
Efficient Computationally Private Information Retrieval From

Anonymity or Trapdoor Groups

Jonathan Trostle and Andy Parrish
Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Rd.
Laurel, MD 20723

Abstract

A Private Information Retrieval (PIR) protocol allows a database user, or client, to obtain
information from a data- base in a manner that prevents the database from knowing which data
was retrieved. Although substantial progress has been made in the discovery of computationally
PIR (cPIR) protocols with reduced communication complexity, there has been relatively little
work in reducing the computational complexity of cPIR protocols. In particular, Sion [18] argues
that existing cPIR protocols are slower than the trivial PIR protocol (in overall performance). In
this paper, we present a new family of cPIR protocols with a variety of security and performance
properties. Our protocols enable much lower CPU overhead for the database server. When the
database is viewed as a bit sequence, only addition operations are performed by the database
server. We can view our protocol as a middle ground between the trivial protocol (fastest possible
computational complexity and slowest possible communication complexity) and protocols such
as Gentry-Ramzan [6] (fast communication complexity but slower computational complexity).
This middle ground enjoys a much better overall performance. The security of the general
version of our protocol depends on either a trapdoor group assumption or sender anonymity
[14], and we present two specialized versions, the first of which depends on the trapdoor group
assumption, and the second which depends on the sender anonymity assumption. We may view
both Gentry-Ramzan and our cPIR protocol as instances of a more general new construct: the
trapdoor group. In a trapdoor group, knowledge of the trapdoor allows efficient computation
of an inversion problem, such as computing discrete logarithms. Without the trapdoor, it is
computationally hard to solve the inversion problem. For our protocol, we assume, roughly
speaking, that given only the elements be1, . . . , bet in the group Zm, where ei < m/t and t is
small, it is hard to compute low order bits of the group order m. One version of our cPIR
protocol depends only on sender anonymity, which to our knowledge, is the first cPIR protocol
to depend only on an anonymity assumption. Our prototype implementation shows that our
performance compares favorably with existing cPIR protocols.

1 Introduction

Private Information Retrieval (PIR) is any protocol that allows a database user, or client, to obtain
information from a database in a manner that prevents the database from knowing which data
was retrieved. Typically, the database is modeled as an n-bit string and the user wants to obtain
bit i in the string, such that i remains unknown to the database. More generally, the database is
modeled as a sequence of blocks, and the client will retrieve the ith block, where i remains unknown
to the database. The trivial protocol consists of downloading the entire database, which clearly

1

preserves privacy. The goal of PIR protocols is to obtain better performance (both computational
and communication costs) than the trivial protocol, yet maintain privacy.

There is a wealth of information in a user’s database access patterns. In many cases, these
patterns give information about a user’s or organization’s future plans. For example, consider a
pharmaceutical corporation’s plans for future patent applications and potential database searches
in connection with those plans.

In this work, we consider applications where the privacy of the database is not protected. In
particular we consider private information retrieval from either a public database or a database
with a group of subscribers. Although clients can download the entire database, this takes too long
for a large database. Thus PIR that protects only the user is desirable in this scenario.

1.1 Prior work

Chor [4] introduced PIR. Their paper presents information-theoretic PIR protocols where the
database is replicated and the replicas are not allowed to communicate; they show that single
database information-theoretic PIR with no leakage does not exist. In general, the security of
information-theoretic PIR protocols requires that the replicas not communicate.

Kushilevitz and Ostrovsky [10] presented the first single database computational PIR (cPIR)
scheme where the security is established against a computationally bounded adversary. Their
scheme is based on the quadratic residuosity assumption. More generally cPIR schemes can be
constructed based on homomorphic public key cryptosystems. [7] showed how to protect database
privacy as well. The work in [3, 15, 12, 6] demonstrated schemes with polylogarithmic communica-
tion complexity. On the other hand, there has been little work aimed at improving computational
costs on the server (possibly since the server cannot have better than Ω(n) computational com-
plexity). Sion and Carbunar [18] presented performance results claiming that all of the existing
schemes are slower than the trivial protocol, mainly due to the bottleneck caused by the server’s
computational load. Ishai et. al. [9] explored using anonymity in order to create more efficient
cPIR protocols; their protocol depends on both sender anonymity and the noisy curve reconstruc-
tion problem (whereas our anonymity based cPIR protocol depends only on sender anonymity).
Aguilar-Melchor and Gaborit [1] give a fast cPIR protocol that is based on coding theory and lattice
assumptions.

1.2 Our results

First we will present an anonymity based cPIR protocol that depends only on sender anonymity.
We then present the trapdoor group based cPIR protocol where security depends on the hidden
modular group assumption (explained below). Finally, we will present the generalized cPIR protocol
which includes the first two as special cases; here security assumes either sender anonymity or the
hidden modular group assumption.

1.2.1 Anonymity Based cPIR Protocol

Given sender anonymity, we can apply the ”split and mix” technique from [9]. The user will split
their query into a small number of subqueries and mix them with other subqueries before sending
to the database server. These subqueries will be mixed with other user cPIR subqueries. By mixing
the subqueries, the adversary must guess the right subqueries to add back together to obtain the

2

original query. This problem becomes difficult as the number of users and queries increases. As
the number of users grows, the amount of noise added by each user (the number of subqueries w
that each query will be split into) can be reduced.

An overview of the anonymity based cPIR protocol (for the bit vector case) is as follows:

1. We view the database as a
√

n by
√

n bit matrix, with n total entries. For example, each row
could be viewed as a block of data (set of bits).

2. The user will obtain a single block by sending a PIR query. The user creates a bit vector
B with a one bit in the position corresponding to the row the user will query, and zero bits
in the other positions. Of course, sending this vector would not protect the user’s privacy.
Therefore, the user adds (over the group Z2) a uniformly generated bit vector U to B to obtain
the bit vector R. R will be sent to DB as a subquery along with other ”noise” subqueries.
These subqueries will be a set of vectors D1, . . . , Dw such that

∑w
i=1 Di = U.

3. DB receives the subqueries. Of course, if these are the only subqueries received by DB, it
can sum them and obtain B. We obtain security via sender anonymity and assuming that
many subqueries are sent by the original user and other users corresponding to many queries.
The subqueries are all uniformly distributed and indistinguishable to DB. Thus it becomes
computationally infeasible for DB to pick the right queries to add together to obtain B.

4. For each subquery, DB will sum the elements (mod 2) in each column corresponding to the
one bits in the received subquery. The resulting bit vector is returned to the user. Note: DB
could sum the elements as integers and allow the user to mod the result.

5. The user will take the correct set of returned bit vectors and sum them (mod 2) in order to
obtain the desired row of DB.

Example: Here we give a toy example for the protocol. We consider the database as a 4x4 bit
matrix DB (or as consisting of four row elements each with 4 bits).

DB =


1 0 1 0
0 1 0 1
1 0 0 1
1 1 0 1



Let B1 = [0 0 1 0] which indicates that the user desires to obtain the 3rd row (record), and
let B2 = [0 0 0 1] which indicates that the same or a 2nd user desires to obtain the 4th row in
the DB. The first user generates uniformly distributed vectors U1 = [1 1 0 0], D1 = [0 1 0 0],
and D2 = [0 0 1 1]. Then D3 = [1 0 1 1] is selected such that

∑
i Di = U1. The first query

B1 is split into subqueries R1 = B1
⊕

U1, D1, D2, and D3. Similarly, the second user generates
uniformly distributed vectors U2 = [0 1 0 0], E1 = [1 1 0 0], and E2 = [0 1 1 1]. Also, E3 =
[1 0 1 1]

⊕
[0 1 0 0] = [1 1 1 1] is selected such that

∑
i Ei = U2. The second query B2 is split into

subqueries R2 = B2
⊕

U2, E1, E2, and E3.
Suppose the subqueries from both queries are mixed in the following order:

D1, R1, E2, D3, R2, E1, E3, D2.

3

Then due to sender anonymity the adversary cannot determine which subquery was sent by which
user. Also, each of the subquery vectors is uniformly distributed so they are indistinguishable to
the adversary. The adversary can learn which records are requested only by adding the correct
subqueries together. As the number of queries and subqueries increases, this task becomes more
difficult.

We now consider correctness. The DB will take each subquery vector and compute the inner
product of it and the ith column to get the ith element of the return vector. Thus each subquery
vector will generate a response vector. Each user will receive a response vector corresponding to
each of their subqueries. The response vector for the first subquery D1 is [0 1 0 1]. Similarly the
response vectors for R1, D3, and D2 are [0 1 1 0], [1 1 1 0], and [0 1 0 0]. The first user will sum
(mod 2) these response vectors to obtain [1 0 0 1], which is the 3rd row of the DB as desired.
Similarly, the 2nd user sums the response vectors it receives to obtain the 4th row of the DB as
desired.

1.2.2 Trapdoor Group cPIR Protocol

We now overview the trapdoor group cPIR protocol. In the Gentry-Ramzan PIR protocol, the
group Z∗n is used, where Φ(n) is unknown to the server (an extension of the Φ-hiding assumption
is used). Using its knowledge of Φ(n), the client is able to compute discrete logs in order to obtain
the requested blocks from the server. Thus Φ(n) acts as a trapdoor. Similarly, in our trapdoor
group cPIR protocol, the group order, m, is unknown to the server whereas the client uses this
value to compute discrete logs to obtain the results of the PIR query.

The natural generalization is a trapdoor group. In a trapdoor group, an inversion problem such
as computing discrete logarithms may be computed efficiently assuming knowledge of the trapdoor.
Without the trapdoor, solving the inversion problem is computationally hard.

The trapdoor group version of our cPIR protocol works as follows:

1. The user selects a large secret number m (the group order), depending on the number of
entries in the database, n, and the number of rows requested, r. We view the database as a√

n by
√

n matrix, with n total entries, each with log2(N) bits. (A common case would be
N = 2 in which case the database is viewed as a square bit array).

2. The user randomly selects a secret value b ∈ Z∗m, where gcd(b, m) = 1, and t =
√

n secret
coefficients {ei}, with the restriction that (a) ei < m/(t(N − 1)) for all i (b) the coefficients
for unrequested rows are multiples of N r, and (c) the coefficients for requested rows have the
form N l + alN

r, for some choice of l < r and al. (If r = 1, then the user is requesting one
row, and all the ei values are even except for the index j corresponding to this one row; ej is
odd).

3. The user sends bei mod m, 1 ≤ i ≤ t to the database.

4. For each column, the database multiplies each bei by the corresponding database entry and
adds up all of the results (as integers since m is unknown to the database), and sends the
total back to the user.

5. The user multiplies each of the results by b−1 mod m, and finds the requested values in the
base N digits of these quotients.

4

The security of our trapdoor group PIR protocol follows from the following hardness assumption:
let t =

√
n, where the adversary is given only be1, . . . , bet in the group Zm (as values less than m),

where ei < m/(t(N − 1)), 1 ≤ i ≤ t. Let j be the requested index. ej is selected randomly from the
odd values using the uniform distribution. Then ei, where i 6= j, is selected uniformly randomly
from the even values. Then it is computationally infeasible for a probabilistic polynomial time
algorithm to compute the group order m. Typical values are n = 230, N = 2, and m = 2200. We
discuss this further below.

We give a reduction that shows that an adversary who can break the security of our trapdoor
group cPIR protocol with non-negligible probability, can also determine the value of m with non-
negligible probablity, thus breaking the above assumption.

We demonstrate lower bounds on m that ensure that the adversary cannot determine m by
treating the PIR request values as random opaque values without structure (given enough of such
values, then the adversary could mount a guessing attack on m.) In other words, for the practical
sizes of databases that we consider, the number of request elements t is small relative to the size
of m so such attacks are not feasible.

We also show a strong security property for our trapdoor group cPIR protocol. In particular, we
show that any attack that only considers a small subset of c PIR request elements cannot succeed.
The number c will depend on the modulus m. The idea here is that a small set of PIR request
elements can also represent a different PIR request with a different base value b′. As c increases,
this becomes more unlikely.

Hidden Modular Group Order Hardness Assumption: Here we discuss the hidden modular
group order hardness assumption further. Our trapdoor group cPIR protocol has some similarities
to the Merkle-Hellman public key cryptosystem [13]. The Merkle-Hellman protocol works as follows:
a user creates a private key (m, b, e1, . . . , en) where m is the modulus, gcd(b, m) = 1, the sequence
e1, . . . , en is superincreasing (ei >

∑i−1
j=1 ej), and

∑n
j=1 ej < m. Then the user computes

ai = bei mod m, 1 ≤ i ≤ n.

The public key is the set of elements a1, . . . , an. To encrypt a bit string x1, . . . , xn, a user would
compute s =

∑
xiai.

Shamir, building upon the work of others, was able to break the Merkle-Hellman scheme [16].
(Also, [2] describes the other work in this area). In particular, he gave an algorithm which allows
decryption of a message without knowledge of the private key. Subsequently, lattice reduction
attacks [11] were also used with success to break similar cryptosystems.

The above attacks did not reveal the secret modulus m. Furthermore, Shamir and Zippel
[17] had previously shown that knowledge of m was sufficient to cryptanalyze the Merkle-Hellman
algorithm. Given that no attacks were found that revealed m gives us additional confidence in our
hardness assumption. (The above attacks do suggest that the PIR response may be inadequate to
protect confidential server data from network attackers. In the PIR model, the adversary is the
database server, and the server already has access to the data. Thus the attacks do not affect PIR
security).

1.2.3 General cPIR Protocol

Our general cPIR protocol is the trapdoor group cPIR protocol together with the split and mix
construction using anonymity as described above for the anonymity based cPIR protocol.

5

Remark: The anonymity only version of our cPIR protocol corresponds to the special case of the
general cPIR protocol parameters where m is public, b = 1, ai = 0, and r = log(m).

1.3 Performance

Our cPIR protocol is a significantly faster, single database cPIR protocol. We gain performance
over many existing cPIR protocols since the database performs additions instead of modular mul-
tiplications.

We give some performance results from our prototype implementation later in the paper. For
example, our tests indicate that a PIR query and response to obtain one file can be processed
in approximately 8 minutes, with likely improvement to around 4-5 minutes by fully leveraging
an optimized implementation on a dual core processor given a database of 1000 2 MB files. Our
implementation is unoptimized, so further improvements are likely (on the other hand, we have
not integrated our algorithm into a database in a manner that allows keyword search queries vs. a
request for an index per the usual PIR model).

1.4 Organization

The paper is organized as follows: we present the anonymity based cPIR protocol in Section 2. We
then present the trapdoor group cPIR protocol in Section 3. Section 4 discusses the hidden modular
group order hardness assumption and security for the trapdoor group cPIR protocol. Here we show
that the number of points in a PIR request doesn’t leak too much information about m, we give
the reduction argument, and cover the strong security property. We cover our implementation’s
performance in Section 5. We summarize and discuss future work in Section 6. Appendix A
analyzes the upper bound on performance based on the methodology from [18].

2 Anonymity Based cPIR Protocol

In this section, we present the anonymity based cPIR protocol. It depends on sender anonymity
(see below).

At the end we discuss the general cPIR protocol where the security depends on either the
existing hidden modular group order assumption (see below) or sender anonymity. In other words,
an adversary must break both assumptions in order to break the security of the cPIR protocol.

Ishai et. al. [9] used the anonymity assumption in combination with a noisy curve reconstruction
assumption to show security for cPIR protocols. We apply their “split and mix” technique. To
our knowledge, our anonymity based cPIR protocol that we present in this section is the first PIR
protocol to rely solely on an anonymity assumption.

Definition 2.1 (Sender Anonymity Assumption) The PIR system satisfies the sender anony-
mity [14] assumption when a particular message is not linkable to any sender, and that to a par-
ticular sender, no message is linkable. (In other words, the adversary gains no information from
the run of the system that would enable linking messages and senders better than from her a-priori
knowledge.)

6

Definition 2.2 As above, we view the database as a
√

n by
√

n bit matrix, say DB = (xi,j). Let
t =

√
n. We select a public group order m = 2i. Let B be the random variable corresponding to the

cPIR request that takes on zero values for non-requested indices, and takes on the values 1, 2, . . . , i
for the requested indices, respectively. Let R = B−U mod(m) where U is uniform over length i bit
strings and let U =

∑w
i=1 Di where D1, . . . , Dw−1 are uniform over length i bit strings.

The user sends w+1 PIR requests where the elements are generated from R,D1, D2, . . . Dw but
R,D1, D2, . . . Dw are permuted into a random sending order (we will see later that they will also be
mixed with other queries as well). We will show that R is uniform; therefore R,D1, D2, . . . Dw−1

are indistinguishable.
DB processes each received subquery by computing

Cj,k =
t∑

i=1

xi,jvi,k,mod(m)

given request subquery vk = (v1,k, . . . , vt,k). All the Cj,k values are returned to the respective
users. Each returned column vector Cj,k is processed by the user; the user sums all of the Cj,k

vectors corresponding to a query:
∑

k Cj,k =
∑

k

∑
i xi,jvi,k =

∑
i(xi,j

∑
k vi,k) = δi,jmod(m) where

δi,j = xi,j if i is a desired index, 0 otherwise. Thus we see that the user obtains the rows of the DB
corresponding to the requested indices.

We will prove the following theorem in a more general setting that includes both the anonymous
cPIR protocol with parameters from the preceding definition and the general cPIR protocol. In
particular, m is the group order as above, b is the base value (b = 1 above), r and t are as described
for the trapdoor group protocol in Section 1 and 3. The e have the form e = aN r for non-requested
indices and e = N l +aN r for requested indices, where either (1) a is zero as described above for the
anonymity based cPIR protocol or (2) a is uniformly randomly generated where a < m√

n(N−1)Nr .

Theorem 2.3 R = B − U is uniform; therefore R,D1, D2, . . . Dw−1 are indistinguishable.

Proof: Let β = bm/tc. We have:

α1 = Pr[B = y] =
2r

β

(
t− r

t

)
where y = be and e = aN r for some a.

α2 = Pr[B = y] =
2r

β

(
1
t

)
where y = be and e = 1 + aN r for some a.

. . .

αr+1 = Pr[B = y] =
2r

β

(
1
t

)
where y = be and e = N r−1 + aN r for some a.

7

Then

Pr(R = z) =
∑
β/2r

α1(1/m) +
∑
β/2r

α2(1/m) + . . . +
∑
β/2r

αr+1(1/m)

= (1/m)[(t− r)/t + r(1/t)] = 1/m

The database adversary, given a sequence of PIR requests, can determine the B values only
by adding the correct PIR request values together. Thus we obtain security via the split and mix
technique; the user splits their PIR query into a small number of subqueries and the additional
PIR subqueries corresponding to other PIR requests (including from the same user) serve to make
it difficult for the Adversary to add the correct requests together to obtain B. In other words, with
sufficiently many queries and subqueries, the Adversary’s task of picking the right collection of
queries to add together becomes computationally infeasible.

2.1 Anonymity Based cPIR Protocol - Analysis

Suppose we select m = 2 as in the example in Section 1. The distribution B consists of a single ”1”
bit for the requested index and ”0” bits for the non-requested indices. The advantage in selecting
small values of m is that the user will send many smaller queries to retrieve the same amount of
information as if sending a few large queries (this advantage holds if the speedup is linear as log(m)
decreases.) But sending more queries is an advantage since w (the number of subqueries that a
query is split into) will be smaller. We discuss this further in Section 5.

The distributions U,D1, . . . , Dw−1 are identical independent uniform distributions. Therefore
Dw is uniform as well. Any subset of D1, . . . , Dw gives no information about B. Similarly R and
any subset of w−1 elements of D1, . . . , Dw gives no information about the missing Di distribution.
The adversary is given a sequence of subquery requests where the subqueries belong to different
queries. Thus the adversary must make a random guess at selecting R,D1, . . . , Dw as the subqueries
belonging to a single query. The computational complexity increases as the number of queries and
w increases. Also, as the number of queries per unit time increases, then w can be decreased to
obtain the same amount of security. For high query rates, the performance is similar to the trapdoor
group cPIR protocol discussed above, since each client can add less noise (we may shrink w).

Let q be the total number of queries sent by all users during the time interval (so q(w + 1)
subqueries are sent during the interval, since each query is subdivided into w + 1 subqueries.) The
probability of success for an adversary guess is q/

(q(w+1)
(w+1)

)
. Thus for example, suppose w = 7, B

is a bit vector, the database consists of 1024 2MB files, and the user will retrieve a single file. If
t =

√
n = 217, then the user will need to send 128 queries (27217 = 224) and each query will be

subdivided into 8 (since w = 7) subqueries. If there are 8 such meta-queries (from multiple users)
arriving per unit time, then the probability of a correct adversary guess is approximately

q/

(
q(w + 1)
(w + 1)

)
= 1024/

(
8196

8

)
≈ 2−78.7

2.2 General cPIR Protocol

This protocol combines the sender anonymity property as described above and the trapdoor group
parameters (see above and Section 1). Since we split the queries, the performance of this protocol

8

is not as good as the performance of the trapdoor cPIR protocol. Since we use the trapdoor group
parameters, including the larger (secret) modulus, the performance is less than the anonymity
based cPIR protocol. Thus we trade performance for additional security (we now depend on either
sender anonymity or the hidden group order assumption).

3 Trapdoor Group cPIR Protocol

We present our protocol in a more general group setting than Zm.
Let DB = (xi,j) be a database, viewed as a

√
n×

√
n table of elements of ZN . Let G = 〈g〉 be

a group of order m relatively prime to N , in which discrete log can be efficiently computed.
A user wants to query DB to learn the values of various entries, all the values from rows

i0, . . . , ir−1 in such a way that DB cannot determine which entries the user is querying.
The user picks a random y ∈ Z∗m, and computes his secret key b = gy. Since y and m are

relatively prime, b generates G. He then randomly picks secret exponents e1, e2, . . . , e√n < m√
n(N−1)

satisfying the following:

1. If il is one of the queried rows, then eil = N l + ailN
r for some ail .

2. Otherwise, if i is an unqueried row, then ei = aiN
r for some ai.

Note that the restriction on the ei’s requires that each ai is bounded above by m√
n(N−1)Nr . Each

ai is randomly generated from the uniform distribution.
The user then calculates bi = bei . He sends {bi} to DB.
For each column j, DB computes

Cj =

√
n∏

i=1

b
xi,j

i

and sends these values to the user.
The user computes hj ≡ logb(Cj) mod m, and writes the result as

(z|m|,j · · · z1,jz0,j)N

in base N . The user concludes that
xi0,j = z0,j

xi1,j = z1,j

...

xir−1,j = zr−1,j

Remark: Let t =
√

n. Note that r is bounded by (log(m)− log(t(N − 1))− log(t))/(log(N)). This
fact follows from ai < m√

n(N−1)Nr which implies t < m√
n(N−1)Nr .

9

3.1 Correctness

Fix a column j. We omit the corresponding subscripts for simplicity. We show that the protocol is
correct for this column. Let t =

√
n.

h = logb C = logb

(
t∏

i=1

bxi
i

)
= logb

(
t∏

i=1

bxiei

)

≡
t∑

i=1

logb bxiei ≡
t∑

i=1

xiei mod m

Because each xi ≤ N − 1, and ei < m
t(N−1) , we see that

t∑
i=1

xiei <

t∑
i=1

(N − 1)
m

t(N − 1)
= m

This inequality tells us that the residue modulo m is the number itself, meaning

h =
t∑

i=1

xiei.

Now, the user writes h = (zm · · · z1z0)N . Consider the base N representation of each ei. For
0 ≤ l < r, eil has a 1 in its (N l)s place. It follows that xileil has a xil in its (N l)s place. Because eil

is the unique exponent with a non-zero digit in this position, we see that adding the xiei’s causes
no “carries.” From here, we see that the value of zl is precisely the value of xil .

3.2 Trapdoor Group cPIR Protocol Example

Here we give a toy example for the protocol. We consider the database as a 3x3 bit matrix DB (or
as consisting of three row elements each with 3 bits).

DB =

 1 0 1
0 1 1
1 1 0



Suppose the database client desires to obtain the 3rd row of the database. First the client
selects the group order, which is not required to be prime. In this case, we select (arbitrarily for
the purposes of the example) Zp where p = 83. The client also selects a random secret element
b, where b has a multiplicative inverse. Suppose the client selects b = 33. The client then selects
random values e1, e2, and e3 where ei < p/3. Also, the client desires to obtain the 3rd row, so e1

and e2 are even, whereas e3 is odd. We suppose that the client sets

e1 = 22, e2 = 12, e3 = 23.

10

The client computes bei mod p for 1 ≤ i ≤ 3 :

33(22) ≡ 62 mod 83
33(12) ≡ 64 mod 83
33(23) ≡ 12 mod 83

and sends the values to the server. The database server sets

~v = [62 64 12]

and computes the matrix product (note that since we view the database as a bit matrix, the product
only consists of addition operations):

v ·DB = [62 64 12]

 1 0 1
0 1 1
1 1 0



and obtains the vector
~v = [74 76 126]

which is returned to the client. (Recall the server does not know the group order.) The client
then computes the values mod(83), and divides by b = 33. The Euclidean algorithm gives us that
b−1 = 78.

Thus the client obtains

78(74) ≡ 45 mod 83
78(76) ≡ 35 mod 83
78(43) ≡ 34 mod 83

The parity of these elements gives the 3rd row of the database:

45 mod 2 = 1
35 mod 2 = 1
34 mod 2 = 0

4 Trapdoor Group cPIR Protocol Security

In this section, we present the hardness assumption, and then bound the leakage of the value of m
due to the

√
n points in the PIR request. We also give the reduction from the hardness assumption

to the security of our PIR protocol. Finally, we show the strong security property which ensures
the security of our PIR protocol against attacks that only use a small number of elements. We let
negl(k) denote a negligible function; negl(k) < k−c for sufficiently large k values given any c.

Here we will define security for our PIR protocol. We first define a PIR instance:

11

Definition 4.1 A PIR instance is

I = (m, b,N, r, n, e1, . . . , ec),

where ei < m
t(N−1) , 1 ≤ i ≤ c. We assume G = Zm, and gcd(b, m) = 1. The other parameters are

as described above. Let k be the security parameter. The probabilistic polytime sampling algorithm
Gen(1k) = (m, b,N, r, n, e1, . . . , ec) maps the security parameter into PIR instances. Given a PIR
instance I = (m, b,N, r, n, e1, . . . , ec), select an integer representative vi, 1 ≤ i ≤ c, where vi ≡
bei mod m. Then Q(I) = (v1, . . . , vc) is the PIR request corresponding to the instance. Usually,
unless stated otherwise, we assume N = 2.

We now define security. Basically, our protocol is secure if a computationally bounded adversary
is unable to leak information about the low order bits of the exponents (ei values).

Definition 4.2 Let k be the security parameter. We define LSB(e, r) to be the r low order bits of
e. Let

Pr[LSB(ei, r) = s] = εi,s,∀i, s,
where the probability is over ei in I. We define A(Q(I)) = (i, s) if A predicts s for LSB(ei, r). The
above PIR protocol is secure if for any PPT adversary A,

Pr[A(Q(I)) = (i, s)] ≤ εi,s + negl(k),∀i, s.

4.1 Hardness Assumption and Information-Theoretic Bound

We formally present our hardness assumption in this section. The basic idea behind the assumption
is that a computationally bounded adversary will be unable to obtain an advantage in computing
the group order m.

Definition 4.3 (Hidden Modular Group Order Assumption) Let t =
√

n. Given the PIR request
Q(I) = (v1, . . . , vt), where ei < m/(t(N − 1)), 1 ≤ i ≤ t, ei = aiN

r for non-requested indices i, and
eil = N l + ailN

r for requested indices il. The ai values are uniform random elements where ai <
m

t(N−1)Nr . For any probabilistic polynomial time (PPT) adversary A, P r[A(Q(I)) = m] ≤ negl(k).

Remark: An adversary that obtains the low order bits of the PIR exponents, can be used as a
subroutine in a reduction that obtains m (see Section 4.2).

As discussed above, our assumption is similar to the assumption that the modulus m cannot
be obtained in the Merkle-Hellman public key protocol [13, 17]. The Merkle-Hellman protocol was
subsequently cryptanalyzed [16], but we are unaware of any successful attacks aimed at discovering
m in Merkle-Hellman.

Given t =
√

n points that are spread between 0 and m, then we expect, on average, that the
largest point is approximately equal to m − m/t. Since m/t has approximately log(t) fewer bits
than m, the subtraction leaves the largest log(t) bits of m intact. Thus we can estimate the largest
log(t) bits of m from the largest point in the PIR request.

We now give a bound for the leakage of the high order bits of m from the PIR request, when
the PIR points are treated as unstructured values. This bound does not establish security for our
protocol, rather it gives a lower bound for the size of the group order m.

The min-entropy of a random variable X is

H∞(X) = − log(maxxPr[X = x]).

12

Definition 4.4 Following [5], we define the average min-entropy

H̃∞(X|Y) = − log
(
Ey←Y [2−H∞(X|Y =y)]

)
.

The average min-entropy gives the remaining entropy in the random variable X, given knowledge
of Y . For us, X will be the group order m, and Y will be the set of PIR request elements. We
will bound the remaining uncertainty about m given the PIR request elements and assuming the
request elements are treated as unstructured values.

Theorem 4.5 Given the PIR request elements, which we treat as unstructured values. Let M
be the maximum possible value for the group order (which is selected randomly using the uniform
distribution). Given the PIR request, the remaining uncertainty about the group order m is at least

− log

(
2− log(M)+log(t)+2U(M,t)−1 +

2−(log(M)−2 log(t)−1)

1− e−2−(1/2 log(M)−2 log(t)−U(M,t))

)
where we will set U(M, t) = log(M)/8. In particular, if log(t) ≤ 20 and log(M) ≥ 200, then the
remaining uncertainty is at least (5/8) log(M)− 1 bits.

Proof: We will establish a lower bound on H̃∞(X|Y), where X is the random variable that
takes on the group order and Y is the random variable for the set of values in the PIR request. We
let max{y} be the largest PIR request value. Let a(y) = max{y}+ 1, and let b(j) = bj/

√
nc. Then

H̃∞(X|Y) = − log(Ey←Y (maxxPr[X = x|Y = y]))

= − log(Ey←Y (maxx
Pr[X = x and Y = y]

Pr(Y = y)
))

= − log(Ey←Y
Pr[X = a(y) and Y = y]

Pr(Y = y)
)

= − log(Ey←Y
Pr[X = a(y) and Y = y]

Pr(
⋃M

i=a(y)[Y = y and X = i])
)

= − log(Ey←Y
Pr[X = a(y) and Y = y]∑M
i=a(y) Pr[Y = y and X = i]

)

= − log

Ey←Y

1/

(
b(a(y))√

n

)
∑M

i=a(y) 1/

(
b(i)√

n

)


= − log

(
Ey←Y

(b(a(y))−
√

n)!/b(a(y))!∑M
i=a(y)(b(i)−

√
n)!/b(i)!

)

= − log

(
Ey←Y

1/wa(y)∑M
i=a(y) 1/wi

)
where wi = (b(i)−

√
n)!/(b(i))!. We set c(y) = max{wi+1/wi}. The maximum occurs at the smallest

i such that b(i) increases by 1 over b(i−1). We may write a(y) = q(y)
√

n+r(y) where 0 ≤ r(y) <
√

n.
Then

c(y) =
(b(a(y) +

√
n− r))!(b(max{y} − r))!

(b(max{y}+
√

n− r))!(b(a(y) + r))!

13

If we select ȳ such that b(a(ȳ) +
√

n− r) = 2M/2/t, then

c(ȳ) =
2log(M)−log t−1

2log(M)−log t−1 − 2log(t)

Continuing from above, we have:

1/wa(y)∑M
i=a(y) 1/wi

=

1/wa(y)

(1/wa(y))(1 + wa(y)/wa(y)+1 + . . . + wa(y)/wM)

≤ 1
1 + 1/c(y) + 1/c(y)2 + . . . + 1/c(y)M−a(y)

=
1− 1/c(y)

1− (1/c(y))M−a(y)+1

When u(y) = M −max{y} satisfies u(y) > 25/8 log(M), we have

cu(y) ≥(
1

1− 2log(t)/2log(M)−log(t)

)2log(M)−log(t)2−(3/8 log(M)−log(t))

≈ e2log(t)2−(3/8 log(M)−log(t))

and
(1/c)u(y) ≤ e−2log(t)2−(3/8 log(M)−log(t))

= e−2(−3/8 log(M)+2 log(t))
.

Thus,

H̃∞(X|Y) = − log(Ey←Y (maxxPr[X = x|Y = y]))

≥ − log

 ∑
u(y)≤2(5/8) log(M)

Pr[Y = y]
(

1− 1/c(y)
1− (1/c(y))u(y)

)

+
∑

u(y)>2(5/8) log(M)

Pr[Y = y]
(

1− 1/c(y)
1− (1/c(y))u(y)

)
≥ − log

(
(1/2)Pr[max{y} ≥ M − 2(5/8) log(M)]

+
2−(log(M)−2 log(t)−1)

1−
(
(2log(M)−log(t) − 2log(t))/2log(M)−log(t)

)2(5/8) log(M)


≈ − log

(
2−(3/4) log(M)+log(t)−1 +

2−(log(M)−2 log(t)−1)

1− e−2−((3/8) log(M)−2 log(t))

)

The first term in the last inequality follows since M − max{y} ≤ 2(5/8) log(M) which implies that
the group order m satisfies m ≥ M − 2(5/8) log(M) (with probability equal to 2−(3/8) log(M)) and
max{y} ≥ M − 2(5/8) log(M), which occurs with probability equal to 2−(3/8) log(M)+log(t).

14

Since ex u 1 + x when x is small, we have

2−(log(M)−2 log(t)−1)

1− e−2−((3/8) log(M)−2 log(t))
=

2(M3/8 + t2)
M

=
2

m5/8
+

2t2

M

The large term is 2/m5/8 which is also larger than

2−(3/4) log(M)+log(t)−1

from above. Thus the remaining uncertainty is at least (5/8) log(M)− 1 bits.

Remark: It is possible to optimize the remaining uncertainty in the proof, by solving the resulting
cubic equation. The result will be close to U(M, t) = log(2M1/6/t1/3) which we will approximate
by U(M, t) = log(M)/8. The approximation will be much simpler and accurate enough for our
purposes.

4.2 Proof of Security via Reduction

In this section, we show that a PIR adversary who can break the security of our PIR protocol can
also obtain the group order m, thus breaking our security assumption.

We will prove the r = 1 case; the proof can be generalized to r > 1. We will demonstrate an
algorithm B which uses the PIR adversary as an oracle in order to determine m. The basic idea of
the reduction is to reduce even exponents (which we learn via the oracle) when they are associated
with even remainders which we are given as part of a PIR instance; exponent e and remainder
r are related by the equation be = km + r. We generate new even exponents and remainders by
combining like types (e.g., add an odd exponent and odd remainder with another odd exponent
and odd remainder). When we obtain small exponents, we may guess some exponent values and
solve for m.

We say that such an oracle is reliable when it determines the parity of the ei exponents with
negligible error, and faulty otherwise. We will assume a reliable oracle initially, and then indicate
how the faulty oracle can be used to obtain information about the low order bits of the group order
m.

4.2.1 PIR Reduction Algorithm

The reduction algorithm works as follows. Algorithm B is given a PIR instance Q = (v1, . . . , vt)
where each vi satisfies 0 < vi < m. B selects an initial set of points from the PIR instance and
begins the following algorithm:

B also associates a rational number qi with each element in the PIR instance; initially, these
values are all equal to 1. B submits a PIR instance to the oracle PPT adversary A; A predicts the
parity of some request element exponent.

1. If A predicts an even exponent ei, and vi is even, then B replaces the element vi with vi/2
to obtain a new PIR instance Q́. B also replaces qi with qi/2.

2. If one of the other three cases occurs, B will withdraw the element vi from the PIR instance
to obtain a new instance Q́. The other three cases (the odd types) are:

15

(a) vi even and ei is predicted to be odd.

(b) vi odd and ei is predicted to be odd.

(c) vi odd and ei is predicted to be even.

B maintains the withdrawn elements in three separate lists (according to type), along with their
associated qi values. Periodically B will take like types from each of the withdrawn lists, compute
the midpoints of various pairs of these elements and compute midpoints for the associated qi values,
and then add some of the new midpointed elements back into a new PIR instance.

4.2.2 Analysis of Reduction Algorithm

The above algorithm, as long as it continues to iterate and create new elements, will exhibit some
elements that have substantially reduced exponents and remainders. Algebraically, the set and the
operations above constitute a partial magma (a partial magma is a set with a binary nonassociative
operation where the operation is not defined for some pairs of elements). Our goal is to show that
the sub-partial magma generated by the PIR instance is not too small.
Remark: We note that the reduction algorithm above is unlikely to obtain very small exponents
or remainders. Given the group size m, then the set {r : be = km + r for some exponent e < K} is
unlikely to have elements much smaller than m/K. Given the size restriction on the exponents, we
would expect the smallest exponents to be around 2log(m)/2−log(t)/2 and the smallest remainders to
be around 2log(m)/2+log(t)/2.

We will show that the reduction algorithm above is likely to obtain exponents and remainders
as small as possible, given the preceding remark.

Theorem 4.6 Given the group order m and c initial elements from a PIR request. The above
reduction algorithm will run for at least

T (m, c) =
log(m)− 4 log(c)
− log(v(c)0.85)

iterations, where v(c) is the shrinkage factor for the interval due to the combining operations in the
algorithm. (If after i−1 reduction rounds the difference between the largest and smallest points is L,
then v(c)L is a lower bound on the interval size after i reduction rounds.) Also, T (m, c) iterations
gives average reduced remainder values around

2−T (m,c)/42log(m)−1,

and corresponding exponent values around

2−T (m,c)/42log(m)−log(t)−1.

Furthermore, information on the lower order bits of the exponents will be obtained during the
algorithm, and this can be used to obtain information on the lower order bits of m.

Sketch of Proof: We will sketch the proof for the reliable oracle case. For the reduction algorithm,
without loss of generality, we may assume that the algorithm proceeds by reducing all possible even-
even types (cutting them in half), in a given round of operations. Then the algorithm combines
all possible like odd types (obtaining their midpoints) in a subsequent round of operations. The

16

algorithm then repeats this procedure. Each pair of halfing and midpoint operations is considered
a single iteration.

The algorithm may terminate if no new points can be created. Thus we must show that the
number of collisions is bounded relative to the set of new points that are created during each
iteration, for up to T (m, c) iterations as described above. We will keep at least c + 1 points after
each set of midpoint operations, and at least c points after each set of halving operations. (We may
keep an additional side set of highly reduced points that are potentially maintained across multiple
iterations.) The length of the ith interval is the difference between the largest and smallest points,
which we denote by L and S, after the first i− 1 iterations. Consider the start of the ith iteration.
Then the series

3/4 + 3/16(1/2) + 3/64(1/4) + . . . =
192/256 + 24/256 + 3/256 + 3/256(1/8) + . . .

= 219/256 + 3/1792 < 220/256 = 55/64

converges to a value between 219/256 and 55/64, and represents the expected reduction factor.
Then (219/256)L is a lower bound on the new expected largest point after the halving operations.
Also, (55/64)S is a upper bound on the new expected smallest point after the halving operations.
Thus (219/256)L−(55/64)S is an expected lower bound on the size of the interval after the halving
operations. We approximate this value as (.85)(L− S).

Given expected values for points in the interval after the first i − 1 iterations, we compute a
lower bound L on the expected value for the largest point, and an upper bound S on the expected
value of the smallest point. During the midpoint operations, we create roughly c2/2 new points,
and thus we are able to maintain points that are uniformly spread through the new interval. Thus
if we have a and b as the smallest and largest points after the first i− 1 iterations, then the set of
expected points is a, a + (b − a)/(c − 1), a + (2/(c − 1))(b − a), . . . , a + ((c − 2)/(c − 1))(b − a), b.
The lower bound for the new largest point will be

L = (1/3)
a + ((c− 2)/(c− 1))(b− a) + b

2
+

(2/9)(
a + ((c− 3)/(c− 1))(b− a) + b

2
) +

(4/27)(
a + ((c− 4)/(c− 1))(b− a) + b

2
)

and this last values simplifies to

L = (11/18)(a/(c− 1)) + ((38c− 71)/54)(b/(c− 1))

which is a lower bound on the expected largest point. Similarly, we may write the upper bound S
as

S =
65

54(c− 1)
b +

54c− 119
54(c− 1)

a

and the lower bound on the expected size of the interval as:

L− S =
38c− 136

54
b

c− 1
− 54c− 152

54
a

c− 1

17

When c = 256, this simplifies to approximately (0.696)b− (0.9927)a. We may overestimate the
shrinkage as (.696)(b − a). In this case, v(c) can be replaced with 0.696. (We can obtain a similar
value with c = 32).

Thus we have lower bounds on the expected shrinkage of the interval size as the algorithm
iterates. Next, we obtain bounds on the expected number of collisions. We can upper the collisions
due to the halving operations as:

(3/16)(c + 1)
c + 1
b− a

+ (3/64)
(c + 1)2

(b− a)
+ . . .

Thus (c + 1) − (1/4)(c + 1)2/(b − a) is the expected number of new points left after the halving
operations.

We also bound the number of collisions due to the midpoint operations. We can overestimate
this as (c2/3)(c2/(b − a) = c4/(3(b − a)). The collisions due to the midpoint operations are the
significant number here; we may ignore the collisions due to the halving operations. Given this
collision bound, plus the values above, we obtain the first statement of the theorem.

The second statement follows since, on average, each element or its descendant will be reduced
by half every fourth time. When the most reduced points combine with the lesser reduced points,
the lesser reduced points will maintain their amount of reduction. Also, more highly reduced points
are also created over the 4 iterations.
Remark: The theorem states the average amount of reduction for points, but some points will be
more reduced (sampling with replacement which yields a binomial distribution.) We can reduce
exponents further by going to the limit in the algorithm described above, and then subtracting
remainders to obtain 2c new lists. One of these lists will have negative remainders and all positive
exponents. This list will allow reduction to even smaller exponents. We may guess e1, e2, e3, and
e4, or guess e1 and derive other exponents from it and the reduction operations. We may write
be1 = k1m + r1, and be2 = k2m + r2, where our reduction algorithm has given us e1 and e2

candidates. With high probability, e1 and e2 are relatively prime so we can write y1e1 + y2e2 = 1
for integers y1 and y2.

y1r1 + y2r2 = b− u1m

We may also obtain another pair e3 and e4 and repeat to obtain

y3r3 + y4r4 = b− u2m

Then with high probability, u1 6= u2, and thus we can subtract to obtain a value (u1−u2)m. We can
then guess m from the small number of possibilities, and we can confirm our guess using additional
values from the reduction. The probabilistic case can be handled using standard techniques to
increase reliability.

We note that an adversary that obtains m can potentially break the security of our PIR protocol,
unless much larger sized groups are used. Using m, the adversary can mount a lattice reduction
attack [11], using the lattice spanned by the following vectors, where the beij are unqueried indices:

18

v0 = (bei1 , bei2 , . . . , beic)
v1 = (m, 0, . . . , 0)
v2 = (0,m, . . . , 0)

...
vc = (0, 0, . . . ,m)

In some cases, a short lattice vector obtained from the reduction algorithm can reveal b and the
exponents.

4.3 Strong Security Property

Our security assumption ensures the security of our PIR protocol against a computationally bounded
adversary. In this section, we show that any attack which breaks the security assumption and results
in a successful attack against our PIR protocol cannot use c or fewer of the PIR instance elements
in the attack. In other words, a successful attack must leverage more than a small number of PIR
elements, and this minimal number increases with the size of m. Another way to view this is that
as m increases relative to c, then a given PIR request can be represented as many different base
elements each raised to a different bounded exponent set.

In the following theorem, we assume m is prime, but the theorem can be generalized to composite
m.

Theorem 4.7 Given a PIR instance Q(I) = (v1, . . . , vc) with n, N, m, b, and r as defined above,
where ei ≤ m/(N − 1)t, 1 ≤ i ≤ c. Suppose i0, i1, . . . , ir−1 are the requested indices. Given indices
j0, j1, . . . , jr−1 corresponding to an arbitrary PIR request as described above.

1. Let m− 1 > ((N − 1)c + 1)2(
√

n(N − 1))c. With probability

P ≥ 1− ((N − 1)c + 1)2(
√

n)c

(m− 1)(N − 1)c

there exists
m− 1

((N − 1)
√

n)c((N − 1)c + 1)

other PIR instances Ī with the same n, N, m, and r such that Q(I) = Q(Ī). (Here we say I
and Ī are compatible).

2. Let m− 1 > (((N − 1)c + 1)2N rc((N − 1)
√

n)c)/r!. Then with probability

1− N rc(
√

n)c((N − 1)c + 1)2

r!(N − 1)c(m− 1)

there exist
(m− 1)r!

((N − 1)
√

n)cN rc((N − 1)c + 1)

PIR instances compatible with the PIR request corresponding to j0, j1, . . . , jr−1.

19

We will make use of the following corollary to Chebyshev’s inequality [8]:

Lemma 4.8 Let Xi be independent, identically distributed random variables with mean µ and
variance σ2. Let Sn = X1 + . . . + Xn. For any ε > 0, we have

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ε

)
≤ σ2

nε2
.

We will make use of the max norm: ‖x‖∞ = maxi{|xi|}. We now give the proof of the theorem:

Proof: (1) The vector ~e = (e1, . . . , ec) generates a cyclic submodule L of Zc
m over the ring

Zm. We may view tei as t varies over Z∗m as a random permutation of Z∗m. Thus t~e is a random
permutation over the cross product of the individual coordinate subsets. Thus we may assume that

Pr[‖x‖∞ < m/((N − 1)
√

n) given x ∈ L] = Pr[‖x‖∞
< m/((N − 1)

√
n)]

Also,

Pr[‖x‖∞ < m/((N − 1)
√

n)] =
1

(N − 1)
√

n)c

Let ε = 1/(((N − 1)c + 1)(
√

n)c). By the lemma above, we have

Pr[|Sm−1/(m− 1)− µ| ≥ ε] <
σ2

(m− 1)ε2

where Xi = 1 if the ith vector in L satisfies

‖x‖∞ < m/((N − 1)
√

n),

Si = X1 + X2 + . . . + Xi, with µ as the mean of Xi, and σ2 is the variance. σ2 = µ(1 − µ) < µ
since the Xi are Bernoulli random variables.

µ = Pr[X1 = 1] = (1/((N − 1)
√

n))c. Thus

σ2

(m− 1)ε2
<

µ

(m− 1)ε2
=

((N − 1)c + 1)2(
√

n)c

(m− 1)(N − 1)c

Thus with probability P where

P ≥ 1− ((N − 1)c + 1)2(
√

n)c

(m− 1)(N − 1)c

we have

Sm−1

m− 1
≥ µ− ε =

1
((N − 1)

√
n)c

− 1
((N − 1)c + 1)(

√
n)c

=

1
((N − 1)c + 1)(

√
n(N − 1))c

It remains to show that the Sm−1 short vectors in L correspond to other PIR instances. For each
such vector s, we have tsei ≡ si mod m, 1 ≤ i ≤ c, for some ts where 1 ≤ ts ≤ m − 1. Let

20

f ≡ b(ts)−1 mod (m). Then fsi ≡ bei mod (m), 1 ≤ i ≤ c. Thus f, s1, . . . , sc are part of a PIR
instance Ī, such that Q(I) = Q(Ī).

(2) Now we prove claim (2) above. Let Yi = 1, if the ith vector in L is short and compatible
with j0, . . . , jr−1, and let Yi = 0 otherwise, where compatible is defined as a vector resulting in the
same requested PIR indices. Let Ti = Y1 + Y2 + . . . + Yi. Let

ε2 =
r!

N rc(
√

n)c((N − 1)c + 1)
.

From the lemma, we have

Pr[|Tm−1/(m− 1)− µ| ≥ ε2] <
σ2

(m− 1)ε22

µ = Pr[Y1 = 1] = (1/((N − 1)
√

n))c(r!/N rc). Thus

σ2

(m− 1)ε22
<

Nrc(
√

n)c((N − 1)c + 1)2

r!(N − 1)c(m− 1)

Thus the number of compatible PIR instances is at least

(m− 1)r!
((N − 1)(

√
n))cN rc((N − 1)c + 1)

Table 1 gives values of m that ensure that attacks will not be successful unless they make use
of more than c PIR request values (derived from Theorem 4.7(2), log(m) = 16c + 42 > 16c + 2 so
m− 1 satisfies the hypothesis of Theorem 4.7(2)).

c log(m) = 16c + 42
8 170

16 298
24 426
32 554

Table 1: N = 2, r = 1, n = 230; each row’s log(m) value ensures that attacks must use more than
c elements (c in the same row), with probability > 1− 2−40

5 Implementation Performance

In this section we present performance results. We have an initial, unoptimized, prototype imple-
mentation, and we include performance numbers in order to give a lower bound on performance.

21

Length of m 200 300 400 500
Time for n = 224 0.673 0.71 0.946 1.08
Time for n = 226 1.746 2.12 2.49 2.765
Time for n = 228 6.29 6.638 7.684 8.73
Time for n = 230 24.08 25.1 26.47 31.46
Time for n = 232 98.3 114.65 122.04 131.92
Time for n = 234 412.2 461.2 489.8 510.6

Table 2: Execution times (sec.) for our protocol based on unoptimized prototype implementation

5.1 Prototype Implementation

To test the performance of our trapdoor group protocol, we ran it with several parameter sets and
timed each part of the executions. The protocol was run on an Intel Core2 Duo T7500, with 2.2
GHz clock speed, 2 GB of RAM, and 4 MB of L2 cache. In each test, we used N = 2 and r = 1.
All times are given in seconds (see Table 2). Increasing r has minimal impact on performance.
Increasing the size of m only results in small decreases in performance; the reason appears to be
the parallelism that our system uses in adding large integers. Based on these tests, we estimate that
the anonymity based protocol is anywhere between 20-50% as fast as the trapdoor group protocol
(since larger numbers of queries gives smaller w and less impact), but a full understanding requires
testing with large numbers of users, queries, and a real-time anonymity system.

Using the example from Aguilar-Melchor and Gaborit [1], we roughly compare the performance
of the trapdoor group protocol and anonymity based cPIR protocols against the Aguilar-Melchor
and Gaborit, Gentry and Ramzan, and Lipmaa protocols. Here the user retrieves a 3 MB file from
a database with 1000 files.

The database size is approximately 234.55 bits, which requires approximately 1.5 times as long
as the 234 case entry in Table 2. For the trapdoor group case, using log(m) = 400, we obtain
roughly 12 minutes for client and server processing times. The network speeds from the example
are 1 Mbit upload and 20 Mbit download speeds. We add 60 seconds for initial network transfer
time to obtain 13 minutes for the trapdoor group protocol. The CPU clockrate in our experiments
is 2.2 Ghz vs. the 4 GHz 64 bit dual core machine from [1]. Thus the times for the trapdoor group
and the Aguilar-Melchor and Gaborit protocols are comparable.

The anonymity based protocol becomes more efficient than existing cPIR protocols for databases
with many requests per unit time interval. Given the results from Table 2 (based on tests on the
2.2 Ghz machine), we roughly estimate that m = 2160 requires 450 seconds per query for the 3
MB file retrieval example above. We use 160 since 160 × 217.27 ≈ 3MB. (We recall we assume a
database with 1000 3 MB files.) If each user subdivides their query into 10 subqueries, then 4500
seconds, or 75 minutes is needed to serve the user request. The security obtained is:

q/

(
q(w + 1)
(w + 1)

)
= 200/

(
2000
10

)
≈ 2−80.2

where we assume 200 user queries per time interval (each user query is subdivided into 10 sub-
queries). In this case the time interval is 75 minutes. The total processing power required to handle
the 200 user requests must be at least 200 times as large as the 2.2 Ghz processing power. The
75 minute time compares favorably to the existing cPIR protocols (roughly 14 times as fast as the

22

Gentry Ramzan protocol); we can reduce this time further if we assume a higher request rate per
unit time interval.

cPIR Protocol Query Plus Download Time
Limpaa 33h

Gentry & Ramzan 17h
Aguilar-Melchor & Gaborit 10.32m

Trapdoor Group 13m
Anonymity Based 75m

Table 3: Performance Comparison for PIR Schemes (first 3 entries from [1]); last two entries based
on 2.2 Ghz machine tests vs. faster machine for first 3 entries

6 Summary and Future Work

In this paper, we presented new cPIR protocols that have much improved computational complex-
ity. When the database is viewed as a bit sequence, only modular addition operations are performed
by the database server. We can view our protocols as a middle ground between the trivial pro-
tocol (fastest possible computational complexity and slowest possible communication complexity)
and protocols such as Gentry-Ramzan [6] (fast communication complexity but slower computa-
tional complexity). This middle ground enjoys a substantially better overall performance. To our
knowledge, our anonymity based protocol is the first cPIR protocol that depends only on sender
anonymity.

For our trapdoor group cPIR protocol, we assume that given only the elements be1, . . . , bet in
the group Zm, where ei < m/t, the low order r bits of ei encode the requested indices, and t is
small, it is hard to compute the group order m. Given this assumption, we have proved that our
protocol is secure against a polynomial-time bounded adversary. Our prototype implementation
shows that our protocol’s performance compares favorably with existing cPIR protocols.

Our future work is aimed at formalizing trapdoor groups. Our initial thoughts are that a
trapdoor group consists of a group G, an image group Ḡ, an invertible map α : G → Ḡ, (possibly
α is the identity), the trapdoor secret s, and an inversion problem P consisting of a set of elements
in G. We also plan to protect the privacy of the database.

7 Acknowledgments

We thank Bill Gasarch for helpful comments.

References

[1] C. Aguilar-Melchor and P. Gaborit. A Lattice-Based Computationally-Efficient Private Infor-
mation Retrieval Protocol. http://eprint.iacr.org/2007/446.pdf

[2] E. Brickell, A. Odlyzko. Cryptanalysis: A Survey of Recent Results. Contemporary Cryptology,
G. J. Simmons (ed.), IEEE Press (1991), pp. 501-540.

23

[3] C. Cachin, S. Micali, and M. Stadler. Private Information Retrieval with Polylogarithmic
Communication. In Proceedings of Eurocrypt, pages 402-414. Springer-Verlag, 1999.

[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In Pro-
ceedings of the 36th Annual IEEE Symp. on Foundations of Computer Science, pp. 41-51,
1995. Journal version: J. of the ACM 45:965-981, 1998.

[5] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy Extractors: How to generate strong keys from
biometrics and other noisy data. In Proceedings of Eurocrypt, pages 523-540, Springer-Verlag,
2004.

[6] C. Gentry and Z. Ramzan. Single Database Private Information Retrieval with Constant Com-
munication Rate. ICALP 2005, LNCS 3580.

[7] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private infor-
mation retrieval schemes. In STOC 98: Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 151-160, New York, NY, USA, 1998. ACM Press.

[8] P. Hoel, S. Port, and C. Stone. Introduction to Probability Theory. Houghton Miflin Company,
1971.

[9] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography from Anonymity. In Pro-
ceedings FOCS 2006.

[10] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database, computationally-
private information retrieval. In Proceedings of FOCS. IEEE Computer Society, 1997.

[11] A. K. Lenstra, H.W Lenstra Jr., and L. Lovasz. Factoring Polynomials with Rational Coeffi-
cients. Mathematische Annalen 261, 1982, pp. 515-534,

[12] H. Lipmaa. An oblivious transfer protocol with log-squared communication. Cryptology ePrint
Archive, 2004.

[13] R. C. Merkle and M. E. Hellman. Hiding Information and Signatures in Trapdoor Knapsacks.
IEEE Trans. Information Theory, vol. 24, 1978, pp. 525-530.

[14] A. Pfitzmann and M. Kohntopp. Anonymity, Unobservability, and Pseudonymity - A Proposal
for Terminology. Anonymity 2000, LNCS 2009, pp. 1-9, 2001.

[15] J. P. Stern. A New Efficient All-Or-Nothing Disclosure of Secrets Protocol. In K. Ohta, D. Pei,
editors: ASIACRYPT. Volume 1514 of Lecture Notes in Computer Science, Springer (1998)
pp. 357-371.

[16] A. Shamir. A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosys-
tem. IEEE Trans. Information Theory, vol. IT-30, 1984, pp. 699-704.

[17] A. Shamir and R. Zippel. On the Security of the Merkle-Hellman Cryptographic Scheme. IEEE
Trans. Information Theory, vol. 26, no.3, May 1980, pp. 339-340.

[18] R. Sion and B. Carbunar. On the Computational Practicality of Private Information Retrieval.
In Network and Distributed System Security Symposium NDSS 2007

24

A Complexity and Performance Modeling

In this section, we use the (Sion-Carbunar) methodology developed in [18] to analyze the perfor-
mance of our PIR protocol. Their methodology makes assumptions in favor of increased perfor-
mance. Thus we regard the resulting performance numbers as an upper bound on the performance.
The other point here is that their methodology when applied to existing cPIR protocols led to their
conclusions regarding very slow cPIR performance. Their methodology applied here results in a
very fast predicted performance. We have an initial, unoptimized, prototype implementation, and
those performance numbers are discussed above in Section 5. We consider those results to be a
lower bound on performance.

A.1 Complexity

There are two complexity issues here — communication and computation.
Let DB be a database with n entries, each in ZN . This, as stated earlier, is viewed as a√

n×
√

n table of values. Because we are interested in a fast protocol, we give the complexity when
G = (Zm,+), where discrete log is efficiently computable (as required), and where computations
are very fast. Similar asymptotic bounds hold for other groups.

Communication — The user sends
√

n group elements to DB, each of length log2 m, and DB
sends as many group elements to the user. These add up to a total of 2

√
n log2 m bits. This

complexity can be improved to O(nε) by moving from a 2-dimensional database to a d-dimensional
one. However, because our goal is a fast protocol, we note that increasing the dimension also
increases DB’s computation time, which is the bottleneck [18].

Computation — The user picks
√

n random exponents, and computes as many group exponenti-
ations. In (Zm,+), an exponentiation is merely multiplication modulo m. DB performs

√
n group

operations (additions modulo m or integer additions) for each of
√

n columns, totalling n additions.
When the entries of DB are bits, this is all of the computation done by DB. When they are elements
of ZN , then it also must perform n multiplications of group element by DB entry. After receiving
the output from DB, the user now processes only a small number of group elements returned. He
performs one discrete log (division modulo m) on each, converts to base N and extracts the queried
data, which takes about logN m time — negligible relative to

√
n. DB is destined to be stuck with

Ω(n) computation in any PIR scheme, so we cannot hope for any better.

A.2 Performance analysis

The goal of this protocol is not to push down the bounds on complexity of cPIR, which has
already been done in previous research. Instead, the goal is a cPIR protocol which has improved
performance on some common database sizes and which is faster than the trivial PIR protocol —
transferring the entire database in question.

In Sion and Carbunar [18], it was claimed that the current best cPIR protocols are orders of
magnitude slower than sending an entire database to the user (the trivial protocol). Their results
explained that, because of the large cost of O(n) modular multiplications in Z∗m, and because data
transfer speeds are close enough to processor speeds, it is unlikely that any cPIR protocol could
perform more quickly than sending the database.

25

For end user links, our PIR protocol is substantially faster than the trivial protocol (which itself
is at least an order of magnitude faster than existing cPIR protocols). We use the numbers and
formulas put together in [18] to upper bound the performance of our protocol, and compare it to
that of the trivial protocol.

A.3 Formulas and estimates

First, we define the following variables for any computer:

• B — bandwidth of network connection, in bits per second

• M — the average time required for the CPU to perform a single instruction, taken from the
MIPS rating (Millions of Instructions Per Second)

• d — the bit-size of a digit in the CPU’s architecture

• tadd(m) — time needed for the CPU to perform an addition in Zm

• tmul(m,N) — time needed for the CPU to perform a multiplication of a number in Zm by a
number less than N , modulo m

• td — time needed by the CPU to perform a single digit multiplication operation

• ta — time needed by CPU to perform a single digit addition operation (most modern proces-
sors have multiple ALU’s and can perform more than one addition per cycle).

• tt — time needed to transfer a bit over the network

From the verified assumption in [18], we estimate that td ≈ 1
M , ta ≈ 1

2M , and d = 5. Note that
|m| denotes the bit-length of m. The analysis in [18] also shows that

tadd(m) ≈ |m|
d

× ta.

Thus
tadd(m) ≈ |m|

2M × d

and
tmul(m,N) ≈ |m| × |N |

M × d2
.

Assuming throughput actually matches bandwidth — and therefore overestimating transfer
speeds and favoring the trivial protocol — we estimate that tt ≈ 1

B .

A.4 Analysis

Let DB be a database with n entries, each a member of Z2 (thus N = 2). Let k be the security
parameter, and m be the modulus for the protocol.

Let Tpir, Ttrans be the times needed to complete the cPIR protocol, and to transfer the entire
database over a network, respectively.

26

Trivally, we see that Ttrans = n · tt · log2 N , since we must transfer n entries, each with log2 N
bits. From Section A, we get

Tpir = n · tadd(m) + n · tmul(m,N) +
√

n · tmul(m,m) + 2
√

n · tt · log2 m

The first two terms of this formula are the additions and multiplications performed by DB, the third
is multiplications by the user, and the final term is communication between the two parties. The
second term will be zero, since we are assuming N = 2; the database performs no multiplications.

In [18], Sion and Carbunar distinguished three classes of networks: end-user internet connec-
tions, high-end intersite connections, and Ethernet LAN connections. In 2006, he estimated that
the average bandwidths for these were 6 Mbps, 1.5 Gbps, and 10 Gbps respectively. Additionally,
he estimated the average MIPS rating as 25000.

Using these numbers and formulas, we see the following execution times, based on databases
of various sizes, with entries viewed as bits. Table 4 gives the estimated times, Tpir, for our PIR
protocol when using the Sion-Carbunar performance model as discussed above. We assume N = 2,
and r = 128. Thus we are viewing the database as a

√
n×

√
n bit array and we retrieve 32

√
n bits

per each PIR request (we retrieve r rows during each request.) For the results in the table, we
set log(m) = 200. Column 3 of the table gives the performance times for our protocol. The latter
columns give the time required for the trivial protocol, over various sized networks. For Tpir, we
assume the end-user bandwidth for all data transfers.

DB Size returned bits: 32
√

n Tpir End-user Inter-site LAN
2 MB 217 bits 0.2867 s 2.796 s 0.01118 s 0.0016778 s

128 MB 220 bits 3.045 s 357.914 s 1.4316 s 0.21474 s
0.5 GB 221 bits 7.8 s 23.86 mins 5.7264 s 0.8589 s

2 GB 222 bits 22.47 s 95.44 mins 22.9 s 3.4356 s
8 GB 223 bits 72.47 s 6.363 hours 91.6 s 13.74 s

Table 4: Execution times for our protocol and full database transfer, for various database sizes

From this table, we see that execution time of our protocol is much faster than database transfer
for end-user connections, regardless of how the database is viewed. For the high-end intersite
networks, our PIR protocol is slightly faster than the trivial protocol for the larger DB sizes.
Summarizing, for the slower connections, our PIR protocol is faster than the trivial protocol, but
for faster connections, the trivial protocol is faster. In [18], the authors show that the trivial
protocol is significantly faster, on all types of networks, than all previous cPIR protocols.

27

