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Abstract

We present a new mechanized prover for showing cor-
respondence assertions for cryptographic protocols in the
computational model. Correspondence assertions are use-
ful in particular for establishing authentication. Our tech-
nique produces proofs by sequences of games, as standard
in cryptography. These proofs are valid for a number of ses-
sions polynomial in the security parameter, in the presence
of an active adversary. Our technique can handle a wide
variety of cryptographic primitives, including shared- and
public-key encryption, signatures, message authentication
codes, and hash functions. It has been implemented in the
tool CryptoVerif and successfully tested on examples from
the literature.

1. Introduction

Correspondence assertions on cryptographic protocols
are properties of the form “if some events have been exe-
cuted, then some other events have been executed”, where
each event corresponds to a certain point in the protocol,
possibly with arguments. An event can be formalized by
a special instruction event e(M1, . . . ,Mm), which sim-
ply records that the event e(M1, . . . ,Mm) has been exe-
cuted. Woo and Lam [63] introduced correspondence as-
sertions to express the authentication properties of cryp-
tographic protocols, such as “if B terminates a run of
the protocol, apparently with A, then A has started a run
of the protocol, apparently with B.” This property can
be written more formally “if event Bterminates(A) has
been executed, then event Astarts(B) has been executed”,
where event Bterminates(X) occurs at the point where
B terminates a run and he thinks he talks to X , and
event Astarts(Y ) occurs at the point where A starts a run
with Y . Correspondence assertions have become a standard
tool for reasoning on cryptographic protocols.

The main novelty of our work lies in the model in which
we prove correspondence assertions. Indeed, there are two
main models for cryptographic protocols. In the compu-

tational model, cryptographic primitives are functions on
bitstrings and the adversary is a polynomial-time proba-
bilistic Turing machine. In this realistic model, proofs are
usually manual. In the formal, Dolev-Yao model, crypto-
graphic primitives are considered as perfect blackboxes rep-
resented by function symbols, and the adversary is restricted
to compute with these blackboxes. There already exist sev-
eral techniques for proving correspondence assertions au-
tomatically in this abstract model, e.g. [18, 36]. However,
in general, these proofs are not sound with respect to the
computational model.

Since the seminal paper by Abadi and Rogaway [6],
there has been much interest in relating both models [4,
11, 14, 30, 31, 38, 39, 50, 51], to show the soundness of the
Dolev-Yao model with respect to the computational model,
and thus obtain automatic proofs of protocols in the com-
putational model. However, this approach has limitations:
since the computational and Dolev-Yao models do not cor-
respond exactly, additional hypotheses are necessary in or-
der to guarantee soundness. (For example, for symmetric
encryption, key cycles have to be excluded, or a specific
security definition of encryption is needed [8].)

In this paper, we adopt a different approach: our
tool proves correspondences directly in the computational
model. In order to achieve such proofs, we extend our pre-
vious approach for secrecy [20, 21]. We produce proofs by
sequences of games, as used by cryptographers [17, 57–59]:
the initial game represents the protocol, for which we want
to prove that the probability of breaking a certain correspon-
dence is negligible; intermediate games are obtained each
from the previous one by transformations such that the dif-
ference of probability between consecutive games is neg-
ligible; the final game is such that the desired probability
can directly be shown to be negligible from the form of the
game. The desired probability is then negligible in the ini-
tial game.

In order to extend our approach to correspondence asser-
tions, we slightly extend the calculus that we use to repre-
sent games, so that it can specify events. The game trans-
formations that we used for secrecy can also be used for
correspondences, without change. However, we still need
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to check that the correspondence holds on the final game.
So, we introduce a rich language of correspondence asser-
tions, and show how to check them automatically. This
language allows one to specify both injective correspon-
dences (if some event has been executed n times, then some
other events have been executed at least n times) and non-
injective correspondences (if some events have been exe-
cuted, then some other events have been executed at least
once), as well as properties of the form “if some events have
been executed, then some formula holds”.

Moreover, we also show how to use correspondences in
order to prove mutual authentication and authenticated key
exchange. Mutual authentication is an immediate conse-
quence of correspondences. The situation is more subtle for
authenticated key exchange: intuitively, we need to prove
the secrecy of the key. Since the key is shared between two
participants of the protocol, the secrecy of the key is not
simply the secrecy of a single variable, as we could prove
in [20, 21]. However, we show that by combining corre-
spondences with the secrecy of the variable that contains
the key for one of the participants of the protocol, we can
prove the standard notion of authenticated key exchange.

The prover succeeds in a fully automatic way for many
examples. For delicate cases, our prover allows the user to
indicate the main game transformations to perform, such as
applying the security of a certain cryptographic primitive
for a certain secret key. Importantly, the prover is always
sound, whatever indications the user gives.

The verification of correspondences has been imple-
mented in our prover CryptoVerif (19200 lines of Ocaml
for version 1.06 of CryptoVerif), available at http://
cryptoverif.inria.fr.

Related Work Results that show the soundness of the
Dolev-Yao model with respect to the computational model,
e.g. [31, 39, 51], make it possible to use Dolev-Yao provers
in order to prove correspondences in the computational
model. In particular, a tool [29] has been built based on [31]
in order to make computational proofs using the Dolev-Yao
prover AVISPA, for protocols that use public-key encryp-
tion and signatures. However, computational soundness
results have limitations, in particular in terms of allowed
cryptographic primitives (they must satisfy strong security
properties so that they correspond to Dolev-Yao style primi-
tives), and they require some restrictions on protocols (such
as the absence of key cycles).

Several frameworks exist for formalizing proofs of pro-
tocols in the computational model. Backes, Pfitzmann,
and Waidner [10–12] have designed an abstract crypto-
graphic library including symmetric and public-key encryp-
tion, message authentication codes, signatures, and nonces
and shown its soundness with respect to computational
primitives, under arbitrary active attacks. This framework

shares some limitations with the computational soundness
results, for instance the exclusion of key cycles and the fact
that symmetric encryption has to be authenticated. It re-
lates the computational model to a non-standard version of
the Dolev-Yao model, in which the length of messages is
still present. It has been used for a computationally-sound
machine-checked proof of the Needham-Schroeder-Lowe
protocol [60].

Canetti and Herzog [26] show how a Dolev-Yao-style
symbolic analysis can be used to prove security properties
of protocols (including authentication) within the frame-
work of universal composability [24], for a restricted class
of protocols using public-key encryption as only crypto-
graphic primitive. Then, they use the automatic Dolev-Yao
verification tool ProVerif [19] for verifying protocols in this
framework.

Canetti et al. [25] use the framework of time-
bounded task-PIOAs (Probabilistic Input/Output Automata)
for proving cryptographic protocols in the computational
model. This framework allows them to combine probabilis-
tic and non-deterministic behaviors.

Lincoln et al. [46, 47, 49, 52, 56] developed a probabilis-
tic polynomial-time calculus for the analysis of security
protocols. This calculus comes with a notion of process
equivalence, used in particular to prove authentication prop-
erties in [47]. This calculus resembles ours in that both are
probabilistic polynomial-time variants of the pi calculus.
(The restriction chooses a fresh random number. The repli-
cation is polynomially bounded.) However, it differs from
our calculus since it uses an explicit probabilistic sched-
uler while, in our calculus, the adversary schedules the pro-
cesses. Our calculus also adds arrays in order to store all
values of variables, which is key to our proofs, as we shall
see below.

Datta et al. [32, 33] have designed a computationally
sound logic that enables them to prove computational se-
curity properties using a logical deduction system.

Corin and Hartog [28] use a probabilistic Hoare-style
logic for formalizing game-based cryptographic proofs.

All these frameworks can be used to prove security prop-
erties of protocols in the computational sense, but except
for [26] which relies on a Dolev-Yao prover and for the
machine-checked proofs of [60], they have not been mech-
anized up to now, as far as we know.

Other works provide proofs in the computational model,
but only for secrecy. Laud [43] designed an automatic anal-
ysis for protocols using shared-key encryption, with pas-
sive adversaries. He extended it to active adversaries, but
with only one session of the protocol [44]. The type sys-
tem of [9, 45] handles shared-key and public-key encryp-
tion, with an unbounded number of sessions. This system
relies on the Backes-Pfitzmann-Waidner library.

Barthe, Cerderquist, and Tarento [13, 61] have formal-
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ized the generic model and the random oracle model in
the interactive theorem prover Coq, and proved signature
schemes in this framework. In contrast to our specialized
prover, proofs in generic interactive theorem provers require
a lot of human effort, to build a detailed enough proof for
the theorem prover to check it.

Halevi [37] explains that implementing an automatic
prover based on sequences of games would be useful, and
suggests ideas in this direction, but does not actually imple-
ment one.

Outline The next section recalls the process calculus that
we use to represent games and extends it with events. Sec-
tion 3 defines the correspondence assertions that we prove.
Section 4 recalls the definition of observational equivalence
and extends it with events. Section 5 illustrates on an exam-
ple the game transformations used in our proofs. Section 6
details how we prove correspondences. Section 7 shows
how to prove standard notions of authentication and authen-
ticated key exchange using correspondences. Finally, Sec-
tion 8 summarizes our experimental results and Section 9
concludes. The appendix contains details on the semantics
of the calculus, the proof engine we use for reasoning on
games, the proofs of our results, and our experiments.

2. A Calculus for Games

In this section, we review the process calculus defined
in [20, 21] in order to model games used in computational
security proofs. This calculus has been carefully designed
to make the automatic proof of cryptographic protocols eas-
ier. We extend this calculus with parametric events, which
serve in the definition of correspondences.

We illustrate this calculus on the following example, in-
spired by the corrected Woo-Lam public key protocol [64]:

B → A : (N,B)

A→ B : {pkA, B,N}skA
This protocol is a simple nonce challenge: B sends to A
a fresh nonce N and its identity. A replies by signing the
nonce N , B’s identity, and A’s public key (which we use
here instead of A’s identity for simplicity: this avoids hav-
ing to relate identities and keys; the prover can obviously
also handle the version with A’s identity). The signatures
are assumed to be (existentially) unforgeable under chosen
message attacks (UF-CMA) [35], so, when B receives the
signature, B is convinced that A is present. The signature
cannot be a replay because the nonce N is signed.

In our calculus, this protocol is encoded by the following
process G0, explained below:

G0 = c0(); new rkA : keyseed ; let pkA = pkgen(rkA) in

let skA = skgen(rkA) in c1〈pkA〉; (QA | QB)

QA = !iA≤nc2[iA](xN : nonce, xB : host);

event eA(pkA, xB , xN ); new r : seed ;

c3[iA]〈sign(concat(pkA, xB , xN ), skA, r)〉
QB = !iB≤nc4[iB ](xpkA : pkey); new N : nonce;

c5[iB ]〈N,B〉; c6[iB ](s : signature);

if verify(concat(xpkA , B,N), xpkA , s) then

if xpkA = pkA then event eB(xpkA , B,N)

The process G0 is assumed to run in interaction with an
adversary, which also models the network. G0 first re-
ceives an empty message on channel c0, sent by the ad-
versary. Then, it chooses randomly with uniform proba-
bility a bitstring rkA in the type keyseed , by the construct
new rkA : keyseed . A type T , such as keyseed , aims at
denoting a set of bitstrings. However, the considered set of
bitstrings depends on the security parameter η, which de-
termines the length of keys. So, more precisely, a type T
corresponds for each value of η to a set of bitstrings de-
noted by Iη(T ). Then, G0 generates the public key pkA
corresponding to the coins rkA, by calling the public-key
generation algorithm pkgen. Similarly, G0 generates the
secret key skA by calling skgen. It outputs the public key
pkA on channel c1, so that the adversary has this public key.

After outputting this message, the control passes to the
receiving process, which is part of the adversary. Several
processes are then made available, which represent the roles
of A and B in the protocol: the process QA | QB is the par-
allel composition of QA and QB ; it makes simultaneously
available the processes defined in QA and QB . Let Q′A and
Q′B be such that QA = !iA≤nQ′A and QB = !iB≤nQ′B .
The replication !iA≤nQ′A represents n copies of the process
Q′A, indexed by the replication index iA. (The symbol n
corresponds to an integer Iη(n) for each value of the se-
curity parameter η; Iη(n) is required to be a polynomially
bounded function of η.) The process Q′A begins with an
input on channel c2[iA]; the channel is indexed with iA so
that the adversary can choose which copy of the processQ′A
receives the message by sending it on channel c2[iA] for the
appropriate value of iA. The situation is similar for Q′B ,
which expects a message on channel c4[iB ]. The adversary
can then run each copy of Q′A or Q′B simply by sending a
message on the appropriate channel c2[iA] or c4[iB ].

The process Q′B first expects on channel c4[iB ] a mes-
sage xpkA in the type pkey of public keys. This message is
not really part of the protocol. It serves for starting a new
session of the protocol, in which B interacts with the par-
ticipant of public key xpkA . For starting a session between
A and B, this message should be pkA. Then, Q′B chooses
randomly with uniform probability a nonce N in the type
nonce . The type nonce is large: a type T is large when the
inverse of its cardinal 1

|Iη(T )| is negligible, so that collisions
between independent random numbers chosen uniformly in
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a large type have negligible probability. (The probability
f(η) is negligible when for all polynomials q, there exists
ηo ∈ N such that for all η > η0, f(η) ≤ 1

q(η) . The prob-
ability f(η) is overwhelming when 1 − f(η) is negligible.)
Q′B sends the message (N,B) on channel c5[iB ]. The con-
trol then passes to the receiving process, included in the ad-
versary. This process is expected to forward this message
(N,B) on channel c2[iA], but may proceed differently in
order to mount an attack against the protocol.

Upon receiving a message (xN , xB) on channel c2[iA],
where the bitstring xN is in the type nonce and xB in the
type host , the process Q′A executes the event eA(pkA, xB ,
xN ). This event does not change the state of the system.
Events just record that a certain program point has been
reached, with certain values of the arguments of the event.
Then,Q′A chooses randomly with uniform probability a bit-
string r in the type seed ; this random bitstring is next used
as coins for the signature algorithm. Finally,Q′A outputs the
signed message {pkA, xB , xN}skA . (The function concat
concatenates its arguments, with information on the length
of these arguments, so that the arguments can be recovered
from the concatenation.) The control then passes to the
receiving process, which should forward this message on
channel c6[iB ] if it wishes to run the protocol correctly.

Upon receiving a message s on c6[iB ], Q′B verifies that
the signature s is correct and, if xpkA = pkA, that is, if B
runs a session withA, it executes the event eB(xpkA , B,N).
Our goal is to prove that, if event eB is executed, then event
eA has also been executed. However, whenB runs a session
with a participant other than A, it is perfectly correct that
B terminates without event eA being executed; that is why
event eB is executed only when B runs a session with A.

In our calculus, all variables defined under a replication
are implicitly arrays. For example, the variable xN defined
under !iA≤n is implicitly an array indexed by the replication
index iA: xN is an abbreviation for xN [iA]. Similarly, xB is
an abbreviation for xB [iA], r for r[iA], xpkA for xpkA [iB ],
N for N [iB ], and s for s[iB ]. Using arrays allows us to
remember the values of the variables in each copy of the
processes, so that the whole state of the system is available.
In our calculus, arrays replace lists often used by cryptog-
raphers in their proofs. For example, during the proof, all
messages signed under skA would be stored in a list, and
by the unforgeability of signatures, when the verification of
the signature of a message succeeds, we would be sure that
this message occurs in the list. In our calculus, we will store
messages in arrays instead. Arrays come with a lookup con-
struct: find u1 ≤ n1, . . . , um ≤ nm suchthat defined(M1,
. . . ,Ml) ∧M then P else P ′ looks for indices u1, . . . , um
such that M1, . . . ,Ml are defined and M is true. When
such indices are found, it executes P ; otherwise, it executes
P ′. When several values of indices are possible, each possi-
ble value is chosen with the same probability. For example,

find u ≤ n suchthat defined(xN [u]) ∧ xN [u] = N then P
looks for an index u such that xN [u] is defined and equal
to N . Here, the find construct does not occur in the initial
game, but will be introduced by game transformations.

As detailed in [20, 21], we require some well-formedness
invariants to guarantee that bitstrings are of their expected
type and that arrays are used properly (that each cell of an
array is assigned at most once during execution and that
variables are accessed only after being initialized).

All processes of our calculus run in probabilistic poly-
nomial time. The semantics of the calculus is defined by
a probabilistic reduction relation on semantic configura-
tions C. We denote by initConfig(Q) the initial config-
uration associated to process Q. We refer the reader to
Appendix A and [20] for additional details on this calcu-
lus and its semantics. Given a mapping ρ from variable
names to bitstrings, we write ρ,M ⇓ a when the term
M (built from function symbols and variables, without ar-
ray accesses) evaluates to bitstring a. We denote by E
a sequence of events of the form e(a1, . . . , an), where e
is an event symbol and a1, . . . , an are bitstrings. We de-
note by Pr[∃(C, E), initConfig(Q)

E−→ C ∧ φ(C, E)] the
probability that there exists a sequence of events E and a
semantic configuration C such that Q reduces to C, ex-
ecuting events E on the trace, and the logical formula
φ(C, E) holds. We introduce an additional polynomial-
time algorithm, a distinguisher D that takes as input a
sequence of events and returns true or false. An exam-
ple of distinguisher is De defined by De(E) = true if
and only if e ∈ E : this distinguisher detects the execu-
tion of event e. Given a distinguisher D, we denote by
Pr[Q : D] = Pr[∃(C, E), initConfig(Q)

E−→ C ∧ D(E) ∧
C does not reduce] the probability that the process Q exe-
cutes a sequence of events E such that D(E) = true. These
probabilities depend on the security parameter η; we omit it
to lighten notations.

We use an evaluation context C to represent the adver-
sary. An evaluation context is a process with a hole, of
one of the following forms: a hole [ ], a process in par-
allel with an evaluation context Q | C, or a restriction
newChannel c;C, which limits the scope of the channel c
to the context C. We denote by C[Q] the process obtained
by replacing the hole of C with Q. When V is a set of
variables defined in Q, an evaluation context C is said to
be acceptable for Q with public variables V if and only if
the common variables of C and Q are in V , and C[Q] satis-
fies the well-formedness invariants. The set V contains the
variables the context is allowed to access (using find).

When P is under replications !i1≤n1 . . . !im≤nm , we say
that the replication indices at P are i1, . . . , im. We denote
by ĩ a sequence of replication indices i1, . . . , im, and by M̃
a sequence of terms M1, . . . ,Mm. We denote by fc(P ) the
set of free channels of P , and by var(P ) the set of variables
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that occur in P . We also use the notation var(·) for contexts,
terms, and formulas.

3. Definition of Correspondences

In this section, we define non-injective and injective cor-
respondences.

3.1. Non-injective Correspondences

A non-injective correspondence is a property of the form
“if some events have been executed, then some other events
have been executed at least once”. Here, we generalize
these correspondences to implications between logical for-
mulae ψ ⇒ φ, which may contain events. We use the fol-
lowing logical formulae:

φ ::= formula
M term
event(e(M1, . . . ,Mm)) event
φ1 ∧ φ2 conjunction
φ1 ∨ φ2 disjunction

Terms M,M1, . . . ,Mm in formulae must not contain ar-
ray accesses, and their variables are assumed to be distinct
from variables of processes. The formula M holds when
M evaluates to true. The formula event(e(M1, . . . ,Mn))
holds when the event e(M1, . . . ,Mn) has been executed.
The conjunction and disjunction are defined as usual. More
formally, we write ρ, E ` φ when the sequence of events
E satisfies the formula φ, in the environment ρ that maps
variables to bitstrings. We define ρ, E ` φ as follows:

ρ, E `M if and only if ρ,M ⇓ true
ρ, E ` event(e(M1, . . . ,Mm)) if and only if

for all j ≤ m, ρ,Mj ⇓ aj and e(a1, . . . , am) ∈ E
ρ, E ` φ1 ∧ φ2 if and only if ρ, E ` φ1 and ρ, E ` φ2
ρ, E ` φ1 ∨ φ2 if and only if ρ, E ` φ1 or ρ, E ` φ2

Formulae denoted by ψ are conjunctions of events.

Definition 1 The sequence of events E satisfies the corre-
spondence ψ ⇒ φ, written E ` ψ ⇒ φ, if and only if for
all ρ defined on var(ψ) such that ρ, E ` ψ, there exists an
extension ρ′ of ρ to var(φ) such that ρ′, E ` φ.

Intuitively, a sequence of events E satisfies ψ ⇒ φwhen,
if E satisfies ψ, then E satisfies φ. The variables of ψ are
universally quantified; those of φ that do not occur in ψ are
existentially quantified.

Definition 2 We define a distinguisherD such thatD(E) =
true if and only if E ` ψ ⇒ φ. We denote this distinguisher
D simply by ψ ⇒ φ and write ¬(ψ ⇒ φ) for its negation.

The process Q satisfies the correspondence ψ ⇒ φ with
public variables V if and only if for all evaluation contexts
C acceptable for Q with public variables V that do not con-
tain events used by ψ ⇒ φ, Pr[C[Q] : ¬(ψ ⇒ φ)] is negli-
gible.

A process satisfies ψ ⇒ φ when the probability that it
generates a sequence of events E that does not satisfy ψ ⇒
φ is negligible, in the presence of an adversary represented
by the context C.

Example 1 Referring to the example G0 of Section 2, the
correspondence

event(eB(x, y, z))⇒ event(eA(x, y, z)) (1)

means that, with overwhelming probability, for all x, y, z,
if eB(x, y, z) has been executed, then eA(x, y, z) has been
executed.

The correspondence

event(e1(x)) ∧ event(e2(x))⇒
event(e3(x)) ∨ (event(e4(x, y)) ∧ event(e5(y, z)))

means that, with overwhelming probability, for all x, if
e1(x) and e2(x) have been executed, then e3(x) has been
executed or there exists y such that both e4(x, y) and
e5(x, y) have been executed.

3.2. Injective Correspondences

Injective correspondences are properties of the form
“if some event has been executed n times, then some
other events have been executed at least n times”. In
order to model them in our logical formulae, we ex-
tend the grammar of formulae φ with injective events
inj-event(e(M1, . . . ,Mm)). The formula ψ is a conjunc-
tion of (injective or non-injective) events. The conditions
on the number of executions of events apply only to injec-
tive events.

The definition of formula satisfaction is also extended:
we indicate at which step each injective event has been exe-
cuted, by a “pseudo-formula” φτ obtained from the formula
φ by replacing terms and non-injective events with ⊥ and
injective events with the step τ at which they have been ex-
ecuted (that is, their index τ in the sequence of events E) or
⊥ when their execution is not required. For example, if φ =
inj-event(e1(x)) ∧ (inj-event(e2(x)) ∨ inj-event(e3(x))),
then φτ is of the form τ1 ∧ (τ2 ∨ τ3) where τ1 is the ex-
ecution step of e1(x) and either τ2 is the execution step of
e2(x) or τ3 is the execution step of e3(x). (One of the steps
τ2 and τ3 may be ⊥, but not both.) We define formula sat-
isfaction ρ, E `φτ φ as follows:
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ρ, E `⊥ M if and only if ρ,M ⇓ true
ρ, E `⊥ event(e(M1, . . . ,Mm)) if and only if

for all j ≤ m, ρ,Mj ⇓ aj and e(a1, . . . , am) ∈ E
ρ, E `τ inj-event(e(M1, . . . ,Mm)) if and only if τ 6= ⊥,

for all j ≤ m, ρ,Mj ⇓ aj , and e(a1, . . . , am) = E(τ)
ρ, E `φτ1∧φτ2 φ1 ∧ φ2 if and only if

ρ, E `φτ1 φ1 and ρ, E `φτ2 φ2
ρ, E `φτ1∨φτ2 φ1 ∨ φ2 if and only if

ρ, E `φτ1 φ1 or ρ, E `φτ2 φ2
This definition differs from the case of non-injective cor-
respondences in that we propagate the pseudo-formula φτ

and, in the case of injective events, we make sure that the
event has been executed at step τ by requiring that τ 6= ⊥
and e(a1, . . . , am) = E(τ).

Given a function F that maps ψτ to φτ , the projection f
of F to the leaf at occurrence o of φ is such that f(ψτ ) is the
leaf at occurrence o of F(ψτ ). For example, if F maps ψτ to
φτ of the form τ1 ∧ (τ2 ∨ τ3), then F has three projections,
which map ψτ to τ1, τ2, and τ3 respectively. We say that F
is component-wise injective when each projection f of F is
such that f(ψτ1 ) = f(ψτ2 ) 6= ⊥ implies ψτ1 = ψτ2 . (Ignoring
the result ⊥, f is injective.)

Definition 3 The sequence of events E satisfies the corre-
spondence ψ ⇒ φ, written E ` ψ ⇒ φ, if and only if there
exists a component-wise injective F such that for all ρ de-
fined on var(ψ), for allψτ such that ρ, E `ψτ ψ, there exists
an extension ρ′ of ρ to var(φ) such that ρ′, E `F(ψτ ) φ.

Intuitively, a sequence of events E satisfies ψ ⇒ φ when, if
E satisfies ψ with execution steps defined by ψτ , then E sat-
isfies φ with execution steps defined by F(ψτ ). The injec-
tivity is guaranteed because F is component-wise injective.
Definition 2 is unchanged for injective correspondences.

Example 2 Referring to the example G0 of Section 2, the
correspondence

inj-event(eB(x, y, z))⇒ inj-event(eA(x, y, z)) (2)

means that, with overwhelming probability, each execu-
tion of eB(x, y, z) corresponds to a distinct execution of
eA(x, y, z). In this case, ψτ is simply the execution step of
eB(x, y, z) and φτ the execution step of eA(x, y, z). The
function F is an injective function that maps the execu-
tion step of eB(x, y, z) to the execution step of eA(x, y, z).
(This step is never ⊥.)

The correspondence

event(e1(x)) ∧ inj-event(e2(x))⇒ inj-event(e3(x)) ∨
(inj-event(e4(x, y)) ∧ inj-event(e5(x, y)))

means that, with overwhelming probability, for all x, if
e1(x) has been executed, then each execution of e2(x) cor-
responds to distinct executions of e3(x) or to distinct execu-
tions of e4(x, y) and e5(x, y). The function F maps ⊥ ∧ τ2

to τ3∨ (τ4∧ τ5), where τ2, τ3, τ4, τ5 are the execution steps
of e2(x), e3(x), e4(x, y), e5(x, y) respectively (either τ3 or
τ4 and τ5 may be ⊥). The projections of F map ⊥ ∧ τ2 to
τ3, τ4, and τ5 respectively.

When no injective event occurs in ψ ⇒ φ, Definition 3
reduces to the definition of non-injective correspondences.

3.3. Property

The next lemma is straightforward. It shows that corre-
spondences are preserved by adding a context.

Lemma 1 If Q satisfies a correspondence c with public
variables V and C is an evaluation context acceptable for
Q with public variables V that does not contain events used
by c, then for all V ′ ⊆ V ∪ var(C), C[Q] satisfies c with
public variables V ′.

4. Observational Equivalence

The notion of computational indistinguishability is key
to proofs by sequences of games. In this work, we name it
observational equivalence as it can be seen as an adaptation
to the computational model of the notion of observational
equivalence used in the spi calculus [3] in the Dolev-Yao
model. We adapt the definition observational equivalence
to the presence of events and review its properties.

In the next definition, we use an evaluation context C to
represent an algorithm that tries to distinguish Q from Q′.

Definition 4 (Observational equivalence) Let Q and Q′

be two processes that satisfy the well-formedness invari-
ants. Let V be a set of variables defined in Q and Q′, with
the same types.

We say that Q and Q′ are observationally equivalent
with public variables V , written Q ≈V Q′, when for all
evaluation contexts C acceptable for Q and Q′ with pub-
lic variables V , for all distinguishers D, |Pr[C[Q] : D] −
Pr[C[Q′] : D]| is negligible.

This definition formalizes that the probability that an al-
gorithm C distinguishes the games Q and Q′ is negligible.
The context C is allowed to access directly the variables in
V (using find). When V is empty, we write Q ≈ Q′.

This definition makes events observable, so that obser-
vationally equivalent processes execute computationally in-
distinguishable sequences of events. In a previous defini-
tion [21], in a calculus without events, the observable ac-
tions were outputs on public channels. In this definition,
they are indirectly observable, since the context C can re-
ceive messages output on public channels and trigger an
event when a particular message is sent on a particular chan-
nel.
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The following lemma is straightforward:

Lemma 2 1. ≈V is reflexive, symmetric, and transitive.

2. If Q ≈V Q′ and C is an evaluation context accept-
able for Q and Q′ with public variables V , then for all
V ′ ⊆ V ∪ var(C), C[Q] ≈V ′

C[Q′].

3. If Q ≈V Q′ and Q satisfies a correspondence c with
public variables V , then so does Q′.

The transitivity of ≈V and Property 3 of Lemma 2 are key
to performing proofs by sequences of games. Indeed, our
prover starts from a game G0 corresponding to the real pro-
tocol, and builds a sequence of observationally equivalent
games G0 ≈V G1 ≈V . . . ≈V Gm. By transitivity, we
conclude that G0 ≈V Gm. By Property 3, if Gm satisfies
a certain correspondence with public variables V , then so
does G0. The sequence G0 ≈V G1 ≈V . . . ≈V Gm is
built by game transformations. Some of these transforma-
tions rely on security assumptions of cryptographic primi-
tives; others are syntactic transformations used to simplify
games. Since these transformations are the same for corre-
spondences as for secrecy, we do not detail them here, and
refer the reader to [20, 21]. (These transformations leave
events unchanged.) Next, we illustrate them on an example.

5. A Proof by a Sequence of Games

In this section, we explain the transformations performed
on the processG0 of Section 2. By the unforgeability of sig-
natures, the signature verification with pkA succeeds only
for signatures generated with skA. So, when we verify that
the signature is correct, we can furthermore check that it has
been generated using skA. So, after game transformations
explained below, we obtain the following final game:

G1 = c0(); new rkA : keyseed ;

let pkA = pkgen′(rkA) in c1〈pkA〉; (Q1A | Q1B)

Q1A = !iA≤nc2[iA](xN : nonce, xB : host);

event eA(pkA, xB , xN );

let m = concat(pkA, xB , xN ) in

new r : seed ; c3[iA]〈sign′(m, skgen′(rkA), r)〉
Q1B = !iB≤nc4[iB ](xpkA : pkey); new N : nonce;

c5[iB ]〈N,B〉; c6[iB ](s : signature);

find u ≤ n suchthat defined(m[u], xB [u], xN [u])

∧ (xpkA = pkA) ∧ (B = xB [u]) ∧ (N = xN [u])

∧ verify′(concat(xpkA , B,N), xpkA , s) then

event eB(xpkA , B,N))

The assignment skA = skgen(rkA) has been removed
and skgen(rkA) has been substituted for skA, in order to

make the term sign(m, skgen(rkA), r) appear. This term is
needed for the security of the signature scheme to apply.

In Q1A, the signed message is stored in variable m, and
this variable is used when computing the signature.

Finally, using the unforgeability of signatures, the
signature verification has been replaced with an array
lookup: the signature verification can succeed only when
concat(xpkA , B,N) has been signed with skA, so we look
for the message concat(xpkA , B,N) in the array m and
the event eB is executed only when this message is found.
In other words, we look for an index u ≤ n such that
m[u] is defined and m[u] = concat(xpkA , B,N). By def-
inition of m, m[u] = concat(pkA, xB [u], xN [u]), so the
equality m[u] = concat(xpkA , B,N) can be replaced with
(xpkA = pkA)∧ (B = xB [u])∧ (N = xN [u]). (Recall that
the result of the concat function contains enough informa-
tion to recover its arguments.) This transformation replaces
the function symbols pkgen, skgen, sign, and verify with
primed function symbols pkgen′, skgen′, sign′, and verify′

respectively, to avoid repeated applications of the unforge-
ability of signatures with the same key. (The unforgeability
of signatures is applied only to unprimed symbols.)

The soundness of the game transformations shows that
G0 ≈ G1. We will prove that G1 satisfies the corre-
spondences (1) and (2) with any public variables V , in
particular with V = ∅. By Lemma 2, Property 3, G0

also satisfies these correspondences with public variables
V = ∅. Let us sketch how the proof of correspondence (1)
for the game G1 will proceed. Let Q′1A and Q′1B such
that Q1A = !iA≤nQ′1A and Q1B = !iB≤nQ′1B . Assume
that event eB is executed in the copy of Q′1B of index iB ,
that is, eB(xpkA [iB ], B,N [iB ]) is executed. (Recall that
the variables xpkA , N , u, . . . are implicitly arrays.) Then
the condition of the find above eB holds, that is, m[u[iB ]],
xB [u[iB ]], and xN [u[iB ]] are defined, xpkA [iB ] = pkA,
B = xB [u[iB ]], and N [iB ] = xN [u[iB ]]. Moreover, since
m[u[iB ]] is defined, the assignment that defines m has been
executed in the copy of Q′1A of index iA = u[iB ]. Then
the event eA(pkA, xB , xN ), located above the definition
of m, must have been executed in that copy of Q′1A, that
is, eA(pkA, xB [u[iB ]], xN [u[iB ]]) has been executed. The
equalities in the condition of the find imply that this event is
also eA(xpkA [iB ], B,N [iB ]). To sum up, if eB(xpkA [iB ],
B,N [iB ]) has been executed, then eA(xpkA [iB ], B,N [iB ])
has been executed, so we have the correspondence (1). This
reasoning is typical of the way the prover shows correspon-
dences. In particular, the conditions of array lookups are
key in these proofs, because they allow us to relate values
in processes that run in parallel (here, the processes that
represent A and B), and interesting correspondences relate
events that occur in such processes. In the next section, we
detail and formalize this reasoning, both for non-injective
and injective correspondences.
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6. Proving Correspondences

In this section, we explain how our prover shows that a
game satisfies a correspondence. We first sketch the tech-
nique we use for collecting properties of games, then we
handle the simpler case of non-injective correspondences,
before generalizing to injective correspondences.

6.1. Reasoning on Games

The proof of correspondences relies on two techniques
for reasoning on games. These techniques were already
used for simplifying games, so we summarize them briefly
and refer the reader to [20] or to Appendix B for details.

First, we collect facts that hold at each program point
in the game. We use the following facts: the term M
means that M is true, defined(M) means that M is de-
fined, and event(e(M1, . . . ,Mm)) means that the event
e(M1, . . . ,Mm) has been executed. The set of true facts
collected at program point P is denoted by FP . We collect
these facts as follows:

• We take into account facts that come from assign-
ments and tests above P . For example, in the process
if M then P , we have M ∈ FP , since M is true when
P is executed.

In our running example G1, at the program point P
just after the event eB ,FP contains defined(m[u[iB ]]),
defined(xB [u[iB ]]), defined(xN [u[iB ]]), xpkA [iB ] =
pkA, B = xB [u[iB ]], and N [iB ] = xN [u[iB ]], be-
cause the condition of find holds when P is executed.
(FP also contains other facts, which are useless for
proving the desired correspondences, so we do not list
them.)

• When we already know that x[M̃ ] is defined at P (that
is, defined(M) ∈ FP and x[M̃ ] is a subterm of M ),
some definition of x[̃i] must have been executed, with
ĩ = M̃ , so the facts F that hold at all definitions of x
also hold at P , for ĩ = M̃ : F{M̃/̃i} ∈ FP .

In the example G1, we have defined(m[u[iB ]]) ∈
FP , and, when m[iA] is defined, event(eA(pkA,
xB [iA], xN [iA])) holds, so event(eA(pkA, xB [iA],
xN [iA])){u[iB ]/iA} ∈ FP , that is, event(eA(pkA,
xB [u[iB ]], xN [u[iB ]])) ∈ FP . In order words, since
m is defined at index u[iB ], event eA has been exe-
cuted in the copy of Q′1A of index u[iB ].

Second, we use an equational prover, inspired by the
Knuth-Bendix completion algorithm [41]. From a set of
facts F , it generates rewrite rules by orienting equalities
of F , and uses these rewrite rules to infer new facts from
the elements of F . It also takes into account that collisions

between uniformly distributed random elements of a large
type have negligible probability, so it transforms an equal-
ity x[M̃ ] = x[M̃ ′] into M̃ = M̃ ′ when x is defined only by
restrictions new x : T and T is a large type. (If the indices
were different, the considered cells of x would contain in-
dependent random numbers chosen uniformly in the large
type T , so the probability of equality would be negligible.)

We say thatF yields a contradiction when the equational
prover can derive false from F (for example, when F con-
tains an inequality M1 6= M2, rewritten by the rewrite rules
into M 6= M , which is then rewritten into false).

6.2. Non-injective Correspondences

Intuitively, in order to prove that a process Q0 satisfies
a non-injective correspondence ψ ⇒ φ, we collect all facts
that hold at events in ψ and show that these facts imply φ
using the equational prover.

We collect facts that hold when the event F in ψ has been
executed, as follows.

Definition 5 (P follows F , FF,P ) When F = event(e(M1,
. . . ,Mm)) and P is such that event e(M ′1, . . . ,M

′
m);P

occurs in Q0, we say that P follows F , and we define
FF,P = θ′FP ∪ {θ′M ′j = Mj | j ≤ m} where the sub-
stitution θ′ is a renaming of the replication indices at P to
distinct fresh replication indices.

Intuitively, when the event F in ψ has been executed, it
has been executed by some subprocess of Q0, so there
exists a subprocess event e(M ′1, . . . ,M

′
m);P in Q0 such

that, for some replication indices defined by θ′, the event
e(M ′1, . . . ,M

′
m) has been executed and it is equal to the

event F , hence θ′M ′j = Mj holds for j ≤ m. More-
over, since the program point P , which follows F , has been
reached, θ′FP holds. Hence FF,P = θ′FP ∪ {θ′M ′j =
Mj | j ≤ m} holds.

Let θ be a substitution equal to the identity on the vari-
ables of ψ. This substitution gives values to existentially
quantified variables of φ. We say that F |=⇒θ φ when we can
show that F implies θφ. Formally, we define:

F |=⇒θM if and only if F ∪ {¬θM} yields a contradiction
F |=⇒θ event(e(M1, . . . ,Mm)) if and only if there exist

M ′1, . . . ,M
′
m such that event(e(M ′1, . . . ,M

′
m)) ∈ F

and F ∪ {
∨m
j=1 θMj 6= M ′j} yields a contradiction

F |=⇒θ φ1 ∧ φ2 if and only if F |=⇒θ φ1 and F |=⇒θ φ2

F |=⇒θ φ1 ∨ φ2 if and only if F |=⇒θ φ1 or F |=⇒θ φ2

Terms θM are proved by contradiction, using the equational
prover. Events θF are proved by looking for some event F ′

in F and showing by contradiction that θF = F ′, using the
equational prover.

Non-injective correspondences are proved as follows.
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Proposition 1 Let ψ ⇒ φ be a non-injective correspon-
dence, with ψ = F1 ∧ . . .∧Fm. If for every P1 that follows
F1, . . . , for every Pm that follows Fm, there exists a substi-
tution θ equal to the identity on the variables of ψ and such
that FF1,P1

∪ . . .∪FFm,Pm |=⇒θ φ, then Q0 satisfies ψ ⇒ φ
with any public variables V .

Intuitively, when ψ = F1 ∧ . . . ∧ Fm holds, FF1,P1
∪

. . . ∪ FFm,Pm hold. For some θ equal to the identity on
ψ, FF1,P1 ∪ . . . ∪ FFm,Pm implies θφ, so θφ holds. Hence
the correspondence is satisfied. This result is proved in Ap-
pendix C.1.

Example 3 Let us prove that the example G1 satisfies (1).
For ψ = F = event(eB(x, y, z)), the only process P that
follows F is the process after event eB(xpkA , B,N), so this
event has been executed in some copy of Q′1B of index i′B ,
with xpkA [i′B ] = x,B = y,N [i′B ] = z. Then, when ψ
holds, the factsFF,P = FP {i′B/iB}∪{xpkA [i′B ] = x,B =
y,N [i′B ] = z} hold for some value of i′B , where FP has
been studied in Section 6.1 and θ′ = {i′B/iB}.

Furthermore, the substitution θ is the identity since
all variables of φ also occur in ψ. Then we just have
to show that FF,P implies φ = event(eA(x, y, z)), that
is, FF,P |=⇒θ event(eA(x, y, z)). Since event(eA(pkA,
xB [u[iB ]], xN [u[iB ]])) ∈ FP , we have event(eA(pkA,
xB [u[i′B ]], xN [u[i′B ]])) ∈ FF,P , so the equational prover
just has to prove by contradiction that eA(pkA, xB [u[i′B ]],
xN [u[i′B ]]) = eA(x, y, z), that is, pkA = x, xB [u[i′B ]] = y,
and xN [u[i′B ]] = z. The proof succeeds using the follow-
ing equalities of FF,P : xpkA [i′B ] = x, B = y, N [i′B ] = z,
xpkA [iB ] = pkA, B = xB [u[i′B ]], and N [i′B ] = xN [u[i′B ]].

Hence, G1 satisfies (1) with any public variables V :
if ψ = event(eB(x, y, z)) has been executed, then φ =
event(eA(x, y, z)) has been executed.

In the implementation, the substitution θ is initially de-
fined as the identity on var(ψ). It is defined on other vari-
ables when checking F |=⇒θM by trying to find θ such
that θM ∈ F , and when checking F |=⇒θ event(e(M1,
. . . ,Mm)) by trying to find θ such that θevent(e(M1, . . . ,
Mm)) ∈ F . When we do not manage to find the image
by θ of all variables of M , resp. M1, . . . ,Mm, the check
fails. When there are several suitable facts θM ∈ F or
θevent(e(M1, . . . ,Mm)) ∈ F , the system tries all possibil-
ities.

6.3. Injective Correspondences

Injective correspondences are more difficult to check
than non-injective ones, because they require distinguishing
between several executions of the same event. We achieve
that as follows.

We require that in the initial game of the sequence, which
represents the real protocol, if the event e is used as injec-
tive event in a correspondence, then two occurrences of e al-
ways occur in different branches of find or if. This property
is preserved by the game transformations, so the game Q0

on which we test the correspondences satisfies this property.
This property guarantees that for each value of the replica-
tion indices, each injective event is executed at most once.

We add as first argument of every event in Q0 the tu-
ple (i1, . . . , im) of replication indices at the program point
at which the event is executed. We add as first argument
of every event in ψ ⇒ φ a fresh variable. Then the ini-
tial process satisfies the initial correspondence if and only if
the modified process satisfies the modified correspondence.
The addition of replication indices to events allows us to
distinguish executions of the same injective event: these ex-
ecutions always have distinct replication indices by the re-
quirement of the previous paragraph.

We extend Definition 5 to injective events, with exactly
the same definition as for non-injective events. We let IP
be the image by θ′ of the tuple of replication indices at P ,
where θ′ is the renaming defined in Definition 5.

The proof of injective correspondences extends that for
non-injective correspondences: for a correspondence ψ ⇒
φ, we additionally prove that distinct executions of the in-
jective events of ψ correspond to distinct executions of each
injective event of φ, that is, if the injective events of ψ have
different replication indices, then each injective event of φ
has different replication indices. In order to achieve this
proof, we collect information on the replication indices of
events, for each injective event of φ:

• the set of facts F that are known to hold, which will be
used to reason on replication indices of events;

• the replication indices of the considered injective event
of φ, stored in a tuple M0; these indices are computed
when we prove that this event is executed;

• the replication indices of the injective events of ψ,
stored as a mapping I = {j 7→ IPj | Fj is an in-
jective event}, where ψ = F1 ∧ . . .∧Fm and Pj is the
process that executes Fj , for j ≤ m;

• the set V containing the replication indices in F and
the variables of ψ; these variables will be renamed to
fresh variables in order to avoid conflicts of variable
names between different events.

This information is stored in a set S, which contains quadru-
ples (F ,M0, I,V). We will show that, if the replication
indices of two executions of the injective events of ψ are
different, then the replication indices of the correspond-
ing executions of the considered injective event of φ are
also different. Formally, we consider (F ,M0, I,V) and
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(F ′,M ′0, I ′,V ′) in S. We rename the variables V ′ of the
second element to fresh variables by a substitution θ′′ and
show that, if I 6= θ′′I ′, then M0 6= θ′′M ′0 (knowing F and
θ′′F ′). This property implies injectivity.

Since this reasoning is done for each injective event in
φ, we collect the associated sets S in a pseudo-formula C,
obtained by replacing each injective event of φ with a set S
and all other leaves of φ with ⊥.

We say that ` C when for all non-bottom leaves S of C,
for all (F ,M0, I,V), (F ′,M ′0, I ′,V ′) in S, F ∪ θ′′F ′ ∪
{
∨
j∈Dom(I) I(j) 6= θ′′I ′(j),M0 = θ′′M ′0} yields a con-

tradiction where the substitution θ′′ is a renaming of vari-
ables in V ′ to distinct fresh variables. As explained above,
the condition ` C guarantees injectivity.

We extend the definition of F |=⇒θ φ used for non-
injective correspondences to F |=⇒I,V,Cθ φ, which means
that F implies θφ and C correctly collects the tuples
(F ,M0, I,V) associated to this proof. Formally, we define:

F |=⇒I,V,⊥θ M if and only if
F ∪ {¬θM} yields a contradiction

F |=⇒I,V,⊥θ event(e(i,M1, . . . ,Mm)) if and only if
there exist M ′0,M

′
1, . . . ,M

′
m such that

event(e(M ′0,M
′
1, . . . ,M

′
m)) ∈ F and F ∪

{θi 6= M ′0 ∨
∨m
j=1 θMj 6= M ′j} yields a contradiction

F |=⇒I,V,Sθ inj-event(e(i,M1, . . . ,Mm)) if and only if
there exist M ′0,M

′
1, . . . ,M

′
m such that

event(e(M ′0,M
′
1, . . . ,M

′
m)) ∈ F ,

F ∪ {θi 6= M ′0 ∨
∨m
j=1 θMj 6= M ′j} yields a

contradiction, and (F ,M ′0, I,V) ∈ S.

F |=⇒I,V,C1∧C2θ φ1 ∧ φ2 if and only if
F |=⇒I,V,C1θ φ1 and F |=⇒I,V,C2θ φ2

F |=⇒I,V,C1∨C2θ φ1 ∨ φ2 if and only if
F |=⇒I,V,C1θ φ1 or F |=⇒I,V,C2θ φ2

These formulae differ from the non-injective case in that
we propagate I, V , C and, in the case of injective events,
we make sure that quadruples (F ,M ′0, I,V) are collected
correctly by requiring that (F ,M ′0, I,V) ∈ S.

Injective correspondences are proved as follows.

Proposition 2 Let ψ ⇒ φ be a correspondence, with ψ =
F1 ∧ . . . ∧ Fm.

Assume that, for all events e used as injective events in
ψ ⇒ φ, two occurrences of the event e always occur in
different branches of find or if in Q0.

Assume that there exists C such that ` C and for ev-
ery P1 that follows F1, . . . , for every Pm that follows Fm,
there exists a substitution θ equal to the identity on the vari-
ables of ψ and such that FF1,P1

∪ . . . ∪ FFm,Pm |=⇒
I,V,C
θ φ

where I = {j 7→ IPj | Fj is an injective event} and
V = var(IP1) ∪ . . . ∪ var(IPm) ∪ var(ψ).

Then Q0 satisfies ψ ⇒ φ with any public variables V .

This result is proved in Appendix C.2. In the implementa-
tion, the value of C is computed by adding (F ,M ′0, I,V)
to S when handling injective events during the checking of
FF1,P1

∪ . . . ∪ FFm,Pm |=⇒
I,V,C
θ φ.

Example 4 Let us prove that the example G1 satisfies (2).
After adding replication indices to events, the process con-
tains events eA(iA, pkA, xB , xN ) and eB(iB , xpkA , B,N),
and we prove the correspondence ψ ⇒ φ = inj-event(eB(i,
x, y, z)) ⇒ inj-event(eA(i′, x, y, z)). As in Section 6.1,
we compute the set FP of facts that hold at the program
point P just after event eB . However, m is defined at in-
dex iA = u[iB ] now implies that event(eA(u[iB ], pkA,
xB [u[iB ]], xN [u[iB ]])) ∈ FP . The process P follows
F = event(eB(i, x, y, z)) and F = FF,P = FP {i′B/iB} ∪
{i′B = i, xpkA [i′B ] = x,B = y,N [i′B ] = z}.

Similarly to the proof of F |=⇒θ event(eA(x, y, z)) in Ex-
ample 3, we can show that F |=⇒I,V,Cθ event(eA(i′, x, y, z))
where I = {1 7→ i′B} encodes the replication indices
of the events of ψ, V = {i′B , i, x, y, z} contains the
replication indices of F and the variables of ψ, C =
S = {(F , u[i′B ], I,V)}. (C = S because the formula
ψ is reduced to a single event; M ′0 = u[iB ] contains
the replication indices of the event eA contained in F :
event(eA(u[i′B ], pkA, xB [u[i′B ]], xN [u[i′B ]])) ∈ F .)

In order to prove injectivity, it remains to show that `
C. Let θ′′ = {i′′B/i′B , i′′/i, x′′/x, y′′/y, z′′/z}. We need to
show that F ∪ θ′′F ∪ {i′B 6= i′′B , u[i′B ] = u[i′′B ]} yields a
contradiction, that is, if the replication indices of the event
eB in ψ are distinct (i′B 6= i′′B), then the replication indices
of the event eA in φ are also distinct (u[i′B ] 6= u[i′′B ]).
F contains N [i′B ] = xN [u[i′B ]], so θ′′F contains

N [i′′B ] = xN [u[i′′B ]]. These two equalities combined
with u[i′B ] = u[i′′B ] imply that N [i′B ] = xN [u[i′B ]] =
xN [u[i′′B ]] = N [i′′B ]. Since N is defined by restrictions of
the large type nonce , N [i′B ] = N [i′′B ] implies i′B = i′′B
with overwhelming probability, by eliminating collisions.
This equality contradicts i′B 6= i′′B , so we obtain the desired
injectivity and G1 satisfies (2) with any public variables V .

7. Authentication and Key Exchange

In this section, we show how correspondences can be
used to prove mutual authentication and authenticated key
exchange, as formalized in cryptography following the sem-
inal paper by Bellare and Rogaway [16] and more recent
formalizations [7, 27]. Additional discussion and compar-
isons between these models can be found in Appendix D.

7.1. Mutual Authentication

For simplicity, we consider a protocol that includes two
roles, initiator and responder, played by two participants A
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and B, respectively. Other participants are included in the
adversary. The protocol consists of a sequence of messages
exchanged alternatively from the initiator to the responder
and from the responder to the initiator. Such a configuration
can be represented by a process of the form

Q0 = Init ; (!iA≤nQA | !iB≤nQB | QS)

where Init is an initialization process (creating keys of A
and B for instance), QA and QB represent respectively the
initiator A and the responder B, and QS represents a pro-
cess that allows the adversary to register keys of other (pos-
sibly dishonest) participants, so that they can take part in
sessions of the protocol with A and B. The processes QA
and QB do not contain replications.

We assume that the protocol contains an odd number of
rounds r, so that the first and last messages of the protocol
are both from the initiator to the responder. (The other case
can be handled similarly.) We assume that the process QA
stores the messages of the protocol in variables x1, . . . , xr
and that QB stores them in variables y1, . . . , yr. The ini-
tiator process QA starts by receiving a message that is not
really part of the protocol, and which contains the identity
Y of the responder with which A is supposed to run a ses-
sion. The last (r-th) message sent by processQA is assumed
to be a pair containing, in addition to the last message of
the protocol xr, either acceptA(Y ), when the protocol ran
as expected, or reject, when the protocol failed. The pro-
cess QB is assumed to send a (r + 1)-th message contain-
ing either acceptB(X) or reject just after B received and
checked the last message of the protocol, where X is the
identity of its expected partner (inferred by B from the pro-
tocol messages). We designate by QiA the copy of QA of
index iA = i and by QiB the copy of QB of index iB = i.
We say that QiA accepts with B when it sends acceptA(B)
as second component of its last message; QiB accepts with
A when it sends acceptB(A) as (r + 1)-th message.

A session identifier is a function sid of the protocol mes-
sages; sid(x1, . . . , xr) is typically a subsequence of the
messages x1, . . . , xr, often the whole sequence. We also
define a partial session identifier sid′(x1, . . . , xr−1), useful
since the r-th message is not available toB whenA accepts.
We require that sid(x1, . . . , xr) = sid(y1, . . . , yr) implies
sid′(x1, . . . , xr−1) = sid′(y1, . . . , yr−1). We say that QiA
and Qi

′

B are (real) partners when they have the same session
identifier: sid(x1[i], . . . , xr[i]) = sid(y1[i′], . . . , yr[i

′]).

Definition 6 We say that Q0 is a secure mutual authentica-
tion protocol with session identifiers sid and sid′ if:

1. if the adversary just sends B to QiA as first message
and relays messages faithfully between QiA and Qi

′

B ,
then QiA accepts with B and Qi

′

B accepts with A;

2. with overwhelming probability, there exists an in-
jective function that maps each index i of a pro-
cess QiA that accepts with B to the index i′ of
a process Qi

′

B with expected partner A such that
sid′(x1[i], . . . , xr−1[i]) = sid′(y1[i′], . . . , yr−1[i′]);

3. with overwhelming probability, there exists an injec-
tive function that maps each index i′ of a process Qi

′

B

that accepts with A to the index i of a process QiA
that accepts with B such that sid(x1[i], . . . , xr[i]) =
sid(y1[i′], . . . , yr[i

′]).

In item 2, Qi
′

B has not accepted yet when QiA accepts, so
we cannot require that Qi

′

B accepts with A; we only require
thatQi

′

B has expected partnerA (so that, if it accepts later, it
accepts with A). The first condition is easy to check manu-
ally, as already noticed in [16]: it expresses that the protocol
works when A and B interact without adversary. The last
two conditions mean that each session of A corresponds to
a distinct session of B, and conversely, with overwhelming
probability. They can be verified using correspondences, as
shown by the following proposition.

Proposition 3 Let Q′0 be obtained from Q0 by adding

• event partA(Y, sid′(x1, . . . , xr−1)); event fullA(Y,
sid(x1, . . . , xr)) just before A sends xr, acceptA(Y );

• event fullB(X, sid(y1, . . . , yr)) just before B sends
acceptB(X);

• event partB(X, sid′(y1, . . . , yr−1)) just before B
sends yr−1.

If Q0 satisfies the first condition of Definition 6 and Q′0 sat-
isfies the correspondences

inj-event(partA(B, x))⇒ inj-event(partB(A, x)) (3)
inj-event(fullB(A, x))⇒ inj-event(fullA(B, x)) (4)

with public variables V = ∅, then Q0 is a secure mutual
authentication protocol with session identifiers sid and sid′.

The proof of this proposition is straightforward from the
definitions. Obviously, many other versions of authentica-
tion can be verified using correspondences, for example by
requiring non-injective properties instead of injective ones
or by requiring authentication in one direction only instead
of mutual authentication.

7.2. Authenticated Key Exchange

We adopt the same hypotheses as for mutual authenti-
cation. Furthermore, we assume that QA sends or receives
the j-th message of the protocol on channel cAj [iA], and
similarly QB on channel cBj [iB ]. The channels cAj [iA]
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and cBj [iB ] are not used for other purposes. We assume
that, just before QA ends accepting, it stores the established
key in variable kA of type T , and sends xr, acceptA(Y ) on
channel cAr[iA]. We assume that, just before QB ends ac-
cepting, it stores the established key in variable kB of type
T and sends acceptB(X) on channel cBr+1[iB ].

We consider here the Real-Or-Random model [7]: the
adversary is allowed to ask several test queries, which either
all return the session key (real) or all return a random key
(random). Our goal is to show that the adversary has a negli-
gible probability of distinguishing these two situations. As
shown in [7], the Real-Or-Random model is stronger than
the Find-Then-Guess model of [16]. When the test queries
return the real session key, they are defined by the process
QT = QTA | QTB , where

QTA = !i≤nT testA[i](uA);

if defined(kA[uA]) then testA[i]〈kA[uA]〉

and QTB is defined symmetrically. When the test queries
return a random key, they are defined by the process Q′T =
Q′TA | Q′TB , where

Q′TA = !i≤nT testA[i](uA);

if defined(kA[uA], Y [uA]) then

if Y [uA] 6= B then testA[i]〈kA[uA]〉 else

find u ≤ nT suchthat defined(uA[u], rA[u]) ∧

uA[u] = uA then testA[i]〈rA[u]〉 else

find u ≤ nT suchthat defined(uB [u], rB [u],

x1[uA], . . . , xr[uA], y1[uB [u]], . . . , yr[uB [u]]) ∧
sid(x1[uA], . . . , xr[uA]) = sid(y1[uB [u]], . . . ,

yr[uB [u]]) then testA[i]〈rB [u]〉 else

new rA : T ; testA[i]〈rA〉

andQ′TB is defined symmetrically. When the expected part-
ner of A is not B, the session is executed with a dishon-
est participant; then, the test query Q′TA returns the real
key. When the test query Q′TA has already been asked
to the same copy of QA (of index uA[u] = uA), or to
a copy of QB with the same session identifier (of index
uB [u] such that sid(x1[uA], . . . , xr[uA]) = sid(y1[uB [u]],
. . . , yr[uB [u]])), Q′TA returns the same result as in the pre-
vious test query. Otherwise, Q′TA returns a fresh random
key rA.

Definition 7 We say that Q0 is a secure authenticated key
exchange over T with session identifiers sid and sid′ ifQ0 is
a secure mutual authentication protocol with session identi-
fiers sid and sid′ and the following are true:

1. if the adversary just sends B to QiA as first mes-
sage and relays messages faithfully between QiA and

Qi
′

B , then QiA accepts with B, Qi
′

B accepts with A,
kA[i] = kB [i′], and this random variable is uniformly
distributed in T ;

2. Q0 | QT ≈ Q0 | Q′T .

The first point of this definition means that the protocol
works correctly when A and B interact without adversary.
The second point expresses the indistinguishability between
the real key (returned by QT ) and a random key (returned
by Q′T ).

As shown in [20, 21], our prover can prove the secrecy
of a variable x, defined as follows:

Definition 8 (Secrecy) Assume x of type T is defined in Q
under a single replication !i≤n. Let Q′ be obtained from Q
by removing events. The process Q preserves the secrecy
of x when Q′ | Rx ≈ Q′ | R′x, where

Rx = !i≤n
′
c[i](u : [1, n]); if defined(x[u]) then c[i]〈x[u]〉

R′x = !i≤n
′
c[i](u : [1, n]); if defined(x[u]) then

find u′ ≤ n′ suchthat defined(y[u′], u[u′]) ∧ u[u′] = u

then c[i]〈y[u′]〉 else new y : T ; c[i]〈y〉

c /∈ fc(Q′), and u, u′, y /∈ var(Q′).

Intuitively, this definition means that the adversary can-
not distinguish the array x from an array of uniformly dis-
tributed random values by performing several test queries
represented by Rx and R′x, with non-negligible probability.

Proposition 4 Let Q′0 be obtained from Q0 by replacing
cAr[iA]〈xr, acceptA(Y )〉 with

event partA(Y, sid′(x1, . . . , xr−1));

event fullA(Y, kA, sid(x1, . . . , xr));

if Y = B then

let k′A = kA in cAr[iA]〈xr, acceptA(Y )〉
else

cAr[iA]〈xr, acceptA(Y )〉; cAK [iA](); cAK [iA]〈kA〉

and cBr+1[iB ]〈acceptB(X)〉 with

event fullB(X, kB , sid(y1, . . . , yr));

if X = A then

cBr+1[iB ]〈acceptB(X)〉
else

cBr+1[iB ]〈acceptB(X)〉; cBK [iB ](); cBK [iB ]〈kB〉

and adding event partB(X, sid′(y1, . . . , yr−1)) just before
QB sends yr−1.
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If Q0 satisfies the first condition of Definition 7, Q′0 pre-
serves the secrecy of k′A, and Q′0 satisfies the correspon-
dences

inj-event(partA(B, x))⇒ inj-event(partB(A, x)) (5)
inj-event(fullB(A, k, x))⇒ inj-event(fullA(B, k, x)) (6)
event(fullB(A, k, x)) ∧ event(fullA(B, k′, x))⇒ k = k′

(7)

with public variables {k′A}, then Q0 is a secure authenti-
cated key exchange with session identifiers sid and sid′.

This result is proved in Appendix C.3. The process Q′0
adds events as for mutual authentication, except that the ex-
changed key is added to the events fullA and fullB . Fur-
thermore, when A runs a session with B, it stores the key
in the variable k′A. When A runs a session with Y 6= B, it
allows the adversary to obtain the exchanged key, by send-
ing a message on cAK , and symmetrically when B runs a
session with X 6= A. (The test queries also allow the ad-
versary to get the key in this case.) As for Proposition 3,
the first condition of Definition 7 is easy to check manually.
The first two correspondences imply mutual authentication.
The equivalence Q0 | QT ≈ Q0 | Q′T is obtained by com-
bining the last two correspondences with the secrecy of k′A.
Intuitively, the correspondences allow us to show that each
element of kB in a session with A is in fact also an ele-
ment of k′A (which we can find by looking for the same ses-
sion identifier), so showing that k′A cannot be distinguished
from an array of independent random numbers is sufficient
to show the secrecy of the key. The correspondences must
be true with public variables {k′A}, so that the context is al-
lowed to access k′A: in the proof, the process Q′0 is put in a
context that implements the test queries by calling the pro-
cesses Rk′A or R′k′A of Definition 8, which directly access
k′A.

8. Experimental Results

We have successfully tested our prover on examples of
protocols of the literature: Yahalom [23] with and with-
out key confirmation, Otway-Rees [55], and the original
and corrected versions of Woo-Lam shared-key [36] and
public-key [62, 64], Needham-Schroeder public-key [48,
53], Denning-Sacco public-key [5, 34], and Needham-
Schroeder shared-key [53, 54] with and without key confir-
mation. For each protocol, we have tried to prove one-way
or mutual authentication or authenticated key exchange, de-
pending on the goal of the protocol. Our prover obviously
does not prove properties that do not hold. It succeeds
in proving properties that hold, in all cases except one: it
cannot show (4) for the original version of the Needham-
Schroeder shared-key protocol, because it fails to prove that

NB [i] 6= NB [i′]− 1 with overwhelming probability, where
NB is a nonce.1

Our prover can make subtle distinctions, which are typ-
ically not made by Dolev-Yao provers. For instance, it can
model two notions of security for signatures: one in which
the adversary is allowed to forge a new signature for an al-
ready signed message; the other in which the adversary can-
not forge any signature. With the latter definition, for the
corrected Woo-Lam public key protocol [64], it can show
that the signature is authenticated (both participants have
exactly the same signature), while it cannot with the former
definition, because the two participants may have different
signatures for the same message.

The total runtime for all these tests is 29 s on a Pentium
M 1.8 GHz. Appendix E details these results.

9. Conclusion

We have presented the first tool for proving correspon-
dences by sequences of games, in the computational model.
This tool works with no or very little help from the user,
handles a wide variety of cryptographic primitives, and pro-
duces proofs valid for a polynomial number of sessions in
the presence of an active adversary.

Although this tool can prove complex correspondences,
with conjunctions and disjunctions, our examples use rather
simple ones. Complex correspondences proved useful in
case studies [1, 2] in the Dolev-Yao model; we plan to use
them in similar situations in the computational model. Our
tool can also be used to analyze protocols or combinations
of primitives that are outside the scope of the Dolev-Yao
model. For example, in [22], in collaboration with David
Pointcheval, we have used it to prove the Full Domain Hash
signature scheme. We plan to consider other such examples
in the future.
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Appendix

Appendices A, B, and C should be read in this order, be-
cause Appendices A and B introduce notations and results
used in the proofs in Appendix C.

A. Additional Information on the Calculus

The full syntax of our calculus is given in Figure 1. This
calculus distinguishes two categories of processes: input
processes wait for a message on a channel; output processes
execute some internal computations and output the result on
a channel. Most constructs have already been explained in
Section 2. We complement these explanations here. The nil
process 0 does nothing. The find construct may have several
branches: find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else P
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tries to find a branch j in [1,m] such that there are val-
ues of uj1, . . . , ujmj for which Mj1, . . . ,Mjlj are defined
and Mj is true. In case of success, it executes Pj . (If there
are several successful choices of j, uj1, . . . , ujmj , one of
them is chosen randomly with uniform probability.) In case
of failure for all branches, it executes P . The conditional
if defined(M1, . . . ,Ml) ∧M then P else P ′ is defined as
syntactic sugar for find suchthat defined(M1, . . . ,Ml)∧M
then P else P ′. The conjunct defined(M1, . . . ,Ml) can
be omitted when l = 0 and M can be omitted when it is
true. An else branch of find or if may be omitted when it
is else yield〈〉; 0. (Note that “else 0” would not be syntacti-
cally correct.) A trailing 0 after an output may be omitted.

The semantics of the calculus is formally defined as
a probabilistic reduction relation on semantic configura-
tions C. A semantic configuration C is a quadruple
E, (σ, P ),Q, C, where

• E is an environment that maps array cells to bitstrings
or ⊥,

• P is the output process currently scheduled and σ is a
mapping of the replication indices at P to integers,

• Q is a multiset of pairs (σ′, Q) where the Q’s are input
processes currently waiting for messages and σ′ is a
mapping of the replication indices at Q to integers,

• C is the set of channels already created.

The semantics is defined by reduction rules of the form

E, (σ, P ),Q, C [e]−→p,t E′, (σ′, P ′),Q′, C′ meaning that
E, (σ, P ),Q, C reduces to E′, (σ′, P ′),Q′, C′ with proba-
bility p. The label [e] is empty for all reductions, ex-
cept events, in which case it records the executed event
e(a1, . . . , am). The tag t just serves in distinguishing re-
ductions that yield the same configuration with the same
probability in different ways, so that the probability of a
certain reduction can be computed correctly. (Although the
semantics depends on the security parameter η, its value is
omitted to lighten the notation.)

The semantics uses the relation E, σ,M ⇓ a, which
means that the term M evaluates to the bitstring a in the en-
vironments E (which gives values of arrays) and σ (which
gives values of replication indices).

The semantic rule for events is the following:

∀j ≤ m,E, σ,Mj ⇓ aj
E, (σ, event e(M1, . . . ,Mm);P ),Q, C

e(a1,...,am)−−−−−−−→1,Ev E, (σ, P ),Q, C

(Event)

The process evaluates the terms M1, . . . ,Mm to bitstrings
a1, . . . , am, and executes the event e(a1, . . . , am). This ex-
ecution is recorded on the label of the transition, and the

M,N ::= terms
i replication index
x[M1, . . . ,Mm] variable access
f(M1, . . . ,Mm) function application

Q ::= input process
0 nil
Q | Q′ parallel composition
!i≤nQ replication n times
newChannel c;Q channel restriction
c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P

input

P ::= output process
c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q output
new x[̃i] : T ;P random number
let x[̃i] : T = M in P assignment
if defined(M1, . . . ,Ml) ∧M then P else P ′

conditional
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj)
else P array lookup

event e(M1, . . . ,Mm);P event

Figure 1. Syntax of the process calculus

event instruction disappears from the process. The proba-
bility of this transition is 1 and its tag is Ev .

The other semantic rules are the ones of [20], except
for minor changes of notations. ([20] used

p−→η,t instead of
[e]−→p,t because there was no event. The processes were di-

rectly instantiated with the values of the replication indices,
so that the semantics of [20] used σP where this paper uses
(σ, P ).)

The initial configuration for running process Q0 is
initConfig(Q0) = ∅, (σ0, start〈〉), {(σ0, Q0)}, fc(Q0)
where σ0 is the function defined nowhere. Hence, the pro-
cess begins with sending an empty message on channel
start. The process Q0 should wait for a message on that
channel. We denote a trace ofQ0 by initConfig(Q0)

E−→p,T
E, (σ, P ),Q, C where p > 0 is the probability of this trace
and T is a sequence of tags that determine the transitions
(one tag per transition).

The following two properties are easy to prove from the
definition of the semantics:

Proposition 5 If initConfig(Q0)
E−→p,T E, (σ, P ),Q, C,

then P is a subprocess of Q0 or of start〈〉.0.

Proposition 6 If E, (σ, P ),Q, C E−→p,T E′, (σ′, P ′),Q′,
C′, then E′ is an extension of E.
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B. Proof Engine

In this section, we define the proof engine that our tool
uses for reasoning on games. This engine is used both for
simplifying games and for proving correspondences. The
version presented here is slightly simplified; the full version
can be found in [20]. Our proof engine uses both equations
given by the user, that come in particular from algebraic
properties of cryptographic primitives, and facts that hold
at certain points in the game due to the form of the game.
The engine uses this information in order to infer equalities
using a Knuth-Bendix-like equational prover.

B.1. User-defined Rewrite Rules

The user can give properties of the form ∀x1 : T1, . . . ,
∀xm : Tm,M which mean that, for all environments ρ
that map variables to bitstrings, if for all j ≤ m, ρ(xj) ∈
Iη(Tj), then ρ,M ⇓ true.

These properties are translated into rewrite rules as fol-
lows:

• If M is of the form M1 = M2 and var(M2) ⊆
var(M1), we generate the rewrite rule ∀x1 : T1, . . . ,
∀xm : Tm,M1 →M2.

• If M is of the form M1 6= M2, we generate the rewrite
rules ∀x1 : T1, . . . ,∀xm : Tm, (M1 = M2) → false,
∀x1 : T1, . . . ,∀xm : Tm, (M1 6= M2) → true. (Such
rules are used for instance to express that different con-
stants are different.)

• Otherwise, we generate the rewrite rule ∀x1 : T1, . . . ,
∀xm : Tm,M → true.

The term M reduces into M ′ by the rewrite rule ∀x1 : T1,
. . . ,∀xm : Tm,M1 → M2 if and only if M = C[θM1],
M ′ = C[θM2], where C is a term context and θ is a substi-
tution that maps xj to any term of type Tj for all j ≤ m.

The prover has built-in rewrite rules for defining boolean
functions:

¬true→ false ¬false→ true

∀x : bool ,¬(¬x)→ x

∀x : T, ∀y : T,¬(x = y)→ x 6= y

∀x : T, ∀y : T,¬(x 6= y)→ x = y

∀x : T, x = x→ true ∀x : T, x 6= x→ false

∀x : bool ,∀y : bool ,¬(x ∧ y)→ (¬x) ∨ (¬y)

∀x : bool ,∀y : bool ,¬(x ∨ y)→ (¬x) ∧ (¬y)

∀x : bool , x ∧ true→ x ∀x : bool , x ∧ false→ false

∀x : bool , x ∨ true→ true ∀x : bool , x ∨ false→ x

The prover also has support for commutative function
symbols. For such symbols, all equality and matching tests

are performed modulo commutativity. The functions ∧, ∨,
=, and 6= are commutative. So, for instance, the last four
rewrite rules above may also be used to rewrite true ∧M
intoM , false∧M into false, true∨M into true, and false∨
M into M .

B.2. Collecting True Facts from a Game

The function collectFacts collects facts defined(M),
event(e(M1, . . . ,Mm)), and termsM that hold at each pro-
gram point of the game. More precisely, for each occur-
rence P of a subprocess of the game, it computes a set FP
of facts that hold at that occurrence. (It is important that
P is an occurrence and not a process: processes at several
occurrences may be equal, and must be distinguished from
one another here.) The function collectFacts also computes
a set D containing pairs (x[̃i], P ) where x[̃i] has been de-
fined just above process P . (If there are several definitions
of x, there is one such pair for each definition of x.) Fi-
nally, for output processes P , collectFacts(P ) returns a set
of facts that will hold when the next output is executed, and
stores this set in FFut

P . (The superscript Fut stands for fu-
ture, since these facts do not hold yet at P , but will hold in
the future.)

The function collectFacts is defined in Figure 2. It
is initially called by collectFacts(Q0). It takes into ac-
count that x[̃i] may be defined by an input, a restriction,
a let, or a find, and updates D accordingly. Furthermore,
when we execute let x[̃i] : T = M in P ′, x[̃i] = M

holds in P ′ and x[̃i] is defined in P ′. When we execute
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P ′, Mj holds
in Pj , Mj1, . . . ,Mjlj , uj1 [̃i], . . . , ujmj [̃i] are defined in Pj ,
and ¬Mj holds in P ′ whenmj = lj = 0. When we execute
event e(M1, . . . ,Mn), that execution is recorded by a fact
event(e(M1, . . . ,Mn)).

After calling collectFacts(Q0), we complete the com-
puted sets FP (where P may be an input or output process)
by adding facts that come from processes above P :

FP ← FP ∪ FP ′ if P is immediately under P ′

We also add facts that we can deduce from facts
defined(M). Precisely, if defined(M) ∈ FP , and x[M1,
. . . ,Mm] is a subterm of M , we take into account facts that
are known to be true at the definitions of x by adding them
to FP as follows:

FP ← FP ∪ ⋂
(x[i1,...,im],P ′)∈D


σ(FP ′ ∪ (FFut

P ′ ∩ FP ))

if P is under P ′

σ(FP ′ ∪ FFut
P ′ ) otherwise


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collectFacts(Q) =

if Q = Q1 | Q2 then collectFacts(Q1); collectFacts(Q2)

if Q = !i≤nQ′ then collectFacts(Q′)

if Q = newChannel c;Q′ then collectFacts(Q′)

if Q = c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P then

FP = {defined(xj [̃i]) | j ≤ k};
FFut
P = collectFacts(P )

D = D ∪ {(xj [̃i], P ) | j ≤ k}

collectFacts(P ) =

if P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q then

collectFacts(Q); return ∅

if P = new x[̃i] : T ;P ′ then

FP ′ = {defined(x[̃i])};FFut
P ′ = collectFacts(P ′)

D = D ∪ {(x[̃i], P ′)}; return FP ′ ∪ FFut
P ′

if P = let x[̃i] : T = M in P ′ then

FP ′ = {defined(x[̃i]), x[̃i] = M}
FFut
P ′ = collectFacts(P ′)

D = D ∪ {(x[̃i], P ′)}; return FP ′ ∪ FFut
P ′

if P = find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P ′

then
for each j ≤ m,

FPj = {defined(uj1[ĩ′]), . . . , defined(ujmj [ĩ
′]),

defined(Mj1), . . . , defined(Mjlj ),Mj}
FFut
Pj = collectFacts(Pj);

D = D ∪ {(uj1[ĩ′], Pj), . . . , (ujmj [ĩ
′], Pj)}

FP ′ = {¬Mj | mj = lj = 0};
FFut
P ′ = collectFacts(P ′)

return (FP ′ ∪ FFut
P ′ ) ∩

m⋂
j=1

(FPj ∪ FFut
Pj )

if P = event e(M1, . . . ,Mn);P ′ then

FP ′ = {event(e(M1, . . . ,Mn))}
collectFacts(P ′)

Figure 2. The function collectFacts

where σ = {M1/i1, . . . ,Mm/im}. Indeed, if
defined(M) ∈ FP , and x[M1, . . . ,Mm] is a subterm of M ,
then x[M1, . . . ,Mm] is defined at P , so some definition of
x[M1, . . . ,Mm], just above the process P ′, must have been
executed before reaching P , so the facts that hold at P ′ also
hold at P , with a suitable substitution of indices: we have
σFP ′ , that is, FP ′{M1/i1, . . . ,Mm/im}. Moreover, if the
occurrence P is not syntactically under the occurrence P ′,
then the code of P ′ must have been executed until the next
output before executing some other code and reaching P ,
so in fact σ(FP ′ ∪ FFut

P ′ ) hold. If P is syntactically under
P ′, it is possible that the code of P ′ has been executed until
reaching P instead of until reaching the next output, so we
have only σ(FP ′∪(FFut

P ′ ∩FP )). If there are several defini-
tions of x, we do not know which one has been executed, so
we only add to FP the facts that hold in all cases, by taking
the intersection on all definitions of x.

This operation may add new defined facts to FP , so it is
executed until a fixpoint is reached, except that, in order to
avoid infinite loops, we do not execute this step for defini-
tions defined(M) in which M contains nested occurrences
of the same symbol (such as x[. . . x[. . .] . . .]).

We formally define the semantics of facts as follows:
E, σ, E ` F when the fact F holds in the environments
E and σ for the sequence of events E .

E, σ, E `M if and only if E, σ,M ⇓ true
E, σ, E ` defined(M) if and only if

E, σ,M ⇓ a for some a
E, σ, E ` event(e(M1, . . . ,Mm)) if and only if

there exist a1, . . . , am such that for all j ≤ m,
E, σ,Mj ⇓ aj and e(a1, . . . , am) ∈ E

We extend this definition to formulae built from facts by
conjunctions and disjunctions:

E, ρ, E ` φ1 ∧ φ2 if and only if
E, ρ, E ` φ1 and E, ρ, E ` φ2

E, ρ, E ` φ1 ∨ φ2 if and only if
E, ρ, E ` φ1 or E, ρ, E ` φ2

We also extend it naturally to sets of facts and formulae:
E, σ, E ` F if and only if for all F ∈ F , E, σ, E ` F .

The following proposition expresses the correctness of
the collection of true facts. A detailed proof of this result
for the full algorithm used in the implementation, but for the
version without events, can be found in [20]. The extension
to events is straightforward.

Proposition 7 If initConfig(C[Q0])
E−→p,T E, (σ, P ),Q,

C, then E, σ, E ` FP .

B.3. Equational Prover

We use an algorithm inspired by the Knuth-Bendix com-
pletion algorithm [41], with differences detailed below.
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The prover manipulates pairs F ,R where F is a set of
facts (M , defined(M), or event(e(M1, . . . ,Mn))) and R
is a set of rewrite rules M1 → M2. We say that M re-
duces into M ′ by M1 → M2 when M = C[M1] and
M ′ = C[M2] for some term context C. (That is, all vari-
ables in rewrite rules of R are considered as constants.)
The prover starts with a certain set of facts F and R = ∅.
Then the prover transforms the pairs (F ,R) by the follow-
ing rules (the rule F,R

F ′,R′ means that F ,R is transformed
into F ′,R′):

F ∪ {F},R
F ∪ {F ′},R

if F reduces into F ′ by a rule of
R or a user-defined rewrite rule (8)

F ∪ {M1 ∧M2},R
F ∪ {M1,M2},R

(9)

F ∪ {x[M1, . . . ,Mm] = x[M ′1, . . . ,M
′
m]},R

F ∪ {M1 = M ′1, . . . ,Mm = M ′m},R
when x is defined only by restrictions
new x : T and T is a large type

(10)

F ∪ {M = M ′},R
F ,R∪ {M →M ′}

if M > M ′ (11)

F ,R∪ {M1 →M2}
F ∪ {M1 = M ′2},R

if M2 reduces into M ′2 by
a rule ofR or a
user-defined rewrite rule

(12)

F ,R∪ {M1 →M2}
F ∪ {M ′1 = M2},R

if M1 reduces into M ′1 by
a rule ofR (13)

We also use the symmetric of Rule (11) obtained by swap-
ping the two sides of the equality.

Rule (8) simplifies facts using rewrite rules. Rule (9)
decomposes conjunctions of facts. Rule (10) exploits the
elimination of collisions between random values. It takes
into account that, when x is defined by a restriction of a
large type, two different cells of x have a negligible prob-
ability of containing the same value. So when two cells of
x contain the same value, we can conclude up to negligible
probability that they are the same cell.

Rule (11) is applied only when Rules (8) to (10) can-
not be applied. Rule (11) transforms equations into rewrite
rules by orienting them. We say that M > M ′ when ei-
ther M is the form x[M̃ ], x does not occur in M ′, and x is
not defined only by restrictions, or M = x[M1, . . . ,Mm],
M ′ = x[M ′1, . . . ,M

′
m], and for all j ≤ m, Mj > M ′j . Intu-

itively, our goal is to replace M with M ′ when M ′ defines
the content of the variable M . (Notice that this is not an or-
dering; the Knuth-Bendix algorithm normally uses a reduc-
tion ordering to orient equations. However, we tried some
reduction orderings, namely the lexicographic path ordering
and the Knuth-Bendix ordering, and obtained disappointing
results: the prover fails to prove many equalities because
too many equations are left unoriented. The simple heuristic
given above succeeds more often, at the expense of a greater

risk of non-termination, but that does not cause problems in
practice on our examples. We believe that this comes from
the particular structure of equations, which come from let
definitions and from conditions of find or if, and tend to
define variables from other variables without creating de-
pendency cycles.)

Rules (12) and (13) are systematically applied to sim-
plify all rewrite rules ofR after a new rewrite rule has been
added by Rule (11). Since all terms in rewrite rules ofR are
considered as constants, Rule (13) in fact includes the de-
duction of equations from critical pairs done by the standard
Knuth-Bendix completion algorithm.

We say that F yields a contradiction when the prover
starting from (F , ∅) derives (F ′,R′) with false ∈ F ′.

We write E, ρ, E ` F ,R when E, ρ, E ` F and for
all M1 → M2 ∈ R, E, ρ, E ` M1 = M2. A variant of
the following result is proved in [20]. This result shows
the soundness of the transformation of F ,R into F ′,R′ for
each rule F,R

F ′,R′ of the equational prover.

Proposition 8 If F,R
F ′,R′ , then Pr[∃(E, σ, P,Q, C, ρ, E),

initConfig(C[Q0])
E−→ E, (σ, P ),Q, C ∧ E, ρ, E ` F ,R ∧

¬E, ρ, E ` F ′,R′] is negligible.

We denote by Pr[C[Q0]  F ] the probability
that C[Q0] reduces into a configuration in which F
holds: Pr[C[Q0]  F ] = Pr[∃(E, σ, P,Q, C, ρ, E),

initConfig(C[Q0])
E−→ E, (σ, P ),Q, C ∧ E, ρ, E ` F ].

Proposition 9 If F yields a contradiction, then Pr[C[Q0]
 F ] is negligible.

Proof This is an easy consequence of Proposition 8.
Since F yields a contradiction, the prover transforms
(F ,R) = (F , ∅) into (F ′,R′) that contains false, so
E, ρ, E ` F implies E, ρ, E ` F ,R, and ¬E, ρ, E `
F ′,R′. By Proposition 8 applied as many times
as there are transformation steps between (F ,R) and
(F ′,R′), Pr[∃(E, σ, P,Q, C, ρ, E), initConfig(C[Q0])

E−→
E, (σ, P ),Q, C ∧ E, ρ, E ` F ,R ∧ ¬E, ρ, E ` F ′,R′] is
negligible, which implies that Pr[C[Q0]  F ] is negligi-
ble. �

C. Proofs

C.1. Non-injective Correspondences

The following lemma shows the correctness of F |=⇒θ φ,
that is, if F |=⇒θ φ, then F implies θφ with overwhelming
probability.

Lemma 3 If F |=⇒θ φ, then Pr[C[Q0]  F ∪ {¬θφ}] is
negligible.

19



Proof The proof proceeds by induction on φ.

• Case φ = M . If F ∪ {¬θM} yields a contradiction,
then, by Proposition 9, Pr[C[Q0]  F ∪ {¬θφ}] is
negligible.

• Case φ = event(e(M1, . . . ,Mm)). There are terms
M ′1, . . . ,M

′
m such that event(e(M ′1, . . . ,M

′
m)) ∈ F

andF∪{
∨m
j=1 θMj 6= M ′j} yields a contradiction. By

Proposition 9, Pr[C[Q0] F ∪ {
∨m
j=1 θMj 6= M ′j}]

is negligible. Moreover, if E, ρ, E ` F ∪ {¬θφ}, then
E, ρ, E ` event(e(M ′1, . . . ,M

′
m)) and ¬E, ρ, E `

event(e(θM1, . . . , θMm)), so there exists j ≤ m
such that E, ρ, E ` θMj 6= M ′j , hence E, ρ, E `
F ∪ {

∨m
j=1 θMj 6= M ′j}. Therefore, Pr[C[Q0]  

F∪{¬θφ}] ≤ Pr[C[Q0] F∪{
∨m
j=1 θMj 6= M ′j}].

Hence, Pr[C[Q0] F ∪ {¬θφ}] is negligible.

• Case φ = φ1 ∧ φ2. We have F |=⇒θ φ1 and F |=⇒θ φ2.
By induction hypothesis, Pr[C[Q0]  F ∪ {¬θφ1}]
and Pr[C[Q0]  F ∪ {¬θφ2}] are negligible. If
E, ρ, E ` F ∪ {¬θ(φ1 ∧ φ2)}, then either E, ρ, E `
F∪{¬θφ1} orE, ρ, E ` F∪{¬θφ2}, so Pr[C[Q0] 
F ∪ {¬θ(φ1 ∧ φ2)}] ≤ Pr[C[Q0] F ∪ {¬θφ1}] +
Pr[C[Q0]  F ∪ {¬θφ2}], so Pr[C[Q0]  F ∪
{¬θ(φ1 ∧ φ2)}] is negligible.

• Case φ = φ1 ∨ φ2. We have either F |=⇒θ φ1 or
F |=⇒θ φ2. In the first case, by induction hypothesis,
Pr[C[Q0]  F ∪ {¬θφ1}] is negligible. If E, ρ, E `
F ∪ {¬θ(φ1 ∨ φ2)}, then E, ρ, E ` F ∪ {¬θφ1}, so
Pr[C[Q0] F∪{¬θ(φ1∨φ2)}] ≤ Pr[C[Q0] F∪
{¬θφ1}]. Therefore, Pr[C[Q0] F∪{¬θ(φ1∨φ2)}]
is negligible. The second case follows by symmetry. �

Proof of Proposition 1 By hypothesis, if P1 follows F1,
. . . , and Pm follows Fm, then there exists a substitution θ
equal to the identity on the variables of ψ and such that
FF1,P1

∪ . . .∪FFm,Pm |=⇒θ φ. We let θ(P1, . . . Pm) be such
a substitution and we define F(P1, . . . , Pm) = FF1,P1 ∪
. . . ∪ FFm,Pm ∪ {¬θφ} where θ = θ(P1, . . . , Pm).

Let C be an evaluation context acceptable for Q0 with
public variables V that does not contain events used by
ψ ⇒ φ. Below, we show that if initConfig(C[Q0])

E−→p,T
E, (σ, P ),Q, C and E 6` ψ ⇒ φ, then there exist P1 that
follows F1, . . . , Pm that follows Fm, and ρ′ such that
E, ρ′, E ` F(P1, . . . , Pm). Therefore,

Pr[C[Q0] : ¬(ψ ⇒ φ)]

≤ Pr

∃(E, σ, P,Q, C, E),

initConfig(C[Q0])
E−→ E, (σ, P ),Q, C ∧

E 6` ψ ⇒ φ



≤
∑

P1,...,Pm that

follow F1,...,Fm respectively

Pr

∃(E, σ, P,Q, C, ρ′, E),

initConfig(C[Q0])
E−→ E, (σ, P ),Q, C

∧ E, ρ′, E ` F(P1, . . . , Pm)



≤
∑

P1,...,Pm that follow F1,...,Fm respectively

Pr [C[Q0] F(P1, . . . , Pm)]

By Lemma 3, since FF1,P1 ∪ . . . ∪ FFm,Pm |=⇒θ φ for θ =
θ(P1, . . . , Pm), the probability Pr[C[Q0] FF1,P1

∪ . . .∪
FFm,Pm ∪{¬θφ}] = Pr[C[Q0] F(P1, . . . , Pm)] is neg-
ligible, so the sum is negligible since the number of pro-
cesses P1, . . . , Pm is independent of the security parameter.
Hence, Q0 satisfies the correspondence ψ ⇒ φ with public
variables V .

Assume that initConfig(C[Q0])
E−→p,T E, (σ, P ),Q, C

and for every P1 that follows F1, . . . , for every Pm
that follows Fm, for every ρ′, we have ¬E, ρ′, E `
F(P1, . . . , Pm). We show that E ` ψ ⇒ φ. This result
will conclude the proof.

Assume that ρ, E ` ψ, where ρ is defined on
var(ψ). For each event F = event(e(M1, . . . ,Mm′))
in ψ, we have ρ, E ` event(e(M1, . . . ,Mm′)), so for
all j ≤ m′, ρ,Mj ⇓ aj and e(a1, . . . , am′) ∈ E .
Since the only transition that produces a label e(a1,

. . . , am′) is (Event), the trace initConfig(Q0)
E−→p,T

E, (σ, P ),Q, C contains a transition of the form E′,

(σ′, event e(M ′1, . . . ,M
′
m′);P ′),Q′, C′

e(a1,...,am′ )−−−−−−−−→1,Ev

E′, (σ′, P ′),Q′, C′ with E′, σ′,M ′j ⇓ aj for all j ≤ m′.
By Proposition 5, event e(M ′1, . . . ,M

′
m′);P ′ is a subpro-

cess of C[Q0] or of start〈〉; 0. Since C does not con-
tain events used by ψ ⇒ φ, event e(M ′1, . . . ,M

′
m′);P ′

is a subprocess of Q0, so P ′ follows F . By Proposi-
tion 7, E′, σ′, E ′ ` FP ′ , where E ′ is the prefix of E un-
til and including the considered occurrence of the event
e(a1, . . . , am′). By Proposition 6, E is an extension of E′,
so E, σ′, E ` FP ′ . Let θ′ be the substitution that renames
replication indices at P ′ to fresh replication indices, such
that FF,P ′ = θ′FP ∪ {θ′M ′j = Mj | j ≤ m′}. Let σ′′

be such that σ′ = σ′′θ′. Then E, σ′′, E ` θ′FP ′ . For all
j ≤ m′, since E′, σ′,M ′j ⇓ aj , we have E, σ′′, θ′M ′j ⇓ aj .
We have ρ,Mj ⇓ aj . Hence E, σ′′ ⊕ ρ, E ` θ′M ′j = Mj ,
where σ′′ ⊕ ρ denotes the function that maps x to σ′′(x)
when x ∈ Dom(σ′′) and i to ρ(i) when i ∈ Dom(ρ). This
function is well defined, since Dom(σ′′) and Dom(ρ) are
disjoint. So E, σ′′ ⊕ ρ, E ` FF,P ′ .

Therefore, for each Fj in ψ, there exist σ′′j , ρ, and a pro-
cess Pj that follows Fj such that E, σ′′j ⊕ ρ, E ` FFj ,Pj .
Since the environments σ′′j and ρ have disjoint domains, we
can define an environment ρ′ = σ′′1 ⊕ . . . ⊕ σ′′m ⊕ ρ. Then
E, ρ′, E ` FF1,P1 ∪ . . . ∪ FFm,Pm .

Let θ = θ(P1, . . . , Pm). Since E, ρ′, E ` FF1,P1
∪

. . . ∪ FFm,Pm and ¬E, ρ′, E ` F(P1, . . . , Pm), we have
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E, ρ′, E ` θφ. We extend ρ to all x ∈ var(φ) \ var(ψ),
in such a way that E, ρ′, θ(x) ⇓ ρ(x). Moreover, if
x ∈ var(ψ), then ρ(x) = ρ(θ(x)) = ρ′(θ(x)) since
θx = x, so E, ρ′, θ(x) ⇓ ρ(x). So, for all x ∈ var(φ),
E, ρ′, θ(x) ⇓ ρ(x). Since E, ρ′, E ` θφ, we have ρ, E ` φ,
so E satisfies the correspondence ψ ⇒ φ. �

C.2. Injective Correspondences

We define formula(F |=⇒I,V,Cθ φ) as follows:

formula(F |=⇒I,V,⊥θ M) = θM

formula(F |=⇒I,V,⊥θ event(e(M0, . . . ,Mm))) =

θevent(e(M0, . . . ,Mm))

formula(F |=⇒I,V,Sθ inj-event(e(M0, . . . ,Mm))) =∨
event(e(M ′

0,...,M
′
m))∈F∧(F,M ′

0,I,V)∈S

(∧m
j=0 θMj = M ′j

)
formula(F |=⇒I,V,C1∧C2θ φ1 ∧ φ2) =

formula(F |=⇒I,V,C1θ φ1) ∧ formula(F |=⇒I,V,C2θ φ2)

formula(F |=⇒I,V,C1∨C2θ φ1 ∨ φ2) =

formula(F |=⇒I,V,C1θ φ1) ∨ formula(F |=⇒I,V,C2θ φ2)

where M0 is a fresh variable added as first argument of
events. The formula formula(F |=⇒I,V,Cθ φ) generalizes θφ
to the case of injective events.

The next lemma shows that, if F |=⇒I,V,Cθ φ, then F im-
plies formula(F |=⇒I,V,Cθ φ) with overwhelming probabil-
ity.

Lemma 4 If F |=⇒I,V,Cθ φ, then

Pr[C[Q0] F ∪ {¬formula(F |=⇒I,V,Cθ φ)}]

is negligible.

Proof The proof is similar to that of Lemma 3, and pro-
ceeds by induction on φ. The only new case is the one of
injective events.

• Case φ = inj-event(e(M0, . . . ,Mm)), C = S. There
are terms M ′0, . . . ,M

′
m such that event(e(M ′0, . . . ,

M ′m)) ∈ F , F ∪ {
∨m
j=0 θMj 6= M ′j} yields a con-

tradiction, and (F ,M ′0, I,V) ∈ S. By Proposition 9,
Pr[C[Q0]  F ∪ {

∨m
j=0 θMj 6= M ′j}] is negligible.

Moreover, ifE, ρ, E ` F∪{¬formula(F |=⇒I,V,Sθ φ)},
then E, ρ, E ` F and for all M ′0, . . . ,M

′
m such that

event(e(M ′0, . . . ,M
′
m)) ∈ F and (F ,M ′0, I,V) ∈ S,

in particular for the terms M ′0, . . . ,M
′
m above, we

have E, ρ, E `
∨m
j=0 θMj 6= M ′j , so E, ρ, E `

F ∪ {
∨m
j=0 θMj 6= M ′j}. Therefore, Pr[C[Q0]  

F ∪ {¬formula(F |=⇒I,V,Sθ φ)}] ≤ Pr[C[Q0]  F ∪
{
∨m
j=0 θMj 6= M ′j}]. Hence, Pr[C[Q0]  F ∪

{¬formula(F |=⇒I,V,Sθ φ)}] is negligible. �

Lemma 5 details the meaning of formula(F |=⇒I,V,Cθ φ).
Essentially, this formula implies θφ, so, if we store in ρ(x)
the value of θ(x) by E, ρ′, θ(x) ⇓ ρ(x), we have ρ, E `φτ

φ. Furthermore, for injective events, formula(F |=⇒I,V,Cθ φ)
guarantees that the quadruples (F ,M ′0, I,V) are correctly
collected in C.

Lemma 5 IfE, ρ′, E ` F , for all x ∈ var(φ),E, ρ′, θ(x) ⇓
ρ(x), and E, ρ′, E ` formula(F |=⇒I,V,Cθ φ), then there
exists φτ such that ρ, E `φτ φ and, if τ is a non-
bottom leaf of φτ and S the corresponding leaf of C,
then E, ρ′, E ` E(τ) = event(e(M ′0, . . . ,M

′
m)) for some

event(e(M ′0, . . . ,M
′
m)) ∈ F and (F ,M ′0, I,V) ∈ S.

Proof The proof proceeds by induction on φ.

• Case φ = M . We have formula(F |=⇒I,V,Cθ φ) = θM ,
soE, ρ′, E ` θM , so ρ,M ⇓ true, so ρ, E `⊥ M . The
result holds with φτ = ⊥.

• Case φ = event(e(M0, . . . ,Mm)). We have

formula(F |=⇒I,V,Cθ φ) = θevent(e(M0, . . . ,Mm))

so E, ρ′, E ` θevent(e(M0, . . . ,Mm)), so ρ, E `⊥
event(e(M0, . . . ,Mm)). The result holds with φτ =
⊥.

• Case φ = inj-event(e(M0, . . . ,Mm)). We have

formula(F |=⇒I,V,Sθ φ) =∨
event(e(M ′

0,...,M
′
m))∈F∧

(F,M ′
0,I,V)∈S

 m∧
j=0

θMj = M ′j



So there exist M ′0, . . . ,M
′
m such that event(e(M ′0,

. . . ,M ′m)) ∈ F , (F ,M ′0, I,V) ∈ S , and E, ρ′, E `∧m
j=0 θMj = M ′j . We have E, ρ′, E ` F , so

E, ρ′, E ` event(e(M ′0, . . . ,M
′
m)), so E, ρ′, E `

θevent(e(M0, . . . ,Mm)), so there exists τ such that
E(τ) = event(e(a0, . . . , am)) with for all j ≤ m,
E, ρ′, θMj ⇓ aj , so for all j ≤ m, E, ρ,Mj ⇓ aj , so
ρ, E `τ event(M0, . . . ,Mm)). Moreover, E, ρ′, E `
E(τ) = event(e(a0, . . . , am)) = θevent(e(M0, . . . ,
Mm)) = event(e(M ′0, . . . ,M

′
m)). As already noticed,

we have event(e(M ′0, . . . ,M
′
m)) ∈ F and (F ,M ′0, I,

V) ∈ S, so the result holds with φτ = τ .
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• Case φ = φ1 ∧ φ2. We have

E, ρ′, E ` formula(F |=⇒I,V,C1∧C2θ φ1 ∧ φ2)

so

E, ρ′, E ` formula(F |=⇒I,V,C1θ φ1) and

E, ρ′, E ` formula(F |=⇒I,V,C2θ φ2)

The induction hypothesis yields φτ1 and φτ2 , and the
result holds with φτ = φτ1 ∧ φτ2 .

• Case φ = φ1 ∨ φ2. We have

E, ρ′, E ` formula(F |=⇒I,V,C1∨C2θ φ1 ∨ φ2)

so

E, ρ′, E ` formula(F |=⇒I,V,C1θ φ1) or

E, ρ′, E ` formula(F |=⇒I,V,C2θ φ2)

In the first case, the induction hypothesis yields φτ1 ,
and the result holds with φτ = φτ1 ∨ φ⊥2 , where φ⊥2 is
the formula φ2 in which all terms and events have been
replaced with ⊥. The second case follows by symme-
try. �

The next lemma shows that, for events e used as injec-
tive events, two distinct executions of event e have distinct
replication indices. This is a consequence of the require-
ment that two occurrences of the same event e be in differ-
ent branches of find or if in Q0.

When the term M contains no array accesses, we define
σ(M) by E, σ,M ⇓ σ(M) for any environment E, since
the evaluation of M does not depend on E.

Lemma 6 Assume that the event e is used as injective event
in the correspondence ψ ⇒ φ. Let C be an evaluation
context acceptable for Q0 with public variables V that
does not contain events used by ψ ⇒ φ. If the trace
initConfig(C[Q0])

E−→p,T C contains two distinct reduc-
tions

E, (σ, event e(M0, . . . ,Mm);P ),Q, C
e(a0,...,am)−−−−−−−→1,Ev E, (σ, P ),Q, C

and E′, (σ′, event e(M ′0, . . . ,M
′
m);P ′),Q′, C′

e(a′0,...,a
′
m)−−−−−−−→1,Ev E

′, (σ′, P ′),Q′, C′

then a0 6= a′0.

Proof Let us fix the event symbol e. We define
Events(initConfig(C[Q0])

E−→p,T C) as the multiset that
contains a0 for each reduction E, (σ, event e(M0, . . . ,

Mm);P ),Q, C e(a0,...,am)−−−−−−−→1,Ev E, (σ, P ),Q, C in the trace

initConfig(C[Q0])
E−→p,T C. Multisets S are represented

by functions that map each element x of S to the num-
ber of occurrences of x in S. When S1 and S2 are mul-
tisets, multiset union S1 ] S2 is defined by (S1 ] S2)(x) =
S1(x) + S2(x), and the multiset max(S1, S2) is defined
by max(S1, S2)(x) = max(S1(x), S2(x)). We define the
multisets Events(σ, P ) and Events(σ,Q) by

Events(σ, 0) = ∅
Events(σ,Q1 | Q2) = Events(σ,Q1) ] Events(σ,Q2)

Events(σ, !i≤nQ) =
⊎

a∈[1,Iη(n)]

Events(σ[i 7→ a], Q)

Events(σ, newChannel c;Q) = Events(σ,Q)

Events(σ, c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P ) =

Events(σ, P )

Events(σ, c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q) =

Events(σ,Q)

Events(σ, new x[̃i] : T ;P ) = Events(σ, P )

Events(σ, let x[̃i] : T = M in P ) = Events(σ, P )

Events(σ, event e′(M0, . . . ,Mm);P ) =

Events(σ, P ) if e′ 6= e

Events(σ, event e(M0, . . . ,Mm);P ) =

{σ(M0)} ] Events(σ, P )

Events(σ, find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P ) =

max(
m

max
j=1

Events(σ, Pj),Events(σ, P ))

We define the multiset Events(E, (σ, P ),Q, C) =
Events(σ, P ) ]

⊎
(σ′,Q′)∈Q Events(σ′, Q′). This multiset

contains all bitstrings a0 for events e(. . .) that may be exe-
cuted in a trace that begins with E, (σ, P ),Q, C.

The multiset Events(initConfig(C[Q0])) contains no
duplicates, since two occurrences of the same event
e must be in different branches of find or if in Q0

and C does not contain event e. Moreover, for
the empty trace ε, Events(ε) = ∅, so Events(ε) ]
Events(initConfig(C[Q0])) contains no duplicates.

We show that, if initConfig(C[Q0])
E−→p,T C [e]−→p′,t′

C′, then Events(initConfig(C[Q0])
E−→p,T

[e]−→p′,t′ C′) ]
Events(C′) ⊆ Events(initConfig(C[Q0])

E−→p,T C) ]
Events(C).

Thus, if initConfig(C[Q0])
E−→p,T C, then

Events(initConfig(C[Q0])
E−→p,T C) ] Events(C)

⊆ Events(ε) ] Events(initConfig(C[Q0]))
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These multisets contain no duplicates, so in particular,

Events(initConfig(C[Q0])
E−→p,T C)

contains no duplicates. This property implies the desired
result. �

Proof of Proposition 2 By hypothesis, if P1 follows
F1, . . . , and Pm follows Fm, then there exists a substi-
tution θ equal to the identity on the variables of ψ and
such that F |=⇒I,V,Cθ φ where F = FF1,P1 ∪ . . . ∪ FFm,Pm ,
I = {j 7→ IPj | Fj is an injective event}, and V =
var(IP1

) ∪ . . . ∪ var(IPm) ∪ var(ψ). We let θ(P1, . . . Pm)
be such a substitution and we define F(P1, . . . , Pm) =

F ∪ {¬formula(F |=⇒I,V,Cθ φ)} where θ = θ(P1, . . . , Pm).
Let C be an evaluation context acceptable for Q0 with

public variables V that does not contain events used by
ψ ⇒ φ. Next, we show that if initConfig(C[Q0])

E−→p,T
E, (σ, P ),Q, C and E 6` ψ ⇒ φ, then

• there exist P1 that follows F1, . . . , Pm that follows Fm,
and ρ′ such that E, ρ′, E ` F(P1, . . . , Pm),

• or there exist a non-bottom leaf S of C, (F ,M0, I,V)
and (F ′,M ′0, I ′,V ′) in S, and ρ′ such that E, ρ′, E `
F ∪ F ′ ∪ {

∨
j∈Dom(I) I(j) 6= θ′′I ′(j)} ∪ {θ′′M ′0 =

M0}, where the substitution θ′′ is a renaming of the
variables in V ′ to distinct fresh variables.

Therefore,

Pr[C[Q0] : ¬(ψ ⇒ φ)]

≤ Pr

∃(E, σ, P,Q, C, E),

initConfig(C[Q0])
E−→ E, (σ, P ),Q, C ∧

E 6` ψ ⇒ φ


≤

∑
P1,...,Pm that

follow F1,...,Fm respectively

Pr

∃(E, σ, P,Q, C, ρ′, E),

initConfig(C[Q0])
E−→ E, (σ, P ),Q, C

∧ E, ρ′, E ` F(P1, . . . , Pm)



+
∑

S leaf of C,S6=⊥,

(F,M0,I,V)∈S,

(F ′,M ′
0,I

′,V′)∈S

Pr


∃(E, σ, P,Q, C, ρ′, E),

initConfig(C[Q0])
E−→ E, (σ, P ),Q, C

∧ E, ρ′, E ` F ∪ F ′ ∪ {M0 = θ′′M ′0}
∪ {
∨
j∈Dom(I) I(j) 6= θ′′I ′(j)}



≤
∑

P1,...,Pm that follow F1,...,Fm respectively

Pr [C[Q0] F(P1, . . . , Pm)]

+
∑

S leaf of C,S6=⊥,

(F,M0,I,V)∈S,(F ′,M ′
0,I

′,V′)∈S

Pr

[
C[Q0] F ∪ F ′ ∪ {M0 = θ′′M ′0}

∪ {
∨
j∈Dom(I) I(j) 6= θ′′I ′(j)}

]

By Lemma 4, since F |=⇒I,V,Cθ φ, the probability Pr[C[Q0]

 F ∪ {¬formula(F |=⇒I,V,Cθ φ)}] is negligible, that is,
Pr [C[Q0] F(P1, . . . , Pm)] is negligible. Since ` C,
for all non-bottom leaves S of C, for all (F ,M0, I,V),
(F ′,M ′0, I ′,V ′) in S, F ∪ θ′′F ′ ∪ {

∨
j∈Dom(I) I(j) 6=

θ′′I ′(j),M0 = θ′′M ′0} yields a contradiction. By Propo-
sition 9, Pr[C[Q0]  F ∪ F ′ ∪ {M0 = θ′′M ′0} ∪
{
∨
j∈Dom(I) I(j) 6= θ′′I ′(j)}] is negligible. Hence the

sum is negligible, so Q0 satisfies the correspondence ψ ⇒
φ with public variables V .

Assume that

• initConfig(C[Q0])
E−→p,T E, (σ, P ),Q, C,

• for every P1 that follows F1, . . . , for every Pm that
follows Fm, for every ρ′, we have ¬E, ρ′, E ` F(P1,
. . . , Pm),

• and for every non-bottom leaf S of C, for every
(F ,M0, I,V) and (F ′,M ′0, I ′,V ′) in S, for every ρ′,
we have ¬E, ρ′, E ` F ∪ F ′ ∪ {

∨
j∈Dom(I) I(j) 6=

θ′′I ′(j)} ∪ {M0 = θ′′M ′0}, where the substitution θ′′

is a renaming of the variables in V ′ to distinct fresh
variables.

We show that E ` ψ ⇒ φ.
Assume that ρ, E `ψτ ψ, where ρ is defined on var(ψ),

ψ = F1 ∧ . . .∧Fm, ψτ = τ1 ∧ . . .∧ τm, and for all j ≤ m,
τj is either a step or⊥. For each event Fj = event(ej(Mj0,
. . . ,Mjmj )) or Fj = inj-event(ej(Mj0, . . . ,Mjmj )) in
ψ, we have ρ, E `τj event(ej(Mj0, . . . ,Mjmj )), so
ρ,Mjk ⇓ ajk for all k ≤ mj and ej(aj0, . . . , ajmj ) ∈ E .
Moreover, if Fj = inj-event(ej(Mj0, . . . ,Mjmj )), then
ej(aj0, . . . , ajmj ) = E(τj). Since the only transition that
produces a label ej(aj0, . . . , ajmj ) is (Event), the trace

initConfig(Q0)
E−→p,T E, (σ, P ),Q, C contains a transi-

tion of the form Ej , (σj , event ej(M
′
j0, . . . ,M

′
jmj

);Pj),

Qj , Cj
ej(aj0,...,ajmj )−−−−−−−−−−→1,Ev Ej , (σj , Pj),Qj , Cj with

Ej , σj ,M
′
jk ⇓ ajk for all k ≤ mj . By Proposition 5,

event ej(M
′
j0, . . . ,M

′
jmj

);Pj is a subprocess of C[Q0] or
of start〈〉; 0. Since C does not contain events used by ψ ⇒
φ, event ej(M

′
j0, . . . ,M

′
jmj

);Pj is a subprocess of Q0, so
Pj follows Fj . By Proposition 7, Ej , σj , Ej ` FPj , where
Ej is the prefix of E until and including the considered oc-
currence of the event ej(aj0, . . . , ajmj ). By Proposition 6,
E is an extension of Ej , so E, σj , E ` FPj . Let θ′j be the
substitution that renames replication indices at Pj to fresh
replication indices, such that FFj ,Pj = θ′jFPj ∪ {θ′jM ′jk =
Mjk | k ≤ mj} and IPj = θ′jM

′
j0 since the tuple of replica-

tion indices at Pj is added as first argument M ′j0 of events
in Q0. Let σ′j be such that σj = σ′jθ

′
j . Then E, σ′j , E `

θjFPj . For all k ≤ mj , since Ej , σj ,M ′jk ⇓ ajk, we
have E, σ′j , θ

′
jM
′
jk ⇓ ajk. We have ρ,Mjk ⇓ ajk. Hence
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E, σ′j ⊕ ρ, E ` θ′jM ′jk = Mjk, where σ′j ⊕ ρ denotes the
function that maps x to σ′j(x) when x ∈ Dom(σ′j) and i to
ρ(i) when i ∈ Dom(ρ). So E, σ′j ⊕ ρ, E ` FFj ,Pj .

Therefore, for each j ≤ m, there exists a process Pj that
follows Fj such that

• for all j ≤ m, there is a reduction

Ej , (σj , event ej(M
′
j0, . . . ,M

′
jmj );Pj),Qj , Cj

ej(aj0,...,ajmj )−−−−−−−−−−→1,Ev Ej , (σj , Pj),Qj , Cj

in the trace initConfig(C[Q0])
E−→p,T E, (σ, P ),Q, C,

and if Fj = inj-event(ej(. . .)), then τj 6= ⊥ and
E(τj) = ej(aj0, . . . , ajmj );

• letting ρ′ = σ′1 ⊕ . . . ⊕ σ′m ⊕ ρ, we have Dom(ρ′) =
var(IP1

)∪. . .∪var(IPm)∪var(ψ),E, ρ′, E ` FF1,P1
∪

. . .∪FFm,Pm and for all j ≤ m, ρ′(IPj ) = σ′j(IPj ) =
σj(M

′
j0) = aj0.

Let θ = θ(P1, . . . , Pm). Let F = FF1,P1
∪ . . . ∪ FFm,Pm ,

I = {j 7→ IPj | Fj is an injective event}, and V =
var(IP1) ∪ . . . ∪ var(IPm) ∪ var(ψ). Since E, ρ′, E `
FF1,P1

∪. . .∪FFm,Pm and ¬E, ρ′, E ` F(P1, . . . , Pm), we
have E, ρ′, E ` formula(F |=⇒I,V,Cθ φ). We extend ρ to all
x ∈ var(φ) \ var(ψ) in such a way that E, ρ′, θ(x) ⇓ ρ(x).
Then, for all x ∈ var(φ) ∪ var(ψ), E, ρ′, θ(x) ⇓ ρ(x). By
Lemma 5, there exists φτ such that ρ, E `φτ φ and, if τ is
a non-bottom leaf of φτ and S the corresponding leaf of C,
then E, ρ′, E ` E(τ) = event(e(M ′′0 , . . . ,M

′′
m)) for some

event(e(M ′′0 , . . . ,M
′′
m)) ∈ F and (F ,M ′′0 , I,V) ∈ S.

We define F as the function that maps ψτ to φτ build as
above. It suffices to show that F is component-wise injec-
tive. Let f be a projection of F to a leaf of φ, and S the
corresponding leaf of C. Assume that f(ψτ1 ) = f(ψτ2 ) =
τ 6= ⊥. Let us show that ψτ1 = ψτ2 .

Assume that ψτ1 = τ11 ∧ . . .∧ τ1m and ψτ2 = τ21 ∧ . . .∧
τ2m. By construction of F, we have

• for all j ≤ m, there is a reduction

E1j , (σ1j , event ej(M
′
1j0, . . . ,M

′
1jmj );P1j),Q1j , C1j

ej(a1j0,...,a1jmj )−−−−−−−−−−−→1,Ev E1j , (σ1j , P1j),Q1j , C1j

in the trace initConfig(C[Q0])
E−→p,T E, (σ, P ),Q, C,

and if Fj = inj-event(ej(. . .)), then τ1j 6= ⊥
and E(τ1j) = ej(a1j0, . . . , a1jmj ); E, ρ′1, E `
F1, for all j ≤ m, ρ′1(IP1j

) = a1j0, I1 =
{j 7→ IP1j

| Fj is an injective event}, E, ρ′1, E `
E(τ) = event(e(M ′′1 , . . .)), (F1,M

′′
1 , I1,V1) ∈ S ,

and Dom(ρ′1) = V1;

• for all j ≤ m, there is a reduction

E2j , (σ2j , event ej(M
′
2j0, . . . ,M

′
2jmj );P2j),Q2j , C2j

ej(a2j0,...,a2jmj )−−−−−−−−−−−→1,Ev E2j , (σ2j , P2j),Q2j , C2j

in the trace initConfig(C[Q0])
E−→p,T E, (σ, P ),Q, C,

and if Fj = inj-event(ej(. . .)), then τ2j 6= ⊥
and E(τ2j) = ej(a2j0, . . . , a2jmj ); E, ρ′2, E `
F2, for all j ≤ m, ρ′2(IP2j

) = a2j0, I2 =
{j 7→ IP2j

| Fj is an injective event}, E, ρ′2, E `
E(τ) = event(e(M ′′2 , . . .)), (F2,M

′′
2 , I2,V2) ∈ S,

and Dom(ρ′2) = V2.

Let θ′′ be a renaming that maps variables of V2 to distinct
fresh variables. Let ρ′ be defined by ρ′(x) = ρ′1(x) if x ∈
V1 and ρ′(x) = ρ′2(θ′′

−1
(x)) if x ∈ θ′′(V2).

Then E, ρ′, E ` F1, E, ρ′, E ` θ′′F2, E, ρ′, E `
event(e(M ′′1 , . . .)) = E(τ) = θ′′event(e(M ′′2 , . . .)), so
E, ρ′, E ` M ′′1 = θ′′M ′′2 . Hence by hypothesis, E, ρ′, E `∧
j∈Dom(I1) I1(j) = θ′′I2(j), so for all j ∈ Dom(I1),

ρ′(I1(j)) = ρ′(θ′′I2(j)), that is, ρ′1(IP1j
) = ρ′2(IP2j

), so
a1j0 = a2j0. By Lemma 6, for all j ∈ Dom(I1), that is,
for all j such that Fj is an injective event, there is a single
reduction in the trace with a label of the form ej(a1j0, . . .),
so τ1j = τ2j . Furthermore, for all j such that Fj is a non-
injective event, τ1j = τ2j = ⊥. So ψτ1 = ψτ2 .

Hence F is component-wise injective, so E ` ψ ⇒ φ.
This concludes the proof. �

C.3. Authenticated Key Exchange

Proof of Proposition 4 We first show that Q0 is a secure
mutual authentication protocol. The first condition of Def-
inition 7 holds by hypothesis, and it implies the first condi-
tion of Definition 6. The last two conditions of Definition 6
come from (5) and (6), as in Proposition 3.

Next, we show the second condition of Definition 7. We
define a process Q1 obtained from Q0 by adding

• event partA(Y, sid′(x1, . . . , xr−1));
event fullA(Y, kA, sid(x1, . . . , xr))

just before cAr[iA]〈xr, acceptA(Y )〉,

• event partB(X, sid′(y1, . . . , yr−1))

just before cBr−1[iB ]〈yr−1〉, and

• event fullB(X, kB , sid(y1, . . . , yr))

just before cBr+1[iB ]〈acceptB(X)〉.

Let Q2 be the process obtained from Q′0 by deleting events.
We define

Qk′A = !i≤n
′
c(uS : [1, n]); if defined(k′A[uS ]) then

c〈k′A[uS ]〉
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Q′k′A
= !i≤n

′
c(uS : [1, n]); if defined(k′A[uS ]) then

find u′ ≤ n′ suchthat defined(y[u′], uS [u′]) ∧
uS [u′] = uS then c〈y[u′]〉 else new y : T ; c〈y〉

Since Q′0 preserves the secrecy of k′A, we have Q2 | Qk′A ≈
Q2 | Q′k′A .

Below, we define a process QST that simulates the test
queries of QT by calling the process Q′0 | Qk′A and the test
queries of Q′T by calling Q′0 | Q′k′A , so that

Q1 | QT ≈ newChannel c̃′; ((Q′0 | Qk′A){c̃′/c̃} | QST )

Q1 | Q′T ≈ newChannel c̃′; ((Q′0 | Q′k′A){c̃′/c̃} | QST )

where c̃ = (cA0, . . . , cAr, cAK , cB1, . . . , cBr, cBK , c) and
c̃′ consists of fresh names such that c̃′ = (c′A0, . . . , c

′
Ar,

c′AK , c
′
B1, . . . , c

′
Br, c

′
BK , c

′). By deleting events, we have

Q0 | QT ≈ newChannel c̃′; ((Q2 | Qk′A){c̃′/c̃} | QST )

Q0 | Q′T ≈ newChannel c̃′; ((Q2 | Q′k′A){c̃′/c̃} | QST )

Since Q2 | Qk′A ≈ Q2 | Q′k′A , we have by renaming

(Q2 | Qk′A){c̃′/c̃} ≈ (Q2 | Q′k′A){c̃′/c̃}. Moreover,
QST does not use the variables of Q2, Qk′A , Q

′
k′A

, so by

Lemma 2, Property 2, newChannel c̃′; ((Q2 | Qk′A){c̃′/c̃} |
QST ) ≈ newChannel c̃′; ((Q2 | Q′k′A){c̃′/c̃} | QST ).

Then Q0 | QT ≈ newChannel c̃′; ((Q2 | Qk′A){c̃′/c̃} |
QST ) ≈ newChannel c̃′; ((Q2 | Q′k′A){c̃′/c̃} | QST ) ≈
Q0 | Q′T , so by transitivity Q0 | QT ≈ Q0 | Q′T , which
proves the desired result.

We now define the process QST ; we explain this def-
inition below. We define x̃[M ] as an abbreviation for
x1[M ], . . . , xr[M ] and we define x̃′[M ], ỹ[M ], and ỹ′[M ]
similarly. We let QST = QSTA | QSTB | QRA | QRB
where

QSTA = !i≤nT testA[i](uA);

if defined(x′r+1[uA]) ∧ x′r+1[uA] 6= reject then

if x′r+1[uA] 6= acceptA(B) then

c′AK [uA]〈〉; c′AK [uA](k); testA[i]〈k〉
else

find u ≤ nT suchthat defined(uA[u], rA[u]) ∧

uA[u] = uA then testA[i]〈rA[u]〉 else

find u ≤ nT suchthat defined(uB [u], rB [u],

x̃′[uA], ỹ′[uB [u]]) ∧ sid(x̃′[uA]) = sid(ỹ′[uB [u]])

then testA[i]〈rB [u]〉 else

c′[i]〈uA〉; c′[i](rA); testA[i]〈rA〉

QSTB = !i≤nT testB [i](uB);

if defined(y′r+1[uB ]) ∧ y′r+1[uB ] 6= reject then

if y′r+1[uB ] 6= acceptB(A) then

c′BK [uB ]〈〉; c′BK [uB ](k); testB [i]〈k〉
else

find u ≤ nT suchthat defined(uB [u], rB [u]) ∧

uB [u] = uB then testB [i]〈rB [u]〉 else

find u ≤ nT suchthat defined(uA[u], rA[u],

x̃′[uA[u]], ỹ′[uB ]) ∧ sid(x̃′[uA[u]]) = sid(ỹ′[uB ])

then testB [i]〈rA[u]〉 else

find u′A ≤ n suchthat defined(x̃′[u′A], ỹ′[uB ],

x′r+1[u′A]) ∧ sid(x̃′[u′A]) = sid(ỹ′[uB ]) ∧
x′r+1[u′A] = acceptA(B) then

c′[i+ nT ]〈u′A〉; c′[i+ nT ](rB); testB [i]〈rB〉

QRA = !i≤ncA0[i](Y ′); c′A0[i]〈Y ′〉;

c′A1[i](x′1); cA1[i]〈x′1〉; cA2[i](x′2); c′A2[i]〈x′2〉;

. . . ; c′Ar[i](x
′
r, x
′
r+1); cAr[i]〈x′r, x′r+1〉

QRB = !i≤ncB1[i](y′1); c′B1[i]〈y′1〉;

c′B2[i](y′2); cB2[i]〈y′2〉; . . . ; cBr[i](y′r); c′Br[i]〈y
′
r〉;

c′Br+1[i](y′r+1); cBr+1[i]〈y′r+1〉

where Iη(n′) = 2× Iη(nT ) (n′ is the number of queries al-
lowed in Qk′A and Q′k′A ) and all variables in these processes
are fresh. (The variables Y ′, x′j , y

′
j play the same role as

Y, xj , yj in Q′0; they have been renamed to avoid confusion
with the variables of Q′0.) The processes QRA and QRB re-
lay the requests from channels cAj and cBj to channels c′Aj
and c′Bj . These relay processes are useful in order to store
the messages in x′1, . . . , x

′
r+1, y

′
1, . . . , y

′
r+1, to have access

to them without reading the variables of Q′0.
The processes QSTA and QSTB simulate the test

queries. They first check that the queried copy of QA or
QB has accepted (first test of QSTA and QSTB). Then, if
the queried session is not between A and B, they call Q′0
to return the session key. Otherwise, they call Qk′A to re-
turn the key of sessions between A and B, or Q′k′A to re-
turn a fresh random number for each session between A
and B. Before calling Qk′A or Q′k′A , they first check if
the same test query (or a test query to the partner) has al-
ready been called, and if it has, they return the previously
returned value. (These checks are not strictly necessary, be-
cause Q′k′A already checks if the same query has already
been called. However, they slightly simplify the proof by
making the structure ofQSTA andQSTB closer to the struc-
ture Q′TA and Q′TB .) After these checks, QSTA calls Qk′A
or Q′k′A directly (last line of QSTA) while QSTB first uses
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a find to find the copy of QA, partner of the considered
session and calls Qk′A or Q′k′A for that partner (last find of
QSTB).

To show an equivalence L ≈ R, we show that, after ex-
cluding a set of traces of negligible probability, each trace of
L can be simulated by a trace of R of the same probability,
and conversely.

For the equivalence

Q1 | QT ≈ newChannel c̃′; ((Q′0 | Qk′A){c̃′/c̃} | QST )

the proof is done by considering only the traces in which
the correspondences (5)–(7) hold. The other traces have
negligible probability since the correspondences (5)–(7)
are satisfied by Q′0 with public variables {k′A}, so by
Lemma 1, they are also satisfied by newChannel c̃′;
((Q′0 | Qk′A){c̃′/c̃} | QST ) and newChannel c̃′; ((Q′0 |
Q′k′A

){c̃′/c̃} | QST ). We establish the correspondence be-
tween traces by induction on the length of the trace:

• When Q1 | QT receives a message on channel cAj [iA]
with j < r − 1, Q1 stores the received message in
xj [iA], answers by returning the next message of the
protocol xj+1[iA] on cAj+1[iA]. Correspondingly, in
((Q′0 | Qk′A){c̃′/c̃} | QST ), QRA stores the received
message in x′j [iA] (or Y ′[iA] if j = 0), forwards it
on c′Aj [iA]; Q′0{c̃′/c̃} answers to it like Q1 except
that the next message xj+1[iA] is sent on c′Aj+1[iA];
QRA then stores this message in x′j+1[iA] and for-
wards it on cAj+1[iA]. When j = r − 1, the situa-
tion is similar, except that the returned message is a
pair xr[iA], acceptA(Y [iA]) or xr[iA], reject, stored
by QRA in x′r[iA], x′r+1[iA]. When j = r − 1
and the protocol accepts, both sides define kA[iA],
execute event fullA(Y [iA], kA[iA], sid(x̃[iA])), and
send xr[iA], acceptA(Y [iA]), so in the right-hand side
x′r+1[iA] = acceptA(Y [iA]). When furthermore
Y [iA] = B, Q′0 additionally defines k′A[iA] = kA[iA].
When j = r− 1 and the protocol rejects, kA[iA] is not
defined and both sides send xr[iA], reject, so in the
right-hand side x′r+1[iA] = reject.

So, kA[iA] is defined in the left-hand side if and only
if x′r+1[iA] is defined and different from reject in the
right-hand side, and in this case, Y [iA], x̃[iA], and
kA[iA] have the same value in both sides of the equiv-
alence and, in the right-hand side, Y ′[iA] = Y [iA],
x̃′[iA] = x̃[iA], k′A[iA] = kA[iA] if Y [iA] = B,
k′A[iA] is not defined if Y [iA] 6= B, and x′r+1[iA] =
acceptA(Y [iA]).

• Similarly, the messages on cBj [iB ] are answered in the
same way by both sides of the equivalence, thanks to
the forwarding by QRB in the right-hand side.

So, kB [iB ] is defined in the left-hand side if and only
if y′r+1[iB ] is defined and different from reject in the
right-hand side, and in this case, X[iB ], ỹ[iB ], and
kB [iB ] have the same value in both sides of the equiv-
alence and, in the right-hand side, X ′[iB ] = X[iB ],
ỹ′[iB ] = ỹ[iB ], and y′r+1[iB ] = acceptB(X[iB ]).

• WhenQ1 | QT receives a message testA[i](uA),QTA
returns kA[uA] if it is defined. Correspondingly, in
the right-hand side, QSTA first tests if x′r+1[uA] is de-
fined and different from reject, which is equivalent to
kA[uA] defined, as mentioned above.

If x′r+1[uA] 6= acceptA(B), then Y [uA] 6= B. In
this case, QSTA sends an empty message on c′AK [uA].
Q′0 receives it, and sends kA[uA] on c′AK [uA]. QSTA
then receives this message, stores it in k, and sends
k = kA[uA] on testA[i], as in the left-hand side.

Otherwise, x′r+1[uA] = acceptA(B) and Y [uA] = B.
Then QSTA checks if the same test query has been
asked before (test query number u such that uA[u] and
rA[u] are defined, and uA[u] = uA). Below, we show
that, when rA[i] is defined, kA[uA[i]] and Y [uA[i]] are
defined, rA[i] = kA[uA[i]], and Y [uA[i]] = B. So
rA[u] = kA[uA[u]] = kA[uA], and kA[uA] is sent on
testA[i], as in the left-hand side.

Next, QSTA checks if a test query has been asked
to the partner of QuAA (test query number u such
that uB [u], rB [u], x̃′[uA], and ỹ′[uB [u]] are defined
and sid(x̃′[uA]) = sid(ỹ′[uB [u]])). Below, we show
that, when rB [i] is defined, kB [uB [i]] and X[uB [i]]
are defined, rB [i] = kB [uB [i]], and X[uB [i]] =
A. So rB [u] = kB [uB [u]]. Since kB [uB [u]]
and x′r[uA] are defined, the events fullB(X[uB [u]],
kB [uB [u]], sid(ỹ[uB [u]])) and fullA(Y [uA], kA[uA],
sid(x̃[uA])) have been executed. Since sid(x̃[uA]) =

sid(x̃′[uA]) = sid(ỹ′[uB [u]]) = sid(ỹ[uB [u]]),
X[uB [u]] = A, and Y [uA] = B, these events
are fullB(A, kB [uB [u]], sid(x̃[uA])) and fullA(B,
kA[uA], sid(x̃[uA])). So by the correspondence (7),
kB [uB [u]] = kA[uA], hence rB [u] = kB [uB [u]] =
kA[uA] is sent on testA[i], as in the left-hand side.

Finally, if both finds fail, then QSTA sends uA on
c′[i]. Qk′A{c̃

′/c̃} receives this message and replies
by sending k′A[uA] = kA[uA] on c′[i]. QSTA stores
the reply in rA, so rA = kA[uA], and sends kA[uA]
on testA[i], as in the left-hand side. Moreover, we
have Y [uA] = B so, spelling out all array indices,
rA[i] = kA[uA[i]] and Y [uA[i]] = B.

• When Q1 | QT receives a message testB [i](uB),
the situation is almost symmetric of the previous
case. We just detail the case in which y′r+1[uB ] =
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acceptB(A) and the first two finds of QSTB fail. We
have X[uB ] = A. Then the event fullB(A, kB [uB ],
sid(ỹ[uB ])) has been executed. By the correspon-
dence (6), the event fullA(B, kB [uB ], sid(ỹ[uB ])) has
been executed. So there exists u′′A such that Y ′[u′′A] =

Y [u′′A] = B, kA[u′′A] = kB [uB ], sid(x̃′[u′′A]) =
sid(x̃[u′′A]) = sid(ỹ[uB ]), x′r+1[u′′A] = acceptA(B).
So the last find of QSTB succeeds for some value
of u′A. Moreover, since x′r[u

′
A] is defined, the

event fullA(Y [u′A], kA[u′A], sid(x̃[u′A])) has been ex-
ecuted. Since x′r+1[u′A] = acceptA(B), Y [u′A] =

Y ′[u′A] = B and sid(x̃[u′A]) = sid(x̃′[u′A]) =

sid(ỹ′[uB ]) = sid(ỹ[uB ]), this event is fullA(B,
kA[u′A], sid(ỹ[uB ])). By the correspondence (7),
kA[u′A] = kB [uB ]. The process QSTB sends u′A on
channel c′[i + nT ]. This message is received by Qk′A .
Moreover, k′A[u′A] is defined and k′A[u′A] = kA[u′A],
since x′r[u

′
A] is defined and Y [u′A] = B. Then Qk′A

replies by sending k′A[u′A] on channel c′[i+nT ]. Then
rB = k′A[u′A] = kA[u′A] = kB [uB ], and kB [uB ] is
sent on testB [i], as in the left-hand side.

For the equivalence

Q1 | Q′T ≈ newChannel c̃′; ((Q′0 | Q′k′A){c̃′/c̃} | QST )

we exclude not only the traces that do not satisfy the cor-
respondences (5)–(7), but also the traces in which k′A[u] =
k′A[u′] for some u 6= u′. These traces have negligible prob-
ability, because otherwise that would contradict the secrecy
of k′A: the adversary could distinguish Q′0 | Qk′A from
Q′0 | Q′k′A with non-negligible probability, by detecting the

former when he obtains the same answer to queries c′[i]〈u〉
and c′[i]〈u′〉 for some u 6= u′. For this equivalence, the
cases of protocol messages are similar to the previous equiv-
alence, so we only detail the cases of test queries.

• WhenQ1 | Q′T receives a message testA[i](uA),Q′TA
first tests if kA[uA] and Y [uA] are defined. Corre-
spondingly, in the right-hand side, QSTA first tests if
x′r+1[uA] is defined and different from reject, which
is equivalent to kA[uA] and Y [uA] defined.

Next, if Y [uA] 6= B, then Q1 | Q′T sends kA[uA]
on testA[i]. Correspondingly, in the right hand-side,
if y′r+1[uA] 6= acceptA(B), that is, Y [uA] 6= B,
then QSTA sends a message on c′AK [uA]. Q′0 re-
ceives it, and replies by sending kA[uA] on c′AK [uA].
QSTA receives this message, and sends k = kA[uA]
on testA[i], as in the left-hand side.

Otherwise, both sides execute two finds that yield the
same result because x̃[uA] = x̃′[uA], ỹ[uB ] = ỹ′[uB ],
and as we shall see below rA[u] and rB [u] have the
same value in both sides of the equivalence.

Finally, when both finds fail, in the left-hand side,
Q′TA sends a fresh random number uniformly dis-
tributed in Iη(T ) on testA[i]. Correspondingly, in the
right-hand side,QSTA sends uA on c′[i]. Q′k′A receives
this message. It checks that k′A[uA] is defined, which is
true because kA[uA] is defined and Y [uA] = B. Next,
it looks for a previous query with the same uA; there is
no such query, because otherwise one of the previous
finds would have succeeded:

– If uA was previously sent on c′[i′] byQSTA, then
there would be an u (u = i′) such that uA[u] and
rA[u] are defined and uA[u] = uA, so the first
find would have succeeded.

– If uA was previously sent on c′[i′+nT ] byQSTB ,
then there would be an u (u = i′) such that
u′A[u] = uA, sid(x̃′[u′A[u]]) = sid(ỹ′[uB [u]]),
and these values are defined, so the second find
would have succeeded.

SoQ′k′A replies by sending a fresh random number uni-
formly distributed in Iη(T ) on c′[i]. QSTA receives it,
stores it in rA[i], and sends it on testA[i], as in the
left-hand side.

• When Q1 | QT receives a message testB [i](uB), the
situation is almost symmetric of the previous case. We
only detail the case in which y′r+1[uB ] = acceptB(A)
and the first two finds of Q′TB and QSTB fail. In this
case, in the left-hand side, Q′TB sends a fresh random
number uniformly distributed in Iη(T ) on testB [i].
In the right-hand side, as in the proof of the pre-
vious equivalence, the last find of QSTB succeeds,
sid(x̃′[u′A]) = sid(ỹ′[uB ]), x′r+1[u′A] = acceptA(B),
kA[u′A] is defined, and Y [u′A] = B. So QSTB sends
u′A on c′[i+nT ]. Q′k′A receives this message. It checks
that k′A[u′A] is defined, which is true because kA[u′A] is
defined and Y [u′A] = B. Next, it looks for a previous
query with the same u′A; there is no such query, be-
cause otherwise one of the previous finds would have
succeeded:

– If u′A was previously sent on c′[i′+nT ] byQSTB ,
then there would be an u (u = i′) such that
u′A[u] and rB [u] are defined and u′A[u] = u′A.
Then uB [u] is also defined, sid(x̃′[u′A[u]]) =

sid(ỹ′[uB [u]]), x′r+1[u′A[u]] = acceptA(B). So
we have sid(ỹ[uB [u]]) = sid(ỹ′[uB [u]]) =

sid(x̃′[u′A[u]]) = sid(x̃′[u′A]) = sid(ỹ′[uB ]) =
sid(ỹ[uB ]). In order to obtain a contradiction,
assume that uB [u] 6= uB . The event fullB(A,
kB [uB [u]], sid(ỹ[uB ])) has been executed in
copy number uB [u] ofQB and fullB(A, kB [uB ],
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sid(ỹ[uB ])) has been executed in copy number
uB of QB . Since the correspondence (6) is in-
jective, two distinct events fullA(B, kB [uB [u]],
sid(ỹ[uB ])) and fullA(B, kB [uB ], sid(ỹ[uB ]))
have been executed. So kB [uB [u]] = kA[uA1]
and kB [uB ] = kA[uA2] with uA1 6= uA2.
Moreover, by the correspondence (7), since
the events fullB(A, kB [uB [u]], sid(ỹ[uB ])) and
fullA(B, kB [uB ], sid(ỹ[uB ])) have been exe-
cuted, kB [uB [u]] = kB [uB ], so kA[uA1] =
kA[uA2] with uA1 6= uA2. This contradicts the
exclusion of traces with kA[u] = kA[u′] for some
u 6= u′. So uB [u] = uB .2 So the first find would
have succeeded.

– If u′A was previously sent on c′[i′] byQSTA, then
there would be an u (u = i′) such that uA[u]
and rA[u] are defined and uA[u] = u′A. Since
the last find of QSTB succeeds, sid(x̃′[u′A]) =

sid(ỹ′[uB ]), so sid(x̃′[uA[u]]) = sid(ỹ′[uB ]), so
the second find would have succeeded.

SoQ′k′A replies by sending a fresh random number uni-
formly distributed in Iη(T ) on c′[i + nT ]. QSTB re-
ceives it, stores it in rB [i], and sends it on testB [i], as
in the left-hand side. �

D. Discussion on Authentication and Key Ex-
change

We discuss here some choices made in our modeling of
authentication and key exchange.

• We have assumed that A plays only the role of the ini-
tiator and B plays only the role of the responder. We
could also model a situation in which A and B play
both roles, by including a process Q′A for A playing
the responder role and a process Q′B for B playing the
initiator role. Which model is more appropriate de-
pends on the protocol and its intended usage: the for-
mer model is appropriate for protocols that use distinct
keys for the initiator and responder roles, such as SSH
for instance.

• We could also extend the framework to protocols that
use a trusted server, by including it into QS .

• For simplicity, we have assumed that the participants
terminate immediately after accepting; we could ob-
viously extend the framework to allow them to accept
before the end of the protocol.

2More generally, if sid(ỹ[u′
B ]) = sid(ỹ[uB ]), then u′

B = uB . So
two sessions can have the same session identifiers only with negligible
probability.

• [16] uses the notion of matching conversations in-
stead of sessions identifiers. Matching conversations
correspond to session identifiers when sid(x1, . . . ,
xr) = (x1, . . . , xr) and sid′(x1, . . . , xr−1) = (x1,
. . . , xr−1) with the additional requirement that the
messages from A to B are received by B after they are
sent by A and symmetrically. We do not consider this
requirement here, because it would complicate the ver-
ification considerably. We partly compensate for this
weaker definition by checking an injective correspon-
dence, while [16] infers injectivity from the correct or-
dering of messages—see [16, Appendix C]. More re-
cent formalizations [7, 15, 27, 40, 42] use session iden-
tifiers as we do.

• It is often required that, with overwhelming probabil-
ity, distinct sessions have distinct session identifiers.
Here, we only require that n sessions of A with the
same identifier correspond to n sessions of B with
that identifier. For authenticated key exchange, the se-
crecy of the key combined with the correspondence (7)
(which means that two sessions with same identifier
have the same key) implies that, with overwhelming
probability, distinct sessions have distinct session iden-
tifiers.

E. Detailed Experimental Results

In our tests, all protocols are in a configuration in which
the honest participants are willing to run sessions with
the adversary. Shared-key encryption is implemented as
encrypt-then-MAC, where the encryption is IND-CPA (in-
distinguishability under chosen plaintext attacks) and the
MAC is UF-CMA (unforgeability under chosen message at-
tacks); public-key encryption is assumed to be IND-CCA2
(indistinguishability under adaptive chosen ciphertext at-
tacks); signatures are assumed to be UF-CMA.

The session identifier is chosen to contain all messages
of the protocol, except messages that are sent to or received
from a server (that is, messages that are not between A
and B), messages that are just forwarded without check-
ing (those can be changed by the adversary), and signatures
when the security definition of signatures allows an adver-
sary to forge a new signature for a message that has already
been signed.

For the public key protocols, the prover needs to be given
the main proof steps. We detail them below. For shared-key
protocols, the proof is fully automatic.

Woo-Lam shared-key [36] This protocol is a one-way
authentication protocol, so we prove only the correspon-
dence (4). Our prover cannot prove this correspondence for
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the original version of the protocol, as there is a known at-
tack against it, but proves it for the corrected version [36].

Woo-Lam public-key [62] The situation is similar to the
Woo-Lam shared key protocol. Our prover cannot prove the
correspondence (4) for the original version of the protocol,
as there is an attack against it, but proves it for the corrected
version [64].

In this protocol, the third message is a signature. The
proof fails when the signature is included in the session
identifier and the security definition of signatures allows an
adversary to forge a new signature for a message that has
already been signed. Indeed, the signature is not authenti-
cated in this case. The proof succeeds both when the sig-
nature is not included in the session identifier and when the
security definition of signatures prevents forgeries even for
already signed messages, that is, signatures are SUF-CMA
(strongly unforgeable under chosen-message attacks).

For both versions of this protocol, we give the following
proof steps to the prover:

SArename Rkey
crypto sign rkS
crypto sign rkA
success

The variable Rkey defines a table of public keys, and is as-
signed at three places, corresponding to principalsA andB,
and to other principals defined by the adversary. The trans-
formation SArename Rkey renames the variable Rkey
to three different names Rkey1, Rkey2, and Rkey3, one
for each assignment to Rkey, and thus allows us to dis-
tinguish these three cases. The instruction crypto sign
rkS means that the prover should apply the definition of
security of signatures (primitive sign), for the key gener-
ated from random number rkS. The instruction success
means that prover should check whether the desired security
properties are proved.

Needham-Schroeder public-key [53] This protocol is a
mutual authentication protocol. Our prover shows the cor-
respondence (3) but the proof fails for (4); indeed, there
is a well-known attack against it [48]. The prover proves
both (3) and (4) for the corrected version [48].

For both versions of this protocol, we give the following
proof steps to the prover:

SArename Rkey
crypto sign rkS
crypto enc rkA
crypto enc rkB
SArename Nb_29
simplify
SArename Na_21

simplify
success

Denning-Sacco public-key [34] This protocol is a key
exchange protocol, so we try to prove the hypothesis of
Proposition 4. Since there is no message from B to A in
this protocol, B is not authenticated to A, so (5) clearly
does not hold. (There is in fact no good place for putting
the event partB .) For both the original and the corrected
version of [5], this protocol is also subject to an obvious
replay attack, so unsurprisingly our prover cannot show
the injective correspondence (6). Our prover shows (7)
for both the original and the corrected version. It shows
the secrecy of k′A and the non-injective correspondence
event(fullB(A, k, x)) ⇒ event(fullA(B, k, x)) only for
the corrected version. (There is a well-known attack [5]
against them in the original version.)

For both versions of this protocol, we give the following
proof steps to the prover:

success
SArename Rkey
SArename SRkey
crypto enc rkB
crypto sign rkS
crypto sign rkA
success

The first success instruction is useful in order to
prove (7): this correspondence is obvious on the initial
game, because the key k or k′ is computed from the pro-
tocol messages contained in the session identifier x. The
relation between the key k and the session identifier x is
hidden by the subsequent game transformations.

Needham-Schroeder shared-key [53] The proof of se-
crecy of the key fails for both the original and the corrected
version [54]: the protocol contains a key confirmation round
B → A : {NB}K , A → B : {NB − 1}K and these mes-
sages may reveal information on the key K. However, the
prover shows (3) but fails to show (4) for the original ver-
sion of the protocol. This failure comes from a limitation of
our prover: it fails to prove that NB [i] 6= NB [i′] − 1 with
overwhelming probability, where NB is a nonce. (Prov-
ing this property requires distinguishing two cases: when
i = i′, we have NB [i] 6= NB [i]− 1; when i 6= i′, both sides
are independent random numbers, which have a negligible
probability of being equal.3) The prover shows both (3)
and (4) for the corrected version. When the key confirma-
tion round is removed, the prover proves the secrecy of the
key k′A, but fails to prove the authentication (which is in-
deed wrong).

3This issue has been solved in CryptoVerif 1.20, so that CryptoVerif
now succeeds in proving (4).
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Yahalom [23] The situation is similar to the Needham-
Schroeder shared-key protocol: the proof of secrecy of the
key fails because of a key confirmation message {NB}K .
The prover still shows (3) and (4). When the key confirma-
tion message is removed, the prover shows (3) but fails to
show (4) (which is indeed wrong).

Otway-Rees [55] The prover shows the secrecy of k′A,
but does not show the correspondence properties (5), (6),
and (7). These correspondences are indeed wrong: as no-
ticed in [23], each participant may accept while the other
participant fails to get the key, so (6) is wrong. The corre-
spondences (5) and (7) are wrong due to replay attacks.
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