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Abstract: In A generalization of the original Diffie-Hellman key exchangein (Z/pZ)” found a
new depth when Miller and Koblitz suggested that such a protocol could be used with the group
over an dliptic curve. Maze, Monico and Rosenthal extend such a generalization to the setting of a
Semi-group action on afinite set, more precisely, linear actions of abelian semi-rings on semi-
modules. In this paper, we extend such a generalization to the linear actions of quotient semi-rings
on semi-modules. In fact, we show how the action of quotient semi-rings on a semi-module gives
rise to ageneralized Diffie-Hellman and ElGamal protocol. Thisleads naturally to a cryptographic
protocol whose difficulty is based on the hardness of a particular control problem, namely the
problem of steering the state of some dynamical system from an initial vector to somefina
location.
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I ntroduction

The Diffie-Hellman key exchange and the ElGamal one-way trapdoor function are the basic
ingredients of public key cryptography. Both these protocols are based on the hardness of the
discrete logarithm problem in a finite semi-ring. The discrete logarithm problem, commonly
abbreviated DLP, is a recurrent tool in public-key cryptography. The problem takes place in any
group G, but we shall always assume the group is finite and commuitative.

Protocol 1.1 [The Discrete Logarithm Problem - DLP] Let G be a finite commutative group.
Given two group elements a(the base) and b such that thatbl <a>, find 0£n£ord(a) such

thata" =b . We denote such an n by log,b.

For cryptographic purpose, we will always assume that the group G is presented in such a way that
multiplication is computationally easy. Note that this requirement makes exponentiation feasible as
well using well-known methods of type square-and multiply (see[1] or [3]).

The difficulty of the DLP strongly depends on the type of group that is used: It goes from easy to
non-feasible. For instance the DLP in the additive group of any finite field F, is trivia since

division can be performed in polynomia time. However, the DLP in the multiplicative group Fq* is
adifficult problem as well as the DLP in the group E(F,) of an elliptic curve defined over afinite

field. In fact the latter is much more difficult than the former and intuition tells us that the less
structure the group has, the more difficult that DLP will be. Protocols where the discrete logarithm
problem plays a significant role are the Diffie-Hellman key agreement [4], the Elgamal public key
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cryptosystem [5], the digital signature algorithm (DSA ) and ElGamal's signature scheme [1]. This
is one of the reasons why we have developed the ideas of this paper. In the sequel we outline two of
these protocols and we refer the interested reader to [1] for further details.

Let {Ec e € K} be a set of encryption transformations, and let {Dy d € K} be the set of
corresponding decryption transformations, where K is the key space. Consider any pair of
associated encryption/decryption transformations (E., Dq) and suppose that each pair has the
property that knowing Eg it is computationally infeasible, given a random cipher-text ¢ € C, to find
the message m € M such that E(m) = c. This property implies that given e it is infeasible to
determine the corresponding decryption key d. (Of course e and d are simply means to describe the
encryption and decryption functions, respectively.) Eeis being viewed here as a trapdoor one-way
function with d being the trapdoor information necessary to compute the inverse function and hence
allow decryption. This is unlike symmetric-key ciphers where e and d are essentially the same.
Under these assumptions, consider the two-party communication between Alice and Bob illustrated
in Figure 1. Bob selects the key pair (e, d). Bob sends the encryption key e (called the public key) to
Alice over any channel but keeps the decryption key d (called the private key) secure and secret.
Alice may subsequently send a message to Bob by applying the encryption transformation
determined by Bob’s public key to get ¢ = E¢(m). Bob decrypts the cipher-text ¢ by applying the
inverse transformation Dy uniquely determined by d [1].
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Fig.1 Encryption using public-key techniques[1].

The Diffie-Hellman protocol [4] alows Alice and Bob, to exchange key over some insecure
channel. In order to achieve this goa Alice and bob agree on agroup G and a common basegi G.

Alice chooses a random positive integer a and Bob chooses a random positive integerb. Alice
transmits to Bob g* and Bob transmits to Alice g”. Their common secret key is k =g°.

The ElGamal public key cryptosystem [5] works in the following way: Alice chooses positive
integer n andh,gi G, whereh=g". The private key of Alice consists of (g, h,n), the public key
consists of (g, h) . Bob chooses a random positive integer r and with this he applies the encryption
function v:G#u® G” G (sending m to(c,c,)=(g",mh")). Alice, who knows n=logh readily,

computes m from the cipher text(c,,c,) :m=c,(c,")*. In order for the protocol to work it is

required that multiplication and inversion inside the group G can be efficiently done and it should
be computationally infeasible to compute a discrete logarithm with basegi G.



In [6], Maze, Monico and Rosenthal have shown how the discrete logarithm problem over a group
can be seen as a special instance of an action by a Semi-group. In fact, they have shown every Semi
group action by an abelian Semi-group gives rise the Diffie-Hellman key exchange. With an
additional assumption it is also possible to extend the ElIGamal protocol. Let us explain them in
detail. Assume that s is afinite set and let G be a Semi-group. Consider an action of G ons:
G S%#u® S (sending (g,5) to g.s). By the definition of a group action we require that
(gh)ys=g(hs) for all g,h1 G and sl S. We also assume throughout that arithmetic in G and
computation of the G -action can be done in polynomial time. If the Semi-group G is commutative
then every G -action givesrise to ageneralized Diffie-Hellman Key Exchange [6]:

Protocol 1.2 (Extended Diffie-Hellman Key Exchange) Let s beafiniteset, G acommutative
Semi-group and an action of G on S as defined above. The Extended Diffie-Hellman Key
Exchangeis the following protocol [6]:

1) Alice and Bob agree on an elementsl S.

2) Alice chooses al G and computesas . Alice's secret key isa, her publickey is as.
3) Bob chooses bl G and computesbs. Bob's secret key is b, hispublic key is bs.
4) Their common secret key isthena(bs)=(ab)s=(ba)s=b(as).

Protocol 1.3 (Extended ElGamal Public Key System) Let s be a group with respect to some
operationo, G an abelian Semi-group and an action of G on s as defined above. The Extended
ElGamal Public Key System is the following protocol [6]:

1) Alice'spublic key is(s,as).
2) Bob chooses arandom element bi G and encrypts a message m using the encryption function
(m,b) ¥%.® (bs,(b(as))om)=(c,c,)
3) Alice can decrypt the message using
m=(b(as))*oc,=(ac)™ o c,.
In [6] Maze, Monico and Rosenthal show how to build Semi-group actions from actions by semi-

rings on semi-modules. In this paper we show how to build Semi-group actions from actions by
guotient semi-rings on semi-modules.

1. Quotient semi-rings acting on semi-modules

A set R together with two associative binary operations called addition and multiplication
(denoted by +and,. respectively) will be called a semi-ring provided 1) addition is a commutative
operation and that the multiplication is distributive with respect to the addition both from the left
and from the right; 2) there exists 01 R suchthat r+0=r and r.0=0.r=0 foral rl R. A subset |
of a semi-ring R will be caled an ideal if a, bl | and rl R implies a+bl | andra,arl I. A
subtractive ideal (=k -ideal) K is an ideal such that if x,x+y1 | thenyl K- A (left) semi-module
M over asemi-ring R isacommutative additive Semi-group which has a zero element, together a
mapping from
R™ M %:® M
Sending (r,m) to rm suchthat(r+sym=rm+sm, r(m+p)=rm+rp, r(smy=(rs)m

And Om=r0,, =0, Fordl m,pi M and r,sl R.



Anideal | of asemi-ring R is called a partitioning ideal (=Q-ideal) if there exists a non-empty
subset Q of R such that

(1) R=U{q+1:ql Q};

(2) If a,,0,1 Q then (g, +1) 1 (g, +1)* f if andonly if g, =q,
Let | bea Q-ideal of asemi-ring R and letR/I ={q+1:q1 Q}. Then R/l formsasemi-ring under
the binary operations A and A defined as follows: (g, +I)A (g, +1)=q,1 where g,1 Q is the
unique element such that g, +q, +11 g, +1 and (g, +1)A (g, +1)=q, +| where q,1 Q isthe unique
element such thatg, g, +11 g, +1. This semi-ring R/lis called the quotient semi-ring of R by 1.
By definition of Q-idedl, there exists a unique q,1 Q such thatO+1i g, +1. Then g, +1 isazero
element of R/l [8, 10]. It is well-known that if R is a semi-ring, then Mat(R), the set of n” n

matrices with entriesin R isasemi-ring.

Let M be afinite semi-module over asemi-ringR , and let | bea Q-idea of R. Now let ri R and
suppose that q,+1,q,+11 R/l are such that g,+1=q,+! inR/I. Theng,=q,, we must have
g, m=qg, m for everyml M. Hence we can unambiguously define a mapping R/I" M into M
(sending (g+1,m) togm) and it is routine to check that this turns the commutative Semi-group M
into an R/I - semi-module.

Convention. The remaining of this paper we will assume unless otherwise stated, if | isan Q-ideal
of R, and then Q is closed under addition and multiplication of R .

Let Mat (R/l) be the set of n” n all matrices with entries inR/I. The semi-ring structure on R/I
induces a semi-ring structure onMat (R/). Moreover the semi-module structure on M lifts to a
semi-modul e structure on M"viathe matrix multiplication:

Mat(R/I)" M" 3® M"
Sending (A,x) to Ax where x isa n” 1 matrix with entries my;,...,m, and A=(q; +1),,, with
q;1 Q for everyi, j. Onereadily verifies that

Mat(R/I)” M" 3%® M"
is an action by a semi-group, indeed one readily computes that A (Bx)=(A B) x . Let us explain this
equality in more detail. For simplicity, assume that n=2 and letA =(a; +1),,, B=(b; +1),,and
X=(m;),,. LetA (Bx)=(c;),,. Then we must have

&y, by my +ay; by, my, +a, by my +

ay, by My =y @

@y by My +3, by, My +ay, by my, +
ay, Dy My =Cy (2
LetAB=(g; +1),,. Then we must have
(au +DA by +DA (ay, +1)A (by +1) =
=e; +I (©)

(ay +1)A (b, +1)A (3, +1) A (by, +1) =
=e, +I (4)



(A + DA (by +1)A (ay +1) A (by +1)=
=ey *l ®)

(A + A (b, +DA (ay +1)A (by +1)=
=€yt (6)

It then follows from (3) that there are unique elements d,, d,, of Q such that
(dy + 1A (dyy +1)=¢; + (7
Wherea,, by, +11 dy, +1,a, by, +11 d, +1andd,, +d, +1i e, +1; hence

3y by +a, by, =d; +d, =e; (8
Since | isa Q-ideal of R . Similarly, the relations (4), (5) and (6) give:

&y, by tay, by =€,,8, by +ay, by =
1,8, by, +3y by =€y 9

Let(AB)x=(g; + 1)y ,(My),4 = (fi1), 1. Then we must have:

€ My +€, My =f;, e, My
ey My =fy (10)

Now therelation (1), (2), (8), (9) and (10) gives

fll = all bll mll + all b12 le + a12 bZlmll
+ a12 b22 le = Cll (11)

fo1 =@y by My +ay by, My +a, by My
+ay by My =Cy 12)
Thus (A B)x=A(BX).
Remark Assumethat | isan Q-ideal of R suchthat ab=bafor all a, bl Q andlet q,,q+I1 R/I.
Then there are  unique  elements c,cl Q withqg' +11 c+landgqq+11 c'+1,
so(q+ A (g+1)=(q+1)A (g+1) sinceqq =qq; hence R/l isacommutative ring.
Assume that | is an Q-ideal of R  such that qg=qq for dl gql Q and set
R=R/I={q+1:q] Q}={q:ql Q}.Let R[t] be the polynomia semi-ring in the in determinantt, and
let AT Mat(R) be afixed matrix. If
pt)=qg,+q, t+...+q, t“T R[{]

then we define in the usua wayp(A)=q, 1, +q, A+..+q, A*, where g, I, isthe n" n diagonal
matrix with entry q, in each diagona element. Consider the Semi-group

G=R[A]={p(A):p()T RIt]}
itiseasy to seethat G has the structure of an abelian Semi-group.



Protocol 2.1 then simply requires that Alice and Bob agree on an Q-ideal | of a semi-ringR, an
element x1 M, and a matrix AT Mat(R) . Alice chooses secretly P(t)i R[t]and computes p(A)x
and sends the result to Bob. Bob chooses secretly q(t)T R[t] and computes q(A)x and sends the
result to Alice. As acommon secret key serves k = p(A)q (A)x since p(A) and g(A) commute.

System Theoretic Interpretation: It is possible to give the key exchange a systems theoretic
interpretation. For this note that in order to choose p(A)i R[A] Alice has to chooseq, =q, +1, ...,

a, =g, +!T R=R/ and with this she can compute

PA)X=(dy + 0y A +...+q, A¥) x=

Oo X +Q A X+...+q, A* x

Consider now the linear time invariant system: y,,, =Ay, +u: x Where x,y, 1 M" and u.1 R.
Suppose further thaty, =0,, . If Alice chooses the input sequenceu, =g, ,u1=q,_,, ..., Uk =g, then
Y,.., the state vector at time k +1 is exactly p(A)x the public vector to be computed by Alice.
Once Alice receives from Bob his public keyf(A) x, then she defines b=f(A)x and by choosing
her input sequencesuo... ux in the systemy,,, =A'y, +u: b. Then she will be able to compute the
common secret key p(A)f(A) x .
Adversary who wants to find an element g(t)T R[t] such that g(A)x=p(A)x faces the task of

finding a control sequence uo,...,ux Which steers the initial state y, in to the statep(A)x . This

problem is in general very hard, but it contains some of the hardest known discrete logarithm
problem as a specia case. For example, whenR/I =M =F, afinite field then the problem is however
simply solved by [6, Theorem 3.1].

2. Matrix quotient semi-rings acting on semi-modules
Assume that R is a semi-ring and let Mat(R) be the set of n” n matrices with entriesinR . Our

starting point in this section is the following theorem:
Theorem 3.1 Let | bea Q-ideal of asemi-ringR . Then Mat,(l) isa Mat(Q)-idea of Mat(R). In

particular:
Mat(R)/Mat(l) ={C + Mat(l):C1 Mat(Q)}
isasemi-ring.
Proof: It iseasy to seethat Mat(l) isan idea of Mat(R).
Since the inclusion:
U{q+Mat(l):ql Mat(Q)}I Mat(R)
is trivia, we will prove the reverse inclusion. Suppose thatA = (a;),1 Mat(R). Then there are
elements g;1 Q and c;T | suchthat a; =q; +c; foral i,j since | isa Q-ideal of R. Set B=(q;), ,
andC=(c;),,- ThenA=B+Ci Ma(Q)+Mat(l), and so we have equaity. Suppose that
(E+Mat() I (F+Mat(l))t f where E=(e ), ,, F=(f, )yl Mat;,(Q. Weshow thatE=F. There exist
H=()yn K=K )ynl Mat,, (1) such thatE+H=F+K, so for ali,j,(g +1)1(f;+1)* f ; Hence
E=F since | isa Q-ideal, as needed.
Let M be afinite semi-module over a semi-ringR . The semi-module structure on M liftsto a semi-
module structureon M" viathe matrix multiplication:
Mat(R)” M"® M"
Sending (A,x) to Ax [6].



If | isan Q-ideal of R, then Theorem 3.1 gives Mat(R)/Mat(l) is a semi-ring. Moreover, if | is
closed under addition and multiplication of R, then it is easy to see that Mat(l) is closed under
addition and multiplication of Mat(R) . Now the matrix multiplication:

Mat(R)/Mat(l)” M"® M"
sending (A +Mat(l),x) to Ax is a semi-module structure on M" where AT Mat(Q). One readily
verifies that

Mat(R)/Mat(l)" M"® M"
is an action by a semi-group, indeed one readily computes that A (B x)=(A B)x . Let us explain this
equaity in more detall. LetA =(a,)), , + Mat(l),

B=(b;), +Mat(l)
And x=(m,),, wherea;,b,T Q. Then we must have
(A(Bx)= (a'ij)n' n (bij)n' o (Min)s 13

LetAB=(e ), +Mat(l). Then we must have(a)),, (b;),, +Ma)i (g, +Mat(l), SO we get

i i ij

@) n (0))n = (&), SINCE Mat(l) isa Mat(Q) - Ideal of Mat(R). It follows that

(A B) X= (au)n n (bij)n’ n (mil) n1 (14)

Now the assertion follows from (13) and (14).
Assumethat S=Mat (R)/Mat (1) and let S[t] be the polynomial semi-ring in the in determinant

tand let A=(a,),,+Ma()T s be a fixed member. Let CI Sbe the center of S.If

p(ty=r, +r t+..,r t, C[t] , then we define in the usual way p(A)=r, I, +r, A+..,r A . Then
C[A]={p(A):p(t)T C[t]} has the structure of an abelian Semi-group. Alice and Bob agree on an R
semi-module M, an element xI M" and an element A of S. Alice chooses secretly p(t)T C[t] and
computes p(A)x and sends the result to Bob. Bob chooses q(t)7 C[t] and computes q(A)x and
sends the result to Alice. As a common key servesk =p(A).q(A).x . It should be difficult to find
g®)T C[t] suchthat g(A)x=p(A)x.

3. Conclusion

At present, we lack a convincing example of a system based on the previous sections. All of the
examples has presented in [6] to be either insecure or already well-known. The insecure examples
have arisen by generating random finite semi-ring for base-objects. Of course, there are some strong
results in [6] on simple semi-modules over commutative semi-rings, but more work is needed to
determine if there exist such objects that will suit our needs. In this paper we showed how the
discrete logarithm problem over a finite group can viewed as an instance of an action by a Semi-
group. In fact, we show how the action of a quotient semi-ring on a semi-module gives rise to a
generaized Diffe-Hellman and ElGamal protocol. It remains to find concrete instances of such
actions that have high (believed) security relative to their key size.
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