’s signature, it “accepts”. This
violates condition 2 mentioned above, hence the protocol should not be considered secure.

A moment of reflection regarding this attack reveals that we do not really need the two nonces
“Hn” and “Dn”.

3.4 Improved Scheme

Since the scheme makes use of certificates, we can improve it using a simplified Station-to-Station
protocol (STS). STS protocol is a key agreement scheme based on Diffie-Hellman scheme that

10

provides mutual authentication. For more information on STS protocols, please refer to [4], [8,
Chapter 11].

Drive Host

1.
Hv , Hcert←−−−−−−−−−−−−−−−−−−−−−−−− Hv=HkG

2. Dv=DkG
Sigdrive(IDhost||Dv ||Hv), Dv , Dcert−−−−−−−−−−−−−−−−−−−−−−−−→

3.
Sighost(IDdrive||Hv ||Dv)←−−−−−−−−−−−−−−−−−−−−−−−−

4. Bk=DkHv=DkHkG Bk=HkDv=HkDkG

Figure 6: Improved Scheme Based on Station-to-Station Protocol

Figure 6 shows the modified drive-host authentication scheme based on STS. This modification
solves both problems stated in weakness 2 and 3 (security proof is given in the next section). In
addition, it improves the efficiency of the original protocol, because the number of interactions
between Drive and Host is reduced.

1. Host initiates a session with Drive. It generates a 160-bit random number Hk and uses it to
calculate a point on the elliptic curve Hv. It sends the Hv and its certificate Hcert to Drive.
Drive verifies the signature of the Host certificate using the AACS LA public key. If the
verification fails, Drive shall abort this session.

2. Drive generates a 160-bit random number Dk and uses it to calculate a point on the elliptic
curve Dv. Drive then creates a signature of the concatenation of the Host ID, Dv, and Hv.
Drive sends the digital signature, Dv, and its certificate Dcert to Host. Host verifies the
signature created by Drive: verdrive(IDhost||Dv||Hv,Drive′s signature) = {true, false}, and
it also verifies the signature of the Drive certificate. If any of the two verifications fail, Host
shall abort the session.

3. Host creates a signature of the concatenation of the Drive ID, Hv, and Dv and sends it to
Drive. Drive verifies the signature: verhost(IDdrive||Hv||Dv,Host′s signature) = {true, false},
and aborts the session on failure.

At the end of the protocol, both Drive and Host are able to establish the shared secret bus key
Bk. Points Hv and Dv in this protocol also play a role as random challenges.

The following flow representation shows the entire modified drive-host authentication protocol.

Drive Host

1. MKB // Verify MKB and DRL signa-
tures. Abort if signatures are
not valid.

11

2. Compare version of stored
DRL to DRL in MKB. If DRL
in MKB is not newer, use
stored DRL. Otherwise, use
DRL in MKB.

3. Verify MKB and HRL signa-
tures. Abort if signatures are
not valid.

4. Compare version of stored
HRL to HRL in MKB. If HRL
in MKB is not newer, use
stored HRL. Otherwise, use
HRL in MKB.

5. AGID //

6. Generate 160-bit random
number Hk.

7. Calculate Hv = HkG where G
is the base point of the elliptic
curve.

8. Hv‖Hcertoo

9. Verify host certificate type
and length. Abort on failure.

10. Verify signature on host cer-
tificate. Abort on failure.

11. Check HRL and abort if Host
ID is found.

12. Request a point on the elliptic
curve Dv, signature, and drive
certificate.

13. Generate 160-bit random
value Dk.

14. Calculate Dv = DkG where G
is the base point of the elliptic
curve.

12

15. Calculate Dsig as the signa-
ture of IDhost‖Dv‖Hv using
the drive’s private key.

16. Dsig‖Dv‖Dcert//

17. Verify drive certificate type
and length. Abort on failure.

18. Verify signate on drive certifi-
cate. Abort on failure.

19. Check DRL and abort if Drive
ID is found.

20. Verify Dsig and abort on fail-
ure.

21. Calculate Hsig as the signa-
ture of IDdrive‖Hv‖Dv using
the host’s private key.

22. Hsigoo

23. Verify Hsig and abort on fail-
ure.

24. Calculate Bus Key Bk as the
128 least significant bits of
x-coord(DkHv).

25. Calculate Bus Key Bk as the
128 least significant bits of
x-coord(HkDv).

The new protocol solves all the aforementioned problems. Since the random challenges Hn and
Dn are omitted, it enables the drive and the host to perform fewer interactions, and therefore it is
more efficient.

4 Security of the Modified Drive-Host Authentication Scheme

The modified scheme protects against unknown key-shared attack mentioned earlier.
In Figure 7, a question mark following a signature indicates that the adversary is unable to

compute this signature. At step 3, the signature which Host sends to DriveOscar contains DriveOscar’s
ID not Drive’s ID because Host believes that it is talking to DriveOscar. DriveOscar cannot compute

13

Drive DriveOscar Host

1.
Hv , Hcert←−−−−−−−−−−−−−−−−−− Hv , Hcert←−−−−−−−−−−−−−−−−−− Hv=HkG

2. Dv=DkG
Sigd(IDhost||Dv ||Hv), Dv , Dcert−−−−−−−−−−−−−−−−−−→ Sigdo(IDhost||Dv ||Hv), Dv , DO cert−−−−−−−−−−−−−−−−−−→

3.
Sigh(IDdrive||Hv ||Dv)?←−−−−−−−−−−−−−−−−−− Sigh(IDdrive Oscar||Hv ||Dv)←−−−−−−−−−−−−−−−−−−

Bk=HkDv=HkDkG

Figure 7: Prevention Against Unknow Key-Share Attack

Host’s signature on the string IDdrive||Hv||Dv because he does not know Host’s private signing key.
As a result, unknown key-share attack is thwarted.

After step 2, Host “accepts” the authentication because it should successfully verify DriveOscar’s
signature and certificate. This does not violate the second condition of considering a mutual authen-
tication protocol secure mentioned in Section 3.3, because Host is authenticating with DriveOscar.

The modified scheme also protects against man-in-the-middle attack.

Drive Oscar Host

1.
H′

v , Hcert←−−−−−−−−−−−−−−−−−−−− Hv , Hcert←−−−−−−−−−−−−−−−−−−−− Hv=HkG

2. Dv=DkG
Sigd(IDhost||Dv ||H′

v), Dv , Dcert−−−−−−−−−−−−−−−−−−−−→ Sigd(IDhost||D′
v ||Hv)?, D′

v , Dcert−−−−−−−−−−−−−−−−−−−−→

3.
Sigh(IDdrive||H′

v ||Dv)?←−−−−−−−−−−−−−−−−−−−− Sigh(IDdrive Oscar||Hv ||D′
v)←−−−−−−−−−−−−−−−−−−−−

Figure 8: Prevention Against Man-In-The-Middle Attack

As shown in Figure 8, if Oscar modifies Hv, he then would not be able to produce Host’s
signature on IDdrive||H ′

v||Dv because he does not know Host’s private signing key. Likewise, if
Oscar modifies Dv, he then would not be able to produce Drive’s signature on IDhost||D′

v||Hv

because he does not know Drive’s private signing key.
Of course, we want to show that the modified scheme is secure against all possible attacks, not

just two particular attacks. Hence, we need to show that the modified scheme is a secure mutual
authentication scheme, and that it provides assurances regarding knowledge of the shared secret
key.

4.1 The modified scheme provides secure mutual authentication

A secure mutual authentication has to satisfy the two conditions described in Section 3.3. Let us
first show that our modified scheme satisfies the first condition.

Since no one is modifying the traffic, if the adversary is passive and the two participants are
honest they should successfully authenticate themselves to each other and both compute the shared
secret key as in the Diffie-Hellman key agreement scheme. Assuming the intractability of the
Decision Diffie-Hellman problem, the inactive adversary cannot compute the share secret key.

14

To prove that our modified scheme satisfies the second condition, let us assume that the adver-
sary is active. The adversary wants to fool at least one of the two participants to “accept” after
a flow in which he is active. We show that the adversary will not scceed in this way, except with
small probability.

Definition 1. A signature scheme is (ε,Q, T)-secure if the adversary cannot construct a valid
signature for any new message with probability greater than ε, given that he has previously seen
at most Q different valid signatures, and given that his computation time is limited to T .

Definition 2. A mutual authentication scheme is (ε,Q, T)-secure if the adversary cannot fool any
honest participants into accepting with probability greater than ε, given that he has observed at
most Q previous sessions between the honest participants, and given that the his computation time
is at most T .

Time T is usually chosen to be very long so that by the time the adversary successfully computes
the correct result the value of the result has decreased to an insignificant level. For simplicity of
notation, we omit the time parameter. Q is a specified security parameter. Depending on the
application, it could be assigned with various values. The probability ε is usually chosen to be so
small that the chance of success is negligible.

Theorem 3. Suppose that Sig is an (ε,Q)-secure signature scheme, and suppose that random
challenges Hv and Dv are k bits in length. Then the scheme shown in Figure 6 is a (Q/2k−1+2ε,Q)-
secure mutual authentication scheme.

Proof. The adversary, Oscar, observes Q previous sessions of the protocol before making his attack.
A successful attack by Oscar is to deceive at least one honest participant in a new session into
accepting after he is active in one or more flows.

1. Oscar tries to deceive Host. In order to make Host accept, it has to receive a signature signed
by Drive containing the Host ID and the random challenge Hv. There are only two ways for
Oscar to acquire such a signature: either from a previously observed session or by computing
it himself.

To observe such a signature from a previous session, Hv has to be used in that session. The
probability that Host has already used the challenge in a specific previous session is 1/2k.
There are at most Q previous sessions under consideration, so the probability that Hv was
used as a challenge in one of these previous sessions is at most Q/2k. If this happens, Oscar
can re-use Drive’s signature and D′

v (which may or may not be the same as Dv) from that
session to fool Host.

To compute such a signature himself, Oscar has at most only a chance of ε, since Sig is
(ε, Q)-secure.

Therefore, Oscar’s probability of deceiving Host is at most Q/2k + ε.

2. Oscar tries to deceive Drive. This is quite similar to the case we have discussed above. In order
to fool Drive, Oscar has to have a legitimate signature signed by Host, i.e. Sighost(IDdrive||Hv||Dv).
As in the previous case, the two ways for Oscar to acquire such a signature are either from a
previously observed session or by computing it himself.

15

To observe such a signature from a previous session, Dv have to be used in that session (Hv

could be re-used by Oscar). This happens with probability 1/2k. Oscar has observed at most
Q sessions, so the probability for him to re-use Host’s signature from a previous session is at
most Q/2k.

Again since Sig is (ε, Q)-secure, Oscar can compute such a signature with a probability of at
most ε.

Therefore, Oscar’s probability of deceiving Drive is at most Q/2k + ε.

Summing up, the probability for Oscar to deceive one of Host or Drive is at most (Q/2k + ε) +
(Q/2k + ε) = Q/2k−1 + 2ε.

4.2 The modified scheme provides implicit key confirmation

Now, let us see what we can infer about the modified scheme if Host or Drive “accepts”. Firstly,
suppose that Host “accepts”. Because the modified scheme is a secure mutual authentication
scheme, Host can be confident that it has really been communicating with Drive and that the
adversary was inactive before the last flow. Assuming that Drive is honest and that it has executed
the scheme according to the specifications, Host can be confident that Drive can compute the value
of the secret bus key, and that no one other than Drive can compute the value of the bus key.

Let us consider in more detail why Host should believe that Drive can compute the bus key.
The reason for this belief is that Host has received Drive’s signature on the values Hv and Dv,
so it is reasonable for Host to infer that Drive knows these two values. Now, since Drive is a
honest participant and executed the scheme according to the specifications, Host can infer that
Drive knows the values of Dk. Drive is able to compute the value of the bus key, provided that he
knows the values of Hv and Dk. Of course, there is no guarantee to Host that Drive has actually
computed the bus key at the moment when Host “accepts”. We can be sure that no one else can
compute the bus key because Dk is meant to be known to Drive only.

The analysis from the point of view of Drive is very similar. If Drive “accepts”, then it is
confident that it has really been communicating with Host, and that the bus key can be computed
only by Host and no one else.

The modified scheme does not make immediate use of the new bus key, so we do not have explicit
key confirmation. However, it does achieve implicit key confirmation. Moreover, it is always possible
to augment any key agreement scheme with implicit key confirmation so that it achieves explicit key
confirmation, if so desired. In essence, the modified scheme provides authenticated key agreement
with key confirmation.

5 Conclusion

Through rigorous analysis of the AACS drive-host authentication scheme, we have observed a few
weaknesses present therein. Specifically, the scheme is susceptible to unknown key-share attack and
man-in-the-middle attack. As a goal to improve the scheme to resist all kinds of attacks, we have
modified the original scheme based on a simplified Station-to-Station protocol to provide secure
mutual authentication as well as authenticated key agreement with key confirmation. In addition,
our modified scheme achieves better efficiency than the original scheme.

16

References

[1] AACS LA, “Advanced Access Content System (AACS) - Introduction and Common
Cryptographic Elements, Revision 0.91”, February 17, 2006, http://www.aacsla.com/
specifications/specs091/AACS Spec Common 0.91.pdf

[2] J. Baek, K. Kim, “Remarks on the Unknown Key Share Attacks”, IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, Vol. E83-A, No. 12,
pp. 2766-2769, 2000.

[3] S. Blake-Wilson and A. Menezes, “Unknown Key-Share Attacks on the Station-to-Station
(STS) Protocol”, Proceedings of PKC 99, LNCS Vol. 1560, pp. 154-170, 1999.

[4] W. Diffie, P. C. van Oorschot, and M. J. Wiener, “Authentication and Authenticated Key
Exchanges”, Designs, Codes and Cryptography, Vol. 2, Issue 2, pp. 107-125, Kluwer Academic
Publishers, 1992.

[5] B. S. Kaliski Jr., “An Unknown Key-Share Attack on the MQV Key Agreement Protocol”,
ACM Transactions on Information and System Security, Vol. 4, No. 3, pp. 275-288, 2001.

[6] National Institute of Standards and Technology, “Special Publication 800-56A, Recommenda-
tion for Pair-Wise Key Establish Schemes Using Discrete Logarithm Cryptography”, March
2007.

[7] K. Shim, “Unknown Key-Share Attack on Authenticated Multiple-Key Agreement Protocol”,
Electronics Letters, Vol. 39, Issue 1, pp. 38-39, 2003.

[8] D. R. Stinson, “Cryptography Theory and Practice, Third Edition”, Chapman & Hall/CRC,
2006.

[9] H. Zhou, L. Fan, and J. Li, “Remarks on Unknown Key-Share Attack on Authenticated
Multiple-Key Agreement Protocol”, Electronics Letters, Vol. 39, Issue 17, pp. 1248-1249, 2003.

17

