
AIDA Algebraic IV Differential Attack

Breaking One.Fivium by AIDA

an Algebraic IV Differential Attack

Michael Vielhaber, Instituto de Matemáticas, Universidad Austral de Chile
Casilla 567, Valdivia, Chile, vielhaber@gmail.com October 28, 2007

Abstract We show, how to break Trivium with a setup of 576 (instead
of 1152) clock cycles, with an effort of 26 chosen IV resynchronisations up
to cycle 625 for each of the 47 recovered key bits.

Keywords: Trivium, estream, Algebraic IV differential attack, AIDA.

1. The Trivium and One.Fivium stream ciphers

The eStream cipher proposal Trivium [1] has a 288 bit register, initially filled with
the (unknown) key at bits 1–80, and with the (supposedly choosable) IV at bits
94–173. Bits 286–288 are set to one, all others to zero.

The setup phase then consists in 4 · 288 cycles without revealing output. We assume
a setup of just 2 ·288 = 576 cycles, half the length, hence our name 1.5-vium instead
of 3-vium for this (acknowledgedly weaker) algorithm.

2. Definitions

(i) Let s1, . . . s288 be the register bits of Trivium as in [1].

(ii) Let K1, . . . , K80 be the key bits. Initially, K1 = s1, . . . , K80 = s80. Occasionally,
we will write K(i) for Ki.

Note: In this paper, we keep with the original enumeration, whereby K1 goes into
s1, IV1 goes into s94. We see nothing “more natural” (cf. [3]) in using the other
way round, and certainly any change likely amounts to confusion – more severe in
cryptanalysis than mere excess or lack of “naturality”.

(iii) Let IV1, . . . , IV80 be the key bits. Initially, IV1 = s94, . . . , IV80 = s173.

(iv) Let I be a subset of the index set {1, 2, . . . , 80}. Then

IVI := ∧i∈IIVi,

e.g. IV{7,11} = IV7 ∧ IV11 and IV∅ = 1 (always true for empty index set).

(v) Let OUT (t) be the output at time step t, where t = 1 corresponds to the clock
cycle immediately following filling the register. Hence, Trivium according to specifi-
cation [1] will reveal output bits from OUT (1153) on, while OUT (1), . . . , OUT (1152)
are hidden during the setup phase. One.Fivium shows OUT (577), OUT (578),

(vi) Let OUT(t):IV be the output for a given fixed IV (still depending on the un-
known key).

ceterum censeo ... 1 Achterbahnem esse includendam

AIDA Algebraic IV Differential Attack

(vii) For 0 ≤ n ≤ 80; ik ∈ {1, . . . , 80}, 1 ≤ k ≤ n; t ∈ N, let

t :< i1, . . . , in >:=
⊕

0≤IVi1
,...,IVin≤1;IVj=0,j 6=ik,∀k

OUT (t) : IV

be the sum modulo 2 of OUT (t) from all 2n runs of Trivium where the specified IV
bits assume all possible combinations and the other 80− n IV bits are held zero.

3. Exclusive Normal Form

All further manipulations after the initial fill are based on the two functions ⊕ (XOR)
and ∧ (AND) over F2. We can thus describe every register bit as well as the output
by what we call ENF, Exclusive Normal Form. Using definition (iv), the ENF of
some Boolean expression in the IV1 . . . , IV80, K1, . . . , K80 is:

{1,2,...,80}⊕

I=∅
IVI [⊕nI

k=1 ∧K{I,k}],

where I runs through all the 280 combinations of the IV -Bits, nI is the number of
minterms including a certain IV combination IVI , and K{I,k} is the and-ing of the
corresponding key bits (minterms).

Example:

The output at time t = 1 (invisible) is given by K66 ⊕ IV69 ⊕ 1, hence in ENF
OUT(1) = IV∅[K66 ⊕ 1]⊕ IV{69}[1]

Proposition 1

⊕,∧, 1 is a complete system,i.e. every Boolean function can be represented by some
ENF (where IV∅ = 1 is always true).

Proof. As we know from Boolean algebra, ∨,∧,¬ is a complete system. Since ¬a =
a⊕ 1 and a ∨ b = a⊕ b⊕ (a ∧ b), we are done. ¤
Proposition 2 Distributive Law

(⊕i∈IAi) ∧ (⊕j∈JBj) = ⊕(i,j)∈I×J(Ai ∧Bj)

Proof. We show (a⊕ b) ∧ (c⊕ d) = ac⊕ ad⊕ bc⊕ bd by a truth table. The whole
formula then follows by induction over the quantities |I| and |J |.

ceterum censeo ... 2 Achterbahnem esse includendam

AIDA Algebraic IV Differential Attack

a b c d a⊕ b c⊕ d ∧ = ⊕ ac ad bc bd

0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0
0 1 0 1 1 1 1 0 0 0 1
0 1 1 0 1 1 1 0 0 1 0
0 1 1 1 1 0 0 0 0 1 1
1 0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 1 1 0 1 0 0
1 0 1 0 1 1 1 1 0 0 0
1 0 1 1 1 0 0 1 1 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 1 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 0 0 0 1 1 1 1

¤
In a similar way, every bit of Trivium at every timestep can in principle be repre-
sented by its ENF, ordered by the IV contents of the respective conjunction.

Hence, the feedback function s178 = s162 ⊕ s177 ⊕ s264 ⊕ s176 · s175 (and similarly for
the sites s1 and s94) can be expressed in terms of the respective ENF’s as:

ENF (178) = ENF (162)⊕ ENF (177)⊕ ENF (264)⊕ (ENF (175) ∧ ENF (176)),

where by Proposition 2

(⊕m
i=1IV ai ∧Kai) ∧ (⊕n

j=1IV bj ∧Kbj) :=

(n,m)⊕

(i,j)=(1,1)

(IV ai ∧ IV bj) ∧ (Kai ∧Kbj).

Here we can appreciate that generally, the ENF complexity (number of terms) will
square due to the ∧ operation (an explosion somewhere between exponentiation and
Ackermann’s function). Fortunately (for the attacker), squaring 0 or 1 is the typical
effect up to ca. 300 clock cycles, before take-off.

4. Algebraic IV Differential Attack: Inclusion-Exclusion-Principle

These ENF’s thus grow fast and become huge. However, it is possible to rip apart
the ENF of a certain output position by choosing an appropriate mix of IV’s:

Let the IV be allzero. Then only the part with I = ∅ is valid, since all other values for
I do not correspond to an allzero IV. Similarly, an IV of 0x0 05 that is bits 1 and 3
set, will result in the sum over I = ∅, {1}, {3}, {1, 3} that is four terms being present

ceterum censeo ... 3 Achterbahnem esse includendam

AIDA Algebraic IV Differential Attack

(and in general 2k terms, if the IV has Hamming weight k). Apparently, there is no
IV directly responsable for I = {1, 3} and only I = {1, 3}.
However, by the inclusion-exclusion-principle, we obtain:

IV I = ∅ I = {1} I = {3} I = {1, 3}

IV = 0x0 05
√ √ √ √

IV = 0x0 04
√ √

IV = 0x0 01
√ √

IV = 0x0 00
√

and thus (now comes the inclusion-exclusion-principle):
⊕

IV⊂0x0 05 = [I = {1, 3}].
Proposition 3

Let OUT (t) = (IVi1 ∧ IVi2 ∧ · · · ∧ IVin)∧Kk

⊕
Z, where the ENF Z does not include

terms of the form (IVi1 ∧ IVi2 ∧ · · · ∧ IVin) ∧ (Kj1 ∧Kj2 ∧ · · · ∧Kjm), for any m ≥
0, 1 ≤ j1, . . . , jm ≤ 80.

Then Kk =
⊕

I⊂{i1,i2,...,in} OUT (t) : IVI

Proof: By the inclusion–exclusion–principle. ¤
Since there are 80 IV bits, there are 280 I−sets to be chosen from (where the full set
I = {1, 2, . . . , 80} would require (by the inclusion–exclusion–principle) to check all
280 IV combinations, as brute-forzish as just checking all key combinations).

The attack on Trivium and similar ciphers now splits into two phases:

A) A once-and-for-all precomputation, to determine a set I at a sufficiently distant
time t (as to be after the setup phase, we do not achieve this yet) with an ENF entry
of the form IVI [⊕n

k=1Xk], where the Xk should be a single bit of K or at most double
terms Kk1 ∧Kk2 . This precomputation is done only once per cipher. It has not to be
repeated for different key values.

B) To attack the cipher it then suffices to run the chosen IV’s according to the pattern
in I (2#I IVs, where #I is the Hamming weight). This phase B should be essentially
trivial.

5. Results obtained for a setup of 576 cycles

We have, e.g., K(62) = 624 :< 2, 7, 8, 12, 27, 78 >, that is after a setup of 623 or less
cycles (instead of 1152) key bit 62 is visible as a linear combination of a certain output
bit of 26 = 64 runs with chosen IV, since OUT (624) = IV2IV7IV8IV12IV27IV78K62

⊕
. . . ,

where . . . is some (large) ENF without the IV–Kombination IV2IV7IV8IV12IV27IV78.

The list of key bits (47 bits, the rest being an easy 233 exercise in brute force) and
corresponding xor sums of output bits is given here, please note that all timesteps lie
between 577 and 625, incl., and no combination needs more than 6 IV bits to be set.

ceterum censeo ... 4 Achterbahnem esse includendam

AIDA Algebraic IV Differential Attack

Key Clock IV–Bits used in
Bit(s) Cycle combinations

1 597 < 4, 7, 12, 15, 2, 56 >
2⊕ 65 580 < 4, 7, 12, 15, 8, 33 >
3⊕ 66 580 < 4, 7, 12, 15, 14, 32 >

4 579 < 4, 7, 12, 15, 6, 47 >
5 577 < −, 7, 12, 15, 1, 79 >
6 611 < 4, 7, 12, 15, 41, 51 >
8 589 < 4, 7, 12, 15, 23, 54 >
9 589 < 4, 7, 12, 15, 36, 63 >

11 595 < 4, 7, 12, 15, 24, 41 >
14 604 < 4, 7, 12, 15, 21, 32 >
16 578 < 4, 7, 12, 15, 77, 79 >
17 588 < 4, 7, 12, 15, 20, 79 >
19 587 < 4, 7, 12, 15, 23, 40 >
25 580 < 4,−, 12, 15, 23, 49 >
26 580 < 4,−, 12, 15, 22, 49 >
27 579 < 4, 7, 12,−, 23, 48 >
36 583 < 4, 7, 12,−, 34, 44 >
38 580 < −, 7, 12, 15, 49, 55 >
39 578 < −, 7, 12, 15, 52, 79 >
55 598 < 4, 7, 12, 15, 51, 58 >
56 578 < 4, 7, 12, 15, 26, 50 >

57⊕ 63 588 < 4, 7, 12,−, 14, 24 >
59⊕ 65 612 < 4, 7, 12, 15, 10, 41 >
60⊕ 66 589 < 4,−, 12, 15, 38, 48 >

Key Clock IV–Bits used in
Bit(s) Cycle combinations

61 587 < 4, 7, 12, 15, 40, 74 >
62 604 < 4, 7, 12, 15, 23, 75 >
63 604 < 4, 7, 12, 15, 23, 74 >
64 597 < 4, 7, 12, 15, 3, 30 >
65 580 < 4, 7, 12, 15, 2, 33 >
66 580 < 4, 7, 12, 15, 16, 34 >
67 596 < 4, 7, 12, 15, 40, 65 >
68 596 < 4, 7, 12, 15, 40, 64 >
15 581 < 4, 28, 31, 79, 3, 47 >
18 600 < 4, 28, 31, 79, 1, 69 >
20 598 < 4, 28, 31, 79, 3, 50 >
23 625 < 4, 28, 31, 79, 8, 12 >
30 606 < 4, 28, 31, 79, 12, 46 >
32 606 < 4, 28, 31, 79, 1, 17 >
33 591 < −, 28, 31, 79, 2, 37 >
35 589 < 4, 28, 31, 79, 14, 51 >
58 588 < 4, 28, 31, 79, 35, 38 >
21 583 < 2, 7, 8, 12, 19, 45 >
22 583 < 2, 7, 8, 12, 20, 56 >
10 583 < 2, 8,−, 80, 19, 43 >
12 582 < 2, 8, 12, 80, 19, 44 >
58 607 < 2, 8, 12, 80, 19, 71 >
69 579 < 2, 8, 12, 80, 14, 49 >

The second line should be read as K2 ⊕K65 = ⊕I⊂{4,7,12,15,8,33}OUT (580) : IVI .

How did we obtain this table: By semi-exhaustive searching many IV combinations.
So phase A is done (and involved far more than 80× 640× 26 steps of the Trivium
algorithm, the effort phase B now takes).

How can you verify it: Take the official Trivium implementation. Tweak the setup
length from 1152 to 576 (comment out the second line UPDATE(); ROTATE();,
l. 254 in the reference implementation [3]). Now key stream starts after 576 setup
cycles. Run it any number you wish with random key bits and the IV’s as described
by the table. Compare the output xor with the (random!) key bit. Observe equality.
Every time. If you believe in probabilistically checking primality, you are fine here
as well.

6. Comparison with Turan and Kara’s work

Another attack on Trivium with reduced setup length is described in [2]. What
Turan and Kara call a “2-Round-Trivium” consists in a setup of only 288 clock

ceterum censeo ... 5 Achterbahnem esse includendam

AIDA Algebraic IV Differential Attack

cycles, before access to output stream is allowed. They obtain a 2−31 approximation
to certain key bits.

In contrast, our approach allows (at least) 576 clock cycles and gives direct equations
for the key bits. So, in Turan and Kara’s terminology, this is a 4-Round attack with
a bias of 2−0! (using the piling-up lemma with ε = p(1)− p(0), to be able to directly
multiply biases of xor-ed streams).

7. Further Work

The apparent goal is to push the allowed setup length from the achieved 576 all the
way up to 1152. This will require larger sets of IV’s, not just 6, and thus a whole lot
more precomputation.

Furthermore, we obtained directly key bits as K part in the ENF. We could of course
also use sums of key bits, or terms with 2 (or some few) key bits and–ed together,
requiring some more computational effort in phase B.

This work is under way. A sneak preview:
K(23) = 640:< 3, 4, 7, 12, 15, 25, 29, 79 >, covering 5/9 of the setup time.

Conclusion

We developed a new kind of attack against low-complexity algorithms, the AIDA,
Algebraic IV Differential Attack.

While the Trivium inventors state in [1, Sect. 4.5] that “each state bit depends on
each key and IV bit in nonlinear way after two full cycles (i.e., 2 ·288 iterations). We
expect that two more cycles will suffice to protect the cipher against resynchronization
attacks”, we have shown that at least the nonlinear dependance gives no safety at all
and the margin against attacks will (if at all) only start within the next 576 iterations.

References

[1] Christophe de Cannière, Bart Preneel, “Trivium Specifications”
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium p3.pdf

[2] M. S. Turan, O. Kara,“Linear Approximations for 2-round Trivium”
http://www.ecrypt.eu.org/stream/papersdir/2007/008.pdf

[3] http://www.ecrypt.eu.org/stream/p3ciphers/trivium/

trivium p3source.zip::trivium.c

ceterum censeo ... 6 Achterbahnem esse includendam

