
On Factoring Arbitrary Integers with Known Bits

Mathias Herrmann, Alexander May

Faculty of Computer Science, TU Darmstadt, 64289 Darmstadt, Germany
herrmann@rbg.informatik.tu-darmstadt.de, may@informatik.tu-darmstadt.de

Abstract: We study the factoring with known bits problem, where we are given a
composite integer N = p1p2 . . . pr and oracle access to the bits of the prime factors
pi, i = 1, . . . , r. Our goal is to find the full factorization of N in polynomial time
with a minimal number of calls to the oracle. We present a rigorous algorithm that
efficiently factors N given (1− 1

r
Hr) log N bits, where Hr denotes the rth harmonic

number.

1 Introduction

One of the most challenging tasks in algorithmic number theory is to efficiently find the
factorization of a composite number N . The security of the most popular public key
cryptosystem RSA is based on the difficulty of the factorization problem. Thus, it is no
surprise that considerable efforts have been made to lower the computational complexity
of factorization algorithms. In the Turing machine model, the currently best algorithms –
the Elliptic Curve Method and the Number Field Sieve – require subexponential time.

On the other hand, another interesting line of research established in the last two decades
that deals with relaxations of the factorization problem which are solvable in polynomial
time. A natural relaxation is to provide additional limited oracle access to the prime fac-
tors’ bits. This relaxation is motivated by cryptographic practice, where several side-
channels are known that leak bits of the factors.

Rivest and Shamir [RS86] showed in 1985, that for an RSA-modulus N = pq an amount
of 1

3 log N of the bits of p is sufficient to factor N . This result was improved by Cop-
persmith [Cop96] in 1996 to 3

10 log N bits, and in 1997 again by Coppersmith [Cop97] to
1
4 log N bits.

In 1999, Boneh, Durfee and Howgrave-Graham [BDHG99] generalized the Coppersmith
result to moduli of the form N = pkq. They showed that k

(k+1)2 log N bits are sufficient to
find the factorization of N in polynomial time. One should notice that this result coincides
with the one of Coppersmith for the RSA case, where k = 1.

Recently, Santoso, Kunihiro, Kanayama and Ohta [SKKO06] generalized the factorization
with known bits approach to square-free moduli N = p1 . . . pr, where all prime factors
pi, i = 1, . . . , r have the same bit-size. Santoso et al showed that the full factorization of
N can be found given

(
1− 2

r+2

)
log N bits.

We would like to remark that this result does not coincide with Coppersmith’s bound for
the RSA case, in which r = 2. Moreover, as opposed to the results of Coppersmith and
Boneh, Durfee, Howgrave-Graham the approach in [SKKO06] is not rigorous. Santoso et
al. model the factorization problem as a lattice-based root finding problem for an r-variate
polynomial. The authors use a heuristic algorithm of Coron [Cor04] for finding a root of a
multivariate polynomial equation. The root in turn yields all the prime factors.

Our contribution: We present a rigorous algorithm for factoring square-free integers
N = p1p2 . . . pr. As opposed to [SKKO06], we solve the factorization problem iteratively
by finding one prime factor of N in each iteration. This allows us to model the factorization
as a root finding problem for modular univariate polynomials. Therefore, we can use
Coppersmith’s rigorous algorithm for finding the roots of univariate polynomial equations.

Our factorization algorithm requires only a total of (1 − 1
r Hr) log N bits, where Hr =∑r

i=1
1
i is the rth harmonic number. This improves upon the bound of Santoso et al. for

all r. Moreover, for the RSA-case r = 2 the bound coincides with the Coppersmith bound
of 1

4 log N bits. The complexity of our factorization algorithm is polynomial in (log N, r).

We also consider the case where the prime factors pi are not of the same bit-size. We show
that in our iterative process of factoring, it is best to recover in each iteration the smallest
prime factor pi. The smaller pi is relative to the other factors, the less bits we need to
discover it. Consequently, the case where all prime factors are of the same bit-size turns
out to be the worst case for our algorithm in terms of the number of oracle calls. Thus,
(1− 1

r Hr) log N bits is an upper bound for general integers of the form N = p1p2 . . . pr.

Furthermore, our algorithm easily extends to integers that contain arbitrary prime powers,
i.e. the r primes factors pi must not necessarily be distinct. Once again, we can show that
our upper bound holds, and the more multiplicities N has, the less oracle calls are required
in our algorithm.

We would like to point out that our results have implications for fast variants of RSA,
which make use of multiprime RSA moduli. Application for such moduli have been
proposed by Boneh, Shacham [BS02] in order to speed up the RSA decryption/signing
process.

2 The Factorization Algorithm

At Eurocrypt 96, Coppersmith presented a method for finding small roots of univariate
modular polynomials [Cop96]. We will use the result in the reformulation of May [May07]:

Theorem 1. Let N be an integer of unknown factorization with a divisor b ≥ Nβ . Let
fb(x) be a univariate, monic polynomial of degree δ. Furthermore, let cN be a function
that is upper-bounded by a polynomial in log N .Then we can find all solutions x0 for the
equation fb(x) = 0 mod b with

|x0| ≤ cNN
β2

δ (1)

in polynomial time in (log N, δ).

Now we present a method to factor an integer of the form N = p1p2 · . . . · pr given
access to an oracle which delivers bits of r − 1 of the primes, applying the method from
Coppersmith. We compute the prime factors in an iterative manner. I.e. we start by looking
at a polynomial with a small root modulo one of the prime factors of N, w.l.o.g. p1, and
continue with a polynomial which has a small root modulo a prime factor of N2 = N

p1
and

so on.

Algorithm 1 Factorization Algorithm
Input : r, N = p1 · · · pr w.l.o.g. p1 ≤ p2 ≤ . . . ≤ pr

N ′ ← N
for i = 1 to r − 1 do

p̃i ← Call Oracle for r−i
r(r−i+1) log N most significant bits of prime factor pi of N ′

pi ← Apply Theorem 1 with the polynomial fpi = p̃i + x

N ′ ← N ′

pi

end for
Output: p1, . . . , pr

Theorem 2. Let N be a composite square-free integer with prime factors p1, . . . , pr of
the same bit-size. If we have approximations of p1, . . . , pr−1 with

|pi − p̃i| ≤ N
r−i

r(r−i+1) (2)

then we can factor N in polynomial time in (log N, r).

The construction of p̃1, . . . p̃r−1 requires
(
1− 1

r Hr

)
log N calls to the oracle.

Proof. The polynomial f1 = p̃1 + x has the small root p1 − p̃1 modulo p1. Our goal is
to find this root, which yields the prime factor p1. To apply Theorem 1, we need to bound
the size of the divisor used. For at least one of the prime factors we have pj > N

1
r . From

the assumption we made, we know pi ≥ 1
2N

1
r for all i, since all factors have the same

bit-size.

To obtain a bound β, we rewrite 1
2N

1
r = N

1
r −

1
log2 N . Hence we define β = 1

r −
1

log2 N .

The degree of f1 equals 1 and with the parameter cN = 4
1
r we obtain the following upper

bound on the size of the roots

4
1
r N

β2

δ = 4
1
r N

1
r2 − 2

r log2 N + 1
log22 N ≥ 4

1
r

(
1
4

) 1
r

N
1

r2 = N
1

r2 (3)

In order to recover p1 we need to know 1
r −

1
r2 = r−1

r2 log N most significant bits of
p1. Given p1 we can simplify N to N2 = N

p1
= p2 . . . pr. Now consider the polynomial

f2 = p̃2 +x2. We know that f2 has a small root modulo a divisor of N2, namely p2. Along
the lines of f1 we establish a lower bound on the size of the divisor. But in this case, the
size is different, since we don’t consider N but N2. Analog to the above, we obtain a
bound on the size of the divisor by

p2 =
N2

p3 . . . pr
≥ 1

2
N

1
r−1
2 = N

1
r−1−

1
log2 N2

2 (4)

With β2 = 1
r−1 −

1
log2 N2

, δ2 = 1 we compute

N
β2
2

δ2
2 = N

1
(r−1)2

− 2
(r−1) log2 N2

+ 1
log22 N2

2 ≥
(

1
4

) 1
r−1

N
1

(r−1)2

2 =
(

1
4

) 1
r−1

N
1

(r−1)2

2 (5)

To express N2 in terms of N , we use a similar argumentation as before. Since pj ≤ N
1
r

for at least one j, we can upper bound pi ≤ 2N
1
r for all i as they have all the same bit-size.

Then N2 = N
p1
≥ 1

2N1− 1
r . Continuing equation (5) we obtain(

1
4

) 1
r−1

N
1

(r−1)2

2 ≥
(

1
4

) 1
r−1

(
1
2
N

r−1
r

) 1
(r−1)2

≥
(

1
4

) 1
r−2

N
1

r(r−1)

Hence we may apply Theorem 1 with cN2 = 4
1

r−2 and obtain

4
1

r−2 N
β2
2
δ

2 ≥ N
1

r(r−1) (6)

Thus we require 1
r −

1
r(r−1) = r−2

r(r−1) log N most significant bits of p2.

For the i-th prime we have pi = Ni

pi+1·...·pr
≥ 1

2N
1

r−i+1
i = N

1
r−i+1−

1
log2 Ni

i and

Ni =
N

p1 · . . . · pi−1
≥

{
(1
2)i−1N

r−i+1
r if i− 1 < r

2

(1
2)r−(i−1)N

r−i+1
r if i− 1 ≥ r

2

(7)

Then

N
β2

δ
i ≥

{
(1
4)

2(r−i+1)+(i−1)
2(r−i+1)2 N

1
r(r−i+1) if i− 1 < r

2

(1
4)

3
2(r−i+1) N

1
r(r−i+1) if i− 1 ≥ r

2

(8)

By using the case differentiation, we prevent cNi from being exponential in r. It is based
on the fact, that at most r

2 of the primes can be of size 1
2N

1
r . We then have to choose cNi as

4
2(r−i+1)+(i−1)

2(r−i+1)2 respectively 4
3

2(r−i+1) . The maximum of cNi
in the interval 1 ≤ i ≤ r − 1

is 2
√

2. Therefore the requirement of Theorem 1 for cN to be polynomial in log N is
fulfilled.

In this fashion we formulate bounds on the required approximations for r− 1 of the prime
factors of N (we get the last one for free). Eventually we are interested in the total number
of bits required to factor the composite number N . Summing up the values for the p̃i, we
need the following number of oracle calls:

1
r

r∑
i=1

r − i

r − i + 1
log N =

(
1− 1

r
Hr

)
log N (9)

Our algorithm improves on a recent result from Santoso, Kunihiro, Kanayama, Ohta
[SKKO06]. They require

(
1

r+2 + ε
r(r−1)

)
log N high bits for each of the prime factors,

which sums up to r
r+2 log N bits in total. Additionally our algorithm is rigorous, i.e. it

does not depend on a heuristic assumption like the one in [SKKO06].

3 Unbalanced Prime Factors

In the previous section we assumed the prime factors of a squarefree integer to be balanced.
In this section we will show that this is actually the worst case, i.e. the number of required
bits gets smaller if the prime factors are unbalanced. First we notice that for unbalanced
prime factors the order in which they are processed does make a difference.

We will argue that it is a better choice to use the small prime factors first. Suppose we have
an integer N = p1p2 . . . pr and p1 = N b1 , p2 = N b2 . We will examine in which order the
first two prime factors should be processed.

Taking first p1 and then p2, the number of required oracle calls is

b1 − b2
1 + b2 −

b2
2

1− b1
+ Remaining (10)

Switching the order of the first two primes, we require

b2 − b2
2 + b1 −

b2
1

1− b2
+ Remaining (11)

oracle calls. The Remaining part is equal for both cases. Now we are interested under
what condition we get a smaller number of required bits using first p1, then p2. Thus,

b1 − b2
1 + b2 −

b2
2

1− b1
≤ b2 − b2

2 + b1 −
b2
1

1− b2

This can be reduced to the condition

b1 ≤ b2 (12)

Hence we require less oracle calls if we start with the smaller factor. Using the same
argumentation on other pairs of primes we eventually obtain that the number of oracle
calls is minimal if the prime factors are processed from smallest to largest. This reflects in
the precondition p1 ≤ p2 ≤ . . . ≤ pr of Algorithm 1.

Now we can state the main theorem of this section.

Theorem 3. The result (
1− 1

r
Hr

)
log N (13)

from equation (9) is an upper bound for the number of required bits to factor an arbitrary
square-free composite integer.

Proof. Proof by induction over the number of prime factors:

Base Case: Let r = 2 and N = p1p2. Suppose p1 = N b1 .

From Theorem 1 we obtain that we can recover b2
1 log N bits of p1 and therefore we require

b1 − b2
1 log N bits. The maximum of b1 − b2

1 is reached for b1 = 1
2 .

Hypothesis:

For a composite number with r − 1 distinct prime factors the worst case of oracle calls is
in the balanced case.

Inductive Step:

Let N = p1p2 . . . pr. Assume p1 = N b1 is the smallest factor, then b1 ≤ 1
r .

We need to find the maximum number of required bits. I.e. we need to maximize b1 −
b2
1 + bits required for the rest with the constraint 0 ≤ b1 ≤ 1

r . From the induction
hypothesis we derive that the number of bits for the remaining part of N is in the worst
case 1

r−1

∑r−1
i=1

r−1−i
r−i log N2, where N2 = N

p1
. Expressing N2 in terms of N , we obtain

the following function to optimize

b1 − b2
1 + (1− b1)

1
r − 1

r−1∑
i=1

r − 1− i

r − i
(14)

We achieve the maximum value in the intervall 0 ≤ b1 ≤ 1
r for b1 = 1

r . N2 is then of size
N

r−1
r and has by the hypothesis r − 1 balanced prime factors. Thus, each prime factor is

of size N b with b = r−1
r

1
r−1 = 1

r .

This completes the proof.

4 Prime Powers

Theorem 4. The result (
1− 1

r
Hr

)
log N (15)

from equation (9) is an upper bound for the number of required bits to factor an arbitrary
composite integer.

As in the proof for the unbalanced case we will need to begin with the smallest of the prime
powers. In this case however it is not that easy to see what smaller means. Therefore we
will define the following:

Definition 1. A prime power pk is said to be smaller than a prime power ql if the number
of oracle calls to recover p is less.

We will now show by induction that balanced prime factors with exponents ki = 1 are the
worst case in the sense of required oracle calls.

Proof. Base Case: r = 2

Let N = pk
1pl

2 and p1 = Nx, p2 = Ny . Suppose pk
1 is the smallest prime power, then

x− kx2 ≤ y − ly2, which reduces in this case to l ≤ k, since we have kx + ly = 1. The
number of oracle calls our algorithm requires equals x− kx2. The maximum of x− kx2

is obtained for x = 1
2 = 1

r and k = 1. Since l ≤ k it follows l = 1 and y = 1
2 .

Hypothesis:

For a composite number with r − 1 prime powers the worst case of oracle calls is for
exponents ki = 1 and balanced prime factors.

Inductive Step:

Let N = pk1
1 pk2

2 . . . pkr
r . Assume pk1

1 is the smallest factor.

As in the proof for unbalanced prime factors, we seek for the maximum of required oracle
calls. The number of oracle calls is f(x) = x − k1x

2 + remaining. By induction
hypothesis, the number of oracle calls of the remaining, is in the worst case of exponents
ki = 1 equal to 1

n−k1

∑n−k1−1
i=1

n−k1−i−1
n−k1−i log N2, with N2 = N

p
k1
1

= N1−k1x. Expressing

N2 in terms of N gives the final function to be maximized

f(x) = x− k1x
2 + (1− x)

1
n− k1

n−k1−1∑
i=1

n− k1 − i− 1
n− k1 − i

To obtain the correct bound, we need to formulate the side condition of pk1
1 being the

smallest factor. I.e. the number of required oracle calls is less than for the smallest factor
of the rest. By the hypothesis the remaining primes are balanced and have exponents

ki = 1. The size of pi(i ≥ 2) is therefore equal to N
1

n−k1
2 = N

1−k1x
n−k1 and the number of

oracle calls for the first prime of the remaining is 1−k1x
n−k1

−
(

1−k1x
n−k1

)2

log N . The required
side condition is therefore:

x− k1x
2 ≤ 1− k1x

n− k1
−

(
1− k1x

n− k1

)2

. . .

0 ≤ n− k1 − 1
(n− k1)2 − k1

− x

(16)

Using an appropriate method for solving optimization problems with inequalities as side
conditions (e.g. Karush-Kuhn-Tucker), the computation shows that the maximum is at-
tained for x = 1

n and k1 = 1.

Dividing N by p1 leaves us with N2 = N
r−1

r . By the hypothesis the worst case for N2

is the balanced, therefore pi = N b with b = r−1
r ·

1
r−1 = 1

r . Further by the hypothesis
ki = 1.

This completes the proof.

References

[BDHG99] D. Boneh, G. Durfee, and N. Howgrave-Graham. Factoring N=pkq for Large r, Ad-
vances in Cryptology, CRYPTO’99. Springer, LNCS, 1666:326–337, 1999.

[BS02] D. Boneh and H. Shacham. Fast variants of RSA, 2002.

[Cop96] Don Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring with
High Bits Known. In EUROCRYPT, pages 178–189, 1996.

[Cop97] D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent RSA
Vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997.

[Cor04] Jean-Sébastien Coron. Finding Small Roots of Bivariate Integer Polynomial Equations
Revisited. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027
of Lecture Notes in Computer Science, pages 492–505. Springer, 2004.

[May07] Alexander May. Using LLL-Reduction for Solving RSA and Factorization Problems:
A Survey. LLL+25 Conference in honour of the 25th birthday of the LLL algorithm,
2007.

[RS86] RL Rivest and A. Shamir. Efficient factoring based on partial information. EURO-
CRYPT’85, pages 31–34, 1986.

[SKKO06] Bagus Santoso, Noboru Kunihiro, Naoki Kanayama, and Kazuo Ohta. Factorization of
Square-Free Integers with High Bits Known. In Phong Q. Nguyen, editor, VIETCRYPT,
volume 4341 of Lecture Notes in Computer Science, pages 115–130. Springer, 2006.

