
Robust, Anonymous RFID Authentication with Constant
Key-Lookup

Mike Burmester∗, Breno de Medeiros and Rossana Motta

Abstract

A considerable number of anonymous RFID authentication schemes have been proposed. However,
current proposals either do not provide robust security guarantees, or suffer from scalability issues when
the number of tags issued by the system is very large. In this paper, we focus on approaches that reconcile
these important requirements. In particular, we seek to reduce the complexity of identifying tags by the
back-end server in anonymous RFID authentication protocols—what we term the key-lookup problem.

We propose a compiler that transforms a generic RFID authentication protocol (supporting anonym-
ity) into one that achieves the same guarantees with constant key-lookup cost even when the number
of tags is very large (billions of tags and beyond). This approach uses a lightweight one-way trapdoor
function and produces protocols that are suitable for deployment into current tag architectures. We then
explore the issue of minimal assumptions required, and show that one-way trapdoor functions are nec-
essary to achieve highly scalable, robustly secure solutions. We then relax the requirement of unlinkable
anonymity, and consider scalable solutions that are provably secure and for which the loss of privacy is
minimal.

Keywords: RFID, privacy, availability, scalability, provably secure protocols, unlinkability

1 Introduction
Radio-Frequency Identification (RFID) enables objects to be identified by radio waves, without physical
contact and without need for line-of-sight alignment. The flexibility of this technology holds great promise
for novel applications, and increasingly RFID tags are being deployed in situations where their proper
operation must be assured to a medium or high level of confidence. Well-known examples are the use of
RFIDs to harden identification documents against forgery, or to provide access control to physical resources
and/or secure locations. In addition to the authenticiy and integrity requirements, it is often desirable, and
sometimes required, that RFIDs provide anonymized identification services, to preserve the privacy of the
persons that carry them.

A considerable body of research has been developed to provide solutions to the anonymous authentica-
tion problem in RFID [AO05, BvLdM06, HM04, MSW06, SWE03, Tsu06]. However, currently available
solutions either do not provide robust security guarantees, or suffer from scalability issues when the number
of tags issued by the system is very large. The principal reason leading to this conflict between requirements
is the small circuit footprint available on RFID tags, which has so far limited implementation of cryptogra-
phy in tags to symmetric-key algorithms. In the anonymous setting, symmetric-key approaches introduces

∗Part of this material is based on work supported by the NSF award 0209092, the U.S. Army Research Laboratory, and the U.S.
Research Office under grant number DAAD 19-02-1-0235.

1

the difficulty that the server must first decide which tag (and corresponding key) should be used to validate a
tag’s authentication transcript. This difficulty is worsened if the system has a large number of tags, creating
vulnerabilities to denial-of-service attacks, and potentially raising threats to privacy through timing attacks.

In this paper, we focus on the worst-case complexity (time and computation) of identifying tags, by
searching for matches in the symmetric-key database of the back-end server. More specifically, consider
the ratio between the costs of (1) authenticating the response of a tag against a single tag identity, and (2)
authenticating the response of a tag in an anonymous interaction (when the identity of the tag is not known
a priori). This ratio we call the key-lookup cost. In the worst case, for anonymous RFID authentication, the
key-lookup cost is linear in the number of tags (the server has to exhaust the symmetric-key database to find
a match). Molnar, Soppera and Wagner [MSW06] presented an anonymous RFID protocol that achieves
logarithmic key-lookup, by using a binary tree of symmetric-keys (the tree of secrets), and assigning to each
tag the keys of a root-to-leaf path: the response of a tag is then linked to this path, and this link is used to
identify the tag (only 2 log T checks are needed, where T is the number of tags). Burmester, van Le, and de
Medeiros [BvLdM06] use a different approach, in which the key-lookup is constant for tags that have not
been previously interrogated by rogue readers (invoked by the adversary), but otherwise it is linear.
Organization of this paper. After this introduction we discuss, in Section 2, the conflict of privacy and
availability and the impact of privacy on scalability of key-lookup. We then describe in Section 3.2 a
compiler that transforms a generic RFID authentication protocol satisfying privacy requirements into one
that achieves strong security with constant key-lookup when the number of tags is very large (billions of
tags and beyond). This approach uses a lightweight one-way trapdoor function—described recently by
Shamir [Sha07]—and produces protocols that are suitable for deployment into current tag architectures.
In Section 4 we show that one-way trapdoor functions are necessary for strongly privacy-preserving RFID
authentication that supports constant-cost key-lookup, even for large numbers of tags. Finally, in Section 5
we relax the requirement for unlinkable anonymity and consider provably secure solutions for which the
loss of privacy is minimal.

Our main contributions
• A compiler that transforms any RFID authentication protocol of a certain form into one that achieves

scalability for the back-end server, providing for constant key-lookup cost (Section 3.2).
• This improves on the worst-case cost achieved by the most efficient key-lookup scheme to date—

O(log n) by [MSW06].

The compiler produces new protocols from existing ones, in such a way as not to weaken any privacy and
authenticity guarantees enjoyed by the compilees.
• In particular, it can be used to construct schemes with constant key-lookup cost that achieve higher

security than the scheme in [MSW06], for instance by not requiring the use of keys that are shared
by many tags.

• A lightweight implementation of the compiler based on the Shamir adaptation of Rabin’s one-way func-
tion (Section 3.3).
• A security proof for the compiler (Section 5.4).
• A proof that any RFID authentication protocol that is strongly privacy-preserving with constant key-

lookup cost must also employ public-key obfuscation, when the number of tags is large (Section 4).
• A more efficient, alternative approach for provably secure RFID authentication that supports constant

key-lookup cost, under a minimal relaxation of privacy that allows for limited linkability (Section 5).

2

2 Privacy vs Availability
Support of privacy in RFID tends to conflict with fundamental requirements, such as availability, i.e., the
ability of the system to function correctly and continuously, through its projected lifetime. Attacks against
availability work by forcing components of the RFID system into temporary or permanent states from where
they are no longer capable of fulfilling their proper roles.

There are several attack strategies against RFID systems that target availability. For instance, jamming
attacks seek to overwhelm the communication medium with noise; such attacks can be detected and miti-
gated by mechanisms at the physical layer [SWE03]. In this paper, we focus instead on mechanisms that
support availability at the protocol level (RFID application layer).

Storms in wireless systems are caused when the number of transmissions exceeds the capacity of the
system to process them, thus restricting availability. Typically storms are linked to design and protocol
failures, and are not caused directly by the adversary. For example, network flooding1 in a wireless network
may cause a storm, if the local node density is high. The same applies for RFID systems: RFID readers may
not be able to process all tag responses, when the number of tags is large. This may result in some tags not
being authenticated.

The adversary may exploit the the lookup complexity by having a rogue tag make faulty responses
on behalf of several “virtual” tags. It may not be easy to detect such attacks, because they cannot be
distinguished from non-adversarial faulty responses. If the back-end server spends more resources trying
to disambiguate fake responses than the adversary spends on generating them, then the RFID system is
inherently flawed. Note that the cost of triggering such an “RFID storm” is restricted to the cost of selecting
EPC channels [EPC], one for each response, since the faulty response can be generated by simply updating
a counter (or some similar mechanism). Furthermore the rogue tag is not subject to the usual tag constraints
(e.g., it can have its own power supply). It is therefore important to design RFID systems with scalable key-
lookup, as systems with large number of tags may require a constant cost of key lookup to achieve resilience
against attacks that target availability (denial-of-service attacks).

At the protocol level, one must also deal with a class of attacks against availability, termed disabling
attacks, which target state synchronization requirements. More precisely, strong authentication (in the
symmetric-key setting) requires that RFID tags and the back-end server share secrets (e.g., keys and other
state information). In the case of privacy-preserving protocols, mutable information (e.g., a changing
pseudonym) must be used by the back-end server to recognize the tag in the absence of fixed identifica-
tion values. These represent shared dynamic states that must be maintained in synchrony by tags and the
back-end server. Disabling attacks seek to break this synchronicity.

Among RFID protocols that provide strong privacy guarantees, some have limited ability to tolerate
attacks against availability. For instance, in [OSK03], the attacker may use invalid timestamps to disable
tags temporarily or permanently. Other solutions use hierarchic key structures to speed up lookup time, but
are consequently more vulnerable to key-exposure threats, as the higher-level keys are shared among many
tags [MSW06]. Yet other protocols require linear search among all issued keys to authenticate a response, an
approach that is infeasible for large numbers of tags. An improvement over always requiring an exhaustive
search is to employ an optimistic approach [BvLdM06, vLBdM07]. In this case, the server is normally
able to recognize the tag in constant time based on a pseudonym value, but when this value becomes de-
synchronized, the server can recover the tag identity through linear search among the valid (issued) keys. All
protocols that (in some circumstances) require a linear search suffer from scalability issues as the number
of tags in the system increases.

1In network flooding all neighbors of a node will re-broadcast a newly received message.

3

Figure 1: A generic challenge-response RFID protocol.

RFID TAG (KEY: k) READER

c
�

r, f(k; c, r)
-

· ·

In what follows, we describe how to systematically modify RFID protocols to achieve constant-time
effort to authenticate a tag, resolving scalability issues and reconciling privacy and availability requirements
of RFID applications.

3 A Scalability-Providing Protocol Compiler
In this section, we provide a high-level description of our approach, a compiler that can transform many
challenge-response RFID protocols to achieve scalability, supporting constant cost for RFID key-lookup.

3.1 A Generic Challenge-Response RFID Protocol
Fig. 1 illustrates a typical challenge-response RFID authentication protocol. In the first pass, the reader
produces a challenge c that could include a timestamp, a random nonce, or other information as specified
by the protocol. In the second pass, the tag evaluates and broadcasts the result of computing a function
f(k; ·, ·) on the challenge and (possibly) on additional input r generated by the tag. The value r could embed
a tag nonce and either an identifier (if privacy is not a concern), or a (mutable) pseudonym to facilitate
tag recognition without leaking its identity. The dotted line in Fig. 1 indicates optional passes for added
functionality, such as mutual authentication, key-update for forward-security, etc.

The security and efficiency provided by such generic protocols are highly related to the choice of the
function f , which is keyed with a symmetric-key k unique to the tag and known to the back-end server
(not depicted above). Even restricting our attention only to protocols that provide privacy, there are many
possibilities for implementation of the above protocol, providing different security guarantees. For instance,
if unlinkable privacy is desired, the outputs of the function f must be indistinguishable from pseudo-random.
Protocols may further differ on the method for pseudonym update, and may provide for additional features—
for instance, protocols may only support authentication when the reader has on-line access to the back-end
server, or conversely, may be suitable for reader-server batch communication. 2

In the following, we assume that we deal with a generic RFID protocol as in Fig. 1 that suffers from
lack of scalability of key-lookup. We also assume that the protocol must achieve privacy, since otherwise
scalability may be easily achieved by having the tag reveal its identifier to the server, thus allowing for
immediate key-lookup.

2In this case, the tag validation may be delayed until the next batch interaction (e.g., [Tsu06]), or may be immediate with
(limited) delegation by the back-end server to the reader [MSW06].

4

3.2 The Compiler
Let h(·) stand for a trapdoor one-way function, where the trapdoor t is known only to the back-end server
(the Verifier). We fix the protocol in Fig. 1 to achieve key-lookup scalability by changing the form of the
tag’s response to

r, h(id, r′), f(k; c, r ⊕ r′), (1)

where f is as in Fig. 1, id is a tag identifier, r ′ is a random nonce, selected from R = {0, 1}t uniformly at
random, and “⊕” denotes bitwise xor. When receiving the above response (relayed by the READER), the
back-end server (the Verifier) can use its knowledge of the trapdoor to recover id. It may then apply the
steps of the (non-scalable) version of the protocol.

In order for the compiler to preserve the security properties of the original protocol, the function h(·)
must satisfy some properties.

1. The probability ensembles {h(id1, r
′)}r′∈{0,1}t and {h(id2, r

′)}r′∈{0,1}t must be computationally
indistinguishable, for any pair of identities id1, id2. (To preserve unlinkable anonymity.)

2. The function h(id; ·) is one-way (i.e., in the variable r ′), for any choice of id. (To preserve transcript
integrity.)

The need for condition (1) should be obvious, as otherwise it allows for distinguishing between two
identities, breaking unlikable anonymity of the underlying protocol. Note that (1) does NOT imply (2),
because the identities are not known to the adversary. For instance, (1) is satisfied by the function g(id, r ′) =
(r′, η(id; r′)), where η is a PRF with key id. Now, for the necessity of condition (2), consider the following
attack when (2) does not hold: The adversary inverts h() to obtain the value r ′ in each of two sets of
responses from (potentially distinct) tags: V1 : r1, h(id1, r

′
1
), f(k1; c1, r1 ⊕ r′

1
) and V2 : r2, h(id2, r

′
2
),

f(k2; c2, r2 ⊕ r′
2
), constructing the response V : r3, h(id1, r

′
1
), f(k2; c2, r2 ⊕ r′

2
), with r3 = r′

1
⊕ r2 ⊕ r′

2
.

Then the adversary substitutes V2 by V : V will be accepted by the back-end server if id1 = id2, but only
with negligible probability if id1 6= id2. This violates the anonymity of the protocol, endowing the adversary
with an effective mechanism to link tag transcripts (through active attacks).

Under the assumptions above, we can show that the compiled protocol provides the same security guar-
antees as achieved by the initial protocol while guaranteeing constant key-lookup cost. In the following
we shall first describe a lightweight implementation of a one-way trapdoor function (Section 3.3), and then
demonstrate the explicit efficiencies (Section 3.4) and security guarantees (Section 3.5) achieved by the
compiler when applied to a family of protocols [BvLdM06, vLBdM07] that is secure under a very robust
security model (universal composability).

3.3 A Lightweight One-way Trapdoor Function
The greatest challenge in making the above compiler practical is to design very efficient one-way trapdoor
functions with the required properties. First, we point out that since the RFID tags never need to perform
operations using the trapdoor—from the perspective of a tag, h is simply a one-way function—this asym-
metry can be exploited to obtain more efficient schemes. There are several alternatives that could be used
to implement the function efficiently. The most interesting approach uses a recent construction SQUASH
(from SQUaring haSH), proposed by Shamir in [Sha07], that shows how to implement modular squaring
(where the modulus N is reasonably large, say 1024 bits) while using just a few hundred gate-equivalents
(GEs) for computation and another several hundred GEs for read-only storage. Because only arithmetical

5

operations are used, this approach can be implemented very efficiently, while from a security point of view
it is as hard as integer factorization [Sha07].

3.4 Applications and Implementations
The compiler can be applied to practically any anonymous RFID protocol to establish constant key-lookup.
In particular, to the lightweight RFID protocols O-TRAP and O-FRAP presented in [BvLdM06, vLBdM07],
for strong UC security with constant key-lookup. We next discuss efficiency aspects of implementing the
protocols that result from application of the compiler to the O-TRAP scheme.
The authenticator f : In the O-TRAP/O-FRAP family of protocols, f is realized by a PRF, which in
practice can be implemented using a variety of well-known and constructions. Efficiency vs. security trade-
offs in this architecture are easily achieved, as key-size and pseudo-randomness (estimated as the logarithm
of the PRF cycle) can be chosen to the granularity of individual bits. Here we discuss two implementation
strategies based on different PRF instantiations.

Using a well-known technique by Goldreich et. al. [GGM86], it is possible to build a PRF that makes a
call to a PRNG per bit of input processed. In turn, a very efficient PRNG implementation can be achieved
using linear feedback shift registers, such as the self-shrinking generator [CKM94]. This results in a small
number of bit operations per input and output bits. The entire footprint of this implementation has been
estimated to require only 1435 logic gates (within 517 clock cycles and 64B memory), achieving 128-bit
security [LH06].

Block ciphers can similarly be used to implement PRFs through a number of standard constructions—
their concrete security was analyzed in [BDJR97]. Recently, highly optimized implementations of the
Advanced Encryption Standard (AES) block cipher [DR02] have been achieved, and these are suitable
for RFID architectures [FWR05]. An RFID architecture using this implementation was proposed recently
by [FDW04], with footprint equal to 3400 GEs and mean current consumption equal to 8µA, assuming a
clock rate of 100kHz, and within 1032 clock cycles.
The obfuscator h: The Rabin cryptosystem [Rab79] is a public-key encryption scheme that uses modular
squaring with composite modulus N , to encrypt data. The public key is N and the private key is the
factorization of N . In particular, if x is the plaintext then the ciphertext is y = x2 mod N . To decrypt y
the factors of N are used: there are four quadratic residues of y, one of which is x. In Shamir’s adaptation,
modular squaring is replaced with integer squaring: h(x) = x2 + kN , where k a random number less than
N [Sha07]. It is not difficult to show that inverting h is as hard as factoring composite numbers [Sha07].

Let x = id||r′. We need to compute h(x) = x2 + kN , for a 1024-bit wide N . The square x2 and the
product kN , are computed separately on-the-fly, using a 128 bit register, and then combined (with carries
buffered for the next iteration). To evaluate individual bits of x2 and kN , we convolute x with itself, and
k with N , using the 128 bit register, and invoke a PRNG to generate the bits of x and k on-the-fly. 8
invocations will be needed. The cost of implementing h is then: (i) 512 NOT gates for read-only storage of
the 1024-bit modulus N and, (ii) a PRNG and buffers for the computations. Since f and h are computed
sequentially, we can re-use the PRNG and buffers of f . So the circuit complexity of h is < 1000 GEs.
Total cost of scheme. In total, assuming a PRG-based implementation of f , the cost is ' 2500 GEs.

3.5 The Security Proof for the Compiler
In this section, we prove the result for the case where the generic challenge-response RFID protocol in
Fig. 1 realizes one-way authentication with strong (unlinkable) privacy in the UC framework. Our goal is to
show that the compiled protocol realizes the same security levels, while providing constant key-lookup cost.

6

This section should be viewed as a proof-sketch, as opposed to a fully formal proof; in particular, we are
informal in dealing with some aspects of the UC security formalization, e.g., omitting references to session
identifiers. Our interest is to convey the general ideas behind the proof, leaving rigorous analysis to the full
version of the paper, where we shall also consider cases when the original protocol achieves only weaker
guarantees, or only supports security in frameworks weaker than the UC model.

The UC framework defines the security of a protocol π in terms of the interactive indistinguishability
between real- and ideal-world simulations of executions of π [Can95, Can00, Can01]. In the real-world exe-
cutions, honest parties are represented by probabilistic polynomial-time Turing (PPT) machines that execute
the protocol as specified and adversarial parties, also represented by PPTs, can deviate from the protocol in
an arbitrary fashion. The adversarial parties are controlled by a PPT adversary that has full knowledge of
their state, controls the communication channels of all parties (honest and adversarial), and interacts with
the environment in an arbitrary way, and in particular eavesdrops on communications. The ideal-world ex-
ecutions are controlled by an ideal functionality F , a trusted party that guarantees the correct execution of
the protocol—in particular, F emulates all honest parties. The ideal-world adversary is controlled by F to
reproduce as faithfully as possible the behavior of the real adversary. We say that π realizes F in the UC
framework, if no PPT environment Z can distinguish (with better than negligible probability) real- from
ideal-world protocol runs.

In our case π is the compiled protocol, when the original protocol is of the form in Fig. 1, and achieves
UC anonymous authentication, as defined for instance, in [vLBdM07]. In particular, F takes the following
actions in the idealized protocol executions:
• Generates the challenges for honest READERs.
• Receives challenges on behalf of honest TAGs, or from the adversary.
• Generates responses on behalf of honest TAGs.
• Decides which TAG responses are authentic on behalf of the Verifier.
Note that because we are assuming that the generic RFID protocol is UC secure, the function f(·; ·, ·) is
pseudo-random, while h(·, ·) satisfies the conditions (1) and (2) in Section 3. To prove that π is secure we
show that each behavior securely provided by F can also be achieved in the real-world through π. That is,
we simulate the operation of π with access to F by the real-world operation of the protocol that does not
rely on F . We summarize the key features of π, that represent the real-world protocol runs:
• The challenges of the Verifier are received through a READER.
• The responses of the TAGs are mediated by a READER, that may be adversarial.
• The adversary controls the adversarial READERs and may, modify or interrupt any channels at will—but

cannot temper with the contents of the channels connecting honest READERs to the Verifier.
The main difference between the real- and ideal-world is that the values produced by F are generated as
truly random, as opposed to pseudo-random. More precisely, at the beginning of the simulation, F choses
a special identity id∗ among the set of all possible identities. Later, whenever π produces a response on
behalf of the tag with identity id, and on input the challenge c, the functionality F generates a random
value r, and checks if it has an entry (function value; id, c, (r, F)) in its database, for any F in the output
space of f . If so, F sets ρ ← (r, F). If not, it selects a new value F at random (in the output space of f),
and sets ρ ← (r, F), entering (function value; id, c, ρ) into its database. It then selects H according to
the probabilistic ensemble {h(id∗; ·)}, and enters the record (identity, id, r,H) in its database. Finally, it
returns the values ρ,H as the tag’s response in the ideal-world.

A value ρ,H is authentic (against challenge c) if there is a record of it in the database; more precisely,

7

if there are entries (identity, id′′, r′′,H ′′), and (function value; id′, c′, (r′, F ′)), with id′′ = id′, r′′ = r′,
H = H ′′, c = c′, and ρ = (r′, F ′). Observe that this specification of F makes several security guaran-
tees obvious: unforgeability, freedom from replays and substitutions, privacy (unlinkable anonymity), etc.
Indeed, violating such properties requires the adversary to guess randomly produced values.

Since the compiled protocol π may fail in a variety of ways we must ensure that no combination of
such failures may enable the environment Z to distinguish between real and ideal protocol runs (with non-
negligible probability). Below we identify some significant ways that could cause the real and ideal-world
protocols to differ:
1. A match (valid response) occurs in the real-world, while in the ideal-world the match is unsuccessful.
2. A mismatch (invalid response) occurs in the real-world, while in the ideal-world the match is successful.

We get Case 1 when the adversary in the real-world is able to modify some values in the channels (via
reflection, reply, modification, modification, etc), forcing the Verifier to accept responses not produced by
tags. However, since the outputs of f observed by the adversary are pseudo-random, the adversary can only
have a negligible probability of forcing such an outcome without re-using the outputs of f . It is possible
that the adversary could re-use the outputs of f with different values for H . Now, by re-using f -values, the
adversary (with overwhelming probability) commits to (unknown values) of the key k (and hence the tag
identity id), c, and the input r ⊕ r′ to f . To be able to re-use these with some other value H = h(id, r ′′),
and randomness r′′′, the adversary must be able to find r′′′ such that r′′′ ⊕ r′′ = r ⊕ r′, which implies
knowledge of r′′′ ⊕ r = r′ ⊕ r′′. Now, if r′ were to be revealed, this would allow to invert h(id, r ′′) for
r′′. Traditionally, the definition of a one-way function allows for knowledge of unrelated input-output value
pairs, so an adversary that could re-use such values H could be fitted into a slightly different protocol to
invert the function h.
We get Case 2 when the randomly generated values in the ideal-world that correspond to the evaluations of
h(·, ·) and f(·; ·, ·) on different inputs lead to a coincidental match. Since the values generated by F are
random and independent, the chance of coincidence is negligible.

It follows that when the challenge-response protocol UC-realizes one-way authentication with strong
privacy, then the compiled protocol will maintain this security level. We get scalable lookup because the
server can invert the function h. �

4 Strong Privacy with Constant Key-Lookup Implies Public-Key Obfusca-
tion

We show that when the number of tags T is large, anonymous, unlinkable RFID authentication with constant
key-lookup implies public-key obfuscation. To achieve this, we clarify in greater detail what we mean by
constant cost of key-lookup.

The security parameter n serves as a natural constraint on algorithmic efficiency. More specifically,
a feasible algorithm is characterized by having its cost factor dominated by some polynomial p(n). Let
DB(n) be the number of tags in the server database, in some instance of the RFID scheme, with security
parameter n. We require that the algorithm that lists all entries in DB(n) to be feasible, since the database
must be constructible—hence, the size of DB(n) is bound above by some polynomial pDB(n). Note that
the cost of the (honest) server to invalidate an answer from the adversary, by exhaustion in the database, is
O(DB(n)× val(n)), where val(n) is the cost to authenticate an honest tag, if the server knows its identity
in advance. Therefore, if the strategy (in the worst-case) is to use exhaustive search for the key, then the
key-lookup cost lookup(n) is O(DB(n)) and it is only constant when DB(n) is constant. By contrast, our

8

definition of scalable key lookup requires that the lookup cost lookup(n) is constant whenever the size of
DB(n) is bounded by a polynomial in n.

To simplify our argument, we make the following assumptions on the obfuscator h and the authenticator f :
1. h(id, r′), r′ ∈R {0, 1}

a , is as in Section 3,
2. f(k; c, r ⊕ r′), r ∈R {0, 1}

b, is pseudo-random,
with a, b linear in n. We require T to be an increasing function of n, otherwise the key-lookup cost would
be constant simply be exhausting all the keys.

The proof is straightforward. Suppose that a tag’s response r, h(k, r ′), f(k; c, r ⊕ r′), to the server’s
challenge c identifies the tag to the server with overwhelming probability, say 1 − ε, ε negligible (in n).
Then it is easy to see that the obfuscator h will identify the tag to the server with non-negligible probability.
Indeed, the contribution of the authenticator f to the identification of the tag in constant key-lookup time is
asymptotically smaller than 1 by a non-negligible amount. More specifically, if the server can only check
the authenticator of a constant number ` of tags for a possible match, then it will succeed with probability
bounded by ε′ = `/T . It follows that the obfuscator h will identify the tag to the server independently of f
with probability bounded below by 1− ε− ε′, or 1− `/T − ε, which is non-negligible if n is large enough,
since `/T must eventually approach 0—as ` is constant, and T is not, as functions of n.

Since we are assuming that every RFID tag in our challenge-response protocol can obfuscate its iden-
tifier, but only the back-end server can disambiguate it, h must be a public-key one-way function (it must
have a trapdoor that only the back-end server possesses).

5 Mitigating Privacy in Support of Availability
In this section we weaken the requirement for unlinkable privacy while maintaining scalability for the back-
end server. We first observe that for tag responses to be linked certain patterns must be detectable. This
can happen in different ways. For example, the adversary may succeed in detecting patterns after having
corrupted some tags. Alternatively the adversary may destabilize tags so that they cannot be recognized by
the back-end server in scalable time, thus forcing them into using responses with detectable patterns (e.g.,
re-using pseudonyms), or forcing the server into a linear key-lookup search.

The Molnar-Soppera-Wagner [MSW06] protocol discussed earlier is an example of an anonymous RFID
protocol for which tag responses may be linked if some tags get corrupted. Most of the other anonymous
RFID protocols proposed in the literature rely on state synchronization—see e.g., [BvLdM06, Dim05, Jue04,
HM04, vLBdM07, OSK03, Tsu06]. State synchronization protocols require an extra pass to confirm state
changes, and are subject to the well known “two generals’ attack” problem: the server (tag) can never be
certain of the next state of the tag (server) when the adversary controls the communication channels. These
protocols are prone to disabling attacks. In the worst case, tags cannot be directly recognized by the server,
which must then run a linear search through the key-lookup database for each disabled tag. To mitigate this
DoS attack, tags may reuse earlier pseudonyms (if these are still recognizable), or as a last resort, reveal
their identity (not their secret key).

A desirable privacy compromise is to minimize the loss of privacy. For example, to restrict linkability to
those periods when the tag is attacked. One of the most effective disabling attack is the entrapment attack,
in which the tag is prevented from communicating with authorized readers and can only be interrogated by
the adversary. Entrapment is not necessarily physical although it does imply the ability to locate or track,
since tags communicate autonomously in wireless mode.

Attacks of this kind on privacy prompt us to revisit the definition of identification. The traditional

9

cryptographic approach is to define identification as entity authentication [MvOV96]. However in more
general applications it is clear that identification has a broader scope and interpretation. Entities are typically
identified by their attributes, which may not involve authentication. For example, for a criminal anonymity
means not being visually identified by a witness: if the criminal is identified then he/she will most likely be
found guilty in a court of law even though the witness may not have checked the criminal’s ID while the
crime was committed. It is therefore necessary to interpret RFID privacy in the context of its application.

5.1 An Anonymous RFID Authentication Protocol with Constant Key-Lookup
We present a scalable solution for RFID authentication in which anonymity is established by synchronizing
states. Our solution will allow a determined adversary to link tags during an entrapment attack, but this
will not extend beyond such attacks. More specifically, although the adversary may succeed in linking
tags during an entrapment session, this information will be independent for each entrapment session, thus
minimizing the loss of privacy.

The protocol is described in Fig. 2, and has three passes. It is based on O-FRAP, a protocol proposed

Figure 2: An anonymous RFID authentication protocol that supports constant key-lookup.

TAG(k, r, q, mode, ctr) SERVER(D = {[(k; ri, q, q
1

i , . . . , qc
i), i∈{old, cur}]})

c ∈R {0, 1}
c

�

if mode =0 then ps← r else

ps← g(k; q||IV ||ctr), update ctr

ν0||ν1||ν2 ←− g(k; ps||c)

auth← ν1

ps||auth
-

if (ps, k) 6∈ D then output REJECT else

ν′

0
||ν′

1
||ν′

2
← g(k; ps||c)

if ν′

1
6= auth then output REJECT else

conf ← ν′

2

conf
�

if conf = ν2 then if ps = rcur then

if mode=0 then r ← ν0 else rold ← rcur and rcur ← ν′

0

mode← 0 and q ← ν0 else if ps = rold then rcur ← ν′

0

else mode← 1 else if ps = qj
cur then q ← ν′

0
and

{qi
old ← qi

cur}
c
i=1

, {qi
cur ← g(k; q||IV ||ctr(i))}ci=1

else if ps = qj
old then q ← ν′

0
and

{qi
cur ← g(k; q||IV ||ctr(i))}ci=1

output ACCEPT

by Le et al. [vLBdM07], which is an optimistic forward-secure RFID authentication protocol. To simplify

10

the description of our protocol in this paper, we shall drop the requirement for forward-secrecy: however
the required changes to recapture this functionality are straightforward (and are discussed in Section 5.5).

5.2 Trusted Setup and Key-Lookup Database.
Each tag is initially assigned a unique tuple (k; r, q) of random values that is stored in non-volatile memory:
k is its secret key, r a one-time pseudonym and q a seed for generating entrapment pseudonyms. The tag is
also given a boolean variable mode and a cyclic counter ctr that takes c distinct values, c a small constant.
The protocol uses an appropriate PRF g to generate values for the pseudonyms, the authenticators and for
confirmation. For each tag, the server stores in a key-lookup database DB a tuple: (k; ri; q; q

1

i , . . . , q
c
i), i ∈R

{old, curr}, with the q a seed and the qj
i pseudonyms used during entrapment attacks. Initially: q = q0,

r = ri = r0, and qj
i = g(k; ||q0||IV ||ctr(j)), i ∈ {old, cur}, 1 ≤ j ≤ c, where q0, r0 are random values,

IV is an initial vector and ctr(j) is the j-th value of ctr. The server stores pairs (old, cur) of values in
DB to maintain state coordination with the tags. We assume that DB is indexed by each of the 2c + 2
pseudonyms so that the cost of disambiguating a pseudonym is constant.

The state of each tag is controlled by the variable mode: if the tag is subject to an attack mode = 1,
otherwise mode = 0. More specifically, mode ← 1 whenever the tag fails to receive confirmation to its
response from a challenge, while mode ← 0 when confirmation has been received. When in mode = 1,
the tag employs entrapment pseudonyms computed on-the-fly by evaluating g(k; q||IV ||ctr). Since there
is only a constant number of such values (eventually they recycle) the tag has to defend itself against fly-
by attacks by rogue readers that seek to exhaust these values. The simplest defense is to use a time-delay
mechanism as described in [vLBdM07]. This will extend the recycle time by a few orders and thwart such
attacks, but may fail to deal with entrapment attacks, for which eventually the tag responses will be linked.
However, unlinkability will be restored the moment the tag gets mutually authenticated by the server: on
receiving confirmation from the back-end server the tag will update its seed q.

5.3 Protocol Description
We refer to Fig. 2. In the first pass the tag is challenged by the server with a random c. If the tag received
confirmation in its previous interaction (mode = 0) then it will update its pseudonym ps← r and compute
three values ν0, ν1, ν2 by inputting (k, ps, c) to the PRF g: ν0 is kept for later use as a pseudonym update;
ν1 = auth is an authenticator and ν2 = conf is used for confirmation. The tag responds with ps||auth.
If the tag has not previously received confirmation (mode = 1) then it uses a different pseudonym in its
response, computed on-the-fly with seed q.

The server uses the key-lookup database DB to disambiguate ps, and then checks auth. If correct, it
sends conf to the tag. The server then proceeds with pseudonym updates, that have to be synchronized with
those of the tag: ps = rcur corresponds to the case when the tag is not under attack; ps = rold and ps = qj

i ,
i ∈ {old, cur}, correspond to cases when the tag did not receive confirmation, with the last one indicating
that the tag was (also) previously interrogated by an unauthorized reader (an entrapment attack). In this case
the server will use a new seed q ← ν0 to update the pseudonyms qcur, to support unlinkability between
entrapment attacks.

If the tag receives confirmation then it will update the pseudonym r if in mode = 0, otherwise it updates
the seed q. What distinguishes this protocol from O-FRAP [vLBdM07] is that, at all times in this protocol,
the values r, q stored by the tag in its non-volatile memory are synchronized with those stored by the server
in DB. Consequently, the tag can be identified with constant key-lookup.

11

5.4 Security Considerations
The protocol in Fig. 2 addresses disabling attacks by weakening the requirement for unlinkable privacy.
However linkability is restricted to entrapment attacks in which the tag is either physically restricted or
closely tracked. During such attacks it is reasonable to assume that the tag is monitored and therefore, to
some extend, already identified or located.

Our protocol is based on O-FRAP [vLBdM07] that is proven secure in the UC framework. From a secu-
rity point of view the main difference with our protocol is its functionality: it uses entrapment pseudonyms
that will eventually recycle. However these pseudonyms remain pseudo-random until they get exhausted.
In the full version of this paper we shall detail of the changes that have to be made to the security proof of
O-FRAP to get a proof. We shall show:

Theorem. Let m be the maximum number of uninterrupted interrogations that the adversary is allowed to
make to a tag.

1. If m is bounded by a constant c then: the protocol in Fig. 2 realizes one-way authentication with
strong privacy in the UC framework and supports constant key-lookup.

2. If m is not constant then: the protocol in Fig. 2 realizes one-way authentication with linkable privacy
in the UC framework and supports constant key-lookup.

5.5 Implementation and extensions
Our protocol requires only the use of a PRF which as pointed out in Section 3.4 can be implemented with
a PRNG. This allows for very efficient implementations. In particular the protocol can be adapted to con-
form with the EPC Gen2 standards [EPC]. However this protocol does not support forward-secrecy. To
capture this functionality we can adapt it so that as in O-FRAP [vLBdM07] the key is updated whenever the
pseudonym is. The tag will require additional non-volatile memory for key update storage, but otherwise
the same basic circuit can be used. One can also capture key-exchange, by using O-FRAKE [vLBdM07],
which is a key-exchange extension of O-FRAP.

6 Conclusion
In order for RFID systems that support strong security and privacy to become a reality, a well-rounded
practical solution that also considers threats to availability, and which supports scalability, is needed. In this
paper, we have introduced a scalability compiler that transforms a challenge-response RFID authentication
protocol into a similar RFID protocol that shares the same functionality and security as well as provides
scalability for the back-end server (constant lookup time even in the presence of active adversaries).

We have described a particular instantiation of the compiler and illustrated its application to a family
of authentication protocols with strong security features. In particular, we have shown how to achieve
security and privacy with constant lookup cost within the universally composable security model. The
compiler requires only several hundred additional GEs of circuit area. Moreover, the compiler preserves
other properties, such as suitability for batch authentication with delayed verification by the trusted server.

We have also proven that one-way tradoor functions have to be used to obfuscate identifiers, in RFID
authentication protocols that support anonymity with constant lookup cost. Finally by weakening the restric-
tion on unlinkable privacy, we have described a provably secure anonymous RFID authentication protocol
that supports scalable lookup and minimizes the loss of privacy due to linkability.

12

References
[AO05] Gildas Avoine and Philippe Oechslin. A scalable and provably secure hash-based RFID pro-

tocol. In Proc. IEEE Intern. Conf. on Pervasive Computing and Communications (PerCom
2005), pages 110–114. IEEE Press, 2005.

[BDJR97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption. In Proc. IEEE Symp. on Foundations of Computer Science (FOCS 1997). IEEE
Computer Society Press, 1997.

[BvLdM06] M. Burmester, T. van Le, and B. de Medeiros. Provably secure ubiquitous systems: Universally
composable RFID authentication protocols. In Proceedings of the 2nd IEEE/CreateNet Inter-
national Conference on Security and Privacy in Communication Networks (SECURECOMM
2006). IEEE Press, 2006.

[Can95] R. Canetti. Studies in Secure Multiparty Computation and Application. PhD thesis, Weizmann
Institute of Science, Rehovot 76100, Israel, June 1995.

[Can00] R. Canetti. Security and composition of multi-party cryptographic protocols. Journal of Cryp-
tology, 13:1:143–202, 2000.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proc. IEEE Symp. on Foundations of Computer Science (FOCS 2001), pages 136–145. IEEE
Press, 2001.

[CKM94] D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking generator. In Proc. Advances
in Cryptology (CRYPTO 1993), LNCS, pages 22–39. Springer, 1994.

[Dim05] T. Dimitriou. A lightweight RFID protocol to protect against traceability and cloning at-
tacks. In Proc. IEEE Intern. Conf. on Security and Privacy in Communication Networks (SE-
CURECOMM 2005). IEEE Press, 2005.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael. Springer-Verlag, New York, Inc.,
Secaucus, NJ, USA, 2002.

[EPC] EPC Global. EPC tag data standards, vs. 1.3. http://www.epc gl oba li nc .o rg /
standards/EPCg lob al _T ag _D ata _S ta nd ar d_T DS _V %e rs ion _1 .3 .p df .

[FDW04] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong authentication for
RFID systems using the AES algorithm. In Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2004), volume 3156 of LNCS. Springer, 2004.

[FWR05] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen. Aes implementation on a grain
of sand. In IEE Proceedings on Information Security, volume 152(1), pages 13–20, 2005.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct pseudorandom func-
tions. Journal of the ACM, 33(4), 1986.

[HM04] D. Henrici and P. M. Müller. Hash-based enhancement of location privacy for radio-frequency
identification devices using varying identifiers. Proc. IEEE Intern. Conf. on Pervasive Com-
puting and Communications, pages 149–153, 2004.

13

[Jue04] A. Juels. Minimalist cryptography for low-cost RFID tags. In Proc. Intern. Conf. on Security
in Communication Networks (SCN 2004), volume 3352 of LNCS, pages 149–164. Springer,
2004.

[LH06] HangRok Lee and DoWon Hong. The tag authentication scheme using self-shrinking generator
on rfid system. In Transactions on Engineering, Computing, and Technology, volume 18, pages
52–57, 2006.

[MSW06] David Molnar, Andrea Soppera, and David Wagner. A scalable, delegatable pseudonym pro-
tocol enabling ownership transfer of RFID tags. In Proc. Workshop on Selected Areas in
Cryptography (SAC 2005), volume 3897 of LNCS. Springer, 2006.

[MvOV96] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[OSK03] M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic approach to “privacy-friendly” tags.
In Proc. RFID Privacy Workshop, 2003.

[Rab79] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factoriza-
tion. Technical Report TR-212, Massachusetts Institute of Technology, Cambridge, MA, USA,
1979.

[Sha07] Adi Shamir. Squash: A new one-way hash function with provable security properties for
highly constrained devices such as RFID tags. In Invited Talk, Internat. Conf. on RFID Security
(RFIDSec’07), 2007.

[SWE03] S. Sharma, S. Weis, and D. Engels. RFID systems and security and privacy implications. In
Proc. Workshop on Cryptographic Hardware and Embedded Systems (CHES 2002), LNCS,
pages 454–470. Springer, 2003.

[Tsu06] G. Tsudik. YA-TRAP: Yet another trivial RFID authentication protocol. In Proc. IEEE Intern.
Conf. on Pervasive Computing and Communications (PerCom 2006). IEEE Press, 2006.

[vLBdM07] T. van Le, M. Burmester, and B. de Medeiros. Universally composable and forward-secure
RFID authentication and authenticated key exchange. In Proc. of the ACM Symp. on Informa-
tion, Computer, and Communications Security (ASIACCS 2007). ACM Press, 2007.

14

