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Abstract: In A generalization of the original Diffie-Hellman key exchange in (ℤ/pℤ)* found a 
new depth when Miller and Koblitz suggested that such a protocol could be used with the group 
over an elliptic curve. Maze, Monico and Rosenthal extend such a generalization to the setting of a 
Semi-group action on a finite set, more precisely, linear actions of abelian semi-rings on semi-
modules. In this paper, we extend such a generalization to the linear actions of quotient semi-rings 
on semi-modules. In fact, we show how the action of quotient semi-rings on a semi-module gives 
rise to a generalized Diffie-Hellman and ElGamal protocol. This leads naturally to a cryptographic 
protocol whose difficulty is based on the hardness of a particular control problem, namely the 
problem of steering the state of some dynamical system from an initial vector to some final 
location.  
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Introduction 
     The Diffie-Hellman key exchange and the ElGamal one-way trapdoor function are the basic 
ingredients of public key cryptography. Both these protocols are based on the hardness of the 
discrete logarithm problem in a finite semi-ring. The discrete logarithm problem, commonly 
abbreviated DLP , is a recurrent tool in public-key cryptography. The problem takes place in any 
group G , but we shall always assume the group is finite and commutative. 
 
Protocol 1.1 [The Discrete Logarithm Problem - DLP] Let G be a finite commutative group. 
Given two group elements a (the base) and b  such that that ><∈ a  b , find ord(a) n  0 ≤≤  such 
that b  an = . We denote such an n  by bloga . 
For cryptographic purpose, we will always assume that the group G  is presented in such a way that 
multiplication is computationally easy. Note that this requirement makes exponentiation feasible as 
well using well-known methods of type square-and multiply (see [1] or [3]). 
The difficulty of the DLP  strongly depends on the type of group that is used: It goes from easy to 
non-feasible. For instance the DLP  in the additive group of any finite field qF  is trivial since 

division can be performed in polynomial time. However, the DLP  in the multiplicative group *
qF  is 

a difficult problem as well as the DLP  in the group )E(Fq  of an elliptic curve defined over a finite 
field. In fact the latter is much more difficult than the former and intuition tells us that the less 
structure the group has, the more difficult that DLP  will be. Protocols where the discrete logarithm 
problem plays a significant role are the Diffie-Hellman key agreement [4], the Elgamal public key 
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cryptosystem [5], the digital signature algorithm ( DSA ) and ElGamal's signature scheme [1]. This 
is one of the reasons why we have developed the ideas of this paper. In the sequel we outline two of 
these protocols and we refer the interested reader to [1] for further details. 
Let {Ee: e ∈ K} be a set of encryption transformations, and let {Dd: d ∈ K} be the set of 
corresponding decryption transformations, where K is the key space. Consider any pair of 
associated encryption/decryption transformations (Ee, Dd) and suppose that each pair has the 
property that knowing Ee it is computationally infeasible, given a random cipher-text c ∈ C, to find 
the message m ∈ M such that Ee(m) = c. This property implies that given e it is infeasible to 
determine the corresponding decryption key d. (Of course e and d are simply means to describe the 
encryption and decryption functions, respectively.) Ee is being viewed here as a trapdoor one-way 
function with d being the trapdoor information necessary to compute the inverse function and hence 
allow decryption. This is unlike symmetric-key ciphers where e and d are essentially the same. 
Under these assumptions, consider the two-party communication between Alice and Bob illustrated 
in Figure 1. Bob selects the key pair (e, d). Bob sends the encryption key e (called the public key) to 
Alice over any channel but keeps the decryption key d (called the private key) secure and secret. 
Alice may subsequently send a message to Bob by applying the encryption transformation 
determined by Bob’s public key to get c = Ee(m). Bob decrypts the cipher-text c by applying the 
inverse transformation Dd uniquely determined by d [1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Encryption using public-key techniques [1]. 
 
The Diffie-Hellman protocol [4] allows Alice and Bob, to exchange key over some insecure 
channel. In order to achieve this goal Alice and bob agree on a group G  and a common base G  g∈ . 
Alice chooses a random positive integer a  and Bob chooses a random positive integer b . Alice 
transmits to Bob ag  and Bob transmits to Alice bg . Their common secret key is b ag k = . 
The ElGamal public key cryptosystem [5] works in the following way: Alice chooses positive 
integer n  and G  g h, ∈ , where ng h = . The private key of Alice consists of n) h, (g, , the public key 
consists of h) (g, . Bob chooses a random positive integer r  and with this he applies the encryption 
function G G  G  :v ×→  (sending m  to )h m ,(g  )c ,(c rr

21 = ). Alice, who knows hlog n g= readily, 

computes m  from the cipher text )c ,(c 21 : -1n
12 )(c c  m = . In order for the protocol to work it is 

required that multiplication and inversion inside the group G  can be efficiently done and it should 
be computationally infeasible to compute a discrete logarithm with base G  g∈ . 

 



In [6], Maze, Monico and Rosenthal have shown how the discrete logarithm problem over a group 
can be seen as a special instance of an action by a Semi-group. In fact, they have shown every Semi 
group action by an abelian Semi-group gives rise the Diffie-Hellman key exchange. With an 
additional assumption it is also possible to extend the ElGamal protocol. Let us explain them in 
detail. Assume that s  is a finite set and let G  be a Semi-group. Consider an action of G  on s : 

S  S G →×  (sending s) (g,  to g.s ). By the definition of a group action we require that 
s)(h  g  s h) (g =  for all G h  g, ∈  and S  s∈ . We also assume throughout that arithmetic in G  and 

computation of the G -action can be done in polynomial time. If the Semi-group G  is commutative 
then every G -action gives rise to a generalized Diffie-Hellman Key Exchange [6]: 
 
Protocol 1.2 (Extended Diffie-Hellman Key Exchange)      Let s  be a finite set, G  a commutative 
Semi-group and an action of G  on S  as defined above. The Extended Diffie-Hellman Key 
Exchange is the following protocol [6]: 
 
1) Alice and Bob agree on an element S  s∈ . 
 
2) Alice chooses G  a ∈  and computes as . Alice's secret key is a , her public key is as . 
 
3) Bob chooses G b∈  and computes bs . Bob's secret key is b , his public key is bs . 
 
4) Their common secret key is then s) (a b  s a) (b  s b) (a  s) (b a === . 
 
Protocol 1.3 (Extended ElGamal Public Key System) Let s  be a group with respect to some 
operation o , G  an abelian Semi-group and an action of G  on s  as defined above. The Extended 
ElGamal Public Key System is the following protocol [6]: 
 
1) Alice's public key is s) a (s, . 
2) Bob chooses a random element G  b∈  and encrypts a message m  using the encryption function 

)c ,(c  m)  s)) (a (b s, (b  b) (m, 21=→ o  
3) Alice can decrypt the message using 

2
-1

12
-1 c   )c (a  c  s)) (a (b  m oo == . 

In [6] Maze, Monico and Rosenthal show how to build Semi-group actions from actions by semi-
rings on semi-modules. In this paper we show how to build Semi-group actions from actions by 
quotient semi-rings on semi-modules. 

1. Quotient semi-rings acting on semi-modules 
A set R  together with two associative  binary operations called addition and multiplication 
(denoted by + and, .  respectively) will be called a semi-ring provided 1) addition is a commutative 
operation and that the multiplication is distributive with respect to the addition both from the left 
and from the right; 2) there exists R  0∈  such that r  0 r =+  and  0 r  .0  0.r ==  for all R r ∈ . A subset I  
of a semi-ring R  will be called an ideal if I  b a, ∈  and R r ∈  implies I  b  a ∈+  and I ar  a,r ∈ . A 
subtractive ideal (= k -ideal) K is an ideal such that if I y   x x, ∈+  then K y ∈ ∙  A (left) semi-module 
M  over a semi-ring R  is a commutative additive Semi-group which has a zero element, together a 
mapping from 

M  M  R →×  
Sending m) (r,  to mr  such that m s  mr   m s) (r +=+ ,   pr   mr   p)  (mr +=+  ,  m ) s(r   m) (sr =  

And  MM 0  0r   0m ==  For all M  p m, ∈  and R  s r, ∈ . 



An ideal I  of a semi-ring R  is called a partitioning ideal (= Q -ideal) if there exists a non-empty 
subset Q  of R  such that  

(1) } Q  q :I  q{  R ∈+= U ; 
(2) If Q  q ,q 21 ∈  then φ  I)  (q  I)  (q 21 ≠++ I  if and only if 21 q  q =  

Let I  be a Q -ideal of a semi-ring R  and let } Q  q :I + {q = R/I ∈ . Then R/I  forms a semi-ring under 
the binary operations ⊕  and ⊗ defined as follows: I q = I) + (q  I) + (q 321 ⊕  where Q  q3 ∈  is the 
unique element such that I + q  I + q + q 321 ⊆  and I + q = I) + (q  I) + (q 421 ⊗  where Q  q4 ∈  is the unique 
element such that I + q  I + q q 421 ⊆ . This semi-ring R/I is called the quotient semi-ring of R  by I . 
By definition of Q -ideal, there exists a unique Q  q0 ∈  such that I + q  I + 0 0⊆ . Then I + q0  is a zero 
element of R/I  [8, 10]. It is well-known that if R  is a semi-ring, then (R)Mat , the set of n n ×  
matrices with entries in R  is a semi-ring. 
Let M  be a finite semi-module over a semi-ring R , and let I  be a Q -ideal of R . Now let R r ∈  and 
suppose that R/I  I + q I, + q 21 ∈  are such that I + q = I + q 21  in R/I . Then 21 q = q , we must have 

m q = m q 21  for every M  m∈ . Hence we can unambiguously define a mapping M  R/I ×  into M  
(sending m) I, + (q  to m q ) and it is routine to check that this turns the commutative Semi-group M  
into an R/I - semi-module. 
Convention. The remaining of this paper we will assume unless otherwise stated, if I  is an Q -ideal 
of R , and then Q  is closed under addition and multiplication of R . 
 
Let (R/I)Mat  be the set of nn ×  all matrices with entries in R/I . The semi-ring structure on R/I  
induces a semi-ring structure on (R/I)Mat . Moreover the semi-module structure on M  lifts to a 
semi-module structure on nM via the matrix multiplication: 

nn M  MMat(R/I) →×  
Sending  x)(A,  to Ax  where x  is a 1n ×  matrix with entries n111 m ..., ,m  and nnij I) + (q =A ×  with 

Q  q ij ∈  for every j i, . One readily verifies that 
nn M  MMat(R/I) →×  

is an action by a semi-group, indeed one readily computes that  xB)(A  =  x)(BA . Let us explain this 
equality in more detail. For simplicity, assume that 2n =  and let 22ij I) + (a =A × , 22ij I) + (b = B × and 

12i1)(m =x × . Let 12ij )(c =  x)(BA × . Then we must have 
 

)1(c  m b a

 m b a  m b a  m b a

11212212

1121211211111111 12

=

+++
 

 

)2(c  m b a
 m b a  m b a  m b a

21212222

112122211221111121

=
+++

 

Let 2 2j i I)  (e  BA ×+= . Then we must have 

)3(l  e
 l)  (b  I)  (a  I)  (b  I)  (a

11

21121111

+=
=+⊗+⊕+⊗+

 

 

(4)l  e 
 l)  (b  I)  (a  I)  (b  I)  (a

12

22121211

+=
=+⊗+⊕+⊗+

 

 



(5)l  e                            
 l)  (b  I)  (a  I)  (b  I)  (a

21

21221121

+=
=+⊗+⊕+⊗+

 

 

(6)l  e                                 
 l)  (b  I)  (a  I)  (b  I)  (a

22

22221221

+=
=+⊗+⊕+⊗+

 

 
It then follows from (3) that there are unique elements 1211 d  ,d  of Q  such that  
 

(7)l  e  I)  (d  I)  (d 111211 +=+⊕+  
 

Where I  d  I  b a 111111 +⊆+ , I  d I  b a 122112 +⊆+ and I  e  I  d  d 111211 +⊆++ ; hence 
 

)8(e  d  d  b a  b a 11121121121111 =+=+  
 

Since I  is a Q -ideal of R . Similarly, the relations (4), (5) and (6) give: 
 

)9(e  b a  b a ,e            
 b a  b a ,e  b a  b a

222222122121

212211211222121211

=+
=+=+

 

 
Let 1  2i112i12  2ij )(f )(mI)  (e  x B)(A ××× =+= . Then we must have: 
 

)10(f m e                      
 m e ,f  m e  m e

212122

11211121121111

=+
=+

 

 
Now the relation (1), (2), (8), (9) and (10) gives 
 

)11(c =m b a +                         
 mb a + m b a + m b a = f

11212212

11211221121111111111  

 

)12(c = m b a 
m b a + m b a + m b a = f

21212222

11212221122111112121

+
 

Thus  x).A(B = x B)(A   
Remark Assume that I  is an Q -ideal of R   such that a b = b a for all Q  b a, ∈  and let R/I  I + q' ,q I ∈ . 
Then there are unique elements Q  c' c, ∈  with I + c  I + q' q ⊆ and I + c'  I +q q' ⊆ , 
so I)+ (q  I) + (q' = I) + (q'  I) + (q ⊗⊗  since q q' = q' q ; hence R/I  is a commutative ring. 
Assume that I  is an Q -ideal of R   such that q q'  q' q =  for all Q  q' q, ∈  and set 

} Q  q :q{  } Q  q :I  {q  R/I  R ∈=∈+== .Let [t]R  be the polynomial semi-ring in the in determinant t , and 
let )RMat( A ∈  be a fixed matrix. If 

[t]R   tq  ...  t q  q  (t)p k
k10 ∈+++=  

 
then we define in the usual way k

k1n0 A q  ... A  q  I q  (A)p +++= , where n0 I q  is the nn ×  diagonal 
matrix with entry 0q  in each diagonal element. Consider the Semi-group  

} [t]R  (t)p :(A)p{  [A]R  G ∈==  
it is easy to see that G  has the structure of an abelian Semi-group. 



Protocol 2.1 then simply requires that Alice and Bob agree on an Q -ideal I  of a semi-ring R , an 
element nM x ∈  and a matrix )RMat(A ∈ . Alice chooses secretly [t] R (t)P ∈ and computes  x(A) p  
and sends the result to Bob . Bob chooses secretly [t]R  (t)q ∈  and computes  x(A)q  and sends the 
result to Alice. As a common secret key serves  x(A) q (A)p =k  since  (A) p and (A)q  commute. 
 
System Theoretic Interpretation: It is possible to give the key exchange a systems theoretic 
interpretation. For this note that in order to choose [A] R  p(A)∈  Alice has to choose I + q = q 00 , ..., 

R/I = R  I + q = q kk ∈  and with this she can compute 

 x A q + ... +A x  q + x q

= x )A q + ... +A  q + q( = x (A)p
k

k10

k
k10  

Consider now the linear time invariant system:  xu + yA  = y tt1 +t Where  M  y x, n
t ∈ and R  u t ∈ . 

Suppose further that M0 0 = y . If Alice chooses the input sequence kq = u 0 , 1 -k 1 q = u , ...,  q = u 0k then 

1 +k y , the state vector at time  1 +k is exactly  x(A) p  the public vector to be computed by Alice. 
Once Alice receives from Bob his public key  x(A)f , then she defines  x(A)f = b  and by choosing 
her input sequences 0u ... ku  in the system b u + yA  = y tt1 +t . Then she will be able to compute the 
common secret key  x(A)f (A)p . 
Adversary who wants to find an element [t]R  (t)g ∈  such that  x(A)p  x (A)g =  faces the task of 
finding a control sequence k0 u ..., ,u  which steers the initial state 0y  in to the state  x(A)p . This 
problem is in general very hard, but it contains some of the hardest known discrete logarithm 
problem as a special case. For example, when F  M  R/I == , a finite field then the problem is however 
simply solved by [6, Theorem 3.1]. 

2. Matrix quotient semi-rings acting on semi-modules 
Assume that R  is a semi-ring and let Mat(R)  be the set of nn ×  matrices with entries in R . Our 
starting point in this section is the following theorem: 
Theorem 3.1 Let I  be a Q -ideal of a semi-ring R . Then (I)Mat n  is a Mat(Q) -ideal of Mat(R) . In 
particular:  

} Mat(Q)  C :Mat(I) + {C = (I)Mat(R)/Mat ∈  
is a semi-ring.  
Proof: It is easy to see that  Mat(I) is an ideal of Mat(R) . 
Since the inclusion:  

Mat(R)  } Mat(Q)  q :Mat(I) + q { ⊆∈U  
is trivial, we will prove the reverse inclusion. Suppose that Mat(R)  )(a =A nnij ∈× . Then there are 
elements Q  q ij ∈  and I  cij ∈  such that ijijij c + q = a  for all j i,  since I  is a Q -ideal of R . Set n n ij)(q= B ×  
and nnij )(c = C × . Then Mat(I) + Mat(Q) C + B =A ∈ , and so we have equality. Suppose that 

φ  Mat(I)) + (F  Mat(I)) + (E ≠I  where nnj i, )(e= E × , (Q)Mat  )(f = F nnnnj i, ×× ∈ . We show that F = E . There exist 
,)(h = H nnij ×  (I) Mat  )(k =K nnnnji ××× ∈   such that K + F = H + E , so for all j i, , φ≠ I) + (f  I) + (e ijij I ; Hence 

F = E  since I  is a Q -ideal, as needed. 
Let M  be a finite semi-module over a semi-ring R . The semi-module structure on M  lifts to a semi-
module structure on nM  via the matrix multiplication: 

nn M  M  Mat(R) →×  
Sending  x)(A,  to A x  [6]. 



If I  is an Q -ideal of R , then Theorem 3.1 gives (I)Mat(R)/Mat  is a semi-ring. Moreover, if I  is 
closed under addition and multiplication of R , then it is easy to see that Mat(I)  is closed under 
addition and multiplication of Mat(R) . Now the matrix multiplication: 

nn M   M  (I)Mat(R)/Mat →×  
sending  x)Mat(I), +(A   to A x  is a semi-module structure on nM  where Mat(Q) A ∈ . One readily 
verifies that 

nn M   M  (I)Mat(R)/Mat →×  
is an action by a semi-group, indeed one readily computes that  xB)(A  =  x)(BA . Let us explain this 
equality in more detail. Let Mat(I) + )(a =A nnj i × , 

 Mat(I) + )(b = B nnij ×  
 And 1ni1)(m =x ×  where Q  b ,a ijIj ∈ . Then we must have 

)13()(m )(b )(a =  x)(B(A  1ni1nnijnnij ×××  
Let Mat(I) + )(e = BA nnj i × . Then we must have Mat(I) + )(e Mat(I) + )(b )(a nnijnnijnnij ××× ⊆ , so we get 

nnijnnijnnij )(e = )(b )(a ×××  since Mat(I)  is a Mat(Q) - Ideal of Mat(R) . It follows that 
 

)14()(m )(b )(a = x B)(A  1ni1nnijnnij ×××  
 
Now the assertion follows from (13) and (14). 

Assume that  (I)(R)/Mat Mat  = S  and let  S[t]   be the polynomial semi-ring in the in determinant 
t and let S Mat(I) + )(a =A nnij ∈×   be a fixed member. Let S  C ⊆ be the center of S .If  

C[t]  tr ..., + t r + r = p(t) kk10  , then we define in the usual way  k
k1n0 A r ..., +A  r + I r = p(A)  . Then  

C[t]}  p(t) :{p(A) =C[A] ∈   has the structure of an abelian Semi-group. Alice and Bob agree on an R 
semi-module M, an element  nM x ∈   and an element A of S. Alice chooses secretly C[t]  p(t)∈     and 
computes  xp(A)   and sends the result to Bob. Bob chooses  C[t]  q(t)∈   and computes   xq(A)   and 
sends the result to Alice. As a common key serves xp(A).q(A). =k . It should be difficult to find  

  C[t]  g(t)∈  such that  p(A)x = x g(A) . 

3. Conclusion 

     At present, we lack a convincing example of a system based on the previous sections. All of the 
examples has presented in [6] to be either insecure or already well-known. The insecure examples 
have arisen by generating random finite semi-ring for base-objects. Of course, there are some strong 
results in [6] on simple semi-modules over commutative semi-rings, but more work is needed to 
determine if there exist such objects that will suit our needs. In this paper we showed how the 
discrete logarithm problem over a finite group can viewed as an instance of an action by a Semi-
group. In fact, we show how the action of a quotient semi-ring on a semi-module gives rise to a 
generalized Diffe-Hellman and ElGamal protocol. It remains to find concrete instances of such 
actions that have high (believed) security relative to their key size. 
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