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Abstract 
 

A tripartite authenticated key agreement protocol is 

designed for three entities to communicate securely over an 

open network particularly with a shared key. Recently, we 

have improved a one-round tripartite authenticated key 

agreement protocol proposed by Lin-Li due to its vulnerability 

to the forging attack in our previous report. However, we have 

later discovered that both the original Lin-Li’s scheme and 

our previous enhanced protocol are vulnerable to the insider 

replay attack. Moreover, we have also realized that both 

protocols have falsely claimed the forward secrecy attribute. 

In this paper, we will revise our improvements and again 

secure this protocol against these cryptanalytic attacks while 

recovering the precious perfect forward secrecy property. 

 

1. Introduction 
 

A key agreement protocol is defined as a mechanism in which 

a shared secret key, often known as session key, is derived by 

two or more protocol entities as a function of information 

contributed by each of these parties such that no single entity 

can predetermine the resulting value. This secret key, usually 

established over a public network, can then be used to create a 

confidential or integrity-protected communication channel 

among the entities. In general, a key agreement protocol is 

called authenticated if the protocol is able to ensure that the 

session key is known only to the intended entities in a protocol 

run. Without authentication, a key agreement protocol would 

turn out to be insecure as an adversary can easily intrude the 

scheme by using the man-in-the-middle attack as well as other 

cryptographic attacks. 

The situation where three or more parties share a secret 

key is known as conference keying. The three-party (or 

tripartite) case is of most practical importance because it is the 

most common size for electronic conferences. Not only that, a 

tripartite key agreement protocol can be used to provide a 

range of services particularly in the communication of two 

parties. For instance, a third party can be added to chair or 

referee a conversation for ad hoc auditing, data recovery or 

escrow purposes [1]. 

Over the years, a variety of key agreement protocols have 

been proposed. However, most of them have been proven to be 

insecure [4, 5, 7, 10, 11, 14, 16] due to their failure in fulfilling 

all the desirable security attributes of a key agreement protocol 

defined by Wilson and Menezes [17, 18]. We define these 

security attributes as follows: 

Known session key security. A protocol is considered to be 

known session key secure if it remains achieving its goal in the 

face of an adversary who has learned some previous session 

keys. 

(Perfect) forward secrecy. A protocol enjoys forward 

secrecy if the secrecy of the previous session keys is not 

affected when the long term private keys of one or more 

entities are compromised. Perfect forward secrecy refers to the 

scenario when the long term private keys of all the 

participating entities are compromised. 

Key-Compromise Impersonation Resilience. Suppose that 

A’s long term private key is disclosed. Obviously an adversary 

who knows this value can now impersonate A since it is 

precisely the value which identifies A. We say that a protocol 

is key-compromise impersonation resilient if this loss will not 

enable an adversary to masquerade as other legitimate entities 

to A as well or obtain other entities’ secret key. 

Unknown Key-Share Resilience. In an unknown key-share 

attack, an adversary convinces a group of entities that they 

share a key with the adversary whereas in fact, the key is 

shared between the group and another party. This situation can 

be exploited in a number of ways by the adversary when the 

key is subsequently used to provide encryption of integrity. 

Key Control Resilience. It should not be possible for any of 

the participants (or an adversary) to compel the session key to 

a preselected value or predict the value of the session key. 

Joux [8] has initiated the development of one-round 

pairing-based tripartite Diffie-Hellman key agreement 

protocol in 2000. However, Shim [16] has pointed out that 

Joux’s protocol does not provide authentication and therefore, 

it cannot resist the man-in-the-middle attack. Shim has further 

proposed an improved scheme which employs the public key 

infrastructure to overcome the security flaw in Joux’s protocol. 

Unfortunately in 2005, Lin-Li [11] has identified the 

weaknesses of Shim’s improved scheme and subsequently 

demonstrated its vulnerability to the insider impersonation 

attack and the key-compromise impersonation attack. In 



addition, Lin-Li has proposed their enhanced scheme by 

introducing an extra verification process in order to 

authenticate the communicating parties. They claimed that 

their enhanced scheme is secure and efficient. However, we 

have proven them wrong by showing a forging attack in [10] 

which renders their enhanced scheme totally insecure. On top 

of that, we have proposed an improved scheme in [10] mainly 

to fix the flaw that we have identified. However, recently, we 

have spotted another demerit in both original Lin-Li’s scheme 

as well as our previous improved scheme, which allows a 

malicious adversary to carry out an insider replay attack 

successfully on both schemes. Furthermore, we have also 

discovered that both protocols in fact do not fulfill the forward 

secrecy property, which has been falsely claimed in both 

papers [10, 11]. Hence, we aim to address them thoroughly by 

proposing our latest improvements in this paper. Not only that, 

we also revise our previous improvement to optimize the 

efficiency mainly in the message verification processes by the 

message recipients. 

We organize the structure of this paper as follows. In the 

next section, we will illustrate some basic properties of 

modified Weil pairings and some Diffie-Hellman assumptions. 

In Section 3, we will review our previous improved one-round 

pairing-based tripartite authenticated key agreement protocol. 

Then, we will present our attack and the weakness of the 

protocols in Section 4 and subsequently demonstrate our 

enhancements as well as the associated discussions in Section 

5. Last but not least, we will conclude this paper in Section 6. 

 

2. Preliminaries 
 

Let p be a prime number such that p = 2 (mod 3) and p = 6q – 1 

for some prime q > 3. Let E[q] be a supersingular curve 

defined by y
2
 = x

3
 + 1 over Fp. Let P ∈ E/Fp be a generator of 

the group of points with order q = (p + 1)/6. Let µq be a 

subgroup of Fp2
*
 that contains all elements of order q. The 

Weil pairing on the curve E/ Fp2* is a mapping e: Gq x Gq → µq. 

Hence, we define the modified Weil pairing to be ê: Gq x Gq → 

µq, ê(P,Q) = e(P, ψ(Q)), where ψ(x, y) = (ζx, y), 1 ≠ ζ ∈ Fp2
*
 is 

a solution of x
3
 – 1 = 0 (mod p) and Gq is the group of points 

with order q. The modified Weil pairing then satisfies the 

following properties: 

a) Bilinear: ê(aP, bQ) = ê(P, Q)
ab 

= ê(abP, Q) for any P, 

Q  ∈E[q] and a, b  ∈Zq*. 

b) Alternative: ê(P, Q) = ê(Q, P)
-1

. 

c) (on-degenerate: There exists a point P  ∈Gq where 

ê(P, P) ≠ 1. 

d) Polynomial-time computable: There is an efficient 

algorithm to compute ê(P,Q) for any P, Q  ∈Gq. 

A bilinear map which satisfies all these properties above is 

known as admissible bilinear. It is noted that the modified 

Weil pairing associated with the supersingular elliptic curves 

or abelian varieties, can create such bilinear maps. 

Now, we describe some hard cryptographic problems: 

Bilinear Diffie-Hellman Problem (BDHP). Let G1, G2 be 

two groups of prime order q (G1 is an additive group and G2 is 

a multiplicative group). Let P be a generator of G1. Given a 

quadruple (P, aP, bP, cP) with a, b, c ∈ Zq
*
, compute ê(P, P)

abc 

∈ G2. An algorithm α is deemed to have an advantage ε in 

solving the BDHP in (G1, G2, ê) based on the random choices 

of a, b, c in Zq
*
 and the internal random operation of α if 

Pr[α((P, aP, bP, cP)) = ê(P, P)
abc

] ≥ ε. 
Discrete Logarithm Problem (DLP). Given two groups of 

elements P and Q, such that Q = nP. Find the integer n 

whenever such an integer exists. 

Throughout this paper, we assume that BDHP is a hard 

computational problem such that there is no polynomial time 

algorithm to solve BDHP and DLP with non-negligible 

probability. 

 

3. Revisit of Previous Improved Lin-Li’s Scheme 
 
In this section, we review our previous improved scheme as 

described in [10]. Generally, this improved tripartite key 

agreement protocol consists of 4 phases, namely the setup 

phase, the message exchange phase, the message verification 

phase and the key generation phase. We now illustrate the 

scheme as follows: 

 

Setup. Suppose that three protocol principals A, B and C wish 

to communicate with each other and agree on a common 

session key at the end of the protocol execution. The public 

domain parameters (p, q, E, P, ê, H) are made common to all 

entities, where H : {0, 1}
*
 → Zq

*
 is a predefined collision-free 

one-way hash function. Assume that the static public keys are 

exchanged via certificates. CertA denotes A’s public-key 

certificate, containing his static public key YA = aP which 

uniquely identifies A and a certification authority CA’s 

signature over this information. Similarly, CertB and CertC 

denote the certificate of B and C respectively, with YB = bP and 

YC = cP as their static public key, where b and c are B and C’s 

corresponding static private key. 

 

Message Exchange. Suppose that x, y and z are the ephemeral 

private keys chosen by A, B and C respectively. In a 

communication run, A computes  

RA = xP, (1) 

TA = x·(aP), (2) 

mA = H(ax), (3) 

sA = (ax)
-1

(mA + a) mod q. (4) 

B computes  

RB = yP, (5) 

TB = y·(bP), (6) 

mB = H(by), (7) 

sB = (by)
-1

(mB + b) mod q. (8) 

C computes  

RC = zP, (9) 

TC = z·(cP), (10) 

mC = H(cz), (11) 

sC = (cz)
-1

(mC + c) mod q. (12) 

Then, A, B and C perform the message broadcast as follows: 

A → B, C: {RA, TA, mA, sA, CertA}, 

B → A, C: {RB, TB, mB, sB, CertB}, 

C → A, B: {RC, TC, mC, sC, CertC}. 

 



Message Verification. Upon receiving their respective peers’ 

message, A, B and C carry out the message verification as 

follows: 

ê(TA, P) = ê(RA, YA) (13) 

tA = sA
-1

 mod q (14) 

uA = (tAmA) mod q (15) 

uA·P + tA·YA 
?  TA 

  

(16) 

ê(TB, P) = ê(RB, YB) (17) 

tB = sB
-1

 mod q (18) 

uB = (tBmB) mod q (19) 

uB·P + tB·YB 
?  TB 

  

(20) 

ê(TC, P) = ê(RC, YC) (21) 

tC = sC
-1

 mod q (22) 

uC = (tCmC) mod q (23) 

uC·P + tC·YC 
?  TC (24) 

- A authenticates TB and TC by verifying whether Eqs. (17) 

and (21) hold correspondingly. Then, A computes Eqs. (18), 

(19), (22) and (23), and verifies whether Eqs. (20) and (24) 

hold simultaneously. If any of these does not hold, A 

terminates the protocol run immediately.  

- B authenticates TA and TC by verifying whether Eqs. (13) 

and (21) hold correspondingly. Then, B computes Eqs. (14), 

(15), (22) and (23), and verifies whether Eqs. (16) and (24) 

hold simultaneously. If any of these does not hold, B 

terminates the protocol run immediately. 

- C authenticates TA and TB by verifying whether Eqs. (13) 

and (17) hold correspondingly. Then, C computes Eqs. 

(14), (15), (18) and (19), and verifies whether Eqs. (16) and 

(20) hold simultaneously. If any of these does not hold, C 

terminates the protocol run immediately. 

 

Key Generation. If all the verifications are successful, for the 

session key KA = KB = KC, A computes KA by using Eq. (25), B 

computes KB by using Eq. (26) and C computes KC by using 

Eq. (27). 

 

KA = ê (YB + TB, YC + TC)
a + ax
 = ê (P, P)

(a + ax) (b + by) (c + cz)
 (25) 

KB = ê (YA + TA, YC + TC)
b + by
 = ê (P, P)

(a + ax) (b + by) (c + cz)
 (26) 

KC = ê (YA + TA, YB + TB)
c + cz
 = ê (P, P)

(a + ax) (b + by) (c + cz)
 (27) 

 

4. Further Demerits of Previous Improved 

Lin-Li’s Scheme 

4.1   The Insider Replay Attack 

In both the original Lin-Li’s scheme and our previous 

improved scheme, we discover that these schemes are in fact 

susceptible to another cryptanalytic attack, namely the insider 

replay attack. Note that an insider adversary can easily 

impersonate a protocol principal by replaying his message 

from a previous session. Suppose that B is an insider adversary 

who has eavesdropped and obtained {RA’, TA’, mA’, sA’, CertA} 

from a previous session involving A, B and C. B now wishes to 

cheat another protocol participant D (with d/YD as his static 

private/public key pair) by means of initiating a protocol run 

with D while at the same time, B plays another role as A. We 

assume that A does not know anything about this protocol run 

and we define BA as B masquerading as A. The insider replay 

attack can be carried out as follows: 

 

BA → B, D: {RA’, TA’, mA’, sA’, CertA}, 

B → BA, D: {RB, TB, mB, sB, CertB}, 

D → BA, B: {RD, TD, mD, sD, CertD}, 

 

where k is an ephemeral private key chosen by D, RD = kP, TD 

= k·(dP), mD = H(dk) and sd = (dk)
-1

(md + d) mod q. On receipt 

of B and BA’s message, D verifies their message as per the 

protocol specification. Apparently, D would authenticate B’s 

message successfully since B generates his message legally. 

However, note that BA is also able to convince D in accepting 

A’s old message since D would find Eqs. (13) and (16) hold 

and mistakenly believe that A is active in this session. 

Eventually, D computes the session key as 

 

KD = ê (YA’+ TA’, YB + TB)
d + dk

 = ê (P, P)
(a + ax’) (b + by) (d + dk)

 
 

 

while B/BA computes the session key as 

 

KB = KBA = ê (YA’+ TA’, YD + TD)
b + by
 = ê (P, P)

(a + ax’) (b + by) (d + dk)
.  

 

With this, B successfully cheats D by replaying A's message 

from a previous session and subsequently impersonating A in a 

particular session. As a result, B and D agree upon a session 

key for the tripartite key agreement scheme without A's 

presence. Since Lin-Li do not take the old communication 

reuse issue into their protocol design consideration, an insider 

adversary can easily bring any “virtual entity” into the 

communication scene by means of retransmitting the virtual 

entity’s old message. The consequence of this attack can be 

disastrous if the impersonated party is a referee, a key escrow 

or an auditor. 

4.2   The Absence of Forward Secrecy Property 

Besides the replay attack, we also found out that the 

conjectured perfect forward secrecy of both the original 

Lin-Li’s scheme and our previous improved scheme are 

falsely claimed. Consider that A, B and C have completed a 

session and computed a common session key successfully in 

prior. Assume that the adversary, eavesdropping on the 

channel, has obtained all the messages exchanged in that 

session. Suppose that A’s private key, a has been compromised 

later by some means. With the eavesdropped mA, the adversary 

can now derive A’s ephemeral key, x by computing 

 
(a(mA + a)

-1
sA)

-1
  = (a(mA + a)

-1
(ax)

-1
(mA + a))

-1
  

= x mod q 

 

and reconstruct the session key by using Eq. (25). Similarly, 

the compromise of the other party’s private key would render 

the previous established sessions insecure. Hence, we 

conclude that both the protocols do not satisfy the forward 

secrecy property (not even the partial forward secrecy). 



 

5. Improvements on Lin-Li’s Scheme and 

Related Discussions 
 

In this section, we aim to address the insider replay attack by 

proposing an enhanced protocol which recovers the perfect 

forward secrecy property and preserves all other desired 

security attributes. 

5.1   Protocol Description 

Initially, we let pA, pB and pC ∈ Zq
*
 to be the timestamp 

generated by A, B and C respectively. With this, we define our 

improved protocol as follows: 

 

Setup. This enhanced protocol has the same initial setting as 

the previous one. 

 

Message Exchange. A computes TA and mA by using Eqs. (2) 

and (3) respectively. Then A calculates 

WA = xH(x)·(aP), (28) 

nA = H(TA, WA, pA), (29) 

sA = (axH(x))
-1

(mA + anA) mod q, (30) 

B computes TB and mB by using Eqs. (6) and (7) respectively. 

Then B calculates 

WB = yH(y)·(bP), (31) 

nB = H(TB, WB, pB), (32) 

sB = (byH(y))
-1

(mB + bnB) mod q. (33) 

C computes TC and mC by using Eqs. (10) and (11) respectively. 

Then C calculates 

WC = zH(z)·(cP), (34) 

nC = H(TC, WC, pC), (35) 

sC = (czH(z))
-1

(mC + cnC) mod q. (36) 

Then, A, B and C perform the message broadcast as follows: 

A → B, C: {WA, TA, mA, sA, pA, CertA}, 

B → A, C: {WB, TB, mB, sB, pB, CertB}, 

C → A, B: {WC, TC, mC, sC, pC, CertC}. 

 

Message Verification. Upon receiving their respective peers’ 

message, A, B and C carry out the message verification as 

follows: 

uA·P + tA· nA·YA 
?  WA 

  

(37) 

uB·P + tB· nB·YB 
?  WB 

  

(38) 

uC·P + tC· nC·YC 
?  WC (39) 

 

- A checks whether pB and pC lie within the acceptable time 

interval. Then, A computes nB and nC by using Eqs. (32) 

and (35). Subsequently, A computes tB, uB, tC and uC by 

using Eqs. (18), (19), (22) and (23) respectively, and 

verifies whether Eqs. (38) and (39) hold simultaneously. If 

any of these does not hold, A terminates the protocol run 

immediately.  

- B checks whether pA and pC lie within the acceptable time 

interval. B then computes nA and nC by using Eqs. (29) and 

(35). Subsequently, B computes tA, uA, tC and uC by using 

Eqs. (14), (15), (22) and (23) respectively, and verifies 

whether Eqs. (37) and (39) hold simultaneously. If any of 

these does not hold, B terminates the protocol run 

immediately. 

- C checks whether pA and pB lie within the acceptable time 

interval. Then C computes nA and nB by using Eqs. (29) and 

(32). Subsequently, C computes tA, uA, tB and uB by using 

Eqs. (14), (15), (18) and (19) respectively, and verifies 

whether Eqs. (37) and (38) hold simultaneously. If any of 

these does not hold, C terminates the protocol run 

immediately. 

 

Key Generation. If all the verifications are successful, A 

computes KA by using Eq. (40), B computes KB by using Eq. 

(41) and C computes KC by using Eq. (42). 

 

KA = H(YA, YB, YC, ê(YB + TB, YC + TC)
a + ax

, WA, TA, mA, 

sA, pA, WB, TB, mB, sB, pB, WC, TC, mC, sC, pC)  
(40) 

KB = H(YA, YB, YC, ê(YA + TA, YC + TC)
b + by

, WA, TA, mA, 

sA, pA, WB, TB, mB, sB, pB, WC, TC, mC, sC, pC) 
(41) 

KC = H(YA, YB, YC, ê(YA + TA, YB + TB)
c + cz

, WA, TA, mA, 

sA, pA, WB, TB, mB, sB, pB, WC, TC, mC, sC, pC) 
(42) 

5.2   Discussions 

Now, we highlight the enhancements that we have made and 

we then analyze this enhanced protocol to ensure that the 

soundness of the protocol remains and the existing flaws have 

been eliminated.  

For combating the insider replay attack, countermeasures 

can be applied in two ways: 

(1) Use timestamp to guarantee freshness of the protocol, 

providing that time synchronization is feasible. In this 

method, each protocol participants adds the current time 

to his message before broadcasting it, and upon 

receiving it, the message will be checked by the message 

recipients whether the timestamp lies within an 

acceptable window of their current time. 

(2) Employ nonces (random challenges) where each 

protocol participant generates a random number and 

broadcasts it to the other protocol participants. This 

nonce is then returned together with the message after 

processing with some cryptographic function. 

 

Since method (2) requires an additional round (which results 

in a total of 2 rounds) of execution within a protocol run, we 

modified the protocol by using method (1) to secure against 

the insider replay attack while maintaining one round of 

execution as in the original protocol.  

 

Lemma 1. Our improved protocol is able to withstand the 

insider replay attack, provided that time synchronization is 

feasible. 

Proof. By incorporating timestamp into our enhanced protocol, 

the insider replay attack as shown in the previous section 

would be infeasible since the timestamp would expired if it is 

reused in other subsequent sessions. Note that we also bind the 

timestamp value to the signature (sA, sB and sC) of the 



corresponding party to ensure that any modification to the 

timestamp will be detected by the message recipients as they 

verify Eqs. (37), (38) or (39). 

 

Perfect forward secrecy can always be provided by a key 

agreement scheme at a higher computational cost. As describe 

in the previous subsection, we have introduced an extra 

parameter (WA, WB and WC) to be computed (where the hashed 

value of each parameter, nA, nB, nC is respectively bound to sA, 

sB and sC) and sent along with the other messages by each 

communicating entity. Furthermore, we have also modified 

the signature sA, sB and sC, and the verification processes in 

Eqs. (37), (38) and (39) such that the comparisons are done 

against WA, WB and WC rather than TA, TB and TC respectively. 

These steps are in fact necessary to conceal the particular 

ephemeral key if the private keys of all A, B and C have been 

compromised. 

 

Lemma 2. Our improved protocol offers perfect forward 

secrecy if the hash function is strictly one-way and 

collision-free. 

Proof. By considering the similar scenario in Section 4.2, the 

adversary is now restricted from deriving the respective 

ephemeral key after the particular entity’s private key has been 

exposed. Apparently if the adversary compute 

 
  (a(mA + a)

-1
sA)

-1
  = (a(mA + a)

-1
(axH(x))

-1
(mA + a))

-1
  

= xH(x) mod q, 

 

she would be unable to gain any information about the 

ephemeral key x from xH(x) since H(x) is conjectured to be 

perfectly one-way and collision-free. Also, note that the 

shared secret ê (P, P)
(a + ax) (b + by) (c + cz)

 is derived by using peers’ 

information Yi and Ti, instead of Wi, for i ∈ {A, B, C}. Hence, 

since xH(x) is not involved in the construction of session key, 

we speculate that the exposure of all entities’ private keys 

would not affect the other established sessions. 

 

Besides that, we have revised our previous improvement 

in proposing this enhanced scheme in order to optimize the 

computational efficiency. Note that each verification 

procedure in Eqs. (13), (17) and (21) requires 2 expensive 

pairing computations chiefly to restrict TA, TB or TC to be 

computed in the specified form (enhancement made 

corresponding to the forging attack presented in [10]). On top 

of that, an additional elliptic curve scalar point multiplication 

(RA, RB, and RC) need to be computed by each protocol 

participant to realize such verification. Hence, in our enhanced 

protocol, we omit these redundant computation operations and 

bind an additional hashed value (nA, nB and nC) to the signature 

sA, sB and sC respectively to achieve the same purpose. 

 

Lemma 3. Our improved protocol is able to resist the forging 

attack presented in [10], despite omitting the previous 

proposed verification steps. 

Proof. In this enhanced protocol, we do not restrict TA, TB and 

TC to be in their specified form. Instead, we bind these values 

in the signatures sA, sB and sC respectively, whereby the 

message recipients can verify them efficiently in Eqs. (37), 

(38) and (39). As a result, forging attack presented in [10] is 

impossible as the adversary is not able to forge any signature 

by assigning a random value to it before determining the value 

of TA, TB or TC. Eventually, verification step in Eqs. (37), (38) 

or (39) would eventually fail if the parameters are not 

computed according to their designated way. Not only that, 

our current improved scheme turns out to be highly efficient 

compared to the previous one. Note that our current 

improvements only require each protocol participant to 

perform an additional scalar point multiplications and an extra 

hash function to provide all desired security features while 

resisting all known attacks compared to the insecure original 

Lin-Li’s scheme while our previous improved scheme [10] 

would require each protocol participant to perform four extra 

expensive pairing operations and one extra scalar point 

multiplication to partially secure the original scheme.  

 

Similar to Choo et al.’s strategy [6], rather than having 

only the shared secret as the session key, we construct the 

session key by computing the hash value of the protocol 

participants’ identity, the shared secret and the session 

identifiers basically to avoid many other cryptanalytic attacks, 

such as the unknown key share attack, the key replicating 

attack [9] and the triangle attack [2]. Note that our 

modification in this enhanced protocol does not affect the 

other desired security features of the original protocol. Please 

refer to [10] and [11] for the full details of these attributes. 

 

6. Conclusion 
 

In a nutshell, we have proven the vulnerability of both the 

original Lin-Li’s scheme and our previous improved protocol 

to the insider replay attack. We have also pointed out that they 

do not satisfy the valuable forward secrecy property. Based on 

these deficiencies, we have suggested several essential 

modifications to the original Lin-Li’s scheme so as to resist all 

known cryptanalytic attacks and to optimize the efficiency 

especially in the message verification phase. To justify these 

improvements, we have further provided detailed discussions 

to illustrate the significance of our improvements in resisting 

the known attacks and providing the perfect forward secrecy 

feature, without affecting the other desired security properties 

of Lin-Li’s protocol. 
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