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Abstract

A public random function is a random function that is accessible by all parties, in-
cluding the adversary. For example, a (public) random oracle is a public random function
{0,1}* — {0,1}™. The natural problem of constructing a public random oracle from a pub-
lic random function {0,1}™ — {0,1}" (for some m > n) was first considered at Crypto 2005
by Coron et al. who proved the security of variants of the Merkle-Damgard construction
against adversaries issuing up to 0(2"/ 2) queries to the construction and to the underly-
ing compression function. This bound is less than the square root of n2™, the number of
random bits contained in the underlying random function.

In this paper, we investigate domain extenders for public random functions approaching
optimal security. In particular, for all € € (0, 1) and all functions m and ¢ (polynomial in n),
we provide a construction Ce ,, ¢(-) which extends a public random function R : {0,1}" —
{0,1}" to a function C. ,,¢(R) : {0,1}™™ — {0,1}*(™) with time-complexity polynomial
in n and 1/e and which is secure against adversaries which make up to ©(2"(1=9)) queries. A
central tool for achieving high security are special classes of unbalanced bipartite expander
graphs with small degree. The achievability of practical (as opposed to complexity-theoretic)
efficiency is proved by a non-constructive existence proof.

Combined with the iterated constructions of Coron et al., our result leads to the first iter-
ated construction of a hash function {0,1}* — {0,1}" from a component function {0,1}" —
{0,1}" that withstands all recently proposed generic attacks against iterated hash functions,
like Joux’s multi-collision attack, Kelsey and Schneier’s second-preimage attack, and Kelsey
and Kohno’s herding attacks.

1 Introduction

1.1 Secret vs. Public Random Functions

Primitives that provide some form of randomness are of central importance in cryptography,
both as a primitive assumed to be given (e.g. a secret key), and as a primitive constructed
from a weaker one to “behave like” a certain ideal random primitive (e.g. a random function),
according to some security notion.

*An extended abstract of this paper appears in the proceedings of CRYPTO 2007. This is the full version.



An adversary may have different types of access to a random primitive. The two extreme
cases are that the adversary has no access and that he has complete access' to it. For example,
the adversary is assumed to have no access to a secret key, and a pseudo-random function (PRF)
is a (computationally-secure) realization from such a secret key of a secret random function to
which the adversary has no access. In contrast, a (public) random oracle, as used in the so-called
random-oracle model [7], is a function {0,1}* — {0,1}" to which the adversary has complete
access, like the legitimate parties. Similarly, a public parameter (e.g. the parameter selecting
a hash function from a class) is a finite random string to which the adversary has complete
access. It is natural to also consider finite-domain public random functions.

In this paper we are interested in such public random primitives and reductions among
them. The question whether (and how) a certain primitive can be securely realized from another
primitive is substantially more complex in the public setting, compared to the secret setting, and
even the security notion is more involved. For example, while the CBC-construction can be seen
as the secure realization of a secret random function {0,1}* — {0,1}" from a secret random
function {0,1}" — {0,1}" [5, 21], the same statement is false if public functions (accessible
to the adversary) are considered. Another famous example of a reduction problem for public
primitives is the realization of a (public) random oracle from a public parameter. This was
shown to be impossible [9, 23].

1.2 Domain Extension and the Birthday Barrier

A random primitive (both secret or public) can be characterized by the number of random bits
it contains. An ¢-bit key is a string (or table) containing ¢ random bits, a random function
{0,1}™ — {0,1}" corresponds to a table of n2™ random bits which can be accessed efficiently,
and a random oracle {0, 1}* — {0, 1}" corresponds to a countably infinite table of random bits.>
Of course, a random table of N bits can be interpreted as a random function {0,1}™ — {0,1}"
for any m and n with n2™ < N. For example, n can be doubled at the apparently minor
expense of reducing m by 1.

An important topic in cryptography is the secure expansion of such a table, considered as
an ideal system. This is referred to as domain extension, say from {0,1}™ to {0,1}*™ (or to
{0,1}*), which corresponds to an exponential (or even infinite) blow-up of the table size. (In
contrast, increasing the range, say from {0,1}" to {0,1}?", corresponds to merely a doubling
of the table size.)

In [23] a generalization of indistinguishability to systems with public access, called indiffer-
entiability, was proposed. Like for indistinguishability, there is a computational and a stronger,
information-theoretic, version of indifferentiability. This general notion allows to discuss the
secure realization of a public random primitive from another public random primitive. In [23]
also a simple general framework was proposed, based on entropy arguments, for proving im-
possibility results like that of [9]. One can easily show that not even a single-bit extension of
a public parameter, from ¢ to £+ 1 bits, is possible, let alone to an exponentially large table
(corresponding to a public random function {0,1}"™ — {0,1}") or even to an infinite table
(corresponding to the impossibility of realizing a random oracle [9, 23]).

!1Side-channel attack analyses, where part of the secret key is assumed to leak, are examples of intermediate
scenarios.

2Each bit can be accessed in time logarithmic in its position in the table, which is optimal since the specification
of the position requires logarithmically many bits. In this paper we only consider such random primitives where
the bits can be accessed efficiently, but there are also more complicated primitives, like an ideal cipher, which
on one hand has a special permutation structure and also allows on the other hand a special additional type of
access, namely inverse queries.



However, the situation is different if one starts from a public random function (as opposed to
just a public random string). Coron et al. [13] considered the problem of constructing a random
oracle {0,1}* — {0,1}" from a public random function {0,1}™ — {0,1}" (where m > n) and
showed that a modified Merkle-Damgard construction [25, 14] works, with information-theoretic
security (i.e., indifferentiability) up to about ©(2"/?) queries. This bound, only the square root
of O(2"), is usually called the “birthday barrier”. The term “birthday” is used because the
birthday paradox applies (as soon as two different inputs to the function occur which produce
the same output, security is lost) and the term “barrier” is used because breaking it is non-trivial
if at all possible.

For secret random functions, many constructions in the literature, also those based on
universal hashing [11, 30] and the CBC-construction [5, 21], suffer from the birthday problem,
and hence several researchers [1, 4, 21] considered the problem of achieving security beyond the
birthday barrier. The goal of this paper is to solve the corresponding problem for public random
functions. Namely, we want to achieve essentially maximal security, i.e., up to 6(2”(1*6)) queries
for any € > 0 (where the construction may depend on €). Like for other problems (see e.g. [15]),
going from the “secret case” to the “public case” appears to involve substantial new construction
elements and analysis techniques.

1.3 Significance of Domain Extension for Public Random Functions

The domain extension problem for public random functions has important implications for the
design of cryptographic functions, in addition to being of general theoretical interest. We also
refer to [13] for a discussion of the significance of this problem.

Cryptographic functions with arbitrary input-length are of crucial importance in cryptog-
raphy. Desirable properties for such functions are collision-resistance, second-preimage resis-
tance, multi-collision resistance, being pseudo-random, or being a secure MAC, etc. A general
paradigm for constructing a cryptographic function {0, 1}* — {0,1}", both in the secret and the
public case, is to make use of a component function F : {0,1}™ — {0,1}" and to embed it into
an iterated construction C(-) (e.g. the CBC or the Merkle-Damgard construction), resulting in
the overall function C(F) : {0,1}* — {0,1}".

It is important to be able to separate the reasoning about the component function F and
about the construction C(-). Typically, F is simply assumed to have some property, like being
collision-resistant, second-preimage resistant, a secure MAC, etc. In contrast, the construction
C(+) is (or should be!) designed in a way that one can prove certain properties.

There are two types of such proofs for C(-). The first type is a complexity-theoretic reduction
proof showing that if there exists an adversary breaking a certain property of C(F), then there
exists a comparably efficient adversary breaking a property (the same or a different one) of
F. For example, using such an argument one can prove that the Merkle-Damgard [25, 14]
construction is collision-resistant if the component function is. Similarly, one can prove that the
CBC construction is a PRF if the component function is [5], or that certain constructions [2, 24]
are secure MACs if the component function is.

A second type of proof, which is the subject of [13] and of this paper, is the proof that if F
is a public random function, then so is C(F'), up to a certain number B of queries. Such a proof
implies the absence of a generic (black-box) attack against C(F), i.e., an attack which does
not exploit specific properties of F, but uses it merely as a black-box.? Such a generic proof is
not an ultimate security proof for C(F), but it proves that the construction C(-) itself has no

3This is analogous to security proofs in the generic group model [31, 22] which show that no attack exists
that does not exploit the particular representation of group elements.



weakness. A main advantage of such a proof is that it applies to every cryptographic property
of interest (which a random function has), not just to specific properties like collision-resistance.

The number B of queries up to which security is guaranteed is a crucial parameter of such a
proof, especially in view of several surprises of the past years regarding weaknesses of iterated
constructions. Joux [17] showed that the security of the Merkle-Damgard construction (with
compression function with n-bit output) against finding multi-collisions is not much higher
than the security against normal collision attacks, namely the birthday barrier ©(2"/?), which is
surprising because for a random function, finding an r-multi-collision requires @(2%") queries.
Joux’s attack has been generalized to a wider class of constructions [16]. Other attacks in
a similar spirit against iterated constructions are the second-preimage attack by Kelsey and
Schneier [19], and herding attacks [18]. Omne possibility to overcome these issues is to rely
on a compression function with input domain much larger than the size of the output of the
construction (cf. for example the constructions in [20] and the double block-length construction
of [12]), but this does not seem to be the best possible approach, both from a theoretical and
from a practical viewpoint, as explained below.

A proof, like that of [13], for a construction C(-) of a public random function, implies that
C(+) is secure against all possible attacks, up to the bound B on the number of queries stated
in the proof. Since the bound in [13] is the birthday barrier, this implies nothing (beyond the
birthday barrier) for attacks that require more queries, like the attacks of [17, 19, 12] mentioned
above, and indeed the constructions of [13] also suffer from the same attacks.

The bound B is also of importance since it determines the input and output sizes of F. For
example, because collision-resistance is a property that can hold only up to 2/2 queries (due
to the birthday paradox), n must be chosen twice as large as one might expect to be feasible
in a naive security analysis. Moreover, since the function must be compressing to be useful
in a construction C(-), the input size m must be larger than the output size n. However, if
collision-resistance is not required, but instead for example second-preimage resistance, then
the input size m of F can potentially be smaller or, turning the argument around, security for
a given m can be much higher.

The input size m of F is relevant for two more reasons. First, if one considers the (perhaps
not very realistic) possibility of finding a random function in Nature (say, by scanning the
surface of the moon or by appropriately accessing the WWW), then m is a crucial parameter
since the table size n2™ is exponential in m. Second, for a given maximal computing time for
F, the difficulty of designing a concrete cryptographic function F : {0,1}" — {0,1}" that is
supposed to “look random” increases significantly if m is large. This can be seen as follows.
Such a function F for large m could be modified in many different ways to reduce m to m’ < m
(e.g. set m —m’ input bits to 0 or to any fixed value, or repeat an input of size m’ until a block
of length m is filled, etc.), and for each of these modifications it would still have to be secure.?
Hence simply designing a new function with doubled m is not a very reasonable solution for the
birthday barrier problem. Rather, one should find a construction that doubles (or multiplies)
the input size but at the same time preserves the security almost optimally.

1.4 Contributions and Outline of This Paper

The main contribution of this paper is a construction paradigm for breaking the birthday barrier
for domain extension of public random functions. More precisely, in Section 3 we prove that for
every € € (0,1), m and ¢, there exists an efficient construction Cg , ¢(-) which extends a public

4This argument applies even though we know that a public random function is not securely realizable from a
public random parameter.



random function {0,1}" — {0,1}" to a public random function {0,1}™ — {0,1}¢, and which
guarantees security for up to ©(2"1=9) queries.

A central tool in our approach is a new combinatorial object, which we call an input-
restricting function family. Section 4 discusses constructions of such families from highly-
unbalanced bipartite expander graphs. While current expander constructions only allow our
paradigm to be efficient in a complexity-theoretic sense (i.e. polynomial-time), an existence
proof shows that very efficient constructions exist which would be of real practical interest. We
hope this to provide additional motivation to investigate explicit constructions of unbalanced
bipartite expanders for a range of parameters which have not received much attention so far.

Finally, our techniques allow to use a public random function {0,1}" — {0,1}" to construct
a compression function with sufficiently large domain and range and to plug it into the construc-
tion of [13] to achieve the first iterated construction of a public random oracle {0, 1}* — {0,1}"
from a public random function {0,1}" — {0, 1}" with security above the birthday barrier. We
discuss this in Section 5.

2 Preliminaries

2.1 Notation and Probabilities

Throughout this paper, calligraphic letters (e.g. ¢) denote sets. Furthermore, the set ¢* con-
tains all k-tuples of elements from U, and a k-tuple is denoted as u* = [ug,...,u;]. We use
capital letters (e.g. U) to name random variables, whereas their concrete values are denoted by
the corresponding lower-case letters (e.g. u). Also, we write Py for the probability distribution
of U, and we use the shorthand Py (u) for P(U = u) and for some event A we write P4 (u)
instead of P(AA U = u). Given events A and B and random variables U and V, then P 4151
denotes the corresponding conditional probability distribution, which is interpreted as a func-
tion U x V — R>g, where the value PAU‘BV(u,v) is well-defined for all w € U and v € V such
that Py (v) > 0 (and undefined otherwise). Two probability distributions Py and Py on the
same set U are equal, denoted Py = Py, if Py (u) = Py (u) for all w € U. Also, for conditional
probability distributions, equality holds if it holds for all inputs for which both are defined. We
often need to deal with distinct random experiments where equally-named random variables
and/or events appear. To avoid confusion, we add superscripts to probability distributions (e.g.
PZU\ BV (u,v)) to make the random experiment explicit. Also, note that sometimes we simply

write Pi\Ul gy Whenever the arguments u, v are clear from the context (or when the statement

holds for any argument).

For binary strings s,s’ € {0,1}*, we denote by s||s’ their concatenation. Furthermore, we
often use strings s € {0,1}" whose length |s| is a multiple of n. In this case, the string s(*)
the ¢’th n-bit block of the string s. Also, for a binary string s € {0,1}" and n < m, the
string s|,, consists of the first n bits of s.

2.2 Indistinguishability of Random Systems

In this section, we review basic definitions and facts from the framework of random systems
of [21]. A random system is the abstraction of the input-output behavior of a discrete system.

Definition 1. An (X,))-random system F is a (generally infinite) sequence of conditional
probability distributions pg‘ xi for all ¢ > 1. Two random systems F and G are equivalent,

denoted F = G, if pgpﬁ for all 4 > 1.

yi—1
— nG
yi-1 = Py;|xiyi-1



That is, the system is described by the conditional probabilities pi‘ Xiyi,l(yi,x",yifl)
(for i > 1) of obtaining the output y; € ) on query x; € X given the previous i—1 queries 2! ~! =
[#1,...,2;_1] € X*"! and their corresponding outputs y*~! = [y1,...,7;-1] € YV'"1. We use a
lower-case p to stress the fact that these conditional distributions by themselves do not define
a random experiment. Equivalently, one can describe the system by the conditional distribu-

tions pf‘,i‘ i (for all i > 1) of the first i outputs, given the first ¢ inputs. Both views are related

by the equality pgi = H;:l p$_| <iyi-1, and it is easy to see that F and G are equivalent if
J

| X
and only if pgi‘ i = pg'” i for all i > 1. An example of a random system that we consider in
the following is a random function R : {0,1}™ — {0,1}", which returns for every distinct input
value z € {0,1}" an independent and uniformly-distributed n-bit value. Moreover, a random
oracle O : {0,1}* — {0,1}"™ is a random function taking inputs of arbitrary length.

A distinguisher D for an (X,))-random system is a (), X')-random system which is one
query ahead, i.e. it is defined by the conditional probability distributions p§i| yi-1yi-1 for
all 4 > 1. In particular, p?l is the probability distribution of the first value queried by D.
Finally, the distinguisher outputs a bit after a certain number (say k) of queries depending on
the transcript (X*, Y*). For an (X,))-random system F and a distinguisher D, we denote
by D o F the random experiment® where D interacts with F. Furthermore, given an addi-
tional (X, ))-random system G, the distinguishing advantage of D in distinguishing systems F
and G is defined as AP(F, G) := }PDOF(l) - PDOG(1)|, where PP°F (1) and PP°G (1) denote the
probabilities that D outputs 1 after its k£ queries when interacting with F and G, respectively.

We are interested in considering an internal monotone condition defined on a random sys-
tem F. Such a condition is initially true, and once it fails, it cannot become true any more. In
particular, a system FA with a monotone condition A is an (X,Yx{0,1})-random system, where
the additional output bit indicates whether the condition A holds after the i’th query has been
answered. In general, we characterize such a condition by a sequence of events A = Ag, A4, ...,
where Ay always holds, and A; holds if the condition holds after query i. The condition fails
at query i if A;_1 A A; occurs. For a system with a monotone condition FA, we write F for
the system where the additional output bit is ignored. Generally, we are interested in con-
sidering the behavior of systems only as long as a certain monotone condition holds: Given
two systems F4 and GB with monotone conditions A and B, respectively, they are equivalent,
denoted FA = G5B, if pimXiYi*lAi,l = pgm\XiYilei,l holds for all ¢ > 1, or equivalently,
if pgiAipﬁ = pgiA”Xi holds for all 7 > 1.

The probability that a distinguisher D issuing & queries makes a monotone condition A fail
in the random experiment D o F is defined as vP (F4) := P%F. The following lemma from [21]
relates this probability with the distinguishing advantage. ’

Lemma 1. If FA = G5 holds, then AP(F, G) < vP(F4) = vP(GB) for all distinguishers D.

One can use a random system F as a component of a larger system: In particular, we are
interested in constructions C(-) such that the resulting random system C(F) invokes F as a
subsystem. (Note that C(-) itself is not a random system, while C(F) is a random system.)

Finally, we remark that in general when we mention that a construction (or a distinguisher)
is efficient we mean that there exists a probabilistic interactive Turing machine implementing
the same input-output behavior and with polynomial running time (in the understood security
parameter).

®In particular, in this random experiment, the joint distribution Pgil;k is well-defined as Hle pgi\xi—lyi—l .

F
pyilxiyi—l .



2.3 Indifferentiability, Reductions, and Public Random Primitives

The notion of indifferentiability [23] naturally extends the concept of indistinguishability to
systems with a public and a private interface® adopting a simulation-based approach, in the
same spirit as the security frameworks of [8, 29]. The public interface can be used by all
parties, including the adversary, whereas the legitimate parties have exclusive access to the
private interface. Generally, we denote such a system as an ordered pair F = [Fpup, Fpriv].
Furthermore, given constructions S(-) and C(-) leaving, respectively, private and public queries
unmodified, we simply write S(F) = [S(Fpup), Fpriv] and C(F) = [Fpub, C(Fpriv)].

Public random primitives are a special case of such systems. A public random function
(puRF)R : {0,1}"™ — {0,1}" is a system with a public and a private interface which behaves as
the same random function at both interfaces.” In particular, both interfaces answer consistently.
Furthermore, a public random oracle (puR0O) O : {0,1}* — {0,1}" is a public random function
which takes inputs of arbitrary bit-length.

In the following definition, we refine the notion of (information-theoretic) indifferentiability
from [23] to deal with concrete parameters.

Definition 2. Let  : N — R>p and ¢ : N — N be functions. We say that a system F

is («a, 0)-indifferentiable from G, denoted F aIia G, if there exists a simulator S such that
AD([Fpub,Fpriv], [S(Gpub); Gpriv]) < a(k) for all distinguishers D making at most & queries,
and S makes at most (k) queries to Gy, when interacting with D,.

The purpose of the simulator is to mimic Fp.1, by querying G, but without seeing the
queries made to Gyiyv. Indifferentiability directly implies a notion of reducibility.

Definition 3. A system G is («, 0)-reducible to a system F if there exists an efficient, determin-

istic, and stateless construction C(-) such that [Fpup, C(Fpriy)] alﬁa G. The construction C(-) is
called an («, o)-reduction.

In Appendix A, we shortly discuss the achievable parameters for reducibility of public
random primitives. The following lemma states that reducibility is transitive. We omit its
simple proof.

Lemma 2. Let E,F, and G be systems. If C(-) is a (o, 0)-reduction of F to E, and C'(-) is
an (o, 0") reduction of G to F that makes at most kcs (k) queries to Fpri, when queried k times,
then C'(C(+)) is an (a,7)-reduction of G to E, where a(k) = a(k + ko (k)) + o' (k + o(k)) and
a(k) =0'(c(k)).

The computational variant of indifferentiability is obtained by requiring S to be efficient
and the advantage AD([Fpub, Firiv]; [S(Gpub), Gpriv]) to be negligible for all efficient D. Com-
putational reducibility is defined accordingly. In the information theoretic case, it is sometimes
desirable to prove that the simulator is efficient when queried by an efficient distinguisher,
as this then implies the corresponding complexity-theoretic statement. We refer the reader
to [23, 13] for the implications of computational indifferentiability.

In contrast, as long as we are only interested in excluding generic attacks against security
properties of a random function, the running time of the simulator is irrelevant. If C(:) is
an (a,o)-reduction of a puRO O : {0,1}* — {0,1}" (or of a puRF R/ : {0,1}™ — {0,1}%) to a
puRF R : {0,1}" — {0,1}", then C(R) inherits all the security properties of the truly-random

SFormally, this can be seen as a random system with a single interface and two types of queries.
"For this reason, we generally write both Rpup and Ry as R.



Figure 1: Main construction, where F1,...,F, and Gi,...,G; are independent puRF’s and
Eq,...,E. :{0,1}'"" — {0,1}" are efficiently-computable functions.

oracle O (or of R’), as long as the number of queries keeps a(k) small: Any adversary A making k
queries (to both R and C(R)) and breaking some property of C(R) with probability (k) can
be transformed (combining it with the simulator) into an adversary A’ making at most k+ o (k)
queries to O and breaking the same property for O with probability at least w(k) — «(k), and
if no such A’ can exist, then also no adversary A exists. The actual running time of A’ is
irrelevant, as the security of a random function (or oracle) with respect to a certain property
is determined by the number of queries of the adversary, and not by its running time.

For example, if (k) = ©(k), then, given a random element s € {0,1}™, no adversary can
find a second preimage s’ € {0,1}™ with s # s and C(R)(s) = C(R)(s’) with probability
higher than ©(k - 27") + a(k).

3 Beyond-Birthday Domain Extension for Public Random Func-
tions

3.1 The Construction

We first discuss at an abstract level the main construction of this paper (represented in Fig-
ure 1), which implements a function mapping m-bit strings to ¢-bit strings from r+¢ independent
puRF’s Fy,...,F,. : {0,1}" — {0,1}*" and G1,...,G; : {0,1}"* — {0,1}* (for given parame-
ters 1, t, and p). Let Eq, ..., E, : {0,1}"™ — {0,1}" be efficiently-computable functions (to be
instantiated below). On input s € {0, 1}, the construction operates in three stages:

1. The values F)(E ( ) = ( () - HF ( n(s)) € {0 1}t are computed for all p =
1,...,r, where F (E (s )) € {0,1}" for all ¢ = 1,.

2. The value w(s) = wM(s)||---|w®(s) is computed, where w(?(s) equals (for all ¢ =
1,...,1) the first n bits of the product (,_, FI(,q) (Ep(s)), and ® denotes multiplication
in GF(2°") with pn-bit strings interpreted as elements of the finite field GF(2°");

3. Finally, the value @221 G, (w9 (s)) is output.



Our approach relies on the observation that if for each new query to the construction with
input s € {0,1}" there exists an index ¢ € {1,...,t} for which G, has not been queried
yet at the value w(q)(s), either directly at its public interface or by the construction at the
private interface, the resulting output value is uniformly distributed and independent from all
previously-returned values. This resembles the approach taken to extend the domain of (secret)
random functions [1, 4, 21]. However, we stress that the role of the first two stages (including
the functions Ei,..., E,) is crucial here: Not only they have to guarantee that such an index ¢
always exists, but they must also permit simulation of the puRF’s Fy,... F, and Gq,..., Gy
given only access to the public interface of an (ideal) puRF R : {0,1}™ — {0,1}¢, without
seeing the queries made to the private interface of R. Also, the probability that the simulation
fails must be small enough to allow security beyond the birthday barrier.

3.2 Input-Restricting Functions

For every s € {0,1}™ one can always learn the value w(s) by querying the public inter-
faces of Fy,...,F, with appropriate inputs Ei(s),..., Ey(s), respectively. For every such s,
the sum EBZ:l G,(w@(s)) equals the output of the construction on input s. The simulator

must ensure that its answers for queries to the functions Gy, ..., Gy are consistent with these
constraints. However, if Fq,..., E,. allow a relatively small number of queries to the func-
tions Fy,...,F; to reveal a too large number of values w(s), then the simulator possibly fails

to satisfy all constraints. For example, the Benes construction [1] adopts an approach similar
to the one of our construction, but suffers from this problem and its security in the setting of
puREF’s is inherently bounded by the birthday barrier (cf. Appendix B for further details).

To overcome this problem, we introduce the following combinatorial notion.

Definition 4. Let € € (0,1) , and let m > n. A family £ of functions Ei,..., E, : {0,1}"" —
{0,1}" is called (m, d, €)-input restricting if it satisfies the following two properties:

Injective. For all s # s’ € {0,1}™, there exists p € {1,...,r} such that E,(s) # E,(s).

Input-Restricting. For all subsets Uy, ..., U, C {0,1}" such that |Uy| + - + [U| < 270179,
we have

{s € {0,1}"|Ey(s) eUp forall p=1,....r} <& (U] + -+ |Ur]).

It is easy to see that 6 > 1/r must hold. Furthermore, we need r - n > m for the family to
be injective. When talking about efficiency, we can naturally extend the notion to asymptotic
families &€ = {&,, }nen of function families by letting m, 0, €, and r be functions of n, and &, =
{ET,..., Ef(n)}, with EJ : {0, 1} — {0,1}". In particular, note that we allow the size of
the family to grow with the security parameter. The family &, is called explicit if r = r(n)
is polynomial in n and if there exists a (uniform) polynomial-time (in n) algorithm E that
outputs £(s) € {0,1}" on input n € N, s € {0, 13" and p € {1,...,7(n)}. The family is
additionally called invertible if there exists an algorithm which on input the sets Uy, ...,U, C
{0,1}™ and n returns the set of all s € {0,1}" for which E,(s) € Uy, for all p=1,...,r in time
polynomial in |U| + - - - + |U,| and in n. We will not, however, stress the asymptotic point of
view in the following, as long as it is clear from the context that the statements can be also
formalized in this sense.

We postpone the discussion of the existence of explicit function families to Section 4,
where we construct (for all constants €) explicit families of (m, d, €)-input-restricting functions



for all polynomials m and sufficiently-small § using highly unbalanced expander graphs with
polynomial-degree.

3.3 Main Result

Let € € (0,1). The concrete construction C¢, () is obtained from the description in Section 3.1
by instantiating the functions E,..., E, with an explicit family €& = {E1,..., E.} of (m,0,¢)-
input restricting functions with n-bit output. Also, we let p := [% +2— 6—| and ¢t := [2/e — 1].
Note that underlying r 4+ ¢ puRF’s can be seen as a single puRF R’ : {0,1}"+¢(™) — {0,1}",
where ¢(n) = [log(r-tp+tl/n)]. If m, £, and 1/e are polynomial in n, then in particular ¢(n) =
O(logn). Also, it is easy to see that Cfme(') is efficient, as long as the function family £ is
explicit. The following is the main theorem of this paper and it is proved in the next section.

Theorem 3. The construction Cf,m,e(') is an (o, 0)-reduction of the puRF R : {0,1}" —
{0,1}¢ to the puRF’s Fy,...,F, : {0,1}* — {0,1}*/" and Gi,...,G; : {0,1}* — {0,1}¢,

where for all k < 21-9) —
1
a(k) < 2rt((5 + 1)t+1 CEtZ o9t §t(5 +1) k- (k+2r+ 1) . om—pn

and o(k) < d(n) - k. If the family € is invertible, the simulator runs in time polynomial in k
and n, and in particular Cim!(-) s also a computational reduction.

We remark the following two important consequences of Theorem 3.

e First, if € is constant and r,J polynomial in n, the above advantage «(k) is negligible for
all parameters k up to k = 2*(1=¢9) — . In particular, choosing ¢ < % leads to security
beyond the birthday barrier,® and we are going to provide input-restricting families of
functions with appropriate parameters in Section 4.

e Second, the result can be used to extend the domain of a puRF R’ : {0,1}" — {0,1}"
with security up to 2"=#) queries: One chooses any € < p and n’ maximal such that n’ +
$(n') < n, and interprets the function R’ as a puRF {0,1}*+¢(") — {0,1}" by dropping
approximately ¢(n’) bits of the output. The above advantage is still negligible for all k£ <
27 (1= _ . and hence for all k < 21=#) for n large enough, since n —n’ = o(n).

3.4 Proof of Theorem 3

We prove that there exists a simulator S such that AP(Hy, Hy) is bounded by the above
expression for all distinguishers D making at most k& < 2719 — 1 queries, where for notational
convenience H; and Hy are defined as

H;:=[Fy,...,F,,Gy,...,G,CE, ((F1,...,F,,Gy,...,Gy)]
H, := [S(R),R].

There are three types of queries to the systems H; and Hs: The first two types are F-queries,
denoted (F,p,u) for p € {1,...,r} and u € {0,1}", and G-queries, denoted (G, q,v), for v €
{0,1}" and ¢ € {1,...,t}. In Hy, a query (F, p, u) returns the value F,(u) and a query (G, ¢, v)
returns the value G4 (v), while in Hy both query-types are answered by the simulator S. The

8Note that € could even be some function going (slowly) towards zero, even though this may require setting ¢
differently.
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upon receiving an F-query z; = (F, p,u) for the first time:

if F),(u) is undefined then
set Fp(u) to a uniform random value

compute AS; 1= {s1,...,5)as,|}

for j :=1 to |AS;| do
let ¢; € {1,...,t} be such that w(s;)%) ¢ w(@)(S;_1 U {s1,...,8j-1}) U Gy; i1
if no such ¢; exists then abort
for all ¢ # ¢; do

if G,(w@(s;)) is undefined then set G,(w'?(s;)) to a uniform random value

Gy, (@) (57)) i= R(s;) ® D, 4, Gl (s,))

return F,(y)

upon receiving a G-query z; = (G, ¢, v) for the first time:
if G4(v) is undefined then
set G4(v) to a uniform random value
return G,(v)

Figure 2: Simulator S in the proof of Theorem 3. The simulator also constantly keeps track of
the sets Fp; and Gy ; forallp=1,...,7r,¢q=1,...,t,and i =1,2,....

third type of queries, called R-queries, are denoted (R,s) for s € {0,1}" and are answered
by the construction C‘z m,ﬂ(') in Hy, and by the private interface of the random function R
in Hy. Given the first i queries 2° = [21,...,2;], where z; € {(F,p,u),(G,q,v), (R,s)} for
all j =1,...,4, we define for all indices p and ¢ the sets F,,; and G, ; that contain, respectively,
all values u € {0,1}" for which a query (F,p,u) and all v € {0,1}" for which a query (G, ¢, v)
appears in 2. Also, we let R; be the set of values s € {0,1} for which a query (R,s)
appears in z’, and we let S; consist of all the values s € {0,1}™ such that E,(s) € F,; for
all p=1,...,r. Furthermore, let AS; := S; \ S;—1. Notice that the set S; contains all inputs
for which the values returned by the first ¢ queries allow to compute the value w(s). Clearly,
|Si| = 22:1 |AS;| < 6-i for all i < 27179 since the family £ is input-restricting. For s € S,
&

e,m,l
of the first queries, and for a set S C S; we use the shorthand w(?(S) := {w(@(s)|s € S}.
The simulator S defines the function tables of Fy,...,F, and of Gq,...,G; dynamically.
That is, all values Fj,(u) and Gg(v) are initially undefined for all u,v € {0,1}" and indices p
and ¢. Upon processing a new F-query z; = (F,p,u), the simulator sets the value Fp(u) to
a fresh random value and computes the set AS;: The simulator knows this set, as it pro-
cesses all F-queries. For each s € AS;, the equality @Zzl G,(w'?(s)) = R(s) must be satis-
fied, and hence S tries to satisfy these constraints by appropriately setting the values of the
functions Gi,..., Gy More precisely, it looks for an ordering of AS; = {s1,...,5|as,|} with
the property that for all j = 1,...,|AS;| there exists ¢; € {1,...,t} such that w(%)(s;) ¢
{w @ (s1),...,wl %) (5521)} U Ggimr, and sets Gq, (w(®)(s5)) = R(s)) & By, Ga(w!?(s)))
for j = 1,...,|AS;|, where each undefined value in the sums is set to an independent ran-
dom value. A query to the public interface of R is issued in order to learn R(s;). If no
such ordering exists, then the simulator aborts.” Finally, the value F,(u) is returned. For a

we define w(s) = w(s)| - - - |w®(s) as in the description of CE_ ,(-) according to the answers

9Note that there is no need to formalize the exact meaning of abortion, since whenever the simulator fails to
find such an ordering, then the distinguisher is assumed to win.
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query z; = (G, ¢,v), the simulator returns G4(v), defining it to a random value if undefined. In
Figure 2, we provide a detailed pseudo-code description of the simulator S. The number of R-
queries made by the simulator after i < 2179 queries is |S;| < d-i. Also, as long as the family £
is invertible and an appropriate ordering can be efficiently found, its running time is efficient
in k and n. In fact, we show that with very high probability any ordering can be used. Without
loss of generality, it is convenient to advance the generation of the random functions Fy,...,F,
to the initialization phase, that is, their entire function tables are generated once uniformly at
random in both H; and Ha. Subsequently, all queries (F,p,u) are answered according to the
initial choice. In particular, this means that in Hy the simulator S uses the value F,,(u) already
defined instead of generating a new fresh random value. It is clear that the behavior of both
systems is unchanged. This also allows us to define the value w(s) = w®(s)||--- ||w®(s) for
all s € {0,1}"™ and each such value induces a constraint, namely the answer of an R-query (R, s)
must equal @2:1 G, (w9 (s)). Such a constraint remains hidden until s € AS; from some i,
and in this case the simulator attempts to fill the function tables of Gy,..., G; consistently.
To avoid possible problems, we have to account for two things captured by the two following
monotone conditions which we define on both H; and Ho:

(a) The monotone condition A = Ag, Ay,... fails at query ¢ if there exists an s € AS; such
that (@ (s) € w@(S;\ {s}) UGyi1 forall g =1,...,t.

(b) The monotone condition B = By, By,... fails at query i if there exists s € R; \ S; such
that w@(s) € w@(S;UR; \ {s}) UG, forall g =1,...,t.

As long as A does not fail, the simulator never aborts. This in particular implies that R-
queries (R, s) for s € §; in Hy are consistent with G-queries answered by the simulator. How-
ever, all R-queries (R, s) for s ¢ S; are answered independently and uniformly at random in Ho,
and B ensures that this happens in H; as well. In Section 3.5, we prove the following lemma,
which formalizes this argument and states that as long as neither A nor B fail, then H; and Hy
behave identically.

Lemma 4. H{"\8 = Hy"\5.

To provide some intuition as to why the probability that a distinguisher D makes A A B
fail is small, let us assume first that for any two distinct s, " € {0,1}™ (such that at least one
of them is not in &;) and for all ¢ = 1,...,¢, the probability (conditioned on the answers to
the previous queries) that w(@(s) = w(? () is bounded by some small value ¢ (say ¢ ~ 27").
In order to upper bound the probability of A failing after query 7, combining the union bound
with the above assumption we see that P(w(@(s) € w(®(S; \ {s}) U Gyi_1) < [w@(S;\ {s}) U
Ggi-1] - < (04+1)-i-¢p for all s € AS;, since £ is input-restricting. Furthermore, for all
distinet ¢,¢' € {1,...,t} and s,s" € {0,1}" (possibly s = s’), the structure of the first two
stages of C‘g m,(*) ensures that the values wD(s) and w'?)(s) are statistically independent,
and hence

P(Vq : w(s) € w@(S;\ {s}) UGy 1) < (6 + 1) it - .
Therefore, the probability pIz‘_\Iiil\XiYPlAi_l(xayiil) — p%inYFlAi_l(xayiq) that there exists

an s € AS; making A fail after query i is bounded by |AS;| - (6 + 1) - ' - ¢!, where |AS;| is
small for all i < 2n(1-€),

Nevertheless, turning this intuition into a formal proof (and extending it to the monotone
condition B) requires additional care. The probability that w(?(s) equals w(%(s) happens to
be small only with overwhelming probability (taken over the answers to the previous queries):

12



This fact follows from the use of multiplication in GF(2°™) and the choice of a sufficiently large
parameter p.
In particular, Section 3.6 provides a complete proof of the following lemma.

Lemma 5. For all distinguishers D making at most k < 2"1=9) —r queries we have
1
VP (H{E) = P (HZB) < 2rt(6 + 1)1 - ki+2 .27t 4 St 1) k- (Bt 2r 1) - 2m70m,
By combining Lemmas 4 and 5, Theorem 3 follows making use of Lemma 1.

3.5 Proof of Lemma 4

We want to prove that pYZ for all 4+ > 1. We fix the first i queries 2* =

H>
ABi|xi — Pyiap;|xi
[1,...,2;], and assume w1thout loss of generality that w(‘Y)( Si) CGgiforallg=1,...,t. Ifthis
does not hold, we can extend z’ to a j-tuple 2/ = [x1,...,%i, Tit1, ..., 2], where the last j —i
queries are all G-queries (G, q,v) forallg=1,...,¢ and v € w(8;)\ G, (in any order). Tt is

easy to verify that if A; and B; hold, then also A; and Bj; hold, and hence

pyABle y I’ Z pYJAB|XJ([y17'-'7yi7yi+17"'7yj]7xj)7 (1)
Yi+1s---5Y5

and hence it is sufficient to prove equality for input sequences with w(® (Si) € Gy for all ¢ =
1,...,t, as the general case follows by (1).

We denote by F' the random variable representing the concatenation of the random tables
of the puRF’s Fy,...,F,. For b € {1,2}, summing over all possible values of F' yields

b = H,  Hp pHb
Pa,B,vi|xi E :pF|X1 Pa,B;|xiF " Pyi|xiFa;B;
F

since the function tables are chosen uniformly in both H;
€ {0,1}, as A; and B; depend deterministically
Note that since F' is fixed, in

Clearly, we have p?ﬁxi = p?ﬁx“

and Hy. Also, we have pI:lB XiF = p?QB XiF
on X% and F. Finally, we show that pyz| XiFA,B, pgi?' XiFAB,"
both systems F-queries are obviously answered in the same way.

In system Hj, if we restrict ourselves to the outputs of the G-queries, then the values
returned are uniform and independent. Furthermore for every R-query (R, s) such that s € S;

the value returned is uniquely determined by the answers to the G—queries as @Zzl G (w9 (s)),

and all these G-queries are asked, since w(Q)( Si) C Gy for all ¢ = ,t by assumption.
Finally, for all s € R; \ S;, since B; holds, there exists a ¢ such that w( ( ) ¢ w9 (S;UR;\
{s}) UG, the value G,(w?(s)) is random and independent of all other returned values, and
every such R-query returns a random value which is independent of all other values.

For system Hy, since A; holds, it also easy to see (by the construction of the simulator)
that the joint probability distribution of the outputs of all G-queries is uniform. Furthermore,
an R-query (R, s) with s € §; \ R; is always answered by an independent and uniform random
value, since these queries are answered by a random function. However, if s € §;, then the
answer is determined uniquely by the answers to G-queries, again by the construction of the
simulator.
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3.6 Proof of Lemma 5

We first recall the following well-known result, of which we omit the proof.

Theorem 6 (Schwartz-Zippel). Let F be a finite field, and let P € F[X1,...,X,] be an n-
variate polynomial over F with degree d. Then, the number of tuples (z1,...,x,) € F" that
satisfy P(x1,...,1,) =0 is at most d - |F|"~ L,

For our setting F = GF(2°"), and we work with some representation of the elements as
pn-bit strings. We need the following simple corollary of Theorem 6.

Corollary 7. Let a,b € GF(2°"), not both equal to 0, let X1, ..., Xy € GF(2°™) be independent
and uniformly-distributed random variables, and let J,J" C {1,...,N}. Then:

(i) If T # T, then P((a- Ojeg Xj)ln = (b Oje g Xj)ln) < max{|T|,[T'[}-27".
(it) If T =J" and a #b, then P(a- Qe 7 Xjln =0 Qe Xjln) < [T]-277

Throughout the proof of Lemma 5, we work with system Hy, as this makes some arguments
easier. Notice that Lemmas 1 and 4 allow this, since vP(H{"B) = vP(H3"\F) for all distin-
guishers D. First, we introduce some additional notation. For i > 1, let 2 = [z1, ..., ;] be the
first ¢ queries, where z; € {(F,p,u),(G,q,v),(R,s)} for all j =1,...,i. For any s € {0,1}"™,
define the set P;(s) as the set of indices p € {1,...,r} such that z; = (F,p, E,(s)) appears
(t)
(2
wise product of the values F,(E,(s)) for all p € P;(s), that is ﬁgq)(s) = Opepi(s) F](DQ)(Ep(s))
forallg=1,...,t.

We also need to introduce two additional monotone conditions for the remainder of the
proof. The condition C = Cy, C1, ... fails after 7 queries if there exists distinct s,s" € {0,1}™

such that P;(s) = Pi(s'), Ep(s) = Ep(s’) for all p ¢ P;i(s), and EEQ)(S) = @Eq)(s’) for some ¢ €
{1,...,t}. Note that the fact that Cp holds follows from the fact that the family £ is injective.
Also, a further monotone condition D = Dy, D1, ... fails after ¢ queries if there exists s € {0,1}™
such that qu)(s) = 0 for some q € {1,...,t}. Clearly, PP°H2(4, v By) < PPH2(A, v By v
Cr V D).

We also define a (non-monotone!) sequence of events Uy, Uy, Us, ... such that U; is false if
there exists s € AS; such that w@(s) € w@(S;\ {s}) UGy, for all ¢ = 1,...,t. A further
(non-monotone) sequence of events Vp, Vi, ... is such that V; is false if there exists s € R; \ S;
such that w@(s) € w@(S; UR; \ {s}) UG, If Ay V By, V Ci, V Dy, holds, there must exist
an i € {1,...,k} such that (at least) one of the following events occurs: (i) D; A D;_1, (ii)
Ci ANCi_1 A D1, (iii) U; A C;_1 A Di_1, or (iv) V; A C; A D;. Using the union bound and the
fact that P(E A E") < P(E'|€) for any two events £ and £’ such that P(£) > 0, we obtain

among the first ¢ queries. Furthermore, we let w;(s) = @51)(8)H -+« |lw;” (s) be the component-

k k
PPOR2 (A, v By) <> PPH(D|D; 1) + Y PPH(C|Ci 1 D; 1)
i=1 i=1

k k
+ 3 PP D) + Y PPR(VICiDy)  (2)
i—1 =1

The following lemma is the central step in the proof of Lemma 5.

Lemma 8. For all i < 2719 — gl 2%, vy 1, and y;, we have

14



. H 1 i— _
(1) pﬁjxiyilei_l(II;l? yZ 1) S t : 2m pn).

.. H . . -
(11) pﬁjxiyi‘lCilei,l(xz’ yz 1) <t- d - (z + r) .gm pn}.

..n H S . _
(111) pﬁjX—Lyiflci_lDi_l(xl:yz 1) < ’ASZ’ : (5 + l)t -t 2 nt}.

(IV) p%TXzych (xi7 y’l) S ,rt : (5 + 1)t : /[:t+1 ’ 2_7“5'

Before we turn to the proof of Lemma 8, we briefly show that it implies the upper bound
in the proof of Lemma 5. Since the bounds hold for all %, 4*~!, and y; that can appear, they
also clearly hold without being conditioned on these values by a simple averaging argument.
Therefore, we obtain for all k < 27(1-¢) —

k
Z PPH2(Dy|D; 1) < k-t-2m7P", (3)
i=1
k k k(k +2r +1)
> PPER(CHC 4D y) < t-5-27 Y (i) =t-6- 2 (4
i=1 i=1
Also, generously bounding |AS;| < § -4, we have
k k k
PPH (710 1D 1)+ > PPV |CiD) <20t (54 1) 27t N7 gt
2 PPIRTICDia) + 3 PPIR(TICD) <20t (5:+1) 2 -

S 2 . Tt . (6+ 1)t+1 . kt+2 . 2—7’Lt.

Plugging (3), (4) and (5) into (2) yields the desired upper bound. We finally turn back to the
proof of Lemma 8

Proof of Lemma 8. For (i), (ii), and (iii), assume that the i’th query is a new F-query z; =
(F, p,u), all other types of queries cannot provoke the failure of the conditions. In particular,
let U= [UWM,...U®] € {0,1}**" be the random value returned by the query, which is inde-
pendent from all other previously-returned values. In fact, this is the only randomness involved
in computing the first three probabilities (and we use the notation PV to stress this fact).

For (i), since D;_; holds, we have ﬁz@l(s) #0foralls € {0,1}" and all g =1,...,¢. Hence,
the union bound and Theorem 6 imply

P ip S D PUEre{l. i mY(s) oUW =0) < t-2m 27

s:Ep(s)=u
To prove (ii) choose any s € {0,1}" with the property that E,(s) = u, and define the set S’
of those s € {0,1}™ such that P;_1(s) = Pi_1(s') and E(s) = E;(s’) for all p ¢ Pi_i(s).
(In particular, E,(s') = u for all &' € §'.) Also, let S” be the set of those s” € {0,1}™
with P;_1(s”) = Pi—1(s) U {p}, and Ez(s) = Ep(s") for all p ¢ P;_1(s"). Let C; s denote the
event that there exists § € S’US” \ {s} such that EZ(-Q)(S) = @Eq)(E) for some ¢ € {1,...,t}. By
repeatedly applying the union bound, we derive

DOH2 <

o e, S 2 PYEY €S (s) oUW =w ) (s) 0 U)

11—

M)~

1
PUEs" € 8" w0\ (s) 0 UD =D (s")) <t (8] +|8"]) - 27",

19
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since w ( ) # w ( ") for all & € &’ by C;_1, and since w ( ) # 0 by D;_1, and hence we
can use Theorem 6 Furthermore S| +1S8"| <d-(i+7), as 5 is input-restricting and at most
additional r — |P;_1(s)| — 1 < r queries reveal the values w(s) for the inputs in &’ US”. Using
once again the union bound, we conclude

DoH-» < Z DoHs <+.5-(i . om—pn
pC |XZYL ICV2 1D;j_1 — pCi7S|XiYiflci_1Di_1 - t 6 (Z + T) 2 '
s:Ep(s)=u

To prove (iii), note that s € AS; implies that P;_;(s) = {1,...,7}—{p}. Also note that w'® (s) =

@Eq_)l ® U(Q)]n for all s € AS;. Since the randomness of each pn-bit block is independent, we

upper bound

P oo, =PIV A w(s) € S\ {5}) U Gyin)

s€AS; 1<q<t

< > TIPY(ws) € DS\ {s}) UGyi1). (6)
We fix some s € AS; and some g € {1,...,t} and see that

pU (w(q)(s) € w@(S;\ {s}) U gqvi_l) < pU (w(q)(s) e w@(AS; \ {3}))
+ PV (w@(s) € w® (SH)) +PY(w®(s) € Gpi1)

First, since D;_1 holds, w(Q) 1(s) # 0 for all s € AS;, and hence PU(EEZ)l(s) ® U(q)\n €Ggi-1) <
|Ggi—1]-27™" <i-27" by Corollary 7. For the same reason,

PU(w(s) € wl@(8)) < 3= PY (%, (5) © UD], = w@(s)) < |S;a] - 27"

s'eSi—1

Also, since C;_; holds, we have w ( ) # w ( ) for all & € AS;\ {s} and all ¢ =1,...,¢,
and we obtain

P(w(s) cw@@s\ () < 3 PUE () 0 U =w () 0 UL, ).

s'eAS;\{s}

which is bounded by |AS;| - 27", once again as a consequence of Corollary 7. Plugging these
bounds into (6) leads to

t

plgT?fyz O\ Dy S |AS;| - H (IAS;] + [Si1| + |Ggi-1]) 27" < |AS;] - (6 + 1)F -4t - 27
q=1

<(64+1)-i

To prove (iv), note that the values w(@(s) for all s € R; \ S; have all the form EZ@(S) ©)

Opepi(s) F(Q)( Ey(s)) for all ¢ = 1,...,t. Moreover, conditioned on the outcomes of X* and Y*
as well as the events C; and D, the values F,(E,(s)) for all s € R; \'S; and p ¢ P;(s) are
independent and uniformly distributed, and the probability for computing the upper bound
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of (iv) is taken over these values. (We use the notation P¥ to stress this.) As we did in (iii),
we can upper bound

t
P, < 2 TLPT () € w@(s)

SER\S; ¢=1
+ PP (w(s) € w®@ (R \ (Si U {s})) + PF (w((s) € G, |

Since D; holds, we have P¥ (w(q)(s) € Ggi) <1-1Ggil - 27" by Corollary 7, and for the same

reason PF (w(q)(s) c w? (Si))g r-d-1-27". Furthermore, we note that again by applying
Corollary 7,

pF (w(q)(s) e w®(R;\ (S, U {s}))) <r-|Ri\Si|-27"

since for any s’ € R; \ S; such that s’ # s we have

e cither there exists p such that E,(s) # E,(s’) and p ¢ P;(s)NP;(s’) holds, and Corollary 7
(i) applies;

e or Pi(s) = Pi(s') # 0 and Ep(s) = Ep(s’) for all p ¢ P;(s), in which case @Eq)(s) # EEQ)(S’)
by C;, and thus Corollary 7 (ii) applies.

Therefore, combining the different bounds we get pgc")}(lfw op S rt. (6 + 1)t gttt 27nt, O

4 Existence of Input-Restricting Function Families

In this following, we prove the existence of input-restricting function families as in Definition 4,
and we study their relationship to highly unbalanced bipartite expander graphs. First, we recall
the following definition.

Definition 5. A bipartite graph G = (V1, Vs, E) is (K, 7)-expanding if [T'(X)| > ~ - | X| for all
subsets X C Vj such that |X| < K, where I'(X) C V4 is the set of neighbors of X. Furthermore,
such a graph has left-degree D if the degree of all v € V7 is bounded by D.

In the asymptotic case, a family of graphs G = (Vi, Vs, E) with Vi := {0,1}™(™ V, :=
{0,1}™ (parameterized by the security parameter n) with left-degree D = D(n) is called explicit
if there exists a (uniform) algorithm which, on input 1%, v € {0,1}™™ and i € {1,...,D(n)}
outputs the ¢’th neighbor of v in time polynomial in n. (The ordering of the neighbors is
arbitrary.) It turns out that explicit families with appropriate parameters imply the existence
of input-restricting families of functions.

Lemma 9. Let m be such that m > n. Assume that there exists an explicit family of bipartite
(K,v)-expander graphs G = (Vi,Va, E) with polynomially-bounded left-degree D where Vi =
{0,1}™ and Vo = {0,1}". Then, for all e > 0 such that e > 1— w for n large enough, there
exists an explicit (m, 0, €)-input-restricting family of functions with § = v~ and cardinality r :=
D + [m/n]. Furthermore, if [m/n] is constant, then the family is invertible.
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Proof. First, we define Eq,..., Ep : {0,1}™ — {0,1}" such that E,(s) is the p'th neighbor of s
for all p=1,..., D. Furthermore, the functions Ep1,..., Epi[pm/n) are defined as Epy,(s) =
s®) for p=1,..., [m/n], where extra zeros are appended to s to make its length a multiple of n.
Let &€ = {E1,...,E}, where r :== D + [m/n]. Clearly, the family is injective. Furthermore,
explicitness of the family is due to the the explicitness of G and the fact that r is polynomial.

To prove the input-restricting property, assume towards a contradiction that there exist
rosets Uy, ..., U, C {0,1}" with cardinality |Uy| + --- + [Uy] < 2179 such that |S| > & -
(lth]+ -+ Uy]), where S := {s € {0,1}"" | Ep(s) € U, for all p=1,...,r}. Also, define U :=
Up=1 Up. Clearly, in G we have I'(S) C U by the definition of £, and in particular [T'(S)| < [U/.
If |S| < K, then [U| > [T(S)| > 61 |S| > 6618 (th| + -+ [U]) > |U|, which leads to a
contradiction. If [S| > K, take 8" C S such that |S’| = K. Clearly, I'(S") C T'(S). Additionally,
U] > 0(S)| > IT(S)| > 7|8 =7 K > 21=9 for n large enough by the choice of €, which
is a contradiction.

Finally, the family is invertible if [m/n] is constant: Given the sets U1, ..., Upi[m/n], the
algorithm simply enumerates all s € {0,1}™ such that E,(s) € Uy, forall p=D+1,...,D +
[m/n], and keeps only those satisfying E,(s) € Uy, for all p=1,..., D. This inversion algorithm
runs in time poly(n) - [Upy1|- - [Up4fm/nl- O

For example, if a family exists with K = 2"~ and constant expansion factor v > 1,
then 1 — % = n — o(1), and hence the family is (m,~~!,n)-input restricting. It remains
to show that an explicit family of unbalanced expander graphs with sufficiently small (i.e.
polynomially-bounded) left-degree exists. Much work in this area has been devoted to lossless
unbalanced expanders, i.e. with v ~ D, but the best known constructions [32, 26] for this
case for our choice of parameters lead to either super-polynomial degree or a much too small
bound K. However, we are satisfied even if the expansion factor is much smaller than the left-
degree, as long as the latter stays small, and it is possible to obtain such graphs by appropriately
composing known constructions. In Appendix C.1 we prove the following theorem.

Theorem 10. For all polynomials v and constantsn € (0,1), and all functions m (polynomially-
bounded in n), there exists an explicit family of expander graphs G = (Vi,Va, E) with Vi =
{0,1}™, Vo = {0,1}" which is (271~ ~y)-exzpanding and has left-degree polynomially-bounded
mn.

Note the techniques we discuss in Appendix C.1 even allow to obtain slightly stronger results,
for instance allowing 7 to be a moderately vanishing function (cf. the discussion at the end
of Appendix C.1). Combining this with Lemma 9 we see that for all constants e € (0,1) there
exist explicit (m, d, €)-input-restricting families with 6! polynomial in n. We note, however,
that by dropping the explicitness requirement, families with much better parameters exist. In
particular, the following result is proved in Appendix C.2.

Lemma 11. Let K and ~y be arbitrary such that K-y < 2", and let m be such that m > n. There
exists a graph G = (V1, Vo, E) where Vi = {0,1}™ and Vo = {0,1}"™ which is (K,~)-expanding
and with left-degree D = {% + ’y-| .

For example, setting m = ¢ = 2n , v = 1 and K = 2"(1=9_ we obtain left-degree D =
1+ 2+ (loge+1)/(e-n). For e = 1 and n = 128, this leads to a family of size 12 by Lemma 9.
Furthermore in this case ¢ = 7 and p = 4, and all these values do not grow with n. (And a similar
reasoning applies to all constants e > 0.) With these parameters, the construction is of practical
interest, as it only relies on the design of a secure component function {0,1}" — {0, 1}" which
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may be very efficient. We hope this to motivate further research in de-randomizing families of
unbalanced expander graphs for a wider range of parameters.

5 Constructing Public Random Oracles

In this section, we first review (a slightly generalized version of) the prefiz-free Merkle-Damgard
construction [13]. Let n be the given output size, and let £ > n. We are given both a compression
function f : {0,1}*** — {0,1}* and a prefiz-free padding scheme, that is, a mapping pad :
{0,1}* — ({0, 1}b)Jr such that pad(s) is not a prefix of pad(s’) for all distinct s,s" € {0,1}*.
The prefiz-free Merkle-Damgard construction pfMD,, ;. (f) proceeds as follows. On input s €
{0,1}*, it computes s1||---||s; = pad(s) (with s; € {0,1}?) and the chaining values v; :=
f(siyvi—1) for all 1 <1 <[, where vy is set to some initialization vector IV € {0, 1}5. Finally,
the construction outputs the first n bits of v;. The following theorem easily'? follows from
Theorem 2 in [13].

Theorem 12. Let F : {0,1}*" — {0,1}* be a puRF and let O : {0,1}* — {0,1}" be a
puRO. Then pfMDy () is an (o/,0")-reduction of O to F with o/ (k) = O((lmax - k)? - 27°)
and o' (k) = k, where lyax is the mazimal length (of the padding) of a message input to the
construction.

We note that there exists a trade-off between the number of queries and the length of the
queries to the construction.!' This issue is inevitable in all iterated constructions. We take
now ¢, b > 0 as in the above explanation, and some ¢ > 0. We set m := £ + b, and we
let € be an explicit (m, J, €)-input restricting family of functions. If given only a compression
function R’ : {0,1}"t%(") — {0,1}" (for ¢(n) defined as in Section 3.3), we obtain a con-
struction prDb7£7n(C£ m7£(~)) which replaces calls to the compression functions by calls to the
construction Ci m.o(-). We obtain the following theorem using Lemma 2.

Theorem 13. The construction pﬂVIDMm(Cf’m’g(-)) is an (@,7)-reduction of a puRO O :
{0,1}* — {0,1}™ to R/, where @(k) = a((lmax + 1)k) + /(6 + 1)k) and (k) = 0 - k, with «

and o/ as in Theorems 3 and 12, respectively.

Setting £ > 2n(1 — ¢) leads to security for all distinguishers such that Iy - & < ©(27(179).
We finally note that our approach also works with all other known constructions of a public
random oracle from a public compression function, as for example the constructions of [6, 12],
or other constructions discussed in [13].

Setting e small enough provides high levels of security for properties like preimage resistance,
second preimage resistance, multicollision resistance, or CTFP preimage resistance [18], and also
excludes the existence of attacks for these properties (up to the obtained bound), that is, even
with respect to adversaries which perform enough queries to find collisions for the component
function f: {0,1}"™ — {0,1}".

10The only difference with respect to the original result is that we allow the chaining value to be larger than
the output value, i.e. £ > n. The validity of our theorem follows from the simple observation (which we do not
formalize) that dropping some bits of the output is a perfect reduction of public random function to a perfect
random function with longer output size.

1A possible distinguishing strategy would consist of doing few very long queries, instead of many queries, and
security is guaranteed only as long as lmax - k < 2472
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A Impossibility of Extending Random Primitives

We prove that if a public random primitive R with N-bit table is extended to a public random
primitives R/ with N’-bit table, where N’ > N, then we cannot guarantee security against
distinguishers retrieving at least 2IV + 1 bits. The result is an application of the techniques
from [23] to public random primitives, and for completeness we provide a self-contained proof
here. (Note that the results from [23] apply to a wider range of systems.)

Lemma 14. Let R and R’ be public random primitives with N and N'-bit function tables,
respectively, where N' > N. Furthermore, let C(-) be a deterministic and stateless construction.
Then, for allt > 0 (with N+t < N') and all (not necessarily efficient) simulators S, there exists
a distinguisher D which retrieves 2N+t bits, and such that AP (R, C(R)],[S(R/),R]) > 1-27.

Proof. Define Hy := [R, C(R)] and Hs := [S(R/), R/]. Without loss of generality assume that
the public and the private interfaces are accessed bit-wise as N- and N’-bit tables. We consider
the following distinguisher D which, given the system H; = [Hpub, H,.i.| (for b € {1,2}), first
retrieves all N bits from Hp,,. Denote the resulting string as B € {0,1}". Note that the
construction C(-) can be seen as 3 mapping {0, 1} — {0,1}"', and the distinguisher (locally)
computes the first N + ¢ bits R € {0, 1}V+t of C(R). Finally, it retrieves the first N + ¢
bits R’ € {0, 1}V of Hpyy. If R = R/, it outputs 1, and 0 otherwise. Clearly PP°H1(R' =
R ) = 1. Note that, independently of the simulator S, there are at most 2 values the random
variable &R can take on, and let R’ be the set of these values. Therefore, we have PP°H2 (E’ =
R') < PPH2(R ¢ R') < 9N . 9=(V+1) — 9=t which implies the statement of the lemma. O
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This result has two main interpretations:

(i) If N is small (say polynomial in some understood security parameter), then there exists
no efficient construction which extends R, not even by a single bit, and not even with
computational security. (This is due to the fact that in this case the distinguisher in the
proof of the lemma is efficient.)

(ii) If we want to extend the domain of a public random function R : {0,1}" — {0,1}" tom >
n bits, then we cannot hope to get security for adversaries making more than 2"+ + 1
queries.'? (And this paper addresses the question of how close to this bound we can get.)

B Insecurity of the Benes-Construction

Aiello and Venketasan [1] proposed a construction named Benes (or Double Butterfly) for ex-
tending the domain of a (private) random function with security beyond the birthday barrier.!3
The construction is an instantiation of our general paradigm of Section 3.1. In this section,
we show that its security in the case of public random functions is inherently bounded by the
birthday bound. This should help clarify the crucial role of the functions E1,..., E, in our
approach. We also stress that this attack can be adapted to hold even with respect to the
honest-but-curious variant of indifferentiability introduced by Dodis and Puniya [15].

Formally, we look at the following variant of the original construction: We are given four
random functions Fi,Fg : {0,1}?" — {0,1}*" and G1,Gz : {0,1}*" — {0,1}". The con-
struction BE : {0,1}*® — {0,1}" takes an input s = s()|[s®?), and computes first w(s) =
w (s)|wP(s) = Fi(sM) @ Fa(s?)) and outputs Gi(wM(s)) ® Go(w®(s)). (We note that
the original construction has 2n-bit output, our attack however works even for the case of n-bit
output.) Furthermore, let R : {0,1}?" — {0,1}" be a public random function. For notational
consistency with the proof of Theorem 3, we define

Hl = [F17 FQ, G’l, GQ,BE(F17F27 Gl? GQ)]
H; = [S(R)vR]v

for an arbitrary simulator S. We consider three types of queries: The first two types are F-
queries, with form (F,p,u), for p = 1,2 and v € {0,1}", and G-queries with form (G, q,v)
for ¢ = 1,2 and v € {0, 1}", which are both answered by the corresponding puRF’s in H; and
by the simulator in Hs, as well as R-queries of form (R, s), for s € {0,1}?", which are answered
by the construction BE in H; and by R in Hs.

We construct a distinguisher D which — regardless of the simulator S — distinguishes H;
and Hy which constant probability when making approximately 2/2 queries. Let s1, ..., s; €
{0,1}" be fixed values for some even integer k. The distinguisher D proceeds as follows. It first
makes F-queries (F,1,s;) for all i = 1,...,k, obtaining values Uy, .. Uz € {0, 1}?" and F-
queries (F,2,s;) for j = 1,...,k; let Vi,...,Vz € {0,1}*" denote the resulting values. We
define for all 4,j € {1,...,k} the random variable W;; := U; @ V;. The distinguisher D looks

12 Actually, for the information-theoretic setting, one can even prove the stronger statement that there exists
a distinguisher retrieving N 4 t bits from the private interface only and distinguishing with advantage 1 — 27
This is due to the fact that the statistical distance of the first N +¢ bits of C(R) from the uniform distribution is
at least 1 —27*. However, in this case, if N is polynomially-bounded, the distinguisher is not necessarily efficient.

131n [1] optimal security is claimed, but the result turns out to be partially incorrect. However, the construction
achieves security beyond the birthday barrier. This can be seen using the techniques from [21]. Also, in [28§]
direct proofs of improved bounds are given.
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for i # i’ and j # j' such that W; = U; @ V; = Uy @ Vjy = Wy. Note that this also
implies that W = U; ® Vjy = Uy ® V; = Wy, by rearranging terms. Finally, D performs four
R-queries (R, s;(|s;), (R,s¢[|sj7), (R,si|s;5), and (R, sy||s;). Denote by Yi,Y5,Y3, and Y, the
respective answers. If Y7 = Y and Y3 = Y} ,the distinguisher outputs 1. In any other case (in
particular also if such i, and 4, j' do not exist), it outputs 0.

Let & be the event that W;; = Wy holds for some i # i’ and j # j'. Furthermore,
let K :={1,...,k/2}, and K := {k/2+1,...,k}. We have

P]DOH1 (5) Z PDOH1< \/ Wl] = W,L'/j/) Z Z PDOI_I1 (W’L] = Wi/j/)
i,jeK, i j'eK i,jeK, j'€K
— > PPHL (W = Wiy A Wi5 = W)
iy j €K 51,5 X
£0.9), (3 YA{0),(57) )
where the last inequality follows from the fact that P(\/;_; A;) > i P(Ai) =32 <oy P(AIA
Ajir) for all events Ai,..., A,. It is easy to see that W;; and W;; are independent if i #
—4
i and j # j', and thus 35, .o ieg PWij = Wiy) = k272n For the second sum, we
consider two cases. First, assume that (4,7) # (7,7), and ( i',3') # (i',5"). Then, the random

=2 /=2 2 —8
variables W, Wiy, Wi, and Wy, are independent. Note that there are 3 (% (k— — 1)> < k—

512
possibilities to choose four such random variables, and in this case P(W;; = WZ/]/ NWe =
Wis) = 27 4n - The second case takes place whenever either (i,j) = (i,7) or (¢/,5') = (,7)

-2 2 -2 —6
holds. We have —% (% — 1) < 15—4 ways of choosing the indices, and in this case P(W;; =
Wiy N\Wi = W) = 274" Therefore,
r 5 %’
PDOHl Vi =Yoo AYa =Yy > PDOHl > 72—271 _ 72—471 _ 72—411'
M =YonYs=Y)2 (€)= 75 512 64

To bound PP°H2(Y] = Y5 A Y3 = Y}), note that given any simulator S making o(k) queries
when queried k times and which ensures that Y7 = Yo A Y3 = Y, holds with probability e,
then we can combine S and D into an adversary A that makes at most 4 + o(2k) queries
to R and finds = # 2’ and y # ¢’ such that R(z|y) = R(2/||y') and R(z|y’) = R(2/||y) with
probability e. However, it is not hard to see that the probability that some adversary finds such
values within k& queries is at most k2 - 272", Therefore,

AP(H{, H,) > [PPH (Y = Vo A Y = V)) — PPHY (Y = Vo A Y3 = 1))
—4 -8 -6

— 4 2k))% . 272",
=16 256 64 (4+0(2F))

Setting (k) = k - poly(n), and k = 2"/2 leads to constant distinguishing advantage.

C Proofs for Section 4

C.1 Proof of Theorem 10

In this section, we provide a construction® of highly-unbalanced expander graphs with polyno-
mial left-degree. We first review some basic notation needed throughout this section. Recall that

1T our knowledge, a very similar construction appears in an unpublished manuscript [3], hence the results
of this section should not be considered an original contribution of this paper.
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the statistical distance of two random variables X and Y with the same range X is d(X,Y) =
3> sex IPx(2)—Py ()| and furthermore this quantity equals maxcx [P(X € A) — P(Y € A)|.
The min-entropy of a random variable X is defined as Hy(X) = —logmax,cx Px(z) and X is
called a k-source if Hoo(X) > k. Furthermore, it is a (k, €)-source if there exists a k-source YV
such that d(X,Y) < e. Of course, the same notions are defined for probability distributions
instead of random variables. In the following, Uy will denote a uniformly-distributed d-bit ran-
dom string which is independent from any other value. Also, the notation Px - Py denotes the
joint distribution of X and Y when they are chosen independently according to Px and Py,
respectively.

We make use of the notion of (simple) randomness conductors [10], which naturally general-
izes randomness extractors. In particular, we also consider a slight modification of the original
notion which generalizes strong extractors.

Definition 6. A function C : {0,1} x {0,1}¢ — {0,1}" is a (kmax, a, €)-conductor if for
any 0 < k < kpax and any k-source X over {0,1}" the output C(X,Uy) is a (k + a, €)-source.
The function C' is a strong (kmax, a, €)-conductor if [C(X,Uy),Uq) is a (k + a + d, €)-source for
all k-sources X with 0 < k < kpax. Finally, a conductor is extracting if kpax = n — a.

One is generally interested in constructing ezplicit families of conductors, that is, (asymp-
totic) families of conductors which are computable in polynomial-time. To our knowledge,
the best construction of an explicit strong conductor has the following parameters (cf. the full
version of [26] for a proof.!?)

Theorem 15. For every m > n and every constant ¢ > 0, there exists an explicit strong
(kmax, —A, €)-conductor C : {0,1}™ x {0,1}¢ — {0,1}" , where A = A(e) = O(1) and d =
d(m, n, kmax, €) = O(logm + 10g>(kmax)), for all kmayx < n + A.

It is not difficult to see that a conductor can be interpreted as an unbalanced bipartite
expander graph (this is indeed the starting point of [10]). However, we cannot use the result
Theorem 15 directly, as we need kpax = ©(n), and this leads to super-polynomial degree. In
order to overcome this problem, we introduce the following natural weakening of conductors.

Definition 7. A function C : {0,1}™ x {0,1}¢ — {0,1}™ is a (kmax, a, €, @)-somewhere
conductor if for all 0 < k < kpax and all k-sources X over {0,1}™ there exists a func-
tion I: {0,1}™ — {1,...,t} U{L} such that P;x)(L) < aand Poe)(x v,y 1(x)=i 18 @ (K +a,€)-
source for all i = 1,...,¢ with Prx(i) > 0, where C(X,Uq) = COX,Uy)| - |CW(X,Uy),
and C(X,Uy) € {0,1}" for all i = 1,...,t.

Given a function C : {0,1}™ x {0,1}¢ — {0, 1}, we construct a graph G¢ = (V1, Vs, E)
where V; := {0,1}™, V5 := {0,1}", and (z,2) € E if and only if there exists i € {1,...,t}
and y € {0,1}¢ such that C®(z,y) = 2. The following lemma generalizes a result from [32].

Lemma 16. IfC : {0,1}x{0,1}% — {0, 1} is a (kmax, €, @, a)-somewhere conductor with o <
1, then Go as above is a (2Fma= 29(1 — €))-expander graph with left degree 2°.

Proof. Let X C {0,1}™ with |X| < 2Fmax, Consider the source X which is uniformly distributed
over X, and let k := Hoo(X) = log |X| < Emax. Let I :{0,1}" — {1,...,t}U{L} be the function
which is guaranteed to exist (for the source X), and fix an arbitrary i such that Px)(i) > 0.

15 Actually, the proof in [26] considers a variant of strong extractors, called strong universal extractors, which
give the additional guarantee that there exists a subset of the output bits which is almost uniformly-distributed.
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Let Z be the support of Py (x 17,)1(x)=i- Clearly, Z C I'(X). Moreover, there exists a (k+a)-
source Z which satisfies d(Po(x,1,)1(x)=i» £) < € that is € > 37 2 Poo x,u,)1(x)=i(2) —
Pz(z) =1—-3,.2Pz(z) > 1—|Z|-27%"® by the definition of the statistical distance. By
rearranging terms, we obtain |[T'(X)| > (1 —¢) - 257 = (1 —€) - 29 - |X|. O

Let C; : {0,1}™ x {0,1}% — {0,1}% and Cy : {0,1}™ x {0,1}%2 — {0,1}" be func-
tions. Also, for a string x € {0,1}™, denote as T(qp) the string consisting of the bits x4, Tat1,
..., Tp_1,Tp, With extra 0’s to make its length equal to m. (If b < a, the string is the
string 0™.) We let C' : {0,1}" x {0,1}% — {0,1}(m+D(di+d24n) he such that C(z,y) =
CO(z, )| - [|C™F (2, y), where for all 1 <i < m + 1 we define

zy‘) =y zéi) = C1(2(i,m),y) and z:gi) = C’Q(x(17i_1),z£i))
and we set C)(z,y) := zgi) Hzéi) Hzéi) € {0,1}#1+d2+n_ The following lemma extends Theorem 3
from [27] to our setting. As the proof is very similar, we only provide a brief proof sketch.

Lemma 17. Let s > 0 be given, and C be constructed as above. If Cy is a strong (ai,€e1)-
extracting conductor, and Cy is a strong (ka, as, €2)-conductor, then C is a (do — a1 + ko +
s,min{ay, a1 + as} +dy — s,€1 + €2,8m - 2*8/3)—30mewher6 conductor.

Proof sketch. In the following, let ki1 := do — a1. Let X be a k-source with k < ki + ko + s.
On the one hand, if X is such that Hoo(X) = k = K + s with & < ky, then [21, Z{V] =
[Ug,,CV(X,Uy,)], which is a (k + a3 + di — s, €1)-source, and thus this also holds for the
variable [Z\", Z{V, ()], On the other hand, if X is such that Hoo(X) = k = s+ ki + K/,
where k' < ko, then as in [27] there exists a selector function I : {0,1}" — {1,...,m+1}U{L}
such that

L. Proo (L) <8m-279/3,
2. If Proxyix gy (6 ,i-1)) > 0, then Hoo(X(im) |l = i A X(1,-1) = ©(1,i-1)) = k1, and
3. HOO(X(I,i—l)‘I = ’L) 2 k’l.

In particular, this means that the distribution P is €1-close to the

=T(1,i-1) - PUd

PI(X)|X(1,1-_1)(Z'7fE(l,z‘—l)) > 0. This implies in particular that PZE”ZS)X(LFDII(X):Z'

to PUd1 : PUd2 . PX(1,i71)|I(X)=i' Furthermore, the distribution PUdl . PUdQC(X(l,ifl)szQ)u:i is

2, 2\ I(X)=iX (1,51 =2(1,i-1)

distribution PUdlUdQH(X):in(l 1) L PUd2 for all x(;;_1) with the property that

is ep-close

a (k'+as+dy +da, €2)-source. Also, by the triangle inequality, the distribution PZf”Zé“Zé")U(X) ;

isa (k+a; +ag + di — s,€1 + €2)-source, and this concludes the proof. O

In the following, we instantiate both functions C; and C5 using Theorem 15. First, set s =
3-log(9m) = 3logm—+ O(1) (note that with this 8m-27%/3 < 1). Also, fix some constant € > 0.
Given kpyax = (1 — n)n, we choose 71 := kpax, and

dy = d(m, 7, kmax, €) = O(log3(n))
dy = max{d(m,ds,ds + A,€),2A + s + logy — log(1 — 2¢)} = O(log n),
and then take Cy : {0,1}™ x {0, 1} — {0,1}%2 and Cs : {0,1}™ x {0,1}%2 — {0, 1}" according

to the theorem. (For C7, we potentially need a longer seed, and the construction simply ignores
the extra bits.) Then, C' as above leads to a (kmax,d1 — 2A — s, 2¢, a)-somewhere conductor
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with o < 1. Note that (1—26)2d1*2A*5 > ~. Furthermore, for n sufficiently large, n+di+ds < n,
hence Lemma 16 gives the desired expander.

The proof works even if one takes any n = w (log?’%), since . + dy + dy < n still holds for n

large enough. Also note that we have made use of Lemma 17 in a very simple way, and (with
some additional work in choosing parameters carefully) it allows to construct expanders for the
case where 7 is even smaller. The results of [3] discuss this case.

C.2 Proof of Lemma 11

Let V1 := {0,1}™ and V5 := {0,1}", where m > n, and let D be the left-degree of the graph
(to be fixed later) and ~ the desired expansion factor (which in particular satisfies K -y < 2"
and v < D). Also, for notational convenience let M := 2™ and N := 2". The proof is an
application of the probabilistic method. We sample a graph as follows: For every vertex v € V7,
we pick D (not necessarily distinct) neighbors uniformly at random from V5. Let S be some
subset of Vi, with i := |S| < K. Note that whenever |I'(S)| < « - |S| holds, there exists
a set 7 of size 7 - |S| (without loss of generality assume this value to be an integer) such
that T'(S) € 7. When sampling a graph as explained, the probability that all neighbors of &
are in 7 is (y-i/N)P%. Therefore, by the union bound, the probability that there exists a set S
with |S| < K and |I'(S)| < v - |S] is at most

00 () ()l ()T

, Y
where we have bounded (A:I) < M" and (ivz) < (%/) . We now set D := %’% +, and

it is easy to verify that

N D= D—
vt v- K 1
o[ L <&l M- = .
¢ (N) = ¢ <N> 2

With this value of D, the above sum is upper bounded by Zfi 1 % <32 % = 1, and hence
a good graph exists with positive probability.
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