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Abstract

We have discovered conjectural near-addition formulas for Somos sequences. We have preliminary evidence
suggesting the existence of modular theta functions.

1 Introduction

In 2001, as part of a research project investigating more efficient public key cryptography (PKC), Rich Schroeppel
asked Bill Gosper to look for Somos sequence addition formulas. Gosper found some very interesting results
immediately, and further developments continued through 2003. Cheryl Beaver and Schroeppel also investigated
modular versions of the dilogarithm function Liz(z) and the Trilogarithm Lisz(z) [6], and Schroeppel did some
preliminary work on modular theta functions.

Somos sequences and theta functions are both promising approaches for use in public key cryptography.
Cryptographic applications of Somos sequences are explored in [1]. Our dilogarithm and trilogarithm results are
interesting, but it’s not obvious how to apply them to PKC problems.

Further development of modular versions of the special functions of numerical analysis seems possible. Likely
candidates are the error function, the logarithmic integral, the gamma function, and perhaps Bessel functions and
hypergeometric functions.

The main stumbling block is that inequalities, limiting processes, and infinite series are unavailable, and we
must fall back on functional equations for much of the work. Formal differentiation sometimes works. Functional
equations are very limited for the error function, but more variety is available for the other special functions.
We have not explored the p-adic possibilities, which might permit the reintroduction of some of the forbidden
concepts.

Both Somos sequences and theta functions have near-addition formulas: equations that relate f(z+y)f(z —y)
to f(z) and f(y) and f of nearby = and y values. These can be used with the well-known double-and-add method
to calculate function values at large multiples of the argument.

Gosper’s results on near-addition formulas for Somos sequences are reported in section 2. Schroeppel has been
able to prove a few of the formulas, including two of the determinant identities for Somos4 [1]. Section 3 details
our brief excursion into modular theta functions. There is no conclusion: this research seems open ended.
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1.1 Somos Sequence Background

RS first learned of Somos sequences from Michael Somos, around 1988. The Somos sequence of order N begins
with a block of N 1s, and is generated from a simple non-linear recurrence. For Somos4, the recurrence is
AkOk4+4 = Qf410k+3 +ai+2; for Somosb, it iS arar+5 = Ggt+10k+4 + Ak+20k+3; Somos6 and 7 follow the patterns for
4 and 5, with more terms in the folded dot product. The recurrence can also be used to extend the sequences in the
negative direction; they are palindromic. Somos4 begins 1,1,1,1,2,... . One surprising property is that all the terms
in Somos4 - Somos7 are integers. This was discovered back in the 1940s by Morgan Ward [9, 10] for a sequence
including Somos4. He called his sequences Elliptic Divisibility Sequences; Somos4 is the odd numbered terms from
a particular EDS. RS was at an MSRI number theory workshop shortly after learning of the sequences, and the
group spent some time trying to prove integrality. Eventually Dean Hickerson and Janice Malouf independently
proved that Somos6 is integral. Our experimenting showed that we could modify the sequence initial values in
various ways while apparently keeping the integrality property. Also, introducing algebraic coefficients into the
equation, such as arar+4a = rart10k4+3 + yai+2, often produced polynomials with integer coefficients, rather than
the expected ensemble of rational functions. (Of course, this doesn’t matter much when the values are interpreted
mod P, or in a finite field, which can handle fractions just fine.) The raw integer values of the sequences seem to
grow roughly as C¥ ®. The Somos4 and Somos5 sequences have a close connection with elliptic curves and classical
theta functions. The higher order Somos sequences may be connected to hyperelliptic curves. There’s a moderate
amount of background material scattered around the net; Jim Propp’s Somos page [7], and Sloane’s sequence
database [8], and Zagier’s problem 5 [12], have useful material. Background on theta functions is available in the
Abramowitz & Stegun [2] compendium of special functions, now available on the net (as a scanned photocopy) at

[3].

2 Somos Sequence Near-Addition Formulae

Summary: Somos(nz) is calculable in O(logn) time from three values near Somos(z), at least for orders 4 and
5. Orders 6 and 7 require longer intervals of values. Along the way, we find addition formulse for Somos and
Somos-like sequences of polynomials and algebraics, and reduce some fifth order recurrences to fourth and third
order. We find three-term, four-variable relations for most of these, as well as for ordinary ¢ functions. A sequence
of polynomials obeying the Somos4 recurrence has a particularly nice doubling formula. Many of these results
fall out of a very general determinant identity. For certain algebraic “Somos” sequences, we find closed forms in
terms of Chebychev polynomials.

Definitions: a, := Somos4, b, := Somosb, ...,e, := Somos8, i.c.,
2
An—-10n-3 + QAp_2

Oy = Ino1@n=3 T Gn-2 = as_n = ...,2,1,1,1,1,2,3,7,23,59,314, 1529, . ..

An—4

bnflbn74 + bn72bn73

by = = ban = ...,2,1,1,1,1,1,2,3,5,11,37,83,274, ...
bn—5
2
O 1= CRACnms ¥ Cno2Cna F Cios = C¢som = ...,3,1,1,1,1,1,1,3,5,9,23,75,421, . ..
Cn—6

dnfldn76 + dn72dn75 + dn73dn74

dy == = de—p = ...,3,1,1,1,1,1,1,1,3,5,9, 17,41, 137, . ..
dn—7
en = -
(all appropriately palindromic) where the tabulated values start with subscript n = —1 to show the center of



symmetry. They are integer sequences until

420514

Somos8: ey = -

, 80 we’re not too interested in Somos8. On the other hand, Somos6 satisfies

P —Cp—1Cn—8 — Cp—2Cn—7 + Cn—3Cn—6 + 34Cn74cn75
n = )
Cn—9

which is pretty much a Somos9. And, for all ¢ and u, Somos4 satisfies

o — (t—=T)an—1an-7+ (u—5t+ 31) an—2an-6 + (4t —u+ 1) an—3an-5 — wa?_,
n an78 b

a double continuum of quasi-Somos8s.
Furthermore, for all ¢, the sequence s, := a2 satisfies

(6 — 1) $n—18n—7 + (5t — 130) 8n—28n—6 + (749 — 4t) Sp_38,_5 + (20t — 4) s2_,

Sn—8

Sn =

Change of variable: A Somos sequence may be multiplied by any constant. A Somos sequence multiplied by
an arbitrary geometric progression satisfies the same recurrence, but usually loses its palindrome symmetry. The
“odd” (Somosb and Somos7) sequences may also be termwise multiplied by any number of factors of the form
tan(x + nmw/2) without even disturbing the palindrome property.

There is, however, no sharp dichotomy between odd and even, since Somos4 satisfies the quasiSomos5 (Quasi-

modo?) (odd) recurrence
5an—3an—2 — An—40n—1
an = )
an—5

as does an tan(z + mn/2), etc.

2
The sequence s, := r" a,, satisfies

6 8.2
T Sn—1Sn—-3 +r Sn—2
Sn = )
Sn—4

2
while s, := r™ b, satisfies
8 12
T°Spn—1Sn—4 +7 "Sn_25n—3

Sn =
Sn—5
. . 2 .
Similarly, s, :=r" ¢, satisfies
10 16 18 2
r Sn—1Sn—>5 +r Sp_2Sn—a+T Sn—3
Sn = s
Sn—6

. 2 .
while s, :=r" d,, satisfies
12 20 24
7T Sn—1Sn—6 + 177 Sn—2Sn—5 + T Sp_3Sn—4

Sn—7

Spn =

Notation:

det [sa;—y; 5oy, ] 1<i,5<n

Ds 1, T2y, ..., In .
Yi, Y2, ---5 Yn



Sz1—y1Sz14y1  Sei—y2Szityz  --- Szi—ynSzityn
Szy—y1 Sza+y1 Sz —y2Szatyz coo o Smo—ynSwatyn

Sep—y1Sen+yr  Szn—y2Szntyz - -- Szp—ynStatyn

Note that each term of the expanded determinant will have subscripts summing to 2x1 4+ 2z2 + ... + 2x,. This is
decidedly not symmetrical in  and y, so that an identity involving a D operator may yield a new identity under
interchange of the « and y vectors.

Conjecture 4: the determinant

Ay—gz Quta Ay—y Ayu+y Ay—z Qu+2
D u, v, w -0
a T Yy 2 = | Gy—z vtz Ay—y Quty Ay—z Au4-2 =Y,
) )
AQu—z aw+z awfy aw+y Auw—2z aw+z

where u, v, w, x,y, and z are arbitrary integers. E.g.,

2
_ Ap_2 An—3 An—1 An—4 Qn
Da " 27 07 ! = 1 2 3 = —Gp-40n + apn-3an-1 + ai*Q,
0, 1, 2 1 1 9

the defining recurrence for Somos4.

Note that the determinant also vanishes for a; := sin ¢, for arbitrary complex u, v, w, z, y, and z. More interestingly,
experimental Taylor expansion at ¢ = 0 plus several numerical experiments suggest that the same goes for
at == Y;(t,q). The published addition formulee mixing two or more different j are merely the result of choosing
v,w,y, and z to be things like 7/2 and n7/2 (and 0). (Whittaker & Watson, crediting Jacobi, list numerous
special cases, suggesting that the more general formula was not yet known.)

Still more generally,
Is(x—u,q) Ve (x+u,q) Vs (y—u,q) 9 (y+u,q) Is(z—uq) J¢(2+u,q)
0=|Ys(x—v,q9) d(x+v,q) Ds(y—v,q9) (y+v,9) Is(z—v,q) 9(z+v,9)
Vs (x —w,q) Ve (x+w,q) s (y—w,q) 9 (y+w,q) Vs (z—w,q) V¢ (2 +w,q)
E.g., putting s = 1,u = x,v =y,

0 = Y1 (x —w,q) Vi (x4 w,q) D1 (2 —y,q) 9 (2 +y,q)
- (y—w,q) ¥ (y+w,q) h(z—x,q % (z+24q) (4vars)
+191 (y_l',q) ﬁt(y—’_xaq) 191 (Z_qu) ﬁt(z+w7q)7

a three term identity in four variables.

Conjecture 4.5: The determinant

S1 —z S S1 —y S S1 —» 8
’U,+1/2, ’U+1/2, ’LU+1/2 7 S+u zsu+z S+u ysu+y S+u zsu+z 0
s T — 1/2, y— 1/27 ¥ — 1/2 1+v—z Sv4x 1+v—y Sv+y 1+v—z Sv4+z | — Y,
S1+w—z Sw+z  Sl+w—y Swt+y Sl+w—z Sw+z

where s, := a, or by, and u,v,w, x,y, and z are arbitrary integers. E.g.,

_5
0 — Db(n 2 )

1
2

)

I
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bn—3 bn—2 bn—4 bn—l bn—5 bn
= 1 2 3 = 7bn75 bn + bn74 bnfl + bn73 bn727
1 1 2

the defining recurrence for Somosb.

Somos4 addition formulse: (See the section “Somos4oid polynomials” for a sequence s, with much nicer
addition formuls than those derived here for a,.)

Suppose we have four consecutive values a;—1, g, z+1,azt+2. Choose s :=a,u =z,y =0,z2= -1, v =0,w =1
to get
D z+1, 0, 1 - D x+1/2, 1/2, 3/2
“\z—-1, 0, 1 - “Nx-1/2, 1/2, -3/2
al a2z Qg Q41 Qr—1 Q42
= A1 —z Qg ao a1 a—i1 a2
a2—gz Qg1 ai az aop as
az g Qr Az41 Ar—1 Q42
= Qg Ag4-2 1 2 = 07
aziq 1 1

giving us ag,. Alternatively,

D, <x+1/2, 1/2, 3/2 ) N A
x—3/2, 3/2, —1/2 v e
a3 —x Qg ap as ai a2
a2 z—1 Qr—1 Q42 Qg Q41
= QAr—1 Qx41 2 1 - 07
a2 1 1

giving us asz—1.

Now run the Somos4 recurrence one step forward to get az4+s and replace z by = + 1 in the preceding two
determinants to get the four consecutive values a2.—1, a2z, G2z+1, @2042. S0 we can double apy to a2ng.

Now suppose that we have the four values around a,, and also around G(n+1)z- Then
D nr+1, 0, 1 _ D (n+Dz+1/2, 1/2, 3/2
“\N(n+z—-1, 0, 1 e nx —1/2, -3/2, -1/2

Oz+102n41)x  O(ndl)z—1A(n+1)z+2  A(ntl)z G(nt1) z+1
= Unz Al—nz a—1a2 o a1
a2—nz Un z+1 ap as ai az

Az+1A2n+1)e  And1)z—1 Ant1)z+2  A(nt1)z A(nt1) z+1
= QAn z A 42 2 1 = 0.
2
Ay 41 1 1

So from ane and a(n41)s We get aznz and a(zn41)e. Thus we can multiply by maintaining eight values. FE.g.,

105z «— (53z,52z) «— (27z,26x) «— (14x,13z) «— (7z,6z) — (4z, 3z) — (2z,z).



In principle, we need only maintain two sets of three values, angz—1, na, Gnzt1, and
O(nt1)z—1, C(nt1)axs G(nt1)z+1, DY Virtue of the third order relation

Conjecture 4a (“derived” below):
2 2 3 3 2 2
Ap—1 Ary2 + Ay Qz4-2 +az—1 Agp41 + Ay Qpy1 = 40/171 Qg Q41 Qz+42,

with which we can eliminate a;y2 from:

a2 z—1 Ar—1 Ax+2 Qg Qr41
2 2
Az—1 Gz41 2 1 =a2zp—1 — Qz-1 (azﬂ Azp+1 — ax) Az+2 + Qg Gzt (azﬂ Az+1 — 2%)
a2 1 1

to get
2 2 2 2 2 4
Ap—10Q25,_1 — Az (20510511 — Az—10Q%3 Gz41 + Az ) Q221

4 4 3 2 3 2 4 2 6 8
+azt1 (%71 Qpi1 —40p_10% Qpy1 +80a5_1 0, 41 —6az_1 0z Q1 + QaI) =0.

Similarly,
ai_l agx + ay (2 Ap—1Qpt1 — ai) (ai_l ai_H —9Ag—1 ai az+1 + ai) a2z
+ai+1 (aiﬂ aiﬂ —8a3_ya; ai+1 +20a2_; a; ai+1 —14a,-10aS az+1+3 ai) =0
and
a_, a5 z+1 — Qa (8 as_1 aiﬂ —18a3_;a} a?:+1 +22a2_; a; ai+1 —9a,-1a3 A1 + ai) a2z+1
+ai+1 (4 ai_l ai+1 — 12 ai_l ai ai_H + 20 ai_l ai ai_H —16az—1 afc az4+1 + 7ai) =0.

The square roots plus the size of these expressions probably render them “too cumbrous to be of any importance,”
but the even coefficients may pay off in some finite fields.

“Derivation” of Conjecture 4a: By Conjecture 4.5,

k/2-3/2, k/2—1/2, k/24+1/2) _ |0-t%k-2 @-20km G-sGk g
Da (k/Z C1/2, k/241/2, kj243/2) T | @e-1 @-10k dadkn| =0
ai ag ao Qk+1 QA1 Qk+2

2 2 3
= 2 ((4 Gk—2ak —3A%k_1) Q42 — 3 Ar—2 Q11 + 8Ck—1 Ak Qg1 — 7%)-

k/2—3/2, k/2—1/2, kj2+41/2) = [2%-1 @14k @odkp) =0

(k/z—l/z k/2+1/2, k/2+3/2> ke dodRoy g gk
as ag a2 k41 Q1 k42

2 2 3
= (ah-2ar — ai_1) art2 — ax—20%41 + 3ak_1ak aky1 — 2a;.



Eliminating a—_2,
2 2 3 3 2 2
2 ay (ak_l Qjt2 —40r—1 0k Qrt1 Qrg2 + Q) Qg2 + k-1 k1 + QK ak+1) =0,
as desired.

Nonstandard initialization: You might wonder how this third order recurrence can compute a fourth order
recurrence with four initial conditions (ao,...as = 1). First of all, given the palindrome condition and scaling,
there is only one degree of freedom. Il.e., in general, we have

1 . 1
a—l,aow--:p2+p71,p,p,17p2+p7p2+p+1—)7p3+2p2+2p+1?+1’--- . (1ppl)
When p is a root of unity, the denominators remain bounded and can be scaled out, e.g.,
ci—1,1,440,1,i—1,—1,i—2,2—3i,—1,13i+ 3,164 — 15,—194 — 44, . ..
(V21 V24 L+ 1,V2,0 (V24 1) +1,ivV2+ 2,0 (V24 3) £ V24 1,
i(3V247) —v2-3,i (5v2+12) + 4v2 + 2,i (15v/2 + 13) — 22v/2 — 31,i (82 + 8) — 43v2 — 76,
i (34v/2 + 57) — 190v/2 — 287, ...
203,203+ 1,ivV3+1,2,2iV3,iV3+1,3iV3 — 1,
—10,64v3 —8,-21iv3—9,35 - 9i/3,136 — 66iV/3,...
i (VE—=vV2+2) + (V24 1) VE+ V2,40 (V6 - V2) + V6 + V2,0 (V6 — V2) + V6 + V2,4,
i(V6-V2+2) + (V2+1) V6+v2,2i+ (V2+2) V6 +2v2,
i(2v6+2) + (3V2+2) V6 +4v2+4,i ((4V2+3) V6 + 11V2+6) + (5v2 +5) V6 + 15v2 + 20,
i ((5v2+6) V6 +6v2+10) + (15v2 + 18) V6 + 38v/2 + 46,
i ((46v2+67) V6 +107V2 +156) + (54v2 +89) V6 + 131v2 + 212,
i ((210v2 4 311) V6 + 523v2 + 772) + (250v/2 + 341) V6 + 635v/2 + 860,
i ((963v2 +1410) V6 + 23462 + 3434) + (1383v/2 4 1934) v/6 + 3394v/2 4 4754, ..

i (V2VB = V2) + (i (x/5—1)+2)\/\/5—+5+\/§\/5+\/§,4\/2
2V VE+5+iv2(VE-1),2VVE+5+iv3 (V5 -1),4v3,
i (V2V5 = v2) + (i (VB—1) +2) VVB +5 + VaVE + V2,

(1(VE-1) +4) VVE+5+v2V5+ V2,
i(3v2V5 = v2) + VV5+5 (Vo +i (V5 —1) +3) +3V2V5 + V2,
VAV 45 (i (3V5+5) + 6v5+2) +i (8V2v5 + 8v2) +9v2V5 + 132,
V5 +5 (i (5v/5 + 5) + 125 + 20) + 12iv2V5 + 20 V2V/5 + 4672,
VV5 +5 (i (37V5 +95) +47v5 + 65) +i (67v2 V5 + 187v2) + 81v/2/5 + 1372,
V/V5 45 (i (168v/5 + 434) + 162V/5 + 322) + ¢ (332v/2V/5 + T96v/2) + 285V2V/5 + 655V2,
V5 +5 (i (753V5 + 1957) + 883v/5 + 1865) + i (1499v2V/5 + 3579v/2) + 1644v2V/5 + 3634V/2, . ...



However, for other p on the unit circle, it is impossible to scale out denominators, even with a geometric progression.
E.qg.,

39¢ 27 . . 39:¢ 27 244 47
..,?+g,5,3l+4,32+4,5,?+€,?+€,
3874 386 36783i 3494
25 25 7 625 625 ’
2088¢ 48643 326424517 12616857 20383741447 1297298183

25 625 ' 78125 78125 1953125 1953125
910992753947 22447118648
1053125 9765625 ' °°
..,1f21-+ %2?713,5i—k12,5i—F12,13,lfgz +»%2?,1fgz +»§§;,
52857 11722 49666657 4473518
169 169 28561 28561
4688404 14119307 1381237470057 79921772175 978674767028807  46503584483049
2197 28561 62748517 62748517 10604499373 10604499373

438606726214525 ¢ " 3668262036619888
10604499373 137858491849 7777

wherein the powers of 1/5 and 1/13 grow quadratically.

Interestingly, (1ppl) permits definition of sequences containing 0. E.g., p := —1 gives a period 10 sequence with
values in {—1,0,1}. Alternatively, if p® + p® + 1 = p, the sequence is period 5. The appropriate generalization of
Conjecture 4a is

4 3 2 2 3 3 2 2 2
(k-1 Ak Qk+1 QA2 (p +2p° + 1) = (ak—l Akyo + Ak Qgt2 + Qp—1 G y1 + Gk ak+1) D

There appears to be a generalization of this relation for initializations in violation of the palindrome property.

Perhaps the most important of these is Sloane’s A051138

A_q,Ap,...=-1,0,1,1,—1,-5,—4,29,129, —65, ...
where

2
A - A - Ap1Ans+ A9  Ap1Gni1 —An2any2  An1ar 108 — An_2a8 Gk—n_1
n — —4A—n = = = .
An_a Gn Ok—2 Ok—nt1

We can think of A,, as sinh and a, as cosh, but actually they’re both theta functions. Also, a, is centered at
n = 3/2 instead of 0.

Solving this last equation for aj, generalizes the Somos4 defining recurrence:

Ant1Qk—10k—n—2 — Ant2 k-2 Gk—n—1

ar =
AnQr—n_3

Another such generalization is the “k-tuple speedup”:

2 2 2
Ak An Ant4k = Azk An+k An+3k — A Az Ap42k-



Generalizing both of these is the three-variable relation

_ Az Aptjan—jan—k—2j — Aj Art2; Gn—2; Gn—k—;j
AjAg an-k-3;

n

These expressions mixing A and a are somewhat striking because up until now, all the monomials in a given
relation have had the same subscript sum, modulo A,, = —A_,, and a,, = as—,. In particular, these nonconforming
identities can not come directly from Dy type determinant identities, except via the artifice of multiplying the
deficient monomials by Ay and the overweight monomials by —A_.

A can be eliminated from the speedup identity via the relations

Ask _ GpGpik+1 Gpp3kt1 Qptak — Qpt1 Optk Gpt3k Qptakt1
- 2 2
A Aptk @24 o gy Qp+3k — Qptrhkt1 Q5 o Qpt3k+1
2 2 2
Ay Am Q42 k+1 Am+4k — Qm+1 Qoo g OmA4 k41
2 - 2 2 ’
Ak Am+k Q4 oy 1 Am43k = Omtk+1 Q4 o f AmA43k+1

for arbitrary m and p. Also,
2
Al = Ak Qk43 — Qrt1 Qrt2.

If we eliminate A between this and the k-tuple speedup identity, we get a polynomial in a with subscript sums
which can be brought into agreement via selective application of a,, = az—n.

Also, A, = sap, where s, = Sloane’s A006769:

s_1,s0,...=—1,0,1,1,-1,1,2,—1,-3, 5,7, -4, —23,29, .. .,

and

2

Sn—1Sn—3 + Sp_2

Sp=—8_p=—"T7-—707092—,
Sn—4

the same recurrence as A,. Perhaps surprisingly,

S2n4+1 = (—1)"an+2.

That A;/2, As/2,... can be integers suggests that ai/2,as/2,... could be, too. Substituting half-integers into the
¥ expression below yields nonintegers, but it is likely that there are alternative analytic expressions for a,, which
disagree for nonintegers.

Curiously, A2, does not obey the Somos4 recurrence.

Note that a is even easier than A to eliminate from the mixed recurrences, since they hold for a = A! ILe.,
Aj Ay Apn Ap——3; = Ao j Ay j An—j An—i—2j — Aj Apt2j An—2j An_i—j.
With the relation A_,, = —A,, along with linear changes of variable, this can be rewritten

AjAjkAjn Angirj + A2j Ak Acn Ane = Aj Apgj Aonitj Anjs

so that each term’s subscript sum is 2j. We might thus expect an equivalent 3 by 3 determinant a la Conjecture
4. The most general case gives a six variable relation with 24 terms of degree 6. The only apparent way to reduce
to degree four is to specialize two of the variables to create terms of absolute value 1, i.e. Ay, Aio, or Ais.



But this will introduce small integer offsets among the remaining subscripts, a feature notably absent from our
trivariate relation. So for A,, at least, determinants may not tell the whole story.

Likewise for 91: the trivariate relation empirically holds if we replace A, by ¥1(n, q), for arbitrary complex n and
any fixed q within the unit circle. That it fails for the other ¥s suggests the existence of a four or more variable
generalization. Indeed, by analogy with (4vars),

Ap—i Ak+i Aj—n An+j5 = Aj—i Aj+i Ag—n An+k + Ak—j Ak+j Ain An+i,

also holding with A in place of a. So maybe (4vars) type determinants do tell the whole story.

If s, = —s—pn, s1 =1, (as with s, := A,,,) then

2
0 1 —Sn—y Sy+n Sy Sy—1Sy+1
Y, ) _ 2
D = —Sp 0 —1
n, 0, 1 1 0
—Sn—1Sn+1
2 2
= —Sn_ySnty — SpSy—15y+1+Sn_150415, = 0 (EDS)

is equivalent to s being an elliptic divisibility sequence. Integer divisibility sequences merely require d|n = s4|sn,
but the divisibility sequences discussed in this report appear to satisfy the stronger relation (sz,sy) = |S(z,y)l
even when they disobey the addition formula. This may be what is meant by “strong divisibility sequence”.

The EDS upside is this nice addition formula.

Fomin and Zelevinsky have shown that Somos4, ..., Somos7 are Laurent polynomials (rational functions with
monomial denominators) in their initial values.

Somos4oid polynomials: We can get true polynomials from the “odd” (s—, = —s,) sequences with the
initialization —1,0,1,1, —1, z, where z is unconstrained by the Somos4 recurrence, which gives 0/0. At greater
length,

3

sn:—170,171,—1,35,3:—1—172:2—ac—l,—as —m—l,—3:ﬂ2—23:,2:5—234—1—3:52—1—32:—1—1,

fo721475x3+3:r+1,7x7+2x673:r579x475x373x273x71,....

Ap is the case x = —5 and A,, 3 isthe case x = 1. I e., 5,(—5) = s2.(1). Empirically, this is a strong (redundant?)
elliptic polynomial(!) division sequence for all z. If indeed the divisibility property holds for both integers and
polynomials, then the values assumed by the polynomials sx()/5(k,n)(x) and s, (x)/sk,n)(x) are relatively prime
for every integer x.

It seems that the Chebychev polynomials U,—1(y) := sin(narccosy)/sin(arccosy) behave similarly. E.g., for
integers k and n, sin(kn arccosy)/sin(n arccosy) is a polynomial in y, but of degree only (k — 1)n.

Here are the polynomial factorizations of s, (z) through n = 18.

10



S
»
3

-1 -1
0 0
1 1
2 1
3 -1
4 T
5 z+1
6 22—z —1
7 —(w3+m+1)
8 —z (3z+2)
9 2 —at+322+32+1
10 —(z+1) <x5—w4+3x3+2w2—2m—1)
11 —(:U7—2a:6+3x5+9x4+5x3+3x2+39[;+1)
12 —x (1’2—37—1) (m6+2x4+5x3+9m2+9x+3)
13 2942 + 1327 +122% —62° +162° + 1522 + 62+ 1
14 —(P+a+1) (2°—32°+2"+62°—132° — 302" —152° + 42® + 5 4+ 1)
15 —(z+1) (¢ 22" +52" — 22" + 52° + 828
1927 +122° + 632° + 502" +202° + 102° + 52 + 1)
16 z(3z+2) (22 - 32" +62'0 +142° — 22°

+327 +232% +182° — 62" —272° — 2727 — 122 — 2)
17 2 =32+ 428 4+ 62 —92 + 52 + 5622 + 6921 + 10520 + 311 2°
+4292% 421127 — 225 +452° +1352* + 11023 + 4522 + 10z + 1
18 (:c2—:c—1) (m5—m4+3x2+3x+1) (m13+x12+7m11+19m10+25x9
+782% + 13327 +1082° + 792° + 652" + 242° —62° — 67 — 1)

The degrees of the polynomials, starting with n = 1, go

0,0,0,1,1,2,3,2,5,6,7,9,10,12, 14, 14, 18, 20, 22, 25, 27, 30, 33, 34, 39, 42, 45, 49, 52, 56, 60, 62, 68, 72, 76,81, . . .,
which is eight interlaced quadratic progressions:

degSSCH'T = (4q + T)q + [725 07 07 07 17 17 27 3]7‘7 0 S r S 77
which can be written

V2. . nm. . nm nm,,3 nmw 1 2 n
degsn—T(&n?)(smj)f(cos?)(g +COST)+§(2TL —5(=1)" = 5).

It appears that n prime = s,, irreducible. The polynomials appear to be monic except for ss,, whose leading
coefficients appear to be (—)"3n.

It appears that all the polynomials s, (z) have a root close to * = w ~ —0.669499628215, w4 3w —5wr+21w+
17 = 0, with proximity rapidly increasing with n.

Besides the EDS condition, we retain the v1 three-variable identity

52 Sk Sn Snd+k = Sj Sk—j Sn—j Sntk+j + Sj Sktj Sntj Snik—j

11



This can be subscript-balanced as
82 Sk4j S—n—k—j Sn = S—j S—k Sj—n Snt+k4+2j — S—j Sk+2j S—n—k Sn+j,

but its asymmetry and failure to subsume the EDS condition suggest that we’re missing a nice, four-variable
relation. Sure enough, by analogy with (4vars),

Sk—i Sk+i Sj—n Sn+j = Sj—i Sj+i Sk—n Sn+k T Sk—j Sk+j Si—n Sn+i

withstands empirical testing.

This identity specializes to a particularly attractive doubling formula:

_ .3 3
S2n—1 - Sn—1 5n+1 — Sn—2S8p
2 2
San = (Snfl Sn42 — Sn—2 3n+1) Sn .
Given the four consecutive values sp—_2, ..., Sn+1, extend them to s,+3 stepping the recurrence twice. Then use
the doubling formula to get the four values sap—1,..., Sant+2. Etc.

We also have
2 2
Sb—a Sb+a = Sq Sb—1 Sb+1 — Sa—1 Sa+1 Sp-

And we have the ntuple speedup relation

2 _ 2 2
Sk Sn Sn4+4k = Sok Sn+k Sn+3k — Sk S3k 5n+2 k-

This provides an alternative doubling process: Given four values s, S2k, Ssk, Sak, start m at k and generate
S5k, S6k, STk, Ssk. Discard the odd multiples, and we have doubled k and are free to iterate.
For x = 0, s, has period 8:

Sag4+r(0) = -1,0,1,1,-1,0,1,-1,-1,0,1,1,...
[0717(_1)qa_1]T7 0<r< Sa
= bi_n2/4191(n7r/4, Q), n=4q+r, b= .2653512762412i + .4652895036579,

Q = .73591966011397 + .3006597280279.

Of course, a much simpler expression is

sn (0) = sin (%) —sin (%) cos (%n) .

For x = —1 the period is 5:

ssqir(—1) = —1,0,1,1,—1,-1,0,1,1,...
= [07171,_17_1]7”7 0§T§47

= %/@191(2’07#5, Q) n =>5g+r, b=0.6155370356317, ) = .48569078486705.

12



For z = —2/3, we get eight interlaced progressions:

ssqir(—2/3) = —1,0,1,1,-1,-2/3,1/3,1/3%,-1/3%0,1/3°,-1/3°% —1/37,2/3°,
= [07 33q+17 (_)q32q+1a _3q+17 (_)q+12? 317(]7 (_)q372q71’ _31*3‘1]T’ 0 <r< 77
3(2¢+1)2

bu"2191(ny, Q), n=38q+r, b=—-2.010659335767:, u = 0.85098116439541,
y =m/2 —.7416161288587i, @ = .0026507066057.

—1/16

Note that y is not m/8 nor even real, so where do the periodic 0s come from? And |u| is not 3 , in fact, even

. . - 2 .
its square root is too small. So where does the 37" /16 “growth” rate come from? The answer, as usual, is clear
after Jacobi’s imaginary transformation:

: 2
26917rn /16,[91 (7\'_871)
9o 3n2/16 ’

sn(—2/3) =

with ¢ satisfying

= i 4i—2y _ 1+1
g1+q (1+q )7%,

e.g.,
q ~ .5913080374704560258502159338438 + .4423170132359810537349781037012 7.

We thus answer both questions, and reduce four mysterious parameters to one. Or rather, two, since
q ~ .7241830710727415040344246937315 ¢ 4+ .5068861260317593704061905537186

also satisfies the infinite product constraint, but produces the mysterious sequence

E\/_ii
27

B

L VBL0VEi 1, Y3 2 V3

3797

)

2437 7297 65617777

Nl

For x = the golden ratio, we get six interlaced progressions:

56(1+T(¢) = _170,1717_17¢7¢2707_¢47_¢57¢67_¢87_¢10707"'
(—)76°"2 ) [0, 9729, 7%, —1, 477, 9?72, 0<r<s.

Likewise for the conjugate:

S6Q+T‘(_1/¢) = _17071717_17_1/¢7¢_ O ¢ ¢ ¢_ ¢_ _¢_10707"'
2q _ q _ _ q—1 —2q—2
= [07¢ ,( ¢)7 17( 3?1 7¢ ]7‘7 O§T§57
(_)q¢6( ')
bun2191(ny, Q), n==6q¢+r, b= —1403592671340¢, u = 0.84769832656491,
y =7/2— 7507768082213, Q = .0110573396552.

This ¥ expression is close to s, (—2/3) because —1/¢ = —.618 is close to —2/3.
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It is probable that s, () comes out in k such interlaced progressions when s, () = 0. E.g., when o® + a+1 =0,
we appear to get seven interlaced progressions scaled by q(F+1(F+1/7)
An algebraic x for which s,(x) has an elementary closed form is x = —w® — 2w?, where w* —w = 1, i.e.
2t 4323 — 522 + 212 +17=0, w= —(32* — 262% — 89z + 158)/283:
$n = —-1,0,1,1,-Lza+1l,e°—2z—1,—2°—z—1,—z (32+2),172> — 3827 + 702 + 69,
792° — 1262 + 288 x + 273, —526 2> + 925z — 1838z — 1803, ...
= -1,0,1,1,-1,—w® = 2u? —w® = 20w? + 1,20® + Tw? + 8w+ 3,22w> + 18w? + 25w + 17,
—w® —11w® — 24w — 12, —465w® — 602 w? — 729 w — 389,
—2073w® — 2470w — 2983 w — 1653, 13809 w® + 16717 w® + 20550 w + 11365, . ..

) w32 (n—1) (n+1)
sin [ n arccos —— | w 2

2 w32 (n=1) (n+1)
= = Unfl 2 w 2 ’
w-3

1— ——
4

where U, is the Chebychev polynomial, second kind. The degeneration of the 9 corresponds to the vanishing of
g. Note that one of the roots z &~ —0.669499628215, which is numerically close to —2/3, which at least explains
the unusually small value of ¢ in the otherwise puzzling ¢ expressions for s,(—2/3) and s,(—1/¢).

This ¥-free expression for s,(—w>® — 2w?) affords elementary expansions of b, u,y, and ¢ about € = 0 in

snle — w® — 2u?) = 2\2’/@ 0" 91 (ny, V@) + O(e),
namely
- 37e N 858967 €2 Lo
b — 757w + 450 w? 4+ 87w — 661 3241613 w? 4 34180558 w2 + 150075980 w + 30712993
1
v 4w?
- 37e 3 858967 € L
_ 3123 48622 + 1922 4+ 875 807948 3 — 16234660 2 — 29959955 = + 48768711
© ;
v 4 w?
u \/E<1_ € B 2556371 € +>
16w +32w2 +2 1728448 w3 + 518695360 w? + 706843904 w + 458996344
€ 2556371 ¢*
= Vw <1 T 162 —2 707200028 + 110455488 22 — 39784960 = + 144470392 | ) ’
1_ 13€ gyt
y = arccos 308 w3 + 200 w2 + 400 w + 258
2w3/2
1+ 13¢ N 290035289 ¢> L
~ arecos 1623 — 282 +30 ' 11437404803 — 2236835/2392 x2 4 7982806560 = + 9574893592 7
w

14



290035289 ¢*

YU T 33238208032 w? + 35449717760 w? + 30488323136 w + 11959840616
6(17 4339 ¢ +qq+--->
. - 1733 w° — 55408 w? + 2992 w + 36867
234 — 77w + 91 w2 — 170 w3
6(1+ 4339 € _qqq+...)
_ 1696 2% + 4926 % — 28957 = — 26043
1323 4+ 3122 — 722 + 344 ’
- 477927637 >
99 = 15857700151 w? — 1431606991 w? — 2016123508 w + 7704208617’
_ 477927637 €
999 = 915645540 2° + 3113407751 22 — 257448438 = — 3676219901 °

What is it with 283 = 566/2 = V80089 = /226651877 Answer: —283 = discriminant(w4 —w-—1) =
%/discriminant(:r4 +323 —522 421z +17).

Using the negative root w ~ —0.72449195900052, these expansions through e* go

b~ —0.9125730603509 (1 — 0.04769878803144 € — 0.01401078082448 ¢*
—0.0050002222638 ¢ — 7.44689129426338 - 10 ™* €* + - - -),
u &~ 0.85117093406702 (1 — 0.07866586437604 ¢ — 0.01169998061242 €
—0.00163136901344 € 4 1.1997262491263 - 10~ * €* + - -),
y = arccos(0.81081103497608 i (1 + 0.29582732047992 € 4 0.07670823278512 ¢
40.02128110984092 €® + 0.00440366306328 ¢* + - - -)),
g ~ 0.00248633800734¢(1 — 0.87527986918762 € + 0.20054769983458 €> + 0.0025905870597 €* + - --),

suggesting a fairly commodious radius of convergence.

The positive root w = 1.22074408460576, s, (e — w? — 2w2) =-1,0,1,1,—1,e — 4.7996, . . ., has expansions

b = .97451669219348 (1 + .02478371881502 ¢ + .00317253690858 ¢
+4.97976424690216 - 10~ * €* + 8.74003233413136 - 10 ° " + - - -),
u = 1.10487288165008 (1 — .01269137385174 ¢ — .00121848904668
—1.63711992744874 - 10~ * €® — 2.5512354068948 - 10~ ° ¢* + - - .),
y = arccos (.37070894172584 (1 — .00810147538142 ¢ — .0018053537704 ¢
—3.84723167907628 - 10~ * ¢* — 8.0356533846957 - 10 ° € + 1)) ,
g = —.02972037154846 ¢ (1 + .1115487179065 ¢ + .01495508864096 ¢

+.00221611060456 € + - - -).

Another interesting Somos4 (apparently (strong) polynomial (non-E)DS) is

$0,81,-.. = 0,Ld,Lmi(x—i),—i (2®+iz+1),—i (® —w+i),—iz 3z —24),i
(w5+ix4+3ix2+3x—i),i (z —1) (x5+ix4—3x3+2im2—2x+i),
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—i (2" +2i2% —32° +9ia" +52° —3ia® — 32 +1),

—x (:c2 +ix+ 1) (ﬂc6 —22* +5i2* + 92 —9ix — 3) ,
which gives us Gaussian integers, among other things. As with the previous Somos4 polynomial sequence, there
is likely a value of = for which the ¥ degenerates to a Chebychev, and consequently another set of elementary

expansions of the ¥ parameters about this z. But foo, these polynomials are essentially identical to those generated
by the —1,0,1,1,—1,z,z 4+ 1, ... sequence.

Corollary 4: the determinant

DQ(S, t, u, 11)207
w7 117 y7 z

where s,t,u,v,w,x,y, and z are arbitrary integers. Proof: Dodgson’s rule, provided the central 2 by 2 doesn’t
vanish.
Expression as ¥: Email from Noam Elkies to sci.math suggests the relation

oo

- - - 3\ 1

k=—o00
Using n € {2,3,4,5} to numerically approximate b, u, g, and z,
{b =1.01943271913292, u = 0.63853138366726, z = 0.05462469648874, ¢ = 0.02157360406362} .
These constants do not appear to be in Plouffe’s collection. Plugging in —3, —2,...,10, 11 for n gives
{6.99999999999998, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.99999999999998, 23.0, 58.9999999999998,
313.999999999998, 1528.99999999998, 8208.99999999994 },

in good agreement. Due to the pleasantly small value of g, we even get 1123424582770.98 for a1s = 1123424582771.
In fact, the only terms affecting this double precision result were —9 < n < —2, making the series a competitive
alternative numerical method.

With Jacobi’s imaginary transformation, we get an even nicer, entirely real expression:

an = bu("73/2)2 Ya ((n — g) y,q)

with
y ~ 1.9511889024071, q ~ .07632928490026,
9 3_y7 1/8 9 g’
b= 4(27(1)9/8 ~ .92252487906093, u = # ~ 1.10763024250632.
,194 (%7(]) 194 (77(])

A,, not surprisingly comes out as a 91, also with a fairly small ¢:
(oo}
An = —2bu™ Z (—1)k ¢© FD? gin (2k+1) ny)
k=0
= —pu™ 91 (ny,q4) ,

where

y = 1.9511889024071, g = 0.52562110924304, b = .92252487906093, v = —1.10763024250632.
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Note that this ¢ is raised to the fourth power in the 91, so that, modulo an alternating sign, these parameters
are identical to those in the ¢4 formula for a,. I found these parameters enormously tough to compute (prior
to Jacobi-transforming the a, expression), which may explain their absence from Elkies’s email. Then again
I flunked numerical analysis. Of course, now that we have it, the Chebychev expansion is also valid at w =
1.22074408460576, x = w> — 2w? = —4.79960475359606, which is close enough to —5 to provide an excellent first
approximation. To a different solution, however! (Negated b and w, m-complement of y.)

Testing the non-Chebychev expression:

0 = 0.0d0,1 = 1.0d0,1 = 1.0d0, —1 = —1.0d0, =5 = —4.99999999999998d0, —4 = —3.99999999999998d0, 29 =
28.9999999999998d0, 129 = 128.999999999998d0, —65 = —65.0000000000002d0, —3689 = —3688.99999999996d0 .

Recalling that A, = sp(—5) = s2n(1), where s, (z) is the EDS polynomial sequence satisfying Somos4, we sought
a U1 expression for s,(1) to see if s2,,(1) gives the same expression as the ¥1 for A,. In fact, we found (with
much difficulty) ten 91 expressions that agree with s, (1) for integer n. For noninteger or nonreal n, symmetry
suggests that there are as many as sixteen different functions. (And not one of them coincides, for n «— 2n,
with our A, expression.) The sixteen seem to divide into two classes of eight. Within each class, their values at
n=1/2,3/2,... agree modulo conjugation and multiplication by some integer power of 7.

However, there appear to be more than sixteen (y,q) pairs producing s,(1). Ie., there are multiple ways to

express s, (1) as bu™’ Y1(ny, q) that agree even for complex n! In particular,

po _ 012y.9)° oy 9.9’ 91 (3y.q)

V1 (y,9)° 91 (3y,q)’ ¥ (2y,9)°

and

2

_91(29,9)° Y1 (ny,q) (_191 (v,9)° 0 (3y,q)>n
th (y,9)° 1 3y, ) 0 (2y,q)°

seems to be exactly the same function of complex n for

sn(l) =

y ~ 0.49235539271999 — 0.74875275029651 4, ¢ ~ 0.690185826345551 4 0.54229640598463

as for
y ~ 1.11453161008963 : + 0.62943384983216, ¢ =~ 0.63418111840451¢ — 0.43035475675355.

(These are not mutual Jacobi transformations.)

Over a period of several hours, an automated grid search cum Newton’s method turned up the following approx-
imate (y, q) pairs for s, (1):

Y q

1.2482046102601 ¢ 4 0.04657952537373  0.2041895179564 ¢ 4 0.06533908137423
0.78322226431624 7 4 0.30719109513916  0.45270853094805 % + 0.20573877584467
0.49235539271999 — 0.74875275029651 7  0.69018582634555 7 4 0.54229640598463

1.0429573809123 7 4 1.37265463822724  0.73581195373709 ¢ 4 0.23968436737044
1.00790006282379 % + 0.75028009770783  0.73581195373709 ¢ — 0.23968436737042
1.11453161008963 7 + 0.62943384983216  0.63418111840451 7 — 0.43035475675355

0.2917595098002 7 + 1.21452080661459  0.2041895179564 7 + 0.06533908137423

0.4615909499519 7 + 1.463034339711 0.86308985589011 ¢ + 0.319843560314

2.01129861135631 7 + 1.12816860769464  0.45270853094804 ¢ + 0.20573877584469
0.2388285214227517 4+ 1.76522302148841 0.73581195373708 ¢ + 0.23968436737043 .
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The last three are quite unlike the first seven for noninteger n. For integer n, s,(1) is real and the conjugates
of all these work as well. Note the equality of the first and last ¢ in the first group. This would seem to be an
instance of translation by a quasiperiod, via

(_1)n eQiny 191 (y7q)
2
q’ﬂ

Y1 (y +inlogq,q) =

for some integer n. But there are three problems with this. First, following a tradition that still puzzles me,
we have made no provision for a geometric (r™) factor in our ¥ formulee, even though the recurrence relation is
unaffected by such a factor. (Ah, but the EDS relation is affected.) Second, if we go ahead and solve for n,

n = 0.75842109957414 4.

Not an integer, but pure imaginary, for some reason. Third, if, for some integer n, one of these turned up in our
search, why wouldn’t we find dozens more engendered by other values of n?

Also compare the fourth and fifth g of the first group with the last ¢ of the second group. This offers hope for
some simple relation between the corresponding y.

The grid search also turned up three spurious pairs,

Y q

0.16973145507896 7 4 0.59439464562658  0.7091459745365 7 4+ 0.51937050102005
0.156704716161327 4 0.57764641771107  0.61450698230835 7 — 0.63841374520714
0.13574561978509 7 4 3.27166894673346  0.39191084430236 ¢ 4 0.91218127829481,

which generate the sequence

_ 144rn_3rn_1 +432r5

—Tr_n =

Tn
4

T
— ...,—1,0,1,223,—2%3% 2730 912310 _9l6315 523320 _ 20 326 5 537 333 7 d6 341 555 350 13
908 361 977370 31 990 381 9g 9103 393 11 o117 3100 559 9133 3120 11 17 _9ld8 3185717

whose significance thus far eludes me, although it appears to be a (weak) EDS.

Somos5 differs from Somos4 in two respects: b, = bs_, instead of a, = as_,, and a different order-reducing
relation from Conjecture 4a.

Substituting into Conjecture 4.5 s,, = bp,u =2,y =0,z = —1,v=1,w =0,
D <x+1/2, 3/2, 1/2 ) bibes bz batr b1 bave '
b =

ba—zbry1  bibo bo b3
v 1/2 =12, =3/2 bi_wby  bobi  b_1bs

b2« by bzt1 bo—1baio
T T 1 = 0.
by brys 1 2

This gives us bz, in terms of five values near b,. Alternatively, put z—1for z, thenu =2,y =2,2=0,v =0,w =1
to get

b2 b2 rz—1 bacfl bac+2 bx bx+1
ba—g bzt b_1b2 bo b1

b371 bz bo b3 bl b2

b (T+1/2 172, 3/2 _
*\z-3/2, 3/2, -1/2) ~
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b2 x—1 bx—l ba:+2 bx bac+1
= | bo—1bate 2 1 = 0.
b bos1 1 1

This gives us baz—1 in terms of four consecutive b values. However, we can reduce these to three!

bor—1 2bax  bag—2
bor  bory1 bap—1
bagt1 bakt2 b2k

Db<k—1/2, k+1/2, k+3/2)_ o,

k—1/2, k+1/2, k—3/2

or
bak—2b3 441 — 3bakbor—1baki1 + 203,

b2, — b2k bak—2

bo k2 = —

)

a fourth order recurrence. Alternatively,

p (k=3/2 k=1/2, k+1/2) _
"\ k—1/2, k+1/2, k+3/2) "

-2 ((3b§k—1 *4b2kbzk—2) b2 k+2 +3b2k—2b§k+1 — Tbakbak—1 b2kt +5b§k)

or
3521@725%;#1 — Tharbop_1bapyr +5b3,

303, 1 —4bagbak—2 ’

bakye = —
a different fourth order recurrence. Subtracting,
b3k obsgi1 + (2 b3 k1 — Dbokbak_obo kfl) baktr — b3 b3k 1 + 3635 b2ro2,

a third order recurrence for bai+1 in terms of the three previous terms. (Assuming you know which sign to take
on the square root). But what about b2x? Simply replace k by 3 — k and by by bs—s, and we have bai in terms of
bak—1,bak—2, and bax_3:

2bok—3b3 k1 —b3p_obir_1 —Bbakbok_sbor_obap_1+3baybsp_o4+b3b3k_3=0

But this sensitivity mod 2 entails four residue classes when we order-reduce the duplication formulse.:

0 = b§z+2 biz—l +Gbgzbgz+2 b4171 —21 bgzb§z+l b§z+2 b4a771 +16b2zbgz+1 b2I+2 b41*1
—4b8 41 a1+ 965, b3 — 36D5, b5 11 b3 40+ 575, b1 b5 4ro — 3665, 69,41 baoto
+8 bgzbgac+l

-3 b%z b§z+2 + 4b232 b§z+1 b2$+2 - 2b%z+1 + b4£8
2 2 3 3 2 2 2 4
= baabipr1 602,02, 2b4041 — 2105, 02,4102, 1204241 + 16022 b2, 11 2242 baap
—4b5 1 baot + 9b20 b5 o2 — 36055 b3 1 b3 o + BT D4 bt Daagr — 36020 b1y B3 oo
+8 bg x+1 b% x+2
= b3y biare —6b2ubaaiabioia + 3263, 03001 b3uqabaaye — 62055 b2in bayo baato
+40b22 b5 41 b2ar2bazia — 83,41 bansa + 9bo, by gro — 4865, b3 i1 bl o
86655 241 b5 o2 — 56b2s b3 i1 b3 s + 1205 501 ba g

We can obviate the first or last of these with (respectively) the odd or even version of the third order recurrence.
This takes care of doubling.
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As with Somos4, we assume three or four values near b,, and another tuple near b(n“)x, Then

(n+1)z+1/2 1/2 3/2 bet1b@nt)e bnt+1)o—10m+1)a+2  Ont1)a Ont1) a1
D”( nx —1/2, -3/2, 1/2) - bnabnats 2 !
bnz+1 bnz+2 1 1

= 0

gives b(an41)e. Similar constructions provide the adjacent values, and in principle, we can use the third order
relations to make everything work on triples.

Note, however, that we could avoid the square roots and mod 4 intricacies by maintaining four values instead of
three, with the help of the fourth order relations that we subtracted to get the third order one.

(Brief flame: a nearly forgotten fact of hardware design is that a binary square root instruction via the “schoolboy
algorithm” is actually simpler than the divide instruction. In the early 1960s, the Packard-Bell 250, as feeble a
machine as you could imagine, whose active registers were magnetostrictive delay lines instead of flip-flop words,
and whose divide instruction needed a software followup correction, nevertheless had a hardware square root (with
remainder) that worked perfectly, in the same time as an uncorrected divide.)

But which sign of the square root do we take? Not obvious! E.g., suppose we try to use the third order Somos4
relation to compute a, from the three previous values:

443 3 2 3 3 T 6 3
s \/ day_gay o +12a; g0z 505 1 —8as-30a; 5001+ a7 o i 2ag-2 az—1 Qy—2
- x

lo .
2 2
2as_4 Az—3 2a%_5

Then for 2 < z < 38, the sign s, coincides with

sgn (¢ (z—1) —md (¢ (z — 1)),
where ¢ is the golden ratio, and rnd(z) := |z + 1/2], the “round” function. But for z = 39, this fails!

In practice this isn’t really a problem, since we can simply choose whichever produces an integer value for a,, and
we can usually check this modulo something small. But there may be another solution.

To take a simpler example, from the third order relation for b,,, we notice that

Vb2 ni1banss — b2, 0 = 1,0,1,1,8,57,455, 22352, 47767, 69739671, . .
may be an elliptic divisibity sequence. Trying various sign patterns, we eventually find the recurrence

_ 8hn—ahn—1+57Thn_3hn_2
hn75

hn = =1,0,-1,1,8,57, —455,22352,47767,69739671, 3385862936, . . . .

But this disobeys the EDS formula. Searching further,

_ 57gn-39gn-—2—8gn-agn1
gn—5

In =—1,0,1,—1,—8, 57,455, —22352, —47767, 69739671, —3385862936, . . .

appears to satisfy the EDS addition formula. Evidently, g, = —h», except when n = (0mod 4).

It seems reasonable to conjecture that the desired sign pattern for these square root expressions is one that yields
an EDS, or at least a simple recurrence. An example of the latter is
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V/3Bb2nbaniz — 203, =1,1,1,1,7,1,391,2729, 175111, ...,

which cannot be an EDS. But there is an assignation of signs:

_ 57f'ﬂ*3 f"L*2 _8fn74 fnfl
f'"’ B fn—5

i.e., the same recurrence as g,, above.

=—1,-1,1,1,—7,—1,391, —2729, —175111, 8888873, 565353361, . . .,

Unfortunately, the order of the recurrence is likely to exceed the order of the relation that engendered the square
root, defeating the presumable purpose of maintaining smaller intervals of consecutive values.

However, these f and g sequences serve another purpose if we interlace them:

Bn _ Bn—4 Bn—l + Bn—3 Bn—2 _ —B—n
Bn75

-1,0,1,1,1,-1,-7,-8,—-1,57,391, 455, —2729, —22352, —175111, —47767, 8888873, .. .,

which is not quite an EDS. Yet we have

_ Bont1bg—1bk—2n—2 — Bant2bp—2bp—2n-1

by

I

Bonbi—2n-3
generalizing the Somos5 recurrence.

Note that B, obeys the Somos5 recurrence, yet somehow jumps from 1 to 7, via the well known identity —7 = 0/0.
(Of course, in the limit of absurdity, any sequence which is alternately 0 satisfies Somos5 and SomosT.)

The k-tuple speedup formula is
By Ba i bnbnysk = B2k B3k bnik bnyar — Bk Bak bny2k bnysk.

A three-variable generalization of these last two relations is

b — B2 Boktjbn_jbn_or—2; — BjBoriojbn_2;bn_2k—;
" B;jBapbn_21-3; '

This is the same relation as with a and A, except that k must be even. The further generalization k «— k/2
involves an additional term that appears guessable, and seems to vanish for even j.

Thus, if by, is the Somos5 cosh, then B, is the sinh, although a glitch is that b,, is centered at n = 2 rather than
n = 0. As with a and A, we can merely substitute B for b in the last identity:
B;jBap BnBn2k-3; =B2jBogyjBnjBn_ok—2; — BjBagi2; Bn2j Bnok_j.

This all suggests that A and B will have cheaper addition algorithms than a and b (Somos4 and 5). But caution:
even though B, isn’t quite an EDS, its values mod 19 lie in {0,1,7,8,11,12, 18}. There may be other moduli with
even (proportionately) sparser residue classes.

As with A4, we can replace the Bs = —7 (= 0/0) term by x to get a sequence of polynomials:

sn=-1,0,1,1,1,-L,z,2 —1,-L,a° —z+1,-a’ + 2> - 1, -z (2" —22+2),—2" +2° — 22+ 1,

(z—1) (x4—a:3+x2+1),—x6+3a:5—3x4+3x2—2x—|—1,21:5—5x4+6m3—2x2—x+1,....
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These do not form an EDS, even with reassignation of signs, except when x = —2. But they retain “strong”
divisibility,

(sk(x), sn(2)) = [S(k.m) ()],
for all z.

What does (apparently) form a (weak) EDS is the (algebraic) sequence

(=1)"+n?
tn = 8n (—x —1) 8 ,

which could be made (peculiar) polynomials with = —1 — ¢/:

cey _1707 1ay57y87 _y17a _y24 (y8 + 1) 7_y37 (yg + 2) 7_y485y65 (y16 + 3y8 + 3) )
y80 (y24+4y16+5y8+1) 7yl()l (y8+1) (y16_~_4y8_~_5)7
120 <y32+5y24+9y16+5y8_ 1) L

This EDS satisfies both the Somosboid

_ tn—3 tn—2 (_1: - 1)3/2 + tn—4 tn—l (_33 - 1)
n — tn—5 )

and the Somos4oid

o testn (-2 D42, (—z—1)

tn—4

Eliminating ¢,—5 and t,_4,

(th—otn+tasts 1) (~2—1)>* +tu st otn1tnvV—z— 1+t 3t
= tnogtn oty 1ty (—x—1) 412 12 (—z—1).

Solving for t,, yields a radical whose sign seems to depend on x.

In the special case 2 + 522 — 10z + 11 = 0, this EDS has the elementary formula

(n—1)(n+1)
41 — 35z — 22 8 1 /1122 + 172 — 244
b= [ ——————— Up_1 | =4/ ——————— =]
23 2 23

This is basis for the Chebychev expansion for the “sinh” analog of Somos5.

As in the Somos4 analog, the sprime polynomials are irreducible, at least through sez.

The polynomial degrees go

0,0,0,0,1,1,0,2,3,3,4,5,6,5,8,9,10,11, 13,14, 14, 17, 19, 20, 22, 24, 26, 26, . . . ,

being fourteen interlaced quadratic progressions:

deg s14g+r = (Tq +7)q + [~2,0,0,0,0,1,1,0,2,3,3,4,5,6],,  0<r < 13.

The polynomials appear to be monic, except for s7,, whose leading coefficients appear to be £n.
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Happily, the three-variable relation seems to hold for general x:

Sj S2k Sn Sn—2k—35 = S25 S2k+j Sn—j Sn—2k—25 — Sj S2k+25 Sn—2j Sn—2k—j-

Better yet, putting v = —z,v = —y and s, = —s_,, in Conjecture 4.5, we get the four (integer) variable, three
term relation

Sk—j+1 Sk+j S—n—i+1 Sn—i = S—j—i+1 Sj—i S—n+k+1 Sn+k T Sk—i+1 Sk+i S—n—j+1 Sn—j-

Caution: This fails for noninteger i, k, j, n even though the subscripts are integral.

In his email to sci.math, Elkies makes the remarkable observation (modulo typos) that t, := (2/3)"™med2)/4p,

satisfies the reduced order (quasiSomos4) recurrence
tn—otnio = V6t 1tni1 — o (Elkies).

It is probable that ¢, also satisfies a third order relation (of higher degree).

As with the Somos4 polynomials, it appears that s,(a) falls into k interlaced elementary progressions when
sk(a) = 0, but they are more complicated. Alternatively, they can be written as mk simpler progressions, for
some multiple m. E.g., sg(e'™/3) = 0 and s,(¢"™/3) is merely periodic, but the period is forty-eight!

Also like the Somos4 polynomials, we can get a 1)1 expression via the change of variables:

tan (arctan -1+ %)
tn(x) = 3

Sn(x),
— ()

where t,,(x) satisfies
tnoatn =tn-stnaV—x —1—12_,.
It shouldn’t be hard to find a Chebychev formula for some algebraic z, and hence elementary expansions for the

¥ parameters, as we did for Somos4.

Expression as ¥: Elkies’ email gives

b, = (3/2)(nm0d2)/4bu(n72)2 Z qu Sk (n72)7

k=—oc0

with ¢ = 0.02208942811097933557356088 . .., z = 0.1141942041600238048921321 ... .,
b = 0.9576898995913810138013844 . .., and u = 0.7889128685374661530379575 . . .. These constants do not appear
to be in Plouffe’s collection.

Similarly,

sn = B, tan (% + arctan %)

also satisfies the (Elkies) recurrence, giving

B, = bcot (% + arctan %) ™ Z (=1)* ¢ k+1)? sin ((2k+1) ny)
k=0

b ™ s n2 4
= §C0t (7+arctan\/6>u % (ny,q),
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where

b = —1.82905778669392, u = —1.07425451486466, y = 0.89396990235568, q¢ = —0.52353014451686.

Numerically testing this equation for —1 < n < 22:

—1 = -0.99999999999986d0, 0 = 0.0d0, 1 = 0.99999999999986d0, 1 = 0.99999999999986d0,

1 =0.99999999999984d0, —1 = —0.99999999999984d0, —7 = —6.99999999999914d0, —8 = —7.999999999998864d0,
—1 = -0.99999999999982d0, 57 = 56.9999999999918d0, 391 = 390.999999999952d0, 455 = 454.9999999999284d0,
— 2729 = —2728.99999999958d0, —22352 = —22351.9999999972d0, —175111 = —175110.999999977d0,

— 47767 = —47766.9999999918d0, 8888873 = 8888872.99999885d0, 69739671 = 6.9739670999992d + 7,
565353361 = 5.65353360999916d + 8, —3385862936 = —3.3858629359995d + 9,

— 195345149609 = —1.9534514960898d + 11, —1747973613295 = —1.74797361329478d + 12,

— 4686154246801 = —4.6861542468004d + 12, 632038062613231 = 6.32038062613152d + 14.

In email to sci.math, Randall Rathbun and Ralph Buchholz make the remarkable claim that the Heron triangles
with two rational medians have side lengths

[Bi+3 (Bf bigbipa + Bl bl Bfm) bits,
Biyobiya (BZQ b12+2 Bi2+3 b?—;-s + Bi2+1 Bi2+2 b12+3 bzg+4) )

Bit1biys (Bzz grtmed2 gl b5 + 4707, BY b?+4)] .

Somos6:
Ci_3 Cn—4Cp—2 Cn—-5Cpn—-1 Cn—6Cn
b(n=3% 0 1 2\ _ |1 3 5 9
“\o, 1,2 3/ = |1 1 3 5
1 1 1 3

2
= —4cp-6cnt+4cn-s5cn-1+4cn-acn-2+4c,_3s,

(four times) the defining recurrence for Somos6. But

0, 2, 4, 6\ o, _ —
o (33 4 5)-wmn(

so 4 by 4 isn’t enough. Building on the nonsingular matrix,

ol

NI
[MENIE
t\jlxnolo«
nolowo|g
N———

2
Cp—y Cyt+ax Cp Cx—1Cx41 Cx—3Cx4+3 Cx—4Cxpi4q

z, 0 2 4 6 C_yCy 1 3 9 23

Dc 0 1 3 4 = | C2—y Cy+2 1 1 3 15
oo B CaoyCyra 1 1 5 9

Co—y Cy+6 9 5 23 75

=80 Cy—y Cytz + (4 Cp—4Cpta+ 12¢Cy—3Cpy3 —D2Cp—1Cor1 — 44 Ci) Cy—1 Cy+6
+ (—16 Cp—d Cota — 88Cy—3 Cyq3 + 328 Co—1 Co+1 + 176 ci) Cy+1 Cytd
+(—28CoaCara—Aco 3Cops+284Ca 1 coyr +188¢3) cyracysn

+ (8 Cop—a Cota +24Cp_3Cpqs — 144 Cp—1 Cop1 — 48 ci) Cy+5 Cy,
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which empirically vanishes, providing a fairly messy addition formula. Using the defining recurrence to alge-
braically eliminate cyt¢, cz—4, etc., yields even messier relations, but with lower order (= width). The determinant
approach can’t do much better unless we can find a “narrower” non-singular 4 by 4. But this is unlikely, since re-
placing the sixteen numerical coefficients by undetermined ones indicates that the c¢y_1cy+6 term is indispensable,
and the cy_4cy44 term is not replaceable by cz_2cy42. Slightly better may be

80 Cx—y+1 Cyta = (_4 Cx—3 Cx44 — 8cCa—2 Czt3 + 16 cp—1 Cxt2 + 28 ¢, Ca:+l) Cy—2 Cy+6
+ (32 Cr—3 Cax44 + 24 Cp—2 Cx43 — 88 Cr—1Cx42 — 144 Cg Cz+l) Cy—1Cy+5
+ (—44 co—3 Copa — 48 Co—2 Coys + 176 Ca—1 Coy2 + 188 ¢y Cot1) Cy Cy+a

+ (8ca—3Caqa + 96 Co—2 Cays — 152Co—1 Cogo — 96 Ca Cat1) Cyt1 Cyts

from
1 1 1 3 13
c+d, -1 103 1
2 25 20 N
De o2 3 3 2 ) =0
Y—3 35 325 35 3

Conjecture: there is no sequence of bivariate polynomials obeying Somos6. Evidence: Initializing with

80,81,... =0, 1,$3 Y, _x6 y27$5 y2> _x8 y3 ($4y + 1) >_:E15 y57 LR
gives polynomials through s29, but then s3o has a denominator of x. Replacing y < yx will probably move the
violation a few terms to the right.

However, if we initialize with
$0,81,...=0,1,1,1,1, -2, x,...,

then we appear to get polynomials
57,88, .. :x71,2x+3,x2+5,m2+x79,7 (w3+2x2+4x+2) ,m2+13x7 13,
— (2" +22° +72° + T2 +32) 2" —2® +102° — 412 — 13,2° + 52" +102° + 72° + 322470, ..
which is decidedly not a divisibility sequence. In fact, the only reducible s, through sgg is
sie=—(z+1) (32" —2® + 212" =522+ 117) |
And, unlike Somos4 and 5, si(a) = 0 # smr(a) = 0.

Somos7: Random clue:
dp—11dr +dr—10dp—1 +dr—7dp—a = 61dr_¢ dp—s.

dn—4 dn—3 dn—5 dn—2 d'n—6 dn—l dn—’? dn

n—2, L 3 5 1 3 5 9

D 27 27 2 2 —
d( 17 s 5 1 1 1 3 5
1 1 1 3

—4 (dnf'? dn - dnfﬁ dnfl - dn75 dn72 - dn74 dn73) 5

) = 160,

the defining recurrence. But

IS8
7 N
[V NIV
[SIEENIES
NJOW |~
[S]Re Sk}
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SO

d_y+x+1 dy+x dg;_1 dgj+2 dw dgj+l dx—2 dz+3 doc—4 doc+5

e+l 3 11 9 d_y_1dy—2 9 15 17 137
Da{ % _3 % 2 3= di—y dy 3 1 5 17 ’
Y—13, 27 325 29 3 ds_ydyis 1 1 1 15
ds—y dy+4 1 1 3 9

and

160 dy—yi1 dyse + (ddos doss +12dp—2 doss — 28doy doso — 44dy dusr) dy—o dysn
4 (12ds—adors +36dos duss — 164dy_1 doro — 52ds dus1) dy dyss
4 (—28das dyrs — 164dss durs + 356 dur durs + 228 du dys1) dysr dysa
+(—44dy—sdays —52dy—2dpt3 +228dy—1dey2 + 324 dy duy1) dytodyts

appears to vanish.

Messy doubling formulee, in case I don’t find anything better in the next few days:

dok—1 = —(dk—s dp—2dpta di+7 + 3dp—3 di—2 dpyo diy7 — 7 dr_o dps1 digr
—11dp_odi_1drdiyr +3dn_sdpdpsadiss +9dr_sdi dirodiss — 41 dg_odi dis1 dess — 13de_1 di, diis
—Tdp—5di+1 di+4 —11dk—5dik+2 dit3 dpta — 41 di—3 di+1 diy2 diga + 89 dp—2 di+1 dit+a +57dr—1dk di+1 dit4
—13dg_3 dpyodiss + 57 dp—o dyt1 dito diys + 81 di—1 di diro dit3)/40

doy = (dg—6 dk—1 di+5drvs — 3dr—adi—1 dit3 dits + 11 dg—2 di—1 dit1 dits
—47dj_y dy dirs + 3di—6 i1 diors s — 9 di—a dir dits dis + 53 di—2 di 41 diys
—161dk—1 dy dt1 dirs — Tdi—6 diyz drys — 11 di—6 dits disa dirs + 41 di—a it diys dits
~137dj—2 djpt1 diy2 diogs + 329 dy—1 di, dir2 diys + 13dy—a di i3 diya — 81 dj—2 dir1 diys diota
+577 dg—1 di die+3 diy4) /120

dar = (dk—6 di—1 di+5 divs — 3dk—3 dg—1 div2 dits + 8dp—2 di—1 di+1 dits
—50di_1 dr dirs + 3dk—6 dis1 diis dire — 9di—s diy1 diro diye + 44 di o diyy diye
—170dg—1 di dit1 diro — 7k dyo diys — 11di—6 diys dira dirs + 41 g diyo dicys
=96 dk—2 di+1 di+2 dets + 370 dk—1 di dit2 dit5 + 13 di—3 dit2 dioy3 dis — 68 dk—2 dioy1 dioy3 dita
+590 di—1 dy dy+3 di+4) /120

As an existence proof, here is a 6" order relation:

0= ((di—6 dr—sdi—3 + di—6 di 5 di—a) di—1 + (dx—c di 5 di—3 + di_5 dx—1) di—2 + di_g di 3
+2di—¢di—sdi—adi_3+di_5di_4 dk—s) di + ((di—s dx—5di—2
+di_gdp—adi—3 +2dy—¢ di—s di%) di 1 + (2 di—edi_sdi_o+ (2 di—gdi_3
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—56 dy—6 dx—5 dx—a dk—3 + 2dp_s di_4) di—o + 2di—¢ dn_s di_3
+2dp—sdy_4 dk—s) deor +di_sdi_o + (2 di-odi-5dp_3+3dn_5di_s dk73) di—s
+ (2 di—6 djg—a difzg +2di—s di74 di73) dk72) di + (difs di—adi—2 + dr—¢ d274) dzﬂ
+ ((di—6 dr—s + 2di—s di—s dx—1) di 5 + (3d—o di s di—s + dy—5 di_4) dy—2
+dj_4 dkfs) dr 1+ ((2 di—6 di—5 dj—3 + di 5 dk74) di o+ (2 di—6 dx—a di_3
+3dx s di_sdis) dis+2di_sdi_sdi_2) de 1+ di_s5di_sdj_»
+2dp—sdy—adi_sdp_o +di_sdi_sdi_s.

It appears that
s_a(x),so(x),..., = —1,0,1,1,1,1,1,-2,z,2 — 1,220 — 3,0 —4,2° —do +2,2° -2 —1,...,

gives a (non-divisibility) sequence of polynomials. The special case = 1 appears to give eight interlaced arith-
metic(!) sequences:
8811+7‘(1) = (7)q[0, 15 2(] + 1a 1a 17 17 72(1 - 27 1]0§1"§7~

A curious initialization is

4.,—%,1,1,1,1,1,1,—\/5,2—\/5,3—2\/575—4\/5710—8\/5,28—20\/5,107—76\/5,455—322\/57...,

where the first term with denominator > 1 is

_510156039514521981558192050 — 360734795003990787362927953 V2
= 5 ,

dsa

and the first term (after d_i; = —3/+/2) with magnitude > 2 is

dzg ~ 2.3813134529.

References:

Plouffe’s Inverter: http://www.lacim.uqam.ca/pi/indexf.html

Sloane’s Sequence Server: http://www.research.att.com/ njas/sequences/
Theta Functions in Macsyma [5]

Zagier notes on Somosb and elliptic curve:
http://www-groups.dcs.st-andrews.ac.uk/~john/Zagier /Problems.html
and [4].

Ylike double sum involving seven empirical constants for Somos6:
http://grail.cba.csuohio.edu/~somos/somos6.html .

Jim Propp’s Somos sequence site: http://www.math.wisc.edu/ propp/somos.html .

General: Google search Somos sequence* and Elliptic divisibility.
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3 Modular Theta Functions

This section explores mod P analogs of some classical special functions. We're interested in the general problem of
developing modular analogs for classical special functions of analysis. The modular versions of exponentiation and
logarithms have been known for two centuries. These are easily generalized to modular trigonometric and hyper-
bolic functions, and thence to elliptic functions such as sn, cn, dn, and Weierstrass . The modular Gudermannian
function gd converts between sin and tanh. A modular version of the amplitude function am converts between
sin and sn. I've already mentioned modular polylogarithms. This note introduces modular theta functions.

3.1 Elliptic Function Review

The classical elliptic functions arose from trying to determine the arc-length of an ellipse, by integrating expres-
sions involving the square roots of cubic or quartic polynomials. Elliptic functions are analytic, complex valued
functions, that take complex number arguments. They have two periods. One period is usually taken to be a
real number, and the other is necessarily complex. Elliptic functions have poles as their only singularities (at
finite locations). The two periods make a period parallelogram, covering the complex plane in a regular pattern.
The function values repeat in each parallelogram. There are two popular ways of discussing elliptic functions,
depending on whether the basic integral is the square root of a cubic or quartic polynomial. The two ways are
equivalent, but the choices lead to differences in details of the formulas. The Jacobian elliptic functions (]2, 3],
chapter 16) lead more naturally to theta functions. The basic Jacobian elliptic functions are sn(u, k), cn(u, k),
and dn(u, k). Typically k is fixed in an application (it is related to the shape of the period parallelogram), and
it is often elided to simplify formulas. These functions have two poles and two zeros in each copy of the period
parallelogram. Some of the fundamental formulas are

2 2
sn“u+cn‘u = 1
2 2 2
k“sn“u+dn“u = 1
!
snu = cnudnu
snucnvdnv+snvcenudnu
sn(u+v) = PG Se—
1 — k2 sn?u sn?v
9 2snucnudnu
sn2u = —m———
1 — k2sntu
snu = sin(amu)

The sn and cn functions can be regarded as sine and cosine of a distorted input. The am function captures the
distortion. Chapter 16 of Abramowitz & Stegun [2, 3] has much more, and the classic Whittaker & Watson [11]
explains what’s going on.

3.2 Elliptic Functions vs Elliptic Curves

An elliptic curve can be parameterized by elliptic functions, just as a circle can be parameterized by circular
(trigonometric) functions (cos and sin) and a hyperbola by hyperbolic functions (cosh and sinh).

Y? = EX'-(14kK)X*+1
(X,Y)

(cnudnu)® = (1 —snu)(l— k*sn’u)

(snu, cnu dnwu)
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The original applications of these ideas were for real and complex applications, but there has been a minor
component of number theory ever since Diophantus (c. 200 AD) introduced problems that reduced to cubic
curves. The theory of finding integer and rational points on elliptic curves has undergone a major development
in the last century. The application of elliptic curves to cryptography depends on the fact that what works for
the fields R, C, and Q can often be made to work for the fields mod p and the Galois Fields GF[p"].

3.3 What’s a Theta Function?

Theta functions were probably first introduced by Euler. They arise from some infinite products related to the
partition function. Theta functions have rapidly convergent series, and they are closely related to elliptic functions,
which makes them useful in computing elliptic function values.

Like elliptic functions, theta functions are complex valued functions with one complex argument, and a second
shape parameter. They only have one true period, but they have a second quasiperiod. The period is often taken
to be 1 or 27, while the quasiperiod is a complex number. Together the two define a parallelogram, as with elliptic
functions. Changing the argument by one period leaves the value of the theta function unchanged, while changing
the argument by the quasiperiod multiplies the theta function by a fixed value. In one sense, theta functions are
easier than elliptic functions, since they have only one pole and one zero per parallelogram. There are 4 basic
theta functions, with the pole located either in the corner of the parallelogram, in the middle of a side, or in the
center. Elliptic functions are ratios of theta functions, with the same parallelogram.

3.4 Some Basic Properties of Theta Functions

)

n n? 2inz
a(zg) = D ()€
194(25 + 7T) = 194(2)
Yalz4+7) = ¥04(2)
P,2,3 = ¥4+ half periods 7/2, 7/2, (7 +7)/2
da(zq) = [[1—)(1 - eos2: 44"
n=1
sn ﬁ cn ﬁ dn ﬁ
9y 9y’ V4

Similar products exist for 91,2,3. The partition generating function is 1/ Hzozl(l — q™). Gosper has developed a
package for manipulating theta functions in the symbolic algebra program Macsyma [5].

3.5 Theta Function Identities

As with the elliptic functions, there is a multitude, nay, a plethora, of theta function identities. A small sampling
is presented below. 9¥;(0) is abbreviated to ;.

V5 +09; = 03
93(2)05 = 19304(2)*192193()
91(2) +93(2) = Ua2(2) + ¥i(2)
Dy +2)01(y — 2)97 = 91(y)0i(z) — 93(y)0i(2)
D4(2y)97 = Vi(y) — Vi)
V91 (2y)929504 = 291(y)92(y)93(y)Va(y)
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The equation 93 +95 = 95 has no non-trivial rational solution. (Clearing denominators would lead to a solution of
Fermat’s equation for exponent 4.) This is in contrast to the situation with elliptic curves, where modular solutions
of the elliptic curve equation (“points on the curve”) can be turned into rational solutions of an equivalent elliptic
curve.

The restriction against rational solutions can be circumvented by switching to another field where the equation
has solutions. Two obvious choices are an algebraic number field, or to work modulo a prime number. I decided
to experiment with the modulus P = 43. A 4k + 3 prime was selected so that more fourth powers exist and so
that the number i = v/—1 has independent meaning. I selected trial values mod 43 for ¥1_4 and ¥1_4(1). The
values were chosen to be compatible with the equations above. Having selected these 8 numbers, we use theta
function identities to compute a table of ¥1_4 evaluated at 2, 3, etc.

Theta Functions Mod 43

N Y91 Y2 U3 s
0 2 14 1
1 11 7 2
2 11 24 33 15
3 1 24 24
4 34 12 32 36
5 17 25 7 3
6 35 0 39 30
7 38 20 3 32
8 8 25 5 11
9 16 27 40 40
10 14 32 42 23
11 24 37 39 5
12 0 4 15 41
13 7 34 37 29

ratio 13/1 O Y G

Note that row 12 has a relationship to row 0, with 9¥; and 92 being doubled, while ¥3 and ¥4 are multiplied by -2.
Rows 13 and 1 are similarly related, with ratios 7. We find a ratio relationship with consistent signs, between
rows 24 and 0, 25 and 1, etc.:

Row 24 = 16 * row 0; row 25 = 24 * row 1; row 26 = 36 * row 2.

With a large enough separation between rows, a constant ratio will develop, and after some larger separation, a
true period will appear.
An equation similar to the Somos recurrence works:

93(n) =891 (n+ 1)91(n — 1) + 91 (n+ 2)d1(n — 2).
We explore the ratio relationship between theta functions and elliptic curves:

o 193 " 191(n)

T 02 daln)

sn(n)
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n sn(n)
0-11  0,25,8,20,9,11,1,11,9,20,8,25, this row is symmetric
12-23  0,18,35,23,... this row is the negative of the row above

Cn and dn work as well. Checking out the elliptic curve that is parameterized by these modular elliptic functions,
X =sn(n); Y = cn(n)dn(n)
Y?=1-7X>+6X"=(1-X?)(1-6X?) ;elliptic curve equation
Cn and sn are relabeled sine and cosine: The set {cn(n) + isn(n)} is the powers of (13 — 2¢) mod 43, but in an

apparently random order. Note that 13 — 2i is on the mod 43 unit circle, since ||13 — 2i|| = 13% + 2% = 1 mod 43.
The random ordering is captured by am, which in the real world is the distortion function:

sn(n) = sin(am(n))

3.6 Some Possible Uses of Modular Theta Functions

Modular theta functions may be directly useful in Diffie Hellman key exchange. They could be used to compute
elliptic curve values. And they provide another example of a modular analog for a classical special function.

4 Conclusion

There’s a lot more to learn here.
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