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Abstract. For many cryptographic protocols, security relies on the assumption that adversarial entities have lim-
ited computational power. This type of security degrades progressively over the lifetime of a protocol. However,
some cryptographic services, such as timestamping services or digital archives, are long-lived in nature; they are
expected to be secure and operational for a very long time (i.e., super-polynomial). In such cases, security cannot
be guaranteed in the traditional sense: a computationally secure protocol may become insecure if the attacker has a
super-polynomial number of interactions with the protocol.

This paper proposes a new paradigm for the analysis of long-lived security protocols. We allow entities to be active
for a potentially unbounded amount of real time, provided they perform only a polynomial amount of work per unit
of real time. Moreover, the space used by these entities is allocated dynamically and must be polynomially bounded.
We propose a new notion of long-term implementation, which is an adaptation of computational indistinguishability
to the long-lived setting. We show that long-term implementation is preserved under polynomial parallel composi-
tion and exponential sequential composition. We illustrate the use of this new paradigm by analyzing some security
properties of the long-lived timestamping protocol of Haber and Kamat.

1 Introduction

Computational security in long-lived systems: Security properties of cryptographic protocols typically hold only
against resource-bounded adversaries. Consequently, mathematical models for representing and analyzing security of
such protocols usually represent all participants as resource-bounded computational entities. The predominant way
of formalizing such bounds is by representing all entities as time-bounded machines, specifically, polynomial-time
machines (a partial list of works representative of this direction includes [1-5]).

This modeling approach has been successful in capturing the security of protocols for many cryptographic tasks.
However, it has a fundamental limitation: it assumes that the analyzed system runs for only a relatively “short” time.
In particular, since all entities are polynomially-bounded (in the security parameter), the system’s execution must end
after a polynomial amount of time. This type of modeling is inadequate for analyzing security properties of protocols
that are supposed to run for a “long” time, that is, an amount of time that is not bounded by a polynomial.

There are a number of natural tasks for which one would indeed be interested in the behavior of systems that run
for a long time. Furthermore, a number of protocols have been developed for such tasks. However, none of the existing
models for analyzing security against computationally bounded adversaries is adequate for asserting and proving
security properties of protocols for such “long-lived” tasks.

One such task is proactive security [6]. Here, some secret information is distributed among several parties, in a way
that allows the parties to jointly reconstruct the information, while preventing an adversary that breaks into any small
subset of the parties from reconstructing the information. Furthermore, the parties periodically engage in a protocol for
“refreshing” their shares in a way that guarantees secrecy of the information even if all parties are broken into multiple
times, as long as not too many parties are broken into between two refreshes. The overall intention is to provide long-
lived security of the system. Another such task is forward secure signatures [7, 8], where the system runs for a “long”
time, and the signer periodically refreshes its secret key so that an adversary that corrupts the signer cannot forge
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signatures that bear time prior to the time of corruption. Forward secure encryption [7,9] is defined analogously. Yet
another task of the same flavor is timestamping [10-12]. Although the literature contains protocols for these long-lived
tasks, we do not currently have the analytical tools to formulate and prove interesting assertions about their security.

Related work: A first suggestion for an approach might be to use existing models, such as the PPT calculus [13],
the Reactive Simulatability [14], or the Universally Composable security frameworks [3], with a sufficiently large
value of the security parameter. However, this would be too limited for our purpose in that it would force protocols to
protect against an overly powerful adversary even in the short run, while not providing any useful information in the
long run. Similarly, turning to information theoretic security notions is not appropriate in our case because unbounded
adversaries would be able to break computationally secure schemes instantaneously. We are interested in a notion of
security that can protect protocols against an adversary that runs for a long time, but is only “reasonably powerful” at
any point in time.

Recently, Miiller-Quade and Unruh proposed a notion of long-term security for cryptographic protocols [15].
However, they consider adversaries that try to derive information from the protocol transcript after protocol conclusion.
This work does not consider long-lived protocol execution and, in particular, the adversary of [15] has polynomially
bounded interactions with the protocol parties, which is not suitable for the analysis of long-lived tasks such as those
we described above.

Our approach: In this paper, we propose a new mathematical model for analyzing the security of such long-lived sys-
tems. To the best of our knowledge our work is the first one to tackle the issue of modeling computational security in
long-lived systems. Our understanding of a long-lived system is that some protocol parties, including adversaries, may
be active for an unbounded amount of real time, subject to the condition that only a polynomial amount of work can be
done per unit of real time. Other parties may be active for only a short time, as in traditional settings. Thus, the adver-
sary’s interaction with the system is unbounded, and the adversary may perform an unbounded number of computation
steps during the entire protocol execution. This renders traditional security notions insufficient: computationally and
even statistically secure protocols may fail if the adversary has unbounded interactions with the protocol.

Modeling long-lived systems requires significant departures from standard cryptographic modeling. First and fore-
most, unbounded entities cannot be modeled as probabilistic polynomial time (PPT) Turing machines. In search of
a suitable alternative, we see the need to distinguish between two types of unbounded computation: steps performed
steadily over a long period of time, versus those performed very rapidly in a short amount of time. The former conforms
with our understanding of boundedness, while the latter does not. Guided by this intuition, we introduce real time ex-
plicitly into a basic probabilistic automata model, the Task-PIOA model [5], and impose computational restrictions in
terms of rates, i.e., number of computation steps per unit of real time.

Another interesting challenge is the restriction on space, which traditionally is not an issue because PPT Turing
machines can, by their nature, access only a polynomially bounded amount of space. In the long-lived setting, space
restriction warrants explicit consideration. During the lifetime of a long-lived security protocol, we expect some com-
ponents to die and other new ones to become active, for example, due to the use of cryptographic primitives that have
a shorter life time than the protocol itself. Therefore, we find it important to be able to model dynamic allocation of
space. We achieve this by restricting the use of state variables. In particular, all state variables of a dormant entity
(either not yet invoked or already dead) are set to a special null value L. A system is regarded as bounded only if,
at any point in its execution, only a bounded amount of space is needed to maintain all variables with non-_L values.
For example, a sequential composition (in the temporal sense) of an unbounded number of entities is bounded if each
entity uses a bounded amount of space.

Having appropriate restrictions on space and computation rates, we then define a new long-term implementation
relation, <,eg pt, for long-lived systems. This is intended to extend the familiar notion of computational indistinguisha-
bility, where two systems (real and ideal) are deemed equivalent if their behaviors are indistinguishable from the point
of view of a computationally bounded environment. However, notice that, in the long-lived setting, an environment
with super-polynomial run time can typically distinguish the two systems trivially, e.g., by launching brute force at-
tacks. This is true even if the environment has bounded computation rate. Therefore, our definition cannot rule out
significant degradation of security in the overall lifetime of a system. Instead, we require that the rate of degradation is
small at any point in time; in other words, the probability of a new successful attack during any polynomial-bounded
window of time remains bounded during the lifetime of the system.

To capture this intuition, we introduce a new type of ideal system, one that includes designated “failure” steps
that change its behavior to allow specified forms of attack. For example, a failure step might represent the release of



a key, or a weakening of the criteria for verifying a signature. Typically, a failure step will affect only aspects of the
ideal system involving current activity, e.g., the use of currently-active keys. In particular, if the ideal system is itself a
composition of components, some of which are short-lived, the failure steps will generally affect only those short-lived
components that are currently active. If failure steps stop by some time ¢, no new modifications of the specified ideal
system behavior will occur; in particular, no failures will be considered for short-lived ideal components that awaken
after time ¢. However (and seemingly unavoidably), the effects of old failure steps may persist and propagate forever.
The ideal system specifies what effects these old failures may have. In this way, the ideal system specifies a form of
“damage control” for the effects of old failures.

Our long-term implementation relation <peg ot requires that the real system approximates the ideal’s system’s
handling of failures. More precisely, we quantify over all real time points ¢ and require that the real and ideal systems
are computationally indistinguishable up to time ¢ 4+ ¢ (where ¢ is polynomial in the security parameter), even if no
failures steps are taken by the ideal system in the interval [¢, ¢ + ¢|. Notice that we do allow failure steps before time ¢.
This expresses the idea that, despite any security breaches that may have occurred before time ¢, the success probability
of a fresh attack in the interval [¢, ¢ + ¢] is small. Our formal definition of <peg pt includes one more generalization:
it considers failure steps in the real system as well as the ideal system, in both cases before the same real time ¢. This
natural extension is intended to allow repeated use of <¢g pt, in verifying protocols using several levels of abstraction.

We show that <,eg ¢ is transitive, and is preserved under the operations of polynomial parallel composition and
exponential sequential composition. The sequential composition result highlights the power of our model to formulate
and prove properties of an exponential number of entities in a meaningful way.

Example: Digital timestamping: As a proof of concept, we analyze some security properties of the digital timestamp-
ing protocol of Haber et al. [10-12], which was designed to address the problem of content integrity in long-term
digital archives. In a nutshell, a digital timestamping scheme takes as input a document d at a specific time tg, and
produces a certificate ¢ that can be used later to verify the existence of d at time ¢y. The security requirement is that
timestamp certificates are difficult to forge. Haber et al. note that it is inadvisable to use a single digital signature
scheme to generate all timestamp certificates, even if signing keys are refreshed periodically. This is because, over
time, any single signature scheme may be weakened due to advances in algorithmic research and/or discovery of vul-
nerabilities. Haber et al. propose a solution in which timestamps must be renewed periodically by generating a new
certificate for the pair (d, ¢) using a new signature scheme. Thus, even if the signature scheme used to generate ¢ is
broken in the future, the new certificate ¢’ still provides evidence that d existed at the time ¢ stated in the original
certificate c.

We model the protocol of Haber et al. as the composition of a dispatcher component and a sequence of signature
services. Each signature service “wakes up” at a certain time and is active for a specified amount of time before
becoming dormant again. This can be viewed as a regular update of the signature service, which may entail a simple
refresh of the signing key, or the adoption of a new signing algorithm. The dispatcher component accepts various
timestamp requests and forwards them to the appropriate signature service. We show that the composition of the
dispatcher and the signature services is indistinguishable from an ideal system, consisting of the same dispatcher
composed with ideal signature functionalities. Specifically, this guarantees that the probability of a new forgery is
small at any given point in time, regardless of any forgeries that may have happened in the past.

2 Task-PIOAs

We build our new framework using task-PIOAs [5], which are a version of Probabilistic Automata [16], augmented
with an oblivious scheduling mechanism based on tasks. A task is a set of related actions (e.g., actions representing the
same activity but with different parameters). We view tasks as basic groupings of events, both for real time scheduling
and for imposing computational bounds (cf. Sections 3 and 4). In this section, we review basic notations related to
task-PIOAs.

Notation: Given a set S, let Disc(.S) denote the set of discrete probability measures on S. For s € S, let §(s) denote
the Dirac measure on s, i.e., §(s)(s) = 1. Let V be a set of variables. Each v € V is associated with a (static) type
type(v), which is the set of all possible values of v. We assume that type(v) is countable and contains the special
symbol L. A valuation s for V is a function mapping every v € V to a value in type(v). The set of all valuations for V'
is denoted val(V'). Given V' C V, a valuation s’ for V' is sometimes referred to as a partial valuation for V. Observe
that s” induces a (full) valuation ¢y (s’) for V, by assigning | to every v ¢ V'. Finally, for any set S with 1. & S, we
write S = SU{L}.



PIOA: We define a probabilistic input/output automaton (PIOA) to be a tuple A = (V, S, s™t I, O, H, A), where:

(i) V is a set of state variables and S C val(V) is a set of states;

(i) s™Mt e S is the initial state;
(iii) I, O and H are countable and pairwise disjoint sets of actions, referred to as input, output and hidden actions,

respectively;

(iv) AC S x (IUOUH) x Disc(S) is a transition relation.
The set Act := I U O U H is the action alphabet of A. If I = (), then A is said to be closed. The set of external
actions of A is I U O and the set of locally controlled actions is O U H. An execution is a sequence &« = ¢pa1q1as . . .
of alternating states and actions where gy = s™* and, for each {g;, a; 11, qi+1), there is a transition {g;, a; 41, 1) € A
with g;+1 € Support(). A sequence obtained by restricting an execution of A to external actions is called a trace.
We write s.v for the value of variable v in state s. An action « is enabled in a state s if (s, a, u) € A for some u. We
require that A satisfy the following conditions.

— Input Enabling: For every s € S and a € I, a is enabled in s.

- Transition Determinism: For every s € S and a € Act, there is at most one i € Disc(S) with (s, a, u) € A. We

write A(s, a) for such p, if it exists.

Parallel composition for PIOAs is based on synchronization of shared actions. PIOAs .4; and A, are said to be
compatible if V; N V; = Act,NH; = O; N O; = 0 whenever i # j. In that case, we define their composition
.A1||./42 to be <V1 U Vs, 81 x Ss, <8i1nit,3i2nit>, (11 U 12) \ (01 U 02)701 U Oy, Hy U H27A>, where A is the set of
triples ({s1, s2), a, 1 X po) satisfying: (i) a is enabled in some s;, and (ii) for every i, if a € Act;, then (s;, a, p;) €
A;, otherwise p; = d(s;). It is easy to check that input enabling and transition determinism are preserved under
composition. Moreover, the definition of composition can be generalized to any finite number of components.

Task-PIOA: To resolve nondeterminism, we make use of the notion of tasks introduced in [17, 5]. Formally, a task-
PIOA is a pair (A, R) where A is a PIOA and R is a partition of the locally-controlled actions of .4. The equivalence
classes in R are called fasks. For notational simplicity, we often omit R and refer to the task-PIOA A. The following
additional axiom is assumed.

— Action Determinism: For every state s and every task 7, at most one action a € 7" is enabled in s.
Unless otherwise stated, terminologies are inherited from the PIOA setting. For instance, if some a € 7' is enabled in
a state s, then 7' is said to be enabled in s.

Example 1 (Clock automaton). Figure 1 describes a simple task-PIOA Clock(T), which has a tick(¢) output action for
every t in some discrete time domain T. For concreteness, we assume that T = N, and write simply Clock. Clock has a
single task tick, consisting of all tick(t) actions. These clock ticks are produced in order, for ¢t = 1,2, .. .. In Section 3,
we will define a mechanism that will ensure that each tick(¢) occurs exactly at real time ¢.

Clock(T)
Signature Tasks
Tnput: tick = {tick(*)}
none States
Output:

count € T, initially O
tick(t: T), t > 0 Y

Transitions
tick(t)
Precondition:

count =t —1
Effect:
count :=1t

Fig. 1. Task-PIOA Code for Clock(T)



Operations: Given compatible task-PIOAs .4, and As, we define their composition to be (A1 ||.A2, R1 U R2). Note
that R1 U R is an equivalence relation because compatibility requires disjoint sets of locally controlled actions.
Moreover, it is easy to check that action determinism is preserved under composition.

We also define a hiding operator: given A = (V, S, s"t I,0, H, A) and B C O, hide(A, B) is the task-PIOA
givenby (V, S, st I O’ H' A), where O' = O\ B and H' = HUB. This prevents other PIOAs from synchronizing
with A via actions in B: any PIOA with an action in B in its signature is no longer compatible with A.

Executions and traces: A task schedule for a closed task-PIOA (A, R) is a finite or infinite sequence p = T, T3, . ..
of tasks in R. This induces a well-defined run of .4 as follows.

(i) From the start state s"'*, we apply the first task T}: due to action- and transition-determinism, T} specifies at

most one transition from s"'*; if such a transition exists, it is taken, otherwise nothing happens.

(i1) Repeat with remaining 7;’s.
Such a run gives rise to a unique probabilistic execution, which is a probability distribution over executions in .A.
For finite p, let Istate(A, p) denote the state distribution of A after executing according to p. A state s is said to be
reachable under p if Istate(A, p)(s) > 0. Moreover, the probabilistic execution induces a unique trace distribution
tdist(A, p), which is a probability distribution over the set of traces of A. We refer the reader to [5] for more details
on these constructions.

3 Real Time Scheduling Constraints

In this section, we describe how to model entities with unbounded lifetime but bounded processing rates. A natural
approach is to introduce real time, so that computational restrictions can be stated in terms of the number of steps
performed per unit real time. Thus, we define a timed task schedule 7 for a closed task-PIOA (A, R) to be a finite or
infinite sequence (77,t1), (Ts,t2),... such that: T; € R and ¢; € R>q for every 4, and ¢1, t2, ... is non-decreasing.
Given a timed task schedule 7 = (17, ¢1), (T, t2),... and t € R, let trunc>,(7) denote the result of removing all
pairs (T3, t;) with t; > t. The limit time, denoted Itime(7), is defined as follows.

— If 7 is empty, then Itime(7) := 0.

— If t1,to, ... is bounded, then Itime(7) := lim;_, ¢;, otherwise Itime(7) := oc.

Following [18], we associate lower and upper real time bounds to each task. If [ and w are, respectively, the lower
bound and upper bound for a task 7', then the amount of time between consecutive occurrences of 7 is at least [ and at
most u. To limit computational power, we impose a rate bound on the number of occurrences of T' within an interval
I, based on the length of I. A burst bound is also included for modeling flexibility.

Formally, a bound map for a task-PIOA (A, R) is a tuple (rate, burst, Ib, ub) such that: (i) rate, burst, b : R —
R, (i) ub : R — Ry, and (iii) for all T' € R, Ib(T) < ub(T). To ensure that rate and ub can be satisfied
simultaneously, we require rate(T") > 1/ub(T") whenever rate(T") # 0 and ub(T") # oco. From this point on, we
assume that every task-PIOA is associated with a particular bound map.

Given a timed schedule 7 and a task T, let proj,(7) denote the result of removing all pairs (T, ¢;) with T; # T.
Let I be any left-closed interval with left endpoint 0. We say that 7 is valid for the interval I (under a bound map
(rate, burst, Ib, ub)) if the following hold for every task 7.

(i) If the pair (T, t) appears in 7, then t € I.
(i) If Ib(T) > 0, then: (a) if (T',¢) is the first element of proj;(7), then ¢ > Ib(T); (b) for every interval I’ of a
non-negative real length less than Ib(T"), proj,-(7) contains at most one element (7', t) with ¢t € I'.
(iii) If ub(T) # oo, then, for every interval I’ C I of a non-negative real length greater than ub(T"), proj,(7) contains
at least one element (T',t) with ¢ € I'.
(iv) For any d € R>( and any interval I’ of length d, proj;(7) contains at most rate(7") - d + burst(7) elements
(T,t) with t € I'.

We sometimes say that a task schedule 7 is valid, without specifying an interval, to mean that it is valid for the
interval [0, Itime(7)].

Note that every timed schedule 7 projects to an untimed schedule p by removing all real time information ¢;,
thereby inducing a trace distribution tdist(.A, 7) := tdist(\A, p). The set of trace distributions induced by all valid
timed schedules for A and (rate, burst, Ib, ub) is denoted TrDists(.A, (rate, burst, Ib, ub)). Since the bound map is
typically fixed, we often omit it and write TrDists(.A).

In a parallel composition A |42, the composite bound map is the union of component bound maps:

(rate; Uratey, burst; Ubursta, Iby Ulbg, uby U ubs).



This is well defined since the task partition of A, || Az is R U Ra.

Example 2 (Bound map for Clock). We use upper and lower bounds to ensure that Clock’s internal counter evolves at
the same rate as real time. Namely, we set Ib(tick) = ub(tick) = 1. The rate and burst bounds are also set to 1. It is
not hard to see that, regardless of the system of automata with which Clock is composed, we always obtain the unique
sequence (tick, 1), (tick, 2), ... when we project a valid schedule to the task tick.

Note that we use real time solely to express constraints on task schedules. We do not allow computationally-
bounded system components to maintain real-time information in their states, nor to communicate real-time informa-
tion to each other. System components that require knowledge of time will maintain discrete approximations to time
in their states, based on inputs from Clock.

4 Complexity Bounds

We are interested in modeling systems that run for an unbounded amount of real time. During this long life, we expect
that a very large number of components will be active at various points in time, while only a small proportion of them
will be active simultaneously. During the life time of a long-lived system, especially for systems such as those that use
short-lived cryptographic primitives, it is natural to expect that many components will become obsolete or die, and will
be replaced with other components. Defining complexity bounds in terms of the total number of components would
then introduce unrealistic security constraints. Therefore, we find it more reasonable to define complexity bounds in
terms of the characteristics of the components that are simultaneously active at any point in time.

To capture these intuitions, we define a notion of step bound, which limits the amount of computation a task-PIOA
can perform, and the amount of space it can use, in executing a single step. By combining the step bound with the
rate and burst bounds of Section 3, we obtain an overall bound, encompassing both bounded memory and bounded
computation rates.

Note that we do not model situations where the rates of computation, or the computational power of machines,
increases over time. This is an interesting direction in which the current research could be extended.

Step Bound: We assume some standard bit string encoding for Turing machines and for the names of variables, actions,
and tasks. We also assume that variable valuations are encoded in the obvious way, as a list of name/value pairs. Let
A be a task-PIOA with variable set V. Given state s, let § denote the partial valuation obtained from s by removing all
pairs of the form (v, L). We have ¢y (§) = s, therefore no information is lost by reducing s to §. This key observation
allows us to represent a “large” valuation s with a “condensed” partial valuation S.

Let p € N be given. We say that a state s is p-bounded if the encoding of § is at most p bits long. The task-PIOA

A is said to have step bound p if the following hold.
(i) For every variable v € V, type(v) C {0,1}?.
(i1) The name of every action, task, and variable of .4 has length at most p.
(iii) The initial state s™* is p-bounded.
(iv) There exists a deterministic Turing machine Menaple satisfying: for every p-bounded state s, Menaple ON input §
outputs the list of tasks enabled in s.
(v) There exists a probabilistic Turing machine My satisfying: for every p-bounded state s and task T, Mz on input
(8, T) decides whether T is enabled in s. If so, Mz computes and outputs a new partial valuation §, along with
the unique a € T that is enabled in s. The distribution on ¢y (§") coincides with A(s, a).
(vi) There exists a probabilistic Turing machine M7 satisfying: for every p-bounded state s and action a, M on input
(8, a) decides whether a is an input action of \A. If so, M computes a new partial valuation §'. The distribution
on ¢y (§') coincides with A(s, a).
(vii) The encoding of Menaple 1S at most p bits long, and Menaple terminates after at most p steps on every input. The
same hold for Mz and Mj.

Thus, step bound p limits the size of action names, which often represent protocol messages. It also limits the
number of tasks enabled from any p-bounded state (Condition (iv)) and the complexity of individual transitions (Con-
ditions (v) and (vi)). Finally, Condition (vii) requires all of the Turing machines to have description bounded by p.

Lemma 1 guarantees that a task-PIOA with step bound p will never reach a state in which more than p variables
have non-_L values. The proof is a simple inductive argument.



Lemma 1. Let A be a task-PIOA with step bound p. For every valid timed task schedule T and every state s reachable
under T, there are at most p variables v such that s.v # 1.

Proof. By the definition of step bounds, we have s is p-bounded. For a state s’ reachable under schedule 7/, let s be
a state immediately preceding s’ in the probabilistic execution induced by 7. Thus s is reachable under some prefix of
7. If the transition from s to s’ is locally controlled, we use the fact that My always terminates after at most p steps,
therefore every possible output, including &', has length at most p. This implies § is a partial valuation on at most p
variables. If the transition from s to s’ is an input, we follow the same argument with M. O

Given a closed (i.e., no input actions) task-PIOA .4 with step bound p, one can easily define a Turing machine M 4
with a combination of nondeterministic and probabilistic branching that simulates the execution of 4. Lemma 1 can
be used to show that the amount of work tape needed by M 4 is polynomial in p. This is reminiscent of the PSPACE
complexity class, except that our setting introduces bounds on the computation rate, and allows probabilistic choices.
Lemma 2 says that, when we compose task-PIOAs in parallel, the complexity of the composite is proportional to the
sum of the component complexities. The proof is similar to that of the full version of [5, Lemma 4.2]. We also note
that the hiding operator introduced in Section 2 preserves step bounds.

Lemma 2. Suppose {A;|1 < i < b} is a compatible set of task-PIOAs, where each A; has step bound p; € N. The
composition ||?:1Ai has step bound Ccomp - 2?21 Di, Where ccomp is a fixed constant.

Overall Bound: We now combine real time bounds and step bounds. To do so, we represent global time using the
clock automaton Clock (Figure 1). Let p € N be given and let .4 be a task-PIOA compatible with Clock. We say that
A is p-bounded if the following hold:
(i) A has step bound p.
(ii) For every task T" of A, rate(T") and burst(T") are both at most p.
(iii) Forevery ¢t € N, let S; denote the set of states s of .A||Clock such that s is reachable under some valid schedule 7
and s.count = t. There are at most p tasks 7" such that T is enabled in some s € S;. (Here, s.count is the value
of variable count of Clock in state s).
We say that A is quasi-p-bounded if A is of the form A’||Clock where A’ is p-bounded.
Conditions (i) and (ii) are self-explanatory. Condition (iii) is a technical condition that ensures that the enabling of
tasks does not change too rapidly. Without such a restriction, .4 could cycle through a large number of tasks between
two clock ticks, without violating the rate bound of any individual task.

Task-PIOA Families: We now extend our definitions to task-PIOA families, indexed by a security parameter k. More
precisely, a task-PIOA family A is an indexed set { Ay, }ren of task-PIOAs. Given p : N — N, we say that A is p-
bounded just in case: for all k, Ay, is p(k)-bounded. If p is a polynomial, then we say that A is polynomially bounded.
The notions of compatibility and parallel composition for task-PIOA families are defined pointwise. We now present an
example of a polynomially bounded family of task-PIOAs—a signature service that we use in our digital timestamping
example in Section 8.

Example 3 (Signature Service). A signature scheme Sig consists of three algorithms: KeyGen, Sign and Verify. KeyGen
is a probabilistic algorithm that outputs a signing-verification key pair (sk, vk). Sign is a probabilistic algorithm that
produces a signature o from a message m and the key sk. Finally, Verify is a deterministic algorithm that maps
(m, o, vk) to a boolean. The signature o is said to be valid for m and vk if Verify(m, o, vk) = 1.

Let SID be a domain of service identifiers. For each j € SID, we build a signature service as a family of task-
PIOAs indexed by security parameter k. Specifically, we define three task-PIOAs, KeyGen(k, j), Signer(k, j), and
Verifier(k, j) for every pair (k, j), representing the key generator, signer, and verifier, respectively. The composition
of these three task-PIOAs gives a signature service. We assume a function alive : T — 252 such that, for every t,
alive(t) is the set of services alive at discrete time ¢. The lifetime of each service j is then given by aliveTimes(j) :=
{t € T|j € alive(¢)}; we assume this to be a finite set of consecutive numbers.

For every value k of the security parameter, we assume the following finite domains: RIDj, (request identifiers),
M, (messages to be signed) and X}, (signatures). The representations of elements in these domains are bounded by
p(k), for some polynomial p. Similarly, the domain T}, consists of natural numbers representable using p(k) bits. Each
of the components KeyGen(k, j), Signer(k, ), and Verifier(k, j) has a set of input actions tick(t), ¢ € Ty, which are
intended to match with corresponding outputs from the clock automaton Clock (Figure 1). These inputs allow each



component to record discrete time information in its state variable clock. Since clock can produce tick(t) outputs for
arbitrary ¢ € T, this means that these new components do not receive all of clock’s inputs, but only those with ¢ € Ty.

KeyGen(k, j) chooses a signing key mySK and a corresponding verification key my VK. It does this exactly once,
at any time when service j is alive. It outputs the two keys separately, via actions signKey(sk); and verKey(vk);. The
signing key goes to Signer(k, j), while the verification key goes to Verifier(k, j).

The code for KeyGen(k, j) is given in Figure 2. As we mentioned before, the tick(¢) action brings in the current
time. If j is alive at time ¢, then clock is set to the current time ¢. Also, if j has just become alive, as evidenced by the
fact that the awake flag is currently L, the awake flag is set to true. On the other hand, if j is no longer alive at time
t, all variables are set to L.

The chooseKeys action uses KeyGen; to choose the key pair, and is enabled only when j is awake and the keys are
currently 1. Note that the KeyGen algorithm is indexed by j, because different services may use different algorithms.
The same applies to Sign; in Signer(k, j) and Verify; in Verifier(k, j). The signKey and verKey actions output the
keys, and they are enabled only when j is awake and the keys have been chosen.

KeyGen(k : N, j : SID)
Signature Tasks
Input: verKey; = {verKey(*);}

tick( : Tx) signKey; = {signKey(x);}
chooseKeys; = {chooseKeys, }

Output:
signKey(sk : 2%); States
verKey (vk : 2k)j awake : {true} , init L
Internal: clock : (Ty,) 1, init L
chooseKeys; mySK : (2%, init L
myVK : (2%) L, init L
Transitions
tick(t) signKey(sk);
Effect: Precondition:
if j € alive(t) then awake = true
clock =t sk = mySK # L
if awake = L then Effect:
awake = true none
else
awake, clock, mySK, verKey(vk);
myVK = L Precondition:
awake = true
chooseKeys; vk = myVK # L
Precondition: Effect:
awake = true none
mySK = myVK = L
Effect:

(mySK, myVK)
— KeyGen;(1")

Fig. 2. Task-PIOA Code for KeyGen(k, j)

Signer(k, j) receives the signing key from another component, e.g., KeyGen(k, 7). It then responds to signing
requests by running the Sign, algorithm on the given message m and the received signing key sk. Figure 3 presents
the code for Signer(k, j), which is fairly self-explanatory.

The data type que,, represents queues with maximum length p(k), where p is a polynomial. The enqueue operation
automatically discards the new entry if the queue is already of length p(k). This models the fact that Signer(k, j) has a
bounded amount of memory. For concreteness, we assume here that p is the constant function 1 for the queues toSign
and signed.



We use a variable toSign of type queue to keep track of signature requests for which the Signer has not yet
produced a signature, and another variable signed of type queue to keep track of signature requests for which the
Signer has produced a signature but not yet output it.

Again, transitions except for clock ticks are guarded by tests that j’s awake flag is set to true. The signing key
arrives in an signKey action. Note there is no explicit request for the key—KeyGen supplies it spontaneously. When a
request to sign a message m arrives, it’s simply put into a toSign queue, provided that the queue isn’t full. (If it is, the
message is dropped.)

The real work is done in the sign step. This is enabled when 5 is awake and has received its signing key, and some
request appears at the head of the toSign queue. Signer simply dequeues the message, and (if the signed queue isn’t
full), Signer signs the message using its key and enqueues the resulting signature on the signed queue. The respSign
step simply outputs signatures from the signed queue.

As for KeyGen, the tick transition handles the wakeup and death of the component, as well as recording the clock
time. Again, if j is supposed to be alive at time ¢, it records the current time, and if it has just become alive, it sets all
its variables to their default starting values. If j is not supposed to be alive, then it sets all of its variables to L.

In this code and other code to follow, we follow the general policy of dropping elements entirely rather than
retrying, if the target queue is full. The hope is that, in the situations we are interested in, the queues will not fill up.

Verifier(k, j) accepts verification requests and simply runs the Verify,; algorithm. The code appears in Figure 4.
Again, all queues have maximum length 1.

Assuming the algorithms KeyGen;, Sign; and Verify, are polynomial time, it not hard to check that the composite
KeyGen(k, j)||Signer(k, j)||Verifier(k, j) has step bound p(k) for some polynomial p. If rate(7") and burst(7T") are at
most p(k) for every T, then the composite is p(k)-bounded. The family {KeyGen(k,j)||
Signer(k, j)||Verifier(k, j) }xen is therefore polynomially bounded.

5 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of computational indistinguishability. For instance, an encryption
algorithm is (chosen-plaintext) secure if the ciphertexts of two distinct but equal-length messages are indistinguish-
able from each other, even if the plaintexts are generated by the distinguisher itself. The key assumption is that the
distinguisher is computationally bounded, so that it cannot launch a brute force attack. In this section, we adapt this
notion of indistinguishability to the long-lived setting.

We define an implementation relation based on closing environments and acceptance probabilities. Let A be a
closed task-PIOA with output action acc and task acc = {acc}. Let 7 be a timed task schedule for .A. The acceptance
probability of A under 7 is: P,(A, 7) := Pr[g contains acc : 8 < tdist(A, 7)]; that is, the probability that a trace
drawn from the distribution tdist(.4, 7) contains the action acc. If A is not necessarily closed, we include a closing
environment. A task-PIOA Env is an environment for A if it is compatible with A and A||Env is closed. From here on,
we assume that every environment has output action acc.

In the short-lived setting, we say that a system .4; implements another system A if every run of A; can be
“matched” by a run of A5 such that no polynomial time environment can distinguish the two runs. As we discussed in
the introduction, this type of definition is too strong for the long-lived setting, because we must allow environments
with unbounded total run time (as long as they have bounded rate and space).

For example, consider the timestamping protocol of [11, 12] described in Section 1. After running for a long period
of real time, a distinguisher environment may be able to forge a signature with non-negligible probability. As a result,
it can distinguish the real system from an ideal timestamping system, in the traditional sense. However, the essence
of the protocol is that such failures can in fact be tolerated, because they do not help the environment to forge new
signatures, after a new, uncompromised signature service becomes active.

This timestamping example suggests that we need a new notion of long-term implementation that makes mean-
ingful security guarantees in any polynomial-bo