
Cryptanalysis on Improved One-round Lin-Li’s

Tripartite Key Agreement Protocol

Meng-Hui Lim
1
, Sanggon Lee

2
, Hoonjae Lee

2

1
Department of Ubiquitous IT, Graduate school of Design & IT,

Dongseo University, Busan 617-716, Korea

meng17121983@yahoo.com
2
Department of Information & Communication,

Dongseo University, Busan 617-716, Korea

{nok60,hjlee}@dongseo.ac.kr

Abstract

A tripartite authenticated key agreement protocol is

designed for three entities to communicate securely over an

open network particularly with a shared key. Recently, we

have improved a one-round tripartite authenticated key

agreement protocol proposed by Lin-Li due to its vulnerability

to the forging attack in our previous report. However, we have

later discovered that both the original Lin-Li’s scheme and

our previous enhanced protocol are vulnerable to the insider

replay attack. Moreover, we have also realized that both

protocols have falsely claimed the forward secrecy attribute.

In this paper, we will revise our improvements and again

secure this protocol against these cryptanalytic attacks while

recovering the precious perfect forward secrecy property.

1. Introduction

A key agreement protocol is defined as a mechanism in which

a shared secret key, often known as session key, is derived by

two or more protocol entities as a function of information

contributed by each of these parties such that no single entity

can predetermine the resulting value. This secret key, usually

established over a public network, can then be used to create a

confidential or integrity-protected communication channel

among the entities. In general, a key agreement protocol is

called authenticated if the protocol is able to ensure that the

session key is known only to the intended entities in a protocol

run. Without authentication, a key agreement protocol would

turn out to be insecure as an adversary can easily intrude the

scheme by using the man-in-the-middle attack as well as other

cryptographic attacks.

The situation where three or more parties share a secret

key is known as conference keying. The three-party (or

tripartite) case is of most practical importance because it is the

most common size for electronic conferences. Not only that, a

tripartite key agreement protocol can be used to provide a

range of services particularly in the communication of two

parties. For instance, a third party can be added to chair or

referee a conversation for ad hoc auditing, data recovery or

escrow purposes [1].

Over the years, a variety of key agreement protocols have

been proposed. However, most of them have been proven to be

insecure [4, 5, 7, 10, 11, 14, 16] due to their failure in fulfilling

all the desirable security attributes of a key agreement protocol

defined by Wilson and Menezes [17, 18]. We define these

security attributes as follows:

Known session key security. A protocol is considered to be

known session key secure if it remains achieving its goal in the

face of an adversary who has learned some previous session

keys.

(Perfect) forward secrecy. A protocol enjoys forward

secrecy if the secrecy of the previous session keys is not

affected when the long term private keys of one or more

entities are compromised. Perfect forward secrecy refers to the

scenario when the long term private keys of all the

participating entities are compromised.

Key-Compromise Impersonation Resilience. Suppose that

A’s long term private key is disclosed. Obviously an adversary

who knows this value can now impersonate A since it is

precisely the value which identifies A. We say that a protocol

is key-compromise impersonation resilient if this loss will not

enable an adversary to masquerade as other legitimate entities

to A as well or obtain other entities’ secret key.

Unknown Key-Share Resilience. In an unknown key-share

attack, an adversary convinces a group of entities that they

share a key with the adversary whereas in fact, the key is

shared between the group and another party. This situation can

be exploited in a number of ways by the adversary when the

key is subsequently used to provide encryption of integrity.

Key Control Resilience. It should not be possible for any of

the participants (or an adversary) to compel the session key to

a preselected value or predict the value of the session key.

Joux [8] has initiated the development of one-round

pairing-based tripartite Diffie-Hellman key agreement

protocol in 2000. However, Shim [16] has pointed out that

Joux’s protocol does not provide authentication and therefore,

it cannot resist the man-in-the-middle attack. Shim has further

proposed an improved scheme which employs the public key

infrastructure to overcome the security flaw in Joux’s protocol.

Unfortunately in 2005, Lin-Li [11] has identified the

weaknesses of Shim’s improved scheme and subsequently

demonstrated its vulnerability to the insider impersonation

attack and the key-compromise impersonation attack. In

addition, Lin-Li has proposed their enhanced scheme by

introducing an extra verification process in order to

authenticate the communicating parties. They claimed that

their enhanced scheme is secure and efficient. However, we

have proven them wrong by showing a forging attack in [10]

which renders their enhanced scheme totally insecure. On top

of that, we have proposed an improved scheme in [10] mainly

to fix the flaw that we have identified. However, recently, we

have spotted another demerit in both original Lin-Li’s scheme

as well as our previous improved scheme, which allows a

malicious adversary to carry out an insider replay attack

successfully on both schemes. Furthermore, we have also

discovered that both protocols in fact do not fulfill the forward

secrecy property, which has been falsely claimed in both

papers [10, 11]. Hence, we aim to address them thoroughly by

proposing our latest improvements in this paper. Not only that,

we also revise our previous improvement to optimize the

efficiency mainly in the message verification processes by the

message recipients.

We organize the structure of this paper as follows. In the

next section, we will illustrate some basic properties of

modified Weil pairings and some Diffie-Hellman assumptions.

In Section 3, we will review our previous improved one-round

pairing-based tripartite authenticated key agreement protocol.

Then, we will present our attack and the weakness of the

protocols in Section 4 and subsequently demonstrate our

enhancements as well as the associated discussions in Section

5. Last but not least, we will conclude this paper in Section 6.

2. Preliminaries

Let p be a prime number such that p = 2 (mod 3) and p = 6q – 1

for some prime q > 3. Let E[q] be a supersingular curve

defined by y
2
 = x

3
 + 1 over Fp. Let P ∈ E/Fp be a generator of

the group of points with order q = (p + 1)/6. Let µq be a

subgroup of Fp2
*
 that contains all elements of order q. The

Weil pairing on the curve E/ Fp2* is a mapping e: Gq x Gq → µq.

Hence, we define the modified Weil pairing to be ê: Gq x Gq →

µq, ê(P,Q) = e(P, ψ(Q)), where ψ(x, y) = (ζx, y), 1 ≠ ζ ∈ Fp2
*
 is

a solution of x
3
 – 1 = 0 (mod p) and Gq is the group of points

with order q. The modified Weil pairing then satisfies the

following properties:

a) Bilinear: ê(aP, bQ) = ê(P, Q)
ab

= ê(abP, Q) for any P,

Q ∈E[q] and a, b ∈Zq*.

b) Alternative: ê(P, Q) = ê(Q, P)
-1

.

c) (on-degenerate: There exists a point P ∈Gq where

ê(P, P) ≠ 1.

d) Polynomial-time computable: There is an efficient

algorithm to compute ê(P,Q) for any P, Q ∈Gq.

A bilinear map which satisfies all these properties above is

known as admissible bilinear. It is noted that the modified

Weil pairing associated with the supersingular elliptic curves

or abelian varieties, can create such bilinear maps.

Now, we describe some hard cryptographic problems:

Bilinear Diffie-Hellman Problem (BDHP). Let G1, G2 be

two groups of prime order q (G1 is an additive group and G2 is

a multiplicative group). Let P be a generator of G1. Given a

quadruple (P, aP, bP, cP) with a, b, c ∈ Zq
*
, compute ê(P, P)

abc

∈ G2. An algorithm α is deemed to have an advantage ε in

solving the BDHP in (G1, G2, ê) based on the random choices

of a, b, c in Zq
*
 and the internal random operation of α if

Pr[α((P, aP, bP, cP)) = ê(P, P)
abc

] ≥ ε.
Discrete Logarithm Problem (DLP). Given two groups of

elements P and Q, such that Q = nP. Find the integer n

whenever such an integer exists.

Throughout this paper, we assume that BDHP is a hard

computational problem such that there is no polynomial time

algorithm to solve BDHP and DLP with non-negligible

probability.

3. Revisit of Previous Improved Lin-Li’s Scheme

In this section, we review our previous improved scheme as

described in [10]. Generally, this improved tripartite key

agreement protocol consists of 4 phases, namely the setup

phase, the message exchange phase, the message verification

phase and the key generation phase. We now illustrate the

scheme as follows:

Setup. Suppose that three protocol principals A, B and C wish

to communicate with each other and agree on a common

session key at the end of the protocol execution. The public

domain parameters (p, q, E, P, ê, H) are made common to all

entities, where H : {0, 1}
*
 → Zq

*
 is a predefined collision-free

one-way hash function. Assume that the static public keys are

exchanged via certificates. CertA denotes A’s public-key

certificate, containing his static public key YA = aP which

uniquely identifies A and a certification authority CA’s

signature over this information. Similarly, CertB and CertC

denote the certificate of B and C respectively, with YB = bP and

YC = cP as their static public key, where b and c are B and C’s

corresponding static private key.

Message Exchange. Suppose that x, y and z are the ephemeral

private keys chosen by A, B and C respectively. In a

communication run, A computes

RA = xP, (1)

TA = x·(aP), (2)

mA = H(ax), (3)

sA = (ax)
-1

(mA + a) mod q. (4)

B computes

RB = yP, (5)

TB = y·(bP), (6)

mB = H(by), (7)

sB = (by)
-1

(mB + b) mod q. (8)

C computes

RC = zP, (9)

TC = z·(cP), (10)

mC = H(cz), (11)

sC = (cz)
-1

(mC + c) mod q. (12)

Then, A, B and C perform the message broadcast as follows:

A → B, C: {RA, TA, mA, sA, CertA},

B → A, C: {RB, TB, mB, sB, CertB},

C → A, B: {RC, TC, mC, sC, CertC}.

Message Verification. Upon receiving their respective peers’

message, A, B and C carry out the message verification as

follows:

ê(TA, P) = ê(RA, YA) (13)

tA = sA
-1

 mod q (14)

uA = (tAmA) mod q (15)

uA·P + tA·YA
? TA

(16)

ê(TB, P) = ê(RB, YB) (17)

tB = sB
-1

 mod q (18)

uB = (tBmB) mod q (19)

uB·P + tB·YB
? TB

(20)

ê(TC, P) = ê(RC, YC) (21)

tC = sC
-1

 mod q (22)

uC = (tCmC) mod q (23)

uC·P + tC·YC
? TC (24)

- A authenticates TB and TC by verifying whether Eqs. (17)

and (21) hold correspondingly. Then, A computes Eqs. (18),

(19), (22) and (23), and verifies whether Eqs. (20) and (24)

hold simultaneously. If any of these does not hold, A

terminates the protocol run immediately.

- B authenticates TA and TC by verifying whether Eqs. (13)

and (21) hold correspondingly. Then, B computes Eqs. (14),

(15), (22) and (23), and verifies whether Eqs. (16) and (24)

hold simultaneously. If any of these does not hold, B

terminates the protocol run immediately.

- C authenticates TA and TB by verifying whether Eqs. (13)

and (17) hold correspondingly. Then, C computes Eqs.

(14), (15), (18) and (19), and verifies whether Eqs. (16) and

(20) hold simultaneously. If any of these does not hold, C

terminates the protocol run immediately.

Key Generation. If all the verifications are successful, for the

session key KA = KB = KC, A computes KA by using Eq. (25), B

computes KB by using Eq. (26) and C computes KC by using

Eq. (27).

KA = ê (YB + TB, YC + TC)
a + ax
 = ê (P, P)

(a + ax) (b + by) (c + cz)
 (25)

KB = ê (YA + TA, YC + TC)
b + by
 = ê (P, P)

(a + ax) (b + by) (c + cz)
 (26)

KC = ê (YA + TA, YB + TB)
c + cz
 = ê (P, P)

(a + ax) (b + by) (c + cz)
 (27)

4. Further Demerits of Previous Improved

Lin-Li’s Scheme

4.1 The Insider Replay Attack

In both the original Lin-Li’s scheme and our previous

improved scheme, we discover that these schemes are in fact

susceptible to another cryptanalytic attack, namely the insider

replay attack. Note that an insider adversary can easily

impersonate a protocol principal by replaying his message

from a previous session. Suppose that B is an insider adversary

who has eavesdropped and obtained {RA’, TA’, mA’, sA’, CertA}

from a previous session involving A, B and C. B now wishes to

cheat another protocol participant D (with d/YD as his static

private/public key pair) by means of initiating a protocol run

with D while at the same time, B plays another role as A. We

assume that A does not know anything about this protocol run

and we define BA as B masquerading as A. The insider replay

attack can be carried out as follows:

BA → B, D: {RA’, TA’, mA’, sA’, CertA},

B → BA, D: {RB, TB, mB, sB, CertB},

D → BA, B: {RD, TD, mD, sD, CertD},

where k is an ephemeral private key chosen by D, RD = kP, TD

= k·(dP), mD = H(dk) and sd = (dk)
-1

(md + d) mod q. On receipt

of B and BA’s message, D verifies their message as per the

protocol specification. Apparently, D would authenticate B’s

message successfully since B generates his message legally.

However, note that BA is also able to convince D in accepting

A’s old message since D would find Eqs. (13) and (16) hold

and mistakenly believe that A is active in this session.

Eventually, D computes the session key as

KD = ê (YA’+ TA’, YB + TB)
d + dk

 = ê (P, P)
(a + ax’) (b + by) (d + dk)

while B/BA computes the session key as

KB = KBA = ê (YA’+ TA’, YD + TD)
b + by
 = ê (P, P)

(a + ax’) (b + by) (d + dk)
.

With this, B successfully cheats D by replaying A's message

from a previous session and subsequently impersonating A in a

particular session. As a result, B and D agree upon a session

key for the tripartite key agreement scheme without A's

presence. Since Lin-Li do not take the old communication

reuse issue into their protocol design consideration, an insider

adversary can easily bring any “virtual entity” into the

communication scene by means of retransmitting the virtual

entity’s old message. The consequence of this attack can be

disastrous if the impersonated party is a referee, a key escrow

or an auditor.

4.2 The Absence of Forward Secrecy Property

Besides the replay attack, we also found out that the

conjectured perfect forward secrecy of both the original

Lin-Li’s scheme and our previous improved scheme are

falsely claimed. Consider that A, B and C have completed a

session and computed a common session key successfully in

prior. Assume that the adversary, eavesdropping on the

channel, has obtained all the messages exchanged in that

session. Suppose that A’s private key, a has been compromised

later by some means. With the eavesdropped mA, the adversary

can now derive A’s ephemeral key, x by computing

(a(mA + a)

-1
sA)

-1
 = (a(mA + a)

-1
(ax)

-1
(mA + a))

-1

= x mod q

and reconstruct the session key by using Eq. (25). Similarly,

the compromise of the other party’s private key would render

the previous established sessions insecure. Hence, we

conclude that both the protocols do not satisfy the forward

secrecy property (not even the partial forward secrecy).

5. Improvements on Lin-Li’s Scheme and

Related Discussions

In this section, we aim to address the insider replay attack by

proposing an enhanced protocol which recovers the perfect

forward secrecy property and preserves all other desired

security attributes.

5.1 Protocol Description

Initially, we let pA, pB and pC ∈ Zq
*
 to be the timestamp

generated by A, B and C respectively. With this, we define our

improved protocol as follows:

Setup. This enhanced protocol has the same initial setting as

the previous one.

Message Exchange. A computes TA and mA by using Eqs. (2)

and (3) respectively. Then A calculates

WA = xH(x)·(aP), (28)

nA = H(TA, WA, pA), (29)

sA = (axH(x))
-1

(mA + anA) mod q, (30)

B computes TB and mB by using Eqs. (6) and (7) respectively.

Then B calculates

WB = yH(y)·(bP), (31)

nB = H(TB, WB, pB), (32)

sB = (byH(y))
-1

(mB + bnB) mod q. (33)

C computes TC and mC by using Eqs. (10) and (11) respectively.

Then C calculates

WC = zH(z)·(cP), (34)

nC = H(TC, WC, pC), (35)

sC = (czH(z))
-1

(mC + cnC) mod q. (36)

Then, A, B and C perform the message broadcast as follows:

A → B, C: {WA, TA, mA, sA, pA, CertA},

B → A, C: {WB, TB, mB, sB, pB, CertB},

C → A, B: {WC, TC, mC, sC, pC, CertC}.

Message Verification. Upon receiving their respective peers’

message, A, B and C carry out the message verification as

follows:

uA·P + tA· nA·YA
? WA

(37)

uB·P + tB· nB·YB
? WB

(38)

uC·P + tC· nC·YC
? WC (39)

- A checks whether pB and pC lie within the acceptable time

interval. Then, A computes nB and nC by using Eqs. (32)

and (35). Subsequently, A computes tB, uB, tC and uC by

using Eqs. (18), (19), (22) and (23) respectively, and

verifies whether Eqs. (38) and (39) hold simultaneously. If

any of these does not hold, A terminates the protocol run

immediately.

- B checks whether pA and pC lie within the acceptable time

interval. B then computes nA and nC by using Eqs. (29) and

(35). Subsequently, B computes tA, uA, tC and uC by using

Eqs. (14), (15), (22) and (23) respectively, and verifies

whether Eqs. (37) and (39) hold simultaneously. If any of

these does not hold, B terminates the protocol run

immediately.

- C checks whether pA and pB lie within the acceptable time

interval. Then C computes nA and nB by using Eqs. (29) and

(32). Subsequently, C computes tA, uA, tB and uB by using

Eqs. (14), (15), (18) and (19) respectively, and verifies

whether Eqs. (37) and (38) hold simultaneously. If any of

these does not hold, C terminates the protocol run

immediately.

Key Generation. If all the verifications are successful, A

computes KA by using Eq. (40), B computes KB by using Eq.

(41) and C computes KC by using Eq. (42).

KA = H(YA, YB, YC, ê(YB + TB, YC + TC)
a + ax

, WA, TA, mA,

sA, pA, WB, TB, mB, sB, pB, WC, TC, mC, sC, pC)
(40)

KB = H(YA, YB, YC, ê(YA + TA, YC + TC)
b + by

, WA, TA, mA,

sA, pA, WB, TB, mB, sB, pB, WC, TC, mC, sC, pC)
(41)

KC = H(YA, YB, YC, ê(YA + TA, YB + TB)
c + cz

, WA, TA, mA,

sA, pA, WB, TB, mB, sB, pB, WC, TC, mC, sC, pC)
(42)

5.2 Discussions

Now, we highlight the enhancements that we have made and

we then analyze this enhanced protocol to ensure that the

soundness of the protocol remains and the existing flaws have

been eliminated.

For combating the insider replay attack, countermeasures

can be applied in two ways:

(1) Use timestamp to guarantee freshness of the protocol,

providing that time synchronization is feasible. In this

method, each protocol participants adds the current time

to his message before broadcasting it, and upon

receiving it, the message will be checked by the message

recipients whether the timestamp lies within an

acceptable window of their current time.

(2) Employ nonces (random challenges) where each

protocol participant generates a random number and

broadcasts it to the other protocol participants. This

nonce is then returned together with the message after

processing with some cryptographic function.

Since method (2) requires an additional round (which results

in a total of 2 rounds) of execution within a protocol run, we

modified the protocol by using method (1) to secure against

the insider replay attack while maintaining one round of

execution as in the original protocol.

Lemma 1. Our improved protocol is able to withstand the

insider replay attack, provided that time synchronization is

feasible.

Proof. By incorporating timestamp into our enhanced protocol,

the insider replay attack as shown in the previous section

would be infeasible since the timestamp would expired if it is

reused in other subsequent sessions. Note that we also bind the

timestamp value to the signature (sA, sB and sC) of the

corresponding party to ensure that any modification to the

timestamp will be detected by the message recipients as they

verify Eqs. (37), (38) or (39).

Perfect forward secrecy can always be provided by a key

agreement scheme at a higher computational cost. As describe

in the previous subsection, we have introduced an extra

parameter (WA, WB and WC) to be computed (where the hashed

value of each parameter, nA, nB, nC is respectively bound to sA,

sB and sC) and sent along with the other messages by each

communicating entity. Furthermore, we have also modified

the signature sA, sB and sC, and the verification processes in

Eqs. (37), (38) and (39) such that the comparisons are done

against WA, WB and WC rather than TA, TB and TC respectively.

These steps are in fact necessary to conceal the particular

ephemeral key if the private keys of all A, B and C have been

compromised.

Lemma 2. Our improved protocol offers perfect forward

secrecy if the hash function is strictly one-way and

collision-free.

Proof. By considering the similar scenario in Section 4.2, the

adversary is now restricted from deriving the respective

ephemeral key after the particular entity’s private key has been

exposed. Apparently if the adversary compute

 (a(mA + a)

-1
sA)

-1
 = (a(mA + a)

-1
(axH(x))

-1
(mA + a))

-1

= xH(x) mod q,

she would be unable to gain any information about the

ephemeral key x from xH(x) since H(x) is conjectured to be

perfectly one-way and collision-free. Also, note that the

shared secret ê (P, P)
(a + ax) (b + by) (c + cz)

 is derived by using peers’

information Yi and Ti, instead of Wi, for i ∈ {A, B, C}. Hence,

since xH(x) is not involved in the construction of session key,

we speculate that the exposure of all entities’ private keys

would not affect the other established sessions.

Besides that, we have revised our previous improvement

in proposing this enhanced scheme in order to optimize the

computational efficiency. Note that each verification

procedure in Eqs. (13), (17) and (21) requires 2 expensive

pairing computations chiefly to restrict TA, TB or TC to be

computed in the specified form (enhancement made

corresponding to the forging attack presented in [10]). On top

of that, an additional elliptic curve scalar point multiplication

(RA, RB, and RC) need to be computed by each protocol

participant to realize such verification. Hence, in our enhanced

protocol, we omit these redundant computation operations and

bind an additional hashed value (nA, nB and nC) to the signature

sA, sB and sC respectively to achieve the same purpose.

Lemma 3. Our improved protocol is able to resist the forging

attack presented in [10], despite omitting the previous

proposed verification steps.

Proof. In this enhanced protocol, we do not restrict TA, TB and

TC to be in their specified form. Instead, we bind these values

in the signatures sA, sB and sC respectively, whereby the

message recipients can verify them efficiently in Eqs. (37),

(38) and (39). As a result, forging attack presented in [10] is

impossible as the adversary is not able to forge any signature

by assigning a random value to it before determining the value

of TA, TB or TC. Eventually, verification step in Eqs. (37), (38)

or (39) would eventually fail if the parameters are not

computed according to their designated way. Not only that,

our current improved scheme turns out to be highly efficient

compared to the previous one. Note that our current

improvements only require each protocol participant to

perform an additional scalar point multiplications and an extra

hash function to provide all desired security features while

resisting all known attacks compared to the insecure original

Lin-Li’s scheme while our previous improved scheme [10]

would require each protocol participant to perform four extra

expensive pairing operations and one extra scalar point

multiplication to partially secure the original scheme.

Similar to Choo et al.’s strategy [6], rather than having

only the shared secret as the session key, we construct the

session key by computing the hash value of the protocol

participants’ identity, the shared secret and the session

identifiers basically to avoid many other cryptanalytic attacks,

such as the unknown key share attack, the key replicating

attack [9] and the triangle attack [2]. Note that our

modification in this enhanced protocol does not affect the

other desired security features of the original protocol. Please

refer to [10] and [11] for the full details of these attributes.

6. Conclusion

In a nutshell, we have proven the vulnerability of both the

original Lin-Li’s scheme and our previous improved protocol

to the insider replay attack. We have also pointed out that they

do not satisfy the valuable forward secrecy property. Based on

these deficiencies, we have suggested several essential

modifications to the original Lin-Li’s scheme so as to resist all

known cryptanalytic attacks and to optimize the efficiency

especially in the message verification phase. To justify these

improvements, we have further provided detailed discussions

to illustrate the significance of our improvements in resisting

the known attacks and providing the perfect forward secrecy

feature, without affecting the other desired security properties

of Lin-Li’s protocol.

References

1. S.S. Al-Riyami and K.G. Paterson, Tripartite Authenticated Key

Agreement Protocols from Pairings, Cryptology ePrint Archive:

Report, (035)(2002).

2. M. Burmester, On the Risk of Opening Distributed Keys,

Crypto'94, LNCS, vol.839, 1994, pp. 308-317.

3. Z.H. Cheng, L. Vasiu, and R. Comley, Pairing-based One-round

Tripartite Key Agreement Protocols, Cryptology ePrint Archive,

Report (079)(2004).

4. H.Y. Chien, Comments: Insider Attack on Cheng et al.’s

Pairing-based Tripartite Key Agreement Protocols, Cryptology

ePrint Archive: Report, (013)(2005).

5. H.Y. Chien and R.Y. Lin, An Improved Tripartite Authenticated

Key Agreement Protocol Based on Weil Pairing, Int. J. Appl.

Sci. Eng., 2005. 3 , 1, pp. 13-18.

6. K.-K. R. Choo, C. Boyd and Y. Hitchcock, On Session Key

Construction in Provably-Secure Key Establishment Protocols,
Mycrypt 2005, LNCS, vol. 3715, 2005, pp. 116-131.

7. J.S. Chou, C.H. Lin, C.H. Chiu, Weakness of Shim’s New

ID-based Tripartite Multiple-key Agreement Protocol,

Cryptology ePrint Archive: Report, (457)(2005).

8. A. Joux, A One-round Protocol for Tripartite Diffie-Hellman,

Proceedings of the 4th International Algorithmic Number Theory

Symposium (ANTS-IV), LNCS 1838, 2000, pp.385-394.

9. H. Krawczyk, HMQV: A High-Performance Secure

Diffie-Hellman Protocol, Crypto’05, LNCS, vol. 3621, 2005,
pp. 546-566.

10. M.-H. Lim, S.G. Lee, Y.H. Park, H.J. Lee, An Enhanced

One-Round Pairing-based Tripartite Authenticated Key

Agreement Protocol, ICCSA2007, LNCS, vol. 4706, 2007, pp.

503-513.

11. C.H. Lin, H.H. Li, Secure One-Round Tripartite Authenticated

Key Agreement Protocol from Weil Pairing, Proceedings of the

19th International Conference on Advanced Information

Networking and Applications (AINA 2005), pp.135-138.

12. D. Nalla, ID-based Tripartite Key Agreement with Signatures,

Cryptology ePrint Archive: Report, (144)(2003).

13. D. Nalla and K.C. Reddy, ID-based tripartite Authenticated Key

Agreement Protocols from pairings, Cryptology ePrint Archive:

Report, (004)(2003).

14. K. Shim, Cryptanalysis of Al-Riyami-Paterson's Authenticated

Three Party Key Agreement Protocols, Cryptology ePrint

Archive: Report, (122)(2003).

15. K. Shim, Efficient ID-based Authenticated Key Agreement

Protocol based on Weil Pairing, Electronics Letters, Vol. 39, no.

8, April, 2003, pp.653-654.

16. K. Shim, Efficient One-round Tripartite Authenticated Key

Agreement Protocol from Weil Pairing, Electronics Letters, Vol.

39, no. 2, January, 2003, pp.208-209.

17. S.B. Wilson, and A. Menezes, Authenticated Diffie-Hellman

key agreement protocols, Proceedings of the 5th Annual

Workshop on Selected Areas in Cryptography (SAC ’98),

LNCS, 1998, vol.1556, pp. 339-361.

18. S.B. Wilson, D. Johnson and A. Menezes, Key Agreement

Protocols and their Security Analysis, Proceedings of the 6th

IMA International Conference on Cryptography and Coding,

LNCS, vol. 1355, pp. 30-45, 1998.

19. F.G. Zhang, S.L. Liu, K.J. Kim, ID-based One Round

Authenticated Tripartite Key Agreement Protocol with Pairings,

Cryptology ePrint Archive: Report, (122)(2002).

