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Edifici C, 08193 Bellaterra, Barcelona, Spain

Corresponding author: Enric Nart, E-mail: nart@mat.uab.cat,
Telephone Nbr. +34935811453, Fax Nbr. +34935812790

Key words: finite field, hyperelliptic curve, hyperelliptic cryptosystem,
Koblitz model, isomorphism class, Weierstrass point, rational n-set.

Abstract. Let k = Fq be a finite field of odd characteristic. We find
a closed formula for the number of k-isomorphism classes of pointed,
and non-pointed, hyperelliptic curves of genus g over k, admitting a
Koblitz model. These numbers are expressed as a polynomial in q with
integer coefficients (for pointed curves) and rational coefficients (for non-
pointed curves). The coefficients depend on g and the set of divisors of
q − 1 and q + 1. These formulas show that the number of hyperelliptic
curves of genus g suitable (in principle) of cryptographic applications
is asymptotically (1 − e−1)2q2g−1, and not 2q2g−1 as it was believed.
The curves of genus g = 2 and g = 3 are more resistant to the attacks
to the DLP; for these values of g the number of curves is respectively
(91/72)q3 + O(q2) and (3641/2880)q5 + O(q4).

Introduction

In a seminal paper Neal Koblitz introduced cryptosystems of El Gamal
type based on the group of k-rational points of the Jacobian of a hyperel-
liptic curve over a finite field k [10]. In order to apply Cantor’s algorithm
for computing the group law of the Jacobian one works with non-singular
Weierstrass equations of the type:

(1) y2 + h(x)y = f(x),

where h(x), f(x) are polynomials in k[x] of degree deg h(x) ≤ g, deg f(x) =
2g + 1, and the polynomial f(x) is monic. The projective and smooth
hyperelliptic curve C obtained as the normalization of the projective closure
of this affine curve has always a k-rational Weierstrass point at infinity. We
say that the equation (1) is a Koblitz model of the curve C. Conversely, any
hyperelliptic curve having a k-rational Weierstrass point admits a Koblitz
model. These models have the advantage of covering simultaneously the
cases of odd and even characteristic. In this paper we deal only with the
odd characteristic case, and the change of variables y = y − h(x)/2 allows
us to suppose h(x) = 0.
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The paper of Koblitz had an enormous impact in the cryptographic com-
munity and it was the origin of a stream of papers addressing to fundamental
problems like the acceleration of the addition algorithm in the Jacobian, the
computation of the number of k-rational points of the Jacobian, and attacks
to the discrete logarithm problem.

Some interest arose also on the problem of counting the k-isomorphism
classes of hyperelliptic curves of a given genus, admitting a Koblitz model.
For genus 2 there is a nice review in [6], refering to previous work of several
authors [7, 8, 1, 2, 4]. For genus 3 we can quote [3, 9, 5]. However, all these
papers count k-isomorphism classes of pointed hyperelliptic curves (C,∞);
the distinguished point is always the Weierstrass point at infinity and two
pointed curves (C,∞), (C ′,∞′) are considered to be isomorphic if there is a
k-isomorphism between C and C ′ sending ∞ to ∞′. P. Lockhart translated
this isomorphism condition into a concrete equivalence relation between the
Koblitz models [11, Prop.1.2] and in the quoted papers the authors count
the number of classes of Koblitz models under this equivalence relation.

In this paper we use another method to find for all g > 1 a closed formula
for the isomorphism classes of pointed hyperelliptic curves of genus g over
finite fields of odd characteristic (Theorem 3.2). For g large the number of
pointed curves is asymptotically 2q2g−1 (Corollary 3.3).

Also, we solve the problem of counting the k-isomorphism classes of hy-
perelliptic curves of a given genus, admitting a Koblitz model. We give a
closed formula for this number of isomorphism classes in Theorem 4.1. The
dominant term of the formula is(

1− 1
2!

+
1
3!
− · · · − 1

(2g + 2)!

)
2q2g−1,

so that for g large the number of curves is asymptotically (1 − e−1)2q2g−1

(Corollary 4.2). This number of isomorphism classes provides the real size
of the bunch of curves suitable of cryptographic applications. For instance
if k is the field of q elements with q ≡ 1 (mod 3), q > 7, the following two
genus-2 curves are k-isomorphic

y2 = x(x2 − 1)(x− 2)(x− 3/2), y2 = x(x2 − 1)(x− 1/2)(x− 2/3),

through the mapping (x, y) 7→ (1/x, y/(
√
−3x3)); thus, from the point of

view of cryptographic applications they are identical. Nevertheless, they
are not isomorphic as pointed curves. In fact, any k-isomorphism between
the two curves preserving the point at infinity will act as x 7→ ax + b at
the level of x-coordinates, with a ∈ k∗, b ∈ k; this map has to preserve the
sets of x-coordinates of Weierstrass points of both curves and it is easy to
check that there is no transformation of this type sending {0, 1,−1, 2, 3/2}
to {0, 1,−1, 1/2, 2/3}. Thus, in the computation of isomorphism classes of
pointed curves these curves count as two different curves.

To obtain our results we use a general technique for enumerating PGL2(k)-
orbits of rational n-sets of P1 that was developed in [12] and extended to
arbitrary dimension in [14]. This technique was used in [15] to obtain a
formula for the total number of k-isomorphism classes of hyperelliptic curves.
In section 1 we obtain some results on the enumeration of rational n-sets
of algebraic varieties; the main result is Theorem 1.3 where, for a given
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automorphism γ of P1, we compute the number of rational n-sets of P1

that are fixed by γ and contain at least one rational point. In section 2
we recall some results concerning the classification of hyperelliptic curves
up to k-isomorphism. In section 3 we count pointed hyperelliptic curves
by analyzing the action of the affine group on rational (2g + 1)-sets of the
affine line. In section 4 we count hyperelliptic curves admitting a rational
Weierstrass point by analyzing the action of the projective group on rational
(2g + 2)-sets of the projective line, containing at least one rational point.

Notations. We fix once and for all a finite field k = Fq of odd characteristic
p and an algebraic closure k of k. We denote by σ ∈ Gal(k/k) the Frobe-
nius automorphism, σ(x) = xq. Also, k2 will denote the unique quadratic
extension of k in k and ϕ denotes Euler’s totient function.

1. Rational n-sets of algebraic varieties

Let V be an algebraic variety defined over k. A rational n-set of V is by

definition a k-rational point of the variety
(

V
n

)
of n-sets of V . Thus, a

rational n-set S ∈
(

V
n

)
(k) is just an unordered family S = {t1, . . . , tn}

of n different points of V (k), which is globally invariant under the Galois
action: S = Sσ.

For any subset Z ⊆ V (k) of k-rational points of V we denote(
V
n

)
Z

:=
{

S ∈
(

V
n

)
(k)

∣∣∣ S ∩ Z = ∅
}

.

(
V
n

)Z

:=
{

S ∈
(

V
n

)
(k)

∣∣∣ S ∩ Z 6= ∅
}

.

For instance, for Z = V (k) we obtain in the last case the set of rational
n-sets of V containing at least one k-rational point. In the cases Z = V (k)
and Z = {P} we use a special notation(

V
n

)rat

:=
(

V
n

)V (k)

,

(
V
n

)P

:=
(

V
n

){P}
.

For any pair r, n of non-negative integers we denote:

aV (r, n) :=
∣∣∣∣( V

n

)
Z

∣∣∣∣ , bV (r, n) :=

∣∣∣∣∣
(

V
n

)Z
∣∣∣∣∣ ,

where Z is any subset of V (k) with |Z| = r. Also, we introduce a particular
notation for the extreme cases:

aV (n) := aV (0, n) =
∣∣∣∣( V

n

)
(k)
∣∣∣∣ , bV (n) := bV (|V (k)|, n) =

∣∣∣∣∣
(

V
n

)rat
∣∣∣∣∣ .

Hence, aV (n) counts the total number of rational n-sets of V whereas bV (n)
counts the number of rational n-sets of V that contain at least one rational
point.
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Since
(

V
n

)Z

and
(

V
n

)
Z

are complementary subsets of
(

V
n

)
(k) we

have, for all r, n ≥ 0:

(2) aV (r, n) + bV (r, n) = aV (n).

It is easy to compute aV (r, n) in terms of the function aV :

Lemma 1.1. For any algebraic variety V defined over k:

aV (r, n) =
n∑

i=0

(−1)i

((
r
i

))
aV (n− i).

Proof. We proceed by induction on r. Let Z = {t} for some t ∈ V (k).
Distributing the rational n-sets of V into two families according to the fact
that they contain t or not we see that

aV (n) = aV (1, n) + aV (1, n− 1).

By Moebius inversion we get

(3) aV (1, n) =
n∑

i=0

(−1)iaV (n− i),

and the statement of the lemma is proven for r = 1.
Suppose that the claim has been checked for all varieties V and all subsets

Z ⊆ V (k) with |Z| ≤ r − 1:

aV (r − 1, n) =
n∑

i=0

(−1)i

((
r − 1

i

))
aV (n− i).

By (3) we have

aV (r, n) =
n∑

i=0

(−1)iaV (r − 1, n− i),

and using the two formulas we get

aV (r, n) =
n∑

i=0

(−1)i

(((
r − 1

0

))
+ · · ·+

((
r − 1

i

)))
aV (n− i) =

=
n∑

i=0

(−1)i

((
r
i

))
aV (n− i).

�

By (2) we get immediately a computation of bV (r, n):

Corollary 1.2. For any algebraic variety V defined over k:

bV (r, n) =
n∑

i=1

(−1)i+1

((
r
i

))
aV (n− i).

We prove now a result that will be crucial in the enumeration of PGL2(k)-
orbits of rational n-sets of P1. The projective action of PGL2(k) on P1(k)
induces a natural action of PGL2(k) on the set of rational n-sets of P1.
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For any γ ∈ PGL2(k) we denote by Fixγ the set of fixed points of γ in
P1(k). More generally, if X is a set admitting an action of γ we denote by
Fixγ X the subset of fixed points of γ in X.

Theorem 1.3. Let γ be an element of PGL2(k), γ 6= 1, and let m be the
order of γ. Let V be the open subvariety P1 \ Fixγ of P1. Then, for any
positive integer n ∣∣∣∣Fixγ

(
V
n

)
(k)
∣∣∣∣ = aV (n/m) ,∣∣∣∣∣Fixγ

(
V
n

)rat
∣∣∣∣∣ = bV (|V (k)|/m, n/m) ,

with the convention that aV (x) = 0 = bV (r, x) if x is not a positive integer.

Proof. Let P1/γ be the quotient variety of P1 under the action of the cyclic
group generated by γ. The curve P1/γ is k-isomorphic to P1 because it
is normal and birrationally equivalent to P1 (by Lüroth’s theorem). Also,
the Zariski closed set (P1/γ) \ (V/γ) is isomorphic to Fixγ as a Galois set;
therefore, V/γ is k-isomorphic to V too and aV/γ(n) = aV (n), bV/γ(r, n) =
bV (r, n), for all r, n.

Consider the canonical projection

π : V −→ V/γ.

For any t ∈ V (k) the γ-orbit Oγ(t) = {t, γ(t), . . . , γm−1(t)} has cardinality
m (and not a proper divisor of m) [12, Lem.2.3]. Thus, if an n-set of V is
γ-invariant then necessarily n is a multiple of m. On the other hand, the
mapping π establishes a 1-1 correspondence between γ-invariant n-rational
sets of V and rational n/m-sets of V/γ. In particular,∣∣∣∣Fixγ

(
V
n

)
(k)
∣∣∣∣ = aV/γ (n/m) = aV (n/m) .

The γ-orbits O := Oγ(t) such that O = Oσ are in 1-1 correspondence
with the set of k-rational points of V/γ. Exactly |V (k)|/m of these orbits
have the property that O contains a k-rational point (or equivalently all
points of O are k-rational); thus, the γ-invariant rational m-sets of V that
contain at least one k-rational point are in 1-1 correspondence with certain
subset Z ⊆ (V/γ)(k) of cardinality |V (k)|/m. Therefore, π determines a 1-1
correspondence between γ-invariant n-rational sets of V containing at least
one k-rational point, and rational n/m-sets of V/γ containing at least one
point of Z. Hence,∣∣∣∣∣Fixγ

(
V
n

)rat
∣∣∣∣∣ = bV/γ

(
|V (k)|

m
,

n

m

)
= bV

(
|V (k)|

m
,

n

m

)
.

�

In sections 3 and 4 we shall express the number of isomorphism classes
of pointed and non-pointed hyperelliptic curves admitting a rational Weier-
strass point, in terms of aV (n) and bV (r, n) for the varieties

V = P1, A1, Gm, P1
0,
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where P1
0 is the subvariety P1 \ {t, tσ}, being t any point in P1(k2) \ P1(k).

Formulas for aV (n) for these four varieties were found in [12, Lem. 2.1] and
the value of bV (r, n) is deduced from Corollary 1.2. Actually, we shall use
certain normalizations of these numbers. The following lemma collects all
the formulas we need.

Lemma 1.4. For positive integers n, m we have

aP1(n) =

 qn − qn−2, if n ≥ 3,
q2, if n = 2,
q + 1, if n = 1.

A1(n) :=
aA1(n)

q
=
{

qn−1 − qn−2, if n ≥ 2,
1, if n = 1.

A2(n) :=
aGm(n)
q − 1

=
qn − (−1)n

q + 1
.

A0(n) :=
aP1

0
(n)

q + 1
=

qn+1 − qn − (−1)dn/2eq + (−1)d(n−1)/2e

q2 + 1
.

B(n) :=
bP1(n)

q(q − 1)(q + 1)
=

n−3∑
i=1

(−1)i+1

((
q + 1

i

))
qn−3−i−

− (−1)n n− 1
n(q + 1)

((
q + 1
n− 2

))
, ∀n > 3.

B0(m,n) :=
1

q + 1
bP1

0

(
q + 1
m

,n

)
=

=
n−1∑
i=1

(−1)i+1

((
(q + 1)/m

i

))
A0(n− i)− (−1)n

q + 1

((
(q + 1)/m

n

))
.

B1(n) :=
1
q
bA1

(
q

p
, n

)
=

=
n−1∑
i=1

(−1)i+1

((
q/p
i

))
A1(n− i)− (−1)n

q

((
q/p
n

))
.

B2(m,n) :=
1

q − 1
bGm

(
q − 1
m

,n

)
=

=
n−1∑
i=1

(−1)i+1

((
(q − 1)/m

i

))
A2(n− i)− (−1)n

q − 1

((
(q − 1)/m

n

))
.
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2. Classification of hyperelliptic curves up to k-isomorphism

In this section we recall the connection between rational sets of P1 and hy-
perelliptic curves over k. For generalities on hyperelliptic curves we address
the reader to [15, Sec.1].

From now on we assume that n = 2g + 2, where g is a positive integer,
g > 1. To each rational n-set S of P1 we can attach the monic separable
polynomial fS(x) ∈ k[x] of degree n or n− 1 given by:

fS(x) :=
∏

t∈S, t 6=∞
(x− t).

To every λ ∈ k∗, S ∈
(

P1

n

)
(k), we can attach the hyperelliptic curve

Cλ,S determined by the Weierstrass equation y2 = λfS(x).
For any µ ∈ k∗ the morphism (x, y) 7→ (x, µy) sets a k-isomorphism

between Cλ,S and Cλµ2,S . Thus, if we let the pairs (λ, S) run on the set

(λ, S) ∈ Xn :=
(
k∗/(k∗)2

)
×
(

P1

n

)
(k),

the curves Cλ,S contain representatives of all k-isomorphism classes of hy-
perelliptic curves of genus g.

The natural action of PGL2(k) on n-sets of P1 determines a natural action
of PGL2(k) on the set of hyperelliptic curves defined over k. In order to recall
this action we introduce multipliers J(γ, S) ∈ k∗ that depend in principle on
the choice of a representative in GL2(k) of γ ∈ PGL2(k). Consider a matrix

γ =
(

a b
c d

)
∈ GL2(k).

For any t ∈ P1(k) we can define a local multiplier j(γ, t) ∈ k
∗ by

j(γ, t) :=


det(γ)(ct + d)−1 if t 6= ∞, t 6= −d/c
c if t = −d/c, c 6= 0
d if t = ∞, c = 0
−det(γ)c−1 if t = ∞, c 6= 0

For any rational n-set S of P1 we define a global multiplier

J(γ, S) :=
∏
t∈S

j(γ, t) ∈ k∗.

There is a well-defined action of PGL2(k) on the set Xn:

γ(λ, S) := (λJ(γ, S), γ(S)),

which is independent of the choice of a representative of γ ∈ PGL2(k) in
GL2(k). The map (λ, S) 7→ Cλ,S induces a 1-1 correspondence

PGL2(k)\Xn −→ Hg,

where Hg is the set of k-isomorphism classes of hyperelliptic curves over k
of genus g [15, Thm.2.4].

Let us adapt this result to the situation we are dealing with in this paper.
Recall that a pointed hyperelliptic curve is for us a pair (C,P ) where C is
a hyperelliptic curve over k and P is a rational Weierstrass point of C. We
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say that two pointed curves (C,P ), (C ′, P ′) are k-isomorphic if there is a
k-isomorphism between C and C ′ sending P to P ′. Denote by H•

g the set
of k-isomorphism classes of pointed hyperelliptic curves of genus g. On the
other hand, denote by Hrat

g the set of k-isomorphism classes of hyperelliptic
curves of genus g admitting at least one rational Weierstrass point.

Consider the sets

Yn :=
(
k∗/(k∗)2

)
×
(

P1

n

)∞
, Zn :=

(
k∗/(k∗)2

)
×
(

P1

n

)rat

.

These subsets of Xn are stable under the action of PGL2(k). Moreover,
the set Yn is stable under the action of the affine subgroup, which is the
stabilizer of the point ∞ ∈ P1(k):

Aff2(k) :=
{(

a b
0 1

) ∣∣∣ (a, b) ∈ k∗ × k

}
⊆ PGL2(k).

The following result is an immediate consequence of [15, Thm.2.4].

Theorem 2.1. The map (λ, S) 7→ Cλ,S induces 1-1 correspondences

Aff2(k)\Yn −→ H•
g, PGL2(k)\Zn −→ Hrat

g .

After this result the aim of the paper is to find closed formulas for the car-
dinalities of the two sets Aff2(k)\Yn, PGL2(k)\Zn. To this end we need the
computation of the class of J(γ, S) modulo squares given in [15, Thm.3.4],
which we recall in Theorem 2.3 below.

Denote by ε the map

ε : PGL2(k)×
(

P1

n

)
(k) J−→ k∗/(k∗)2 −→ {±1},

where the last map is the unique non-trivial group homomorphism between
these two groups of order two. We want to compute ε(γ, S) for γ running
on a system of representatives of conjugacy classes of PGL2(k), and S a
rational n-set of P1 fixed by γ: γ(S) = S.

Let us recall how these representatives can be chosen, the possible values
of the order m of γ in each conjugacy class, the number of representatives
of a given order and the cardinality of the centralizers

Γγ := {ρ ∈ PGL2(k) | ρ−1γρ = γ}.

The following result is extracted from [13, Prop.2.3, Lem.2.4].

Lemma 2.2. There are q + 2 conjugacy classes in PGL2(k), which we dis-
tribute in four types:

A. The identity, γ(t) = t, has order m = 1 and |Γγ | = |PGL2(k)| =
q(q − 1)(q + 1).

B. The translation γ0(t) = t + 1. It has Fixγ0 = {∞}, order m = p and
|Γγ0 | = q.

C. The homothetic automorphisms (conjugate to t 7→ λt, for some λ ∈ k∗,
λ 6= 1). They have two fixed points, lying in P1(k), and order m = ordk∗(λ),
which is a divisor of q − 1.
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There are (q− 1)/2 homothetic conjugacy classes. For any divisor m > 1
of q − 1, if Cm is a system of representatives of the homothetic conjugacy
classes of order m, we have∑

γ∈Cm

|Γγ |−1 =
ϕ(m)

2(q − 1)
.

D. The potentially homothetic automorphisms; i.e. those γ conjugate to

the class in PGL2(k) of a matrix
(

0 1
c d

)
∈ GL2(k) with eigenvalues α, ασ

in k2 \ k. They have two fixed points, which are quadratic conjugate points
in P1(k2); the order is the least positive integer m such that αm ∈ k, and it
is a divisor of q + 1.

There are (q + 1)/2 potentially homothetic conjugacy classes. For any
divisor m > 1 of q +1, if Cm is a system of representatives of the potentially
homothetic conjugacy classes of order m, we have∑

γ∈Cm

|Γγ |−1 =
ϕ(m)

2(q + 1)
.

Theorem 2.3. Let n be an even positive integer, S a rational n-set of P1,
and γ ∈ PGL2(k) an automorphism of P1 of order m such that γ(S) = S.
Then,

ε(γ, S) =


1, if γ = 1 or γ = γ0

(−1)(q−1)/m, if γ homothetic and ∞ ∈ S
1, if γ homothetic and ∞ 6∈ S

(−1)(q+1)/m(−1)(n−2)/m, if γ pot. homothetic and Fixγ ⊆ S

(−1)n/m, if γ pot. homothetic and Fixγ 6⊆ S

3. Counting pointed hyperelliptic curves

Let Γ be a finite group acting on a finite set X. The number of orbits of
this action can be counted as the average number of fixed points:

(4) |Γ\X| = 1
|Γ|
∑
γ∈Γ

|Fixγ X| =
∑
γ∈C

|Fixγ X|
|Γγ |

,

where C is a set of representatives of conjugacy classes of elements of Γ and

Fixγ X := {x ∈ X | γ(x) = x}, Γγ := {ρ ∈ Γ | ργρ−1 = γ}.

In this section we apply this formula to compute the number hyp•(g) of
orbits of the set

X = Y := Y2g+2 =
(
k∗/(k∗)2

)
×
(

P1

2g + 2

)∞

under the action of the affine group Γ := Aff2(k). By Theorem 2.1 this is
the number of k-isomorphism classes of pointed hyperelliptic curves of genus
g: hyp•(g) = |H•

g|.
The following lemma exhibits a system of representatives of conjugacy

classes of the affine group:
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Lemma 3.1. There are q conjugacy classes in Aff2(k), represented by the
following elements, which we distribute in three types:

A. The identity, γ(t) = t, has order m = 1 and |Γγ | = |Aff2(k)| = q(q−1).

B. The translation γ0(t) = t + 1. It has Fixγ0 = {∞}, order m = p and
|Γγ0 | = q.

C. The homotheties γ(t) = λt, λ ∈ k∗, λ 6= 1. They have Fixγ = {∞, 0},
order m = ordk∗(λ), which is a divisor of q − 1, and |Γγ | = q − 1.

In particular, for any divisor m > 1 of q − 1 there are ϕ(m) conjugacy
classes in Aff2(k) of order m.

For any γ ∈ Aff2(k), a pair (λ, S) ∈ Y is fixed by γ if and only if γ(S) = S
and ε(γ, S) = 1. Thus,

|Fixγ Y| = 2
∣∣∣∣{S ∈ Fixγ

(
P1

2g + 2

)∞ ∣∣∣ ε(γ, S) = 1
}∣∣∣∣ .

By Theorem 2.3, |Fixγ Y| = 0 if γ is an homothety of order m with (q−1)/m
odd, and

|Fixγ Y| = 2
∣∣∣∣Fixγ

(
P1

2g + 2

)∞∣∣∣∣ = 2
∣∣∣∣Fixγ

(
A1

2g + 1

)
(k)
∣∣∣∣ ,

otherwise. We can apply now Theorem 1.3 to compute the number of ratio-
nal (2g + 1)-sets of A1 which are γ-invariant. If γ is an homothety, in order
to be able to apply Theorem 1.3 we split these rational (2g + 1)-sets into
two disjoint groups according to the fact that they contain 0 or not; we get
in this case∣∣∣∣Fixγ

(
A1

2g + 1

)
(k)
∣∣∣∣ = ∣∣∣∣Fixγ

(
Gm

2g

)
(k)
∣∣∣∣+ ∣∣∣∣Fixγ

(
Gm

2g + 1

)
(k)
∣∣∣∣ ,

and we obtain

∣∣∣∣Fixγ

(
A1

2g + 1

)
(k)
∣∣∣∣ =

 aA1(2g + 1), if γ = 1,
aA1((2g + 1)/p), if γ = γ0,
aGm(2g/m) + aGm((2g + 1)/m), otherwise,

where m is the order of γ.
The computation of hyp•(g) given by (4) can be splitted into the sum

of three terms hA + hB + hC , each term taking care of the contribution of
all conjugacy classes in a concrete type, as described in Lemma 3.1. Since
the value of |Fixγ Y| depends only on m, for the computation of hC we can
group together all γ with the same order and we obtain
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hyp•(g) =
2aA1(2g + 1)

q(q − 1)
+

2
q
aA1

(
2g + 1

p

)
+

+
2

q − 1

∑
1<m|(q−1)/2

ϕ(m)
(

aGm

(
2g

m

)
+ aGm

(
2g + 1

m

))
=

= 2q2g−1 + 2A1

(
2g + 1

p

)
+

+
∑

1<m|(q−1)/2

2ϕ(m)
(

A2

(
2g

m

)
+ A2

(
2g + 1

m

))
.

By using the explicit formulas for A1(n), A2(n) given in Lemma 1.4 we
obtain a closed formula for hyp•(g) as a polynomial in q with integer coeffi-
cients that depend on g and the set of divisors of q− 1. This is more clearly
seen if we rewrite our formula for hyp•(g) in a way that is more suitable for
an effective computation when g is given and we want to deal with a generic
value of q.

Theorem 3.2. The number of k-isomorphism classes of pointed hyperellip-
tic curves of genus g is:

hyp•(g) = 2q2g−1 + 2A1

(
2g + 1

p

)
+

+
∑

1<m|2g+1

2ϕ(m)
[
A2

(
2g + 1

m

)]
m|q−1

+
∑

1<m|2g

2ϕ(m)
[
A2

(
2g

m

)]
2m|q−1

.

By convention, A1(x) = 0 if x is not a positive integer and the terms
[x]condition are considered only if the “condition” is satisfied.

We display in Table 1 the value of hyp•(g) for 2 ≤ g ≤ 7.

Corollary 3.3. The dominant terms of hyp•(g) are

hyp•(g) = 2q2g−1 + O(qg−1).

Proof. Apart from the generic term 2q2g−1, the highest power of q arising
from the other terms is the degree of [A2(g)]4|q−1, corresponding to the
divisor m = 2 of 2g. �

4. Counting hyperelliptic curves with a rational Weierstrass
point

In this section we apply the formula (4) to compute the number hyprat(g)
of orbits of the set

X = Z := Z2g+2 =
(
k∗/(k∗)2

)
×
(

P1

2g + 2

)rat

under the action of the projective group Γ := PGL2(k). By Theorem 2.1
this is the number of k-isomorphism classes of hyperelliptic curves of genus
g having at least one rational Weierstrass point: hyprat(g) = |Hrat

g |.
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Table 1. Number of pointed hyperelliptic curves of genus g up
to k-isomorphism

g hyp•(g) = |H•
g|

2 2q3 + 2[q − 1]4|q−1 + [4]8|q−1 + [8]5|q−1 + [2]p=5

3 2q5 + 2[q2 − q + 1]4|q−1 + 4[q − 1]3|q−1 + [12]7|q−1 + [4]12|q−1 + [2]p=7

4
2q7 + 2[q3 − q2 + q − 1]4|q−1 + 4[q2 − q + 1]3|q−1 + 4[q − 1]8|q−1+

+[12]9|q−1 + [8]16|q−1 + 2[q2 − q]p=3

5
2q9 + 2[q4 − q3 + q2 − q + 1]4|q−1 + 8[q − 1]5|q−1 + [20]11|q−1 + [8]20|q−1+

+[2]p=11

6
2q11 + 2[q5 − q4 + q3 − q2 + q − 1]4|q−1 + 4[q3 − q2 + q − 1]3|q−1+

+4[q2 − q + 1]8|q−1 + 4[q − 1]12|q−1 + [24]13|q−1 + [8]24|q−1 + [2]p=13

7

2q13 + 2[q6 − q5 + q4 − q3 + q2 − q + 1]4|q−1 + 4[q4 − q3 + q2 − q + 1]3|q−1+

+8[q2 − q + 1]5|q−1 + 12[q − 1]7|q−1 + [16]15|q−1 + [12]28|q−1+

+2[q4 − q3]p=3 + 2[q2 − q]p=5

We divide the conjugacy classes of PGL2(k) into four types A, B, C, D,
as indicated in Lemma 2.2. The computation of hyprat(g) given by (4) can
be splitted into the sum of four terms hyprat(g) = hA +hB +hC +hD, taking
care of the contribution of all conjugacy classes of each concrete type.

For any γ ∈ PGL2(k), a pair (λ, S) ∈ Z is fixed by γ if and only if
γ(S) = S and ε(γ, S) = 1. Thus,

|Fixγ Z| = 2

∣∣∣∣∣
{

S ∈ Fixγ

(
P1

2g + 2

)rat ∣∣∣ ε(γ, S) = 1

}∣∣∣∣∣ .
For γ = 1 and γ = γ0 Theorem 2.3 shows that ε(γ, S) = 1 for all γ-

invariant rational (2g + 2)-sets of P1. Thus,

|Fixγ Z| = 2

∣∣∣∣∣Fixγ

(
P1

2g + 2

)rat
∣∣∣∣∣ .

For γ = 1 we get directly

hA =
|Z|

q(q − 1)(q + 1)
=

2bP1(2g + 2)
q(q − 1)(q + 1)

= 2B(2g + 2).

We split the γ0-invariant rational (2g+2)-sets of P1 that contain at least one
rational point into two families: those containing∞ and those not containing
∞. We have,∣∣∣∣∣Fixγ0

(
P1

2g + 2

)rat
∣∣∣∣∣ =

∣∣∣∣Fixγ0

(
A1

2g + 1

)
(k)
∣∣∣∣+
∣∣∣∣∣Fixγ0

(
A1

2g + 2

)rat
∣∣∣∣∣ .
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Theorem 1.3 can be applied to compute the cardinality of both families, and
we get

hB =
|Fixγ0 Z|

q
=

2
q

(
aA1

(
2g + 1

p

)
+ bA1

(
q

p
,
2g + 2

p

))
=

= 2A1

(
2g + 1

p

)
+ 2B1

(
2g + 2

p

)
.

For γ of type C or D we shall see below that the value of |Fixγ Z| depends
only on the order m of γ; hence, in the computation of hC and hD we can
group together all γ with the same order and Lemma 2.2 shows that we can
express the partial sums hC and hD as:

hC =
∑

1<m|(q−1)

ϕ(m)|Fixγ Z|
2(q − 1)

, hD =
∑

1<m|(q+1)

ϕ(m)|Fixγ Z|
2(q + 1)

,

where for each m we choose an arbitrary γ of order m of type C or D.
For γ an homothety of order m, we split the γ-invariant rational (2g +2)-

sets of P1 that contain at least one rational point into three families: those
containing both fixed points of γ (0 and ∞), those containing exactly one
fixed point of γ, and those containing no fixed points of γ. Since any γ-
invariant n-set of Gm has necessarily n multiple of m, Theorem 2.3 shows
that:

|Fixγ Z| = 2

∣∣∣∣∣Fixγ

(
Gm

2g + 2

)rat
∣∣∣∣∣ , if

q − 1
m

odd,

|Fixγ Z| = 2
∣∣∣∣Fixγ

(
Gm

2g

)
(k)
∣∣∣∣+ 4

∣∣∣∣Fixγ

(
Gm

2g + 1

)
(k)
∣∣∣∣+

+ 2

∣∣∣∣∣Fixγ

(
Gm

2g + 2

)rat
∣∣∣∣∣ , if

q − 1
m

even.

Theorem 1.3 can be applied to compute the cardinality of each family,
and we get

hC =
∑

1<m|q−1

ϕ(m)
q − 1

([
aGm

(
2g

m

)]
2m|q−1

+ 2aGm

(
2g + 1

m

)
+

+bGm

(
q − 1
m

,
2g + 2

m

))
=

∑
1<m|q−1

ϕ(m)

([
A2

(
2g

m

)]
2m|q−1

+

+2A2

(
2g + 1

m

)
+ B2

(
q − 1
m

,
2g + 2

m

))
.
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Finally, hD can be computed by using completely analogous arguments:

hD =
∑

1<m|q+1

ϕ(m)
q + 1

([
bP1

0

(
q + 1
m

,
2g

m

)]
2g
m
≡ q+1

m
(mod 2)

+

+
[
bP1

0

(
q + 1
m

,
2g + 2

m

)]
m|g+1

)
=

=
∑

1<m|q+1

ϕ(m)

([
B0

(
m,

2g

m

)]
2g
m
≡ q+1

m
(mod 2)

+

+
[
B0

(
m,

2g + 2
m

)]
m|g+1

)
.

By using the explicit formulas for Ai(n) and Bi(m,n) given in Lemma 1.4
we obtain a closed formula for hyprat(g) as a polynomial in q with rational
coefficients that depend on the set of divisors of q − 1 and q + 1. As in the
previous section we rewrite our computation of hyprat(g) in a way that is
more suitable for an effective computation when g is given and we want to
deal with a generic value of q.

Theorem 4.1. The number of k-isomorphism classes of hyperelliptic curves
of genus g having at least one rational Weierstrass point is:

hyprat(g) = 2B(2g + 2) + 2A1

(
2g + 1

p

)
+ 2B1

(
2g + 2

p

)
+

+
∑

1<m|2g

ϕ(m)

([
B0

(
m,

2g

m

)]
m|q+1, 2g

m
≡ q+1

m
(mod 2)

+
[
A2

(
2g

m

)]
2m|q−1

)
+

+
∑

1<m|2g+1

2ϕ(m)
[
A2

(
2g + 1

m

)]
m|q−1

+

+
∑

1<m|2g+2

ϕ(m)

([
B0

(
m,

2g + 2
m

)]
m|q+1, m|g+1

+

+
[
B2

(
m,

2g + 2
m

)]
m|q−1

)
.

By convention, A1(x) = 0 = B1(x) if x is not a positive integer and the
terms [x]condition are considered only if the “condition” is satisfied.

We display in Table 2 the value of hyprat(g) for 2 ≤ g ≤ 5.

Corollary 4.2. The dominant term of hyprat(g) is

hyprat(g) =
(

1− 1
2!

+
1
3!
− · · · − 1

(2g + 2)!

)
2q2g−1 + O(q2g−2).

In particular, for g large hyprat(g) is asymptotically (1− e−1)2q2g−1.

Proof. The dominant term is the principal monomial of 2B(2g + 2). �
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Table 2. Number of hyperelliptic curves of genus g admitting a
Koblitz model, up to k-isomorphism

g hyprat(g) = |Hrat
g |

2
91
72q3 + 37

48q2 − 1
2q + 11

16 + [q − 1]4|q−1 + 1
8 [3q + 1]4|q+1 + [2]p=5 + [8]5|q−1+

+[2]8|q−1 −
[
2
9

]
3|q−1

+
[
5
9

]
3|q+1

+
[
1
2

]
8|q−3

3

3641
2880q5 + 53

144q4 + 83
144q3 − 8

9q2 + 893
960q − 3

8 + [ 6748q2 − 4
3q − 7

16 ]4|q−1+

+2[q − 1]3|q−1 + 1
9 [5q + 2]3|q+1 + [12]7|q−1 + [2]p=7 + [2]12|q−1+

+
[
1
2

]
8|q−1

+
[
1
3

]
12|q−5

4

28319
22400q7 + 2119

5760q6 − 2059
9600q5 + 6143

11520q4 + 83
1200q3 + 187

5760q2 − 9
1400q − 59

1280+

+
[
− 233

384q3 + 99
128q2 − 607

384q + 117
128

]
4|q+1

+ 4[q2 − q + 1]3|q−1 + 2[q2 − q]p=3+

+2[q − 1]8|q−1 + 1
16 [7q + 3]8|q+1 + 2

25 [9q + 4]5|q+1 + 18
25 [q − 1]5|q−1+

+
[

9
25q − 1

5

]
p=5

+ [12]9|q−1 + [4]16|q−1 +
[
1
2

]
16|q−7

5

27526069
21772800q9 + 16481

44800q8 − 778721
3628800q7 + 11923

86400q6 + 44881
64800q5 − 43909

43200q4 + 3133141
3628800q3−

− 252227
201600q2 + 357221

161280q − 171
256 +

[
5351
3840q4 − 199

160q3 + 521
640q2 − 391

240q + 597
256

]
4|q−1

+

+
[
155
324q2 − 167

162q + 137
972

]
3|q+1

−
[
155
324q2 − 241

162q + 1361
972

]
3|q−1

+ 4[q − 1]5|q−1+

+
[
18
25q + 8

25

]
5|q+1

+ [20]11|q−1 + [2]p=11 + [4]20|q−1 +
[
1
3

]
12|q−1

+
[
2
5

]
20|q−9
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[8] L. Hernández Encinas, J. Muñoz Masqué, Isomorphism classes of genus-2 hyperelliptic
curves over finite fields F5m , Information 8(6), 8pp. (2005).

[9] E. Jeong, Isomorphism classes of hyperelliptic curves of genus 3 over finite fields,
Cryptology ePrint Archive 2003/251.

[10] N. Koblitz, Hyperelliptic cryptosystems, Journal of Cryptology 1 (1989), 139-150.
[11] P. Lockhart, On the discriminant of a hyperelliptic curve, Transactions of the Amer-

ican Mathematical Society 342 (1994), 729-752.
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