
Obfuscation for Cryptographic Purposes

Dennis Hofheinz1, John Malone-Lee2, and Martijn Stam3

1 CWI, Amsterdam, Dennis.Hofheinz@cwi.nl
2 University of Bristol, malone@cs.bris.ac.uk

3 EPFL, Lausanne, martijn.stam@epfl.ch

Abstract. An obfuscation O of a function F should satisfy two require-
ments: firstly, using O it should be possible to evaluate F ; secondly, O
should not reveal anything about F that cannot be learnt from oracle
access to F . Several definitions for obfuscation exist. However, most of
them are either too weak for or incompatible with cryptographic appli-
cations, or have been shown impossible to achieve, or both.
We give a new definition of obfuscation and argue for its reasonability
and usefulness. In particular, we show that it is strong enough for crypto-
graphic applications, yet we show that it has the potential for interesting
positive results. We illustrate this with the following two results:
1. If the encryption algorithm of a secure secret-key encryption scheme

can be obfuscated according to our definition, then the result is a
secure public-key encryption scheme.

2. A uniformly random point function can be easily obfuscated accord-
ing to our definition, by simply applying a one-way permutation.
Previous obfuscators for point functions, under varying notions of
security, are either probabilistic or in the random oracle model (but
work for arbitrary distributions on the point function).

On the negative side, we show that
1. Following Hada [12] and Wee [26], any family of deterministic func-

tions that can be obfuscated according to our definition must already
be “approximately learnable.” Thus, many deterministic functions
cannot be obfuscated. However, a probabilistic functionality such as
a probabilistic secret-key encryption scheme can potentially be ob-
fuscated. In particular, this is possible for a public-key encryption
scheme when viewed as a secret-key scheme.

2. There exists a secure probabilistic secret-key encryption scheme that
cannot be obfuscated according to our definition. Thus, we cannot
hope for a general-purpose cryptographic obfuscator for encryption
schemes.

Keywords: obfuscation, point functions.

1 Introduction

The obfuscation of a function (or, more generally, a program) should provide
nothing more than the possibility of evaluating that function. In particular,
from an obfuscation of a function, one should not be able to learn more than
one can learn from oracle access to that function.

History and Related Work. Practical yet informal approaches to code obfuscation
were considered in [13, 16]. The first theoretical contributions were made by
Hada [12] who gives a security definition for obfuscations and relates it to zero-
knowledge proof systems.

In their seminal paper [1], Barak et al. define a hierarchy of obfuscation
definitions, the weakest of which is predicate-based and the strongest of which is
simulation-based. They show that there are languages that cannot be obfuscated,
even under the weakest definition that they proposed. Specifically, they show that
there are (contrived) sets of programs such that no single obfuscation algorithm
can work for all of them (and output secure obfuscations of the given input
program). Hence, Barak et al. rule out the possibility of generic obfuscation
(and the proof argument they give also applies to our notion), yet they leave
room for the possibility of obfuscators for specific families of programs.

Goldwasser and Tauman Kalai present obfuscation definitions which model
several types of auxiliary information available to an adversary [11]. Their def-
initions are predicate-based; one of them, in contrast to the main definitions of
Barak et al., models a random choice of the function to be obfuscated. They
show general impossibility results for these definitions using filtered functions
(functions whose output is forced to zero if the input is not of a special form).
They also show that secure (without auxiliary information) obfuscations of point
functions (functions that are 0 everywhere except at one point, see Definition 4.1)
are automatically secure with respect to independent auxiliary information.

Even before a precise definition of obfuscation was formulated, positive ob-
fuscation results could be given implicitly and in a different context for a special
class of functions. Namely, Canetti [3] and Canetti et al. [4] essentially obfuscate
point functions. The construction from Canetti [3] works for (almost) arbitrary
function distributions and hence requires a very strong computational assump-
tion. On the other hand, one construction from Canetti et al. [4] requires only a
standard computational assumption, but is also proven only a for uniform func-
tion distribution. Both of these constructions are probabilistic and technically
very sophisticated.

Positive results for the predicate-based definition of Barak et al. [1] were
demonstrated by Lynn et al. [17] who show how to employ a random oracle to
efficiently obfuscate the control flow of programs, which includes point functions.

Subsequently Wee showed how to obfuscate point functions in the standard
model [26] (still predicate-based). Yet he only does this under very strong com-
putational assumptions and for a weakened definition of obfuscation. Wee also
shows that, at least under one of the original obfuscation definitions of Barak
et al. [1], point functions can only be obfuscated under strong computational
assumptions.

Finally, a generalisation of one-way functions can be found in the work of
Dodis and Smith [6] who show how to obfuscate a proximity function.

Our Work. We concentrate on a new definition that is a variant of the simulation-
based definition of Barak et al. [1]. We deviate from the notion of [1] only in
that we consider probabilistic functions and also pick the function to be obfus-

2

cated according to a distribution and hence demand only “good obfuscations on
average.” (This is similar to Canetti’s “oracle hashing” definition from [3], or to
the “approximate functionality with respect to a particular input distribution”
variant [1].) However, we stress that the impossibility results from [1] also carry
over to such a weakened notion in a meaningful sense. In fact, a similar no-
tion is already informally considered in [1, Discussion after Theorem 4.5]. That
means that also for our notion, there can be no general-purpose obfuscators. Yet
our goal is to consider obfuscations for specific applications such as obfuscating
secret-key encryption schemes. We stress that there are secret-key encryption
schemes that are unobfuscatable (see Remark 4.1), so general-purpose obfusca-
tors cannot exist; then again, there are also schemes that can be obfuscated (e.g.,
a public-key encryption scheme when viewed as secret-key). We are interested
in specific obfuscations, not in general-purpose obfuscation.

Intuitively, our variation makes sense in many cryptographic applications
where the function to be obfuscated is chosen at random by a trusted party.
This could for instance model the situation where an issuer of smartcards selects
a signing key and then hardwires it on a smartcard.

To show the usefulness of our notion, we demonstrate that by obfuscating
the encryption algorithm of an IND-CPA secure symmetric encryption scheme,
we obtain an IND-CPA secure asymmetric scheme. As a sidenote, we prove
that, surprisingly, the analogous result does not hold for IND-CCA schemes.
The latter is not a consequence of our relaxed definition, but is inherent in all
existing definitions of obfuscation. We also prove similar results (both positive
and negative) concerning the construction of signature schemes from MACs using
obfuscation.

Although we are not yet able to give a concrete (interesting) example of a
public-key encryption scheme or a signature scheme produced using our new
definition of obfuscation, we provide evidence that the definition is satisfiable in
other contexts. In particular, we show that, given a one-way permutation, it is
possible to obfuscate a point function deterministically and in a quite straight-
forward way in the standard model. Previous obfuscations of point functions
(under different definitions) were either probabilistic and quite involved or in
the random oracle model; this owes to the fact that they were geared to work
for arbitrary distributions on the point function to be obfuscated.

Our definition does not overcome the impossibility results of Barak et al. [1].
Actually, following Hada [12] and Wee [26], we remark that any family of de-
terministic functions must be approximately learnable to be obfuscatable. We
prove that in particular, it is not possible to obfuscate pseudorandom functions
under our definition.

2 Previous Definitions

Barak et al. [1] discuss the obfuscation of an arbitrary Turing machine or circuit.
This leads to the same notation for the description of a circuit and the function

3

it evaluates. Moreover, from an adversary’s point of view, the security does not
depend on the particular way some function is implemented prior to obfuscation.

Under our definitions, the implementation or representation of a function
prior to obfuscation is relevant for the security of the obfuscation. To emphasize
this, we will make an explicit distinction between keys of a function on the one
hand, and keyed functions on the other.

Let F = {Fk}k∈N be a class of probabilistic functions Fk = {FK}K∈Kk
where

all FK ∈ Fk have an identical domain Xk. We call K the key and we assume
there is some probabilistic polynomial time (in k) algorithm F that, on input of
K ∈ Kk and x ∈ Xk, samples from FK(x).

Formally, we regard an obfuscator as a combination of two algorithms: a
key transformation algorithm O :

⋃
k Kk →

⋃
k K′k that takes a key K ∈ Kk

and returns the obfuscated key K ′ ∈ K′k; and a probabilistic polynomial time
algorithm G that, on input a key K ′ ∈ K′k and x ∈ Xk, samples from FK(x).
Depending on the context, we will not always make explicit mention of G.

We are now ready to rephrase Barak et al.’s definition of obfuscation in
the setting that we consider. We only give a uniform model and, for the mo-
ment, concentrate on obfuscating deterministic functions. Note that our model
is slightly more restrictive, as a result of which polynomial slowdown is auto-
matically satisfied. (This refers to the slowdown between the function and its
obfuscation.)

Definition 2.1 (Universal Obfuscation). A PPT algorithm O is a universal
obfuscator for a class F of deterministic functions if the following holds.

– Approximate Functionality: For all k ∈ N, for all K ∈ Kk and all x ∈ Xk it
holds that FK(x) = GO(K)(x) with overwhelming probability over the choices
of O.

– Virtual Black-Box: Loosely speaking, given access to the obfuscated key O(K)
of a function FK , an adversary cannot learn anything about the original func-
tion FK that it could not learn from oracle access to FK . Formal definitions
follow.

Note that we call Definition 2.1 “universal” to indicate that—in contrast to our
own upcoming refinement of this definition—security for each individual function
FK to be obfuscated is required.

Barak et al. [1] give several ways to formulate the notion of not learning
anything, two of which we recall below.

Predicate-Based Obfuscation This is based on computing a predicate. In
this case the task of an adversary given the obfuscation O(K) is to compute
any boolean predicate on K. That is to say, for any adversary and any boolean
predicate π, the probability that an adversary computes π(K) given O(K) is
no greater than the probability that a simulator, given only oracle access to
FK , computes π(K). This notion is formally defined by a slightly simpler, but
equivalent, notion.

4

Definition 2.2 (Predicate-Based Universal Black-Box). A probabilistic
algorithm O for a family F of functions satisfies the weak universal black-box
property if for all PPT D, there exist a PPT S and a negligible function ν such
that for all k and all K ∈ Kk,∣∣∣Pr

[
K ′ ← O(K) : D(K ′) = 1

]
− Pr

[
SFK (1k) = 1

]∣∣∣ ≤ ν(k) .

Simulation-Based Obfuscation This is based on computational indistin-
guishability. Under this formulation one does not restrict the nature of what
an adversary must compute: it says that for any adversary, given O(K), it is
possible to simulate the output of the adversary given only oracle access to FK .
The outputs of the adversary and the simulator must be computationally in-
distinguishable. It is easy to see that in fact it is necessary and sufficient to
simulate the output of the obfuscator (thus removing the need to quantify over
all adversaries). This equivalence has also been observed by Wee [26] who gives
the following formulation.

Definition 2.3 (Simulation-Based Universal Black-Box). A probabilistic
algorithm O for a class F of functions satisfies the strong universal black-box
property if there exists a PPT S such that for all PPT D there exists a negligible
function ν such that for all k and all K ∈ Kk∣∣∣Pr

[
K ′ ← O(K) : D(K ′) = 1

]
− Pr

[
K̃ ′ ← SFK (1k) : D(K̃ ′) = 1

]∣∣∣ ≤ ν(k) .

3 Our Definition

Inspired by existing impossibility results, we endeavour to find a definition
of cryptographic obfuscation that both allows meaningful applications such as
transforming secret-key cryptosystems into public-key systems, and at the same
time is satisfiable. Recall that previous work on obfuscation uses a universal
quantifier for the functions FK ∈ Fk to be obfuscated. In contrast, we will as-
sume a key distribution on the keys K and hence on the functions FK that have
to be obfuscated. For simplicity we will assume a uniform distribution on the
keys.

First, we will define and discuss a new notion of obfuscation that is a relax-
ation of the simulation-based definition of Section 2. In Section 4 we will examine
some applications and limitations of our new definition. In the following, we will
put emphasis on the virtual black-box property. (However, we include a short
discussion of an adaptation of the approximate functionality requirement.)

3.1 The Definition

Simulation-based obfuscation refers to computational indistinguishability: given
only oracle access one can produce something indistinguishable from the obfusca-
tor’s output. Note that the most straightforward analogue of Definition 2.1 with
a randomized key distribution is not very meaningful. Since the distinguisher

5

does not know the key K, a simulator can make up a different key and obfuscate
it, so trivial obfuscation would be possible. To prevent this (and end up with a
more sensible definition), we additionally give the distinguisher, similarly to the
simulator, oracle access to the function.

Definition 3.1 (Simulation-Based Virtual Black-Box Property). An ob-
fuscation O for a class of functions F has the simulation-based virtual black-box
property iff for all PPT distinguishers D there is a PPT simulator S such that
the following quantity is negligible in k.∣∣∣Pr

[
K ← Kk : DFK (1k,O(K)) = 1

]
− Pr

[
K ← Kk : DFK (1k, SFK (1k)) = 1

]∣∣∣.
3.2 On the Approximate Functionality Requirement

The natural analogue of the “approximate functionality” requirement from Def-
inition 2.1 for the case of function distributions would be the following. For all
keys K and inputs x, with overwhelming probability over the random choices of
O, the obfuscation GO(K)(x) has exactly the same distribution as FK(x). This
is a very strong requirement, and we can actually relax this a little.

Definition 3.2. An obfuscator O satisfies the statistical functionality require-
ment for F iff there exists a negligible function ν such that for all k, the following
holds:∑

K,K′

Pr[K, K ′ : K ′ ← O(K),K ← Kk]max
x

(σ(GK′(x), FK(x))) ≤ ν(k).

Here, σ is used to denote the statistical distance.

For deterministic functions, the requirement reduces to the statement that,
with overwhelming probability over the choice of the key generation and the
obfuscator O, FK and GO(K) should be the same functions. This is similar to
the approximate functionality of the universal definition [1, Definition 4.3], with
the caveat that we take our probability over FK as well. We note that all the
results to follow do not depend on the choice of functionality requirement.

Further discussion and motivation for Definition 3.2 can be found in the
appendix, cf. specifically Theorem A.2.

3.3 Comparison to Previous Definitions

The Definitions of Barak et al. Definition 3.1 differs in several aspects from [1,
Definition 2.1]. First, Definition 3.1 requires security w.r.t. a randomly chosen
key from a given set, whereas [1, Definition 2.1] demands security for every key
in that set. In that sense, Definition 3.1 is a relaxation of [1, Definition 2.1] (al-
though this does not protect Definition 3.1 from impossibility results for general-
purpose obfuscation; see below).

On the other hand, Definition 3.1 requires a multi-bit output from the sim-
ulator, whereas [1, Definition 2.1] restricts adversary and simulator to a one-bit

6

output. As [1, Definition 2.1] demands security for all keys in a set, this one-
bit output can be seen as an approximation of a predicate on the key. In fact,
when directly relaxing [1, Definition 2.1] by randomizing the distribution on the
key, approximating a predicate on the key leads to a more sensible definition
than simply comparing the probabilities for 1-output of adversary and simula-
tor. Such a predicate-based formulation, even with randomly chosen key and
a distinguisher with oracle access, is incomparable to our definition (since the
predicate might be not computable in polynomial time).

The Definitions of Goldwasser and Tauman Kalai The definitions from [11] are
predicate-based, and demand security in the presence of auxiliary information
on the key. More specifically, one of the definitions in [11] models security in
presence of auxiliary information that depends on the particular function to be
obfuscated. The other definition from [11] models security in the presence of
auxiliary information that is independent of the obfuscated function. This latter
definition is also (necessarily) relaxed in the sense that it only requires security
for a random function chosen from some distribution. This definitional choice
in [11] is justified by the observation that in most cryptographic applications,
an adversary is confronted with such a randomly chosen (obfuscated) function.

This motivation is very similar to ours; yet, the definitions from [11] differ
from ours in several respects. First, since their definitions are predicate-based,
they are incomparable to ours. (On the one hand, the predicate in [11] might
not be efficiently computable, so there is no obvious reduction to our definition.
On the other hand, the predicate in [11] is one bit that the adversary, resp. the
simulator approximates, whereas in our case, the simulator is obliged to simulate
a multi-bit output; cf. also our discussion of Barak et al.’s definitions above.)

Second, the definitions from [11] give adversary as well as simulator auxiliary
information; we do not model such auxiliary information in our definitions. (Note
that one of the motivations of [11] to incorporate auxiliary input in their defi-
nitions in the first place is compositionality; we also consider compositionality,
yet only for a strengthened variant of our definition, see Appendix A.)

Perfect One-Way Hashing and Point Functions. We note that a distribution
on the keys (or, on the function to obfuscate) was already considered in other
definitions, e.g., in the security definition for perfect one-way hashing (that is
actually an obfuscation of a point function) from [3]. In the case of [3], security
could be achieved as long as the distribution on the functions was well-spread,
which basically means that a brute-force search for the function has only negli-
gible success. Our results from Section 4.3 (that also concern an obfuscation of
a point function) are formulated with a uniform distribution on the key.

In contrast to the very sophisticated construction from [3], our construction
is quite simple: an obfuscation of a point function Px, is Π(x) for a one-way per-
mutation Π. However, there can be well-spread distributions (different from the
uniform one) on the key for which our point function obfuscation becomes inse-
cure. (Imagine a one-way permutation that leaks the upper half of the preimage,
and a distribution that keeps the lower half of the preimage constant.) In other

7

words, the price to pay for the simplicity of our construction is the dependency
on a uniform distribution of the key.

Also, the construction from [3] is “semantically secure” in the sense that any
predicate on the hashed value (i.e., the key of the point function to be obfuscated)
is hidden. Our construction from Section 4.3 does not guarantee this; just like
the one-way permutation that is employed, our construction only hides the key
in its entirety. This may have the disadvantage that in some applications, this
might not be sufficient, and in particular not a meaningful “idealization” of a
point function. However, in other settings (such as a password query), this may
be exactly the idealization one is interested in.

Other Similar Definitions. Technically, Definition 3.1 is quite similar to [12,
Definition 10] (the latter definition which is also formulated with a distribution
on the keys). Essentially, the only difference is that [12, Definition 10] equips
the distinguisher with an extra copy of the obfuscation instead of oracle access
to the function. As argued by Hada [12], this leads to a very strong definition
(that is in particular strictly more restrictive than ours).

Finally, the definitions from Wee [26, Section 5.2] are technically similar
to ours, in that they allow the adversary a multi-bit output. These definitions
suffer from strong impossibility results (in particular, a function must be exactly
learnable for obfuscation); this is partly due to the fact that these definitions
demand security for all keys in a given set. In our case, a function must be
approximately learnable for obfuscation, and this enables, e.g., the obfuscation
of point functions (see Sections 4.3 and 4.4).

3.4 Specific vs. General-Purpose Obfuscation

Impossibility of General-Purpose Obfuscation. As indicated, also Definition 3.1
suffers from certain impossibility results. First, the argument from [1, Section 3]
works also for the case of a randomized key distribution, and hence there are
certain (albeit constructed) examples of unobfuscatable function families. There
are even less constructed examples, as we will show in Remarks 4.1 and 4.2, and
in Section 4.4. In other words: there can be no general-purpose obfuscation.4

Specific Obfuscators. What we advocate here is to consider specific obfusca-
tors for specific function families. For example, we will show (in Section 4.1)
that obfuscating the encryption algorithm of a secret-key encryption scheme
yields a public-key encryption scheme, and that such obfuscations (in princi-
ple at least) exist. However, our example that such obfuscations exist assumes
a public-key encryption scheme in the first place. Plugging this example into
the secret-key→public-key transformation gives (nearly) the same public-key
encryption scheme one started with. So the following question arises:

4 It is actually worse: there are function families that cannot be obfuscated even with
very specific, case-tailored obfuscators.

8

What is Gained? First, the secret-key→public-key transformation can be seen,
similarly to [5], as a technical paradigm to realize public-key encryption in the
first place. In that context, a formalization of obfuscation can provide an interface
and a technical guideline of what to exactly achieve.

Second, the mentioned impossibility results does not exclude that a sensible
formulation of what can be obfuscated exists. In other words, there may be a
large and easily describable class of functions which can be obfuscated. Universal,
general-purpose obfuscators for this class may exist and provide solutions for
applications which correspond to functions inside this class.

4 Results Concerning the Simulation-Based Virtual
Black-Box Property

In this section we discuss two applications of Definition 3.1: transforming secret-
key encryption into public-key encryption and transforming MACs into signature
schemes. Although we are not yet able to give an example of such a construction
we provide evidence that our definition is satisfiable by demonstrating how to
obfuscate a point function using a one-way permutation. Finally we present
an impossibility result concerning Definition 3.1, thereby demonstrating that
obfuscation definitions should be tailored to the context in which one wishes to
use them.

4.1 Transforming Secret-Key Encryption

When the idea of public-key cryptography was first proposed by Diffie and Hell-
man [5], they suggested that one way to produce a public-key encryption scheme
was to obfuscate a secret-key scheme. This application of obfuscation was also
suggested by Barak et al. [1].

A secret-key encryption scheme SKE consists of the following three algo-
rithms.

– A PPT key generation algorithm SKE.KeyGen that takes as input 1k for
k ∈ Z≥0. It outputs a key K.

– A polynomial time encryption algorithm SKE.Enc that takes as input 1k for
k ∈ Z≥0, a secret key K, and a message m ∈ {0, 1}∗. It outputs a ciphertext
c. Algorithm SKE.Enc may be probabilistic or deterministic.

– A polynomial time decryption algorithm SKE.Dec that takes as input 1k for
k ∈ Z≥0, a key K, and a ciphertext c. It outputs a message m.

Functionality of the scheme requires that for all keys, encryption followed by
decryption under the same key is the identity function (slight relaxations of this
statement are possible).

A secret-key cryptosystem is IND-CPA secure if no adversary with access
to an encryption oracle can pick two messages, of equal length, such that it
can distinguish (still having encryption-oracle access) between encryptions of

9

the two. This is the notion called find-then-guess CPA (FTG-CPA) security by
Bellare et al. [2].

A public-key cryptosystem consists of the same three algorithms, but with
the difference that the key generation algorithm now outputs two keys: one
private and one public. The public key is used for encryption, the private key
for decryption. The scheme is IND-CPA secure if no adversary with access to
the public key (and hence an encryption oracle) can pick two messages, of equal
length, the encryptions of which it can distinguish.

A secret-key encryption scheme is turned into a public-key encryption scheme
by releasing as the public key an obfuscation O(K) of SKE.Enc(1k,K, ·), the
private key encryption algorithm using key K.

Note that the correctness requirement of an obfuscation may not guarantee
that the public-key scheme obtained in this way functions correctly in terms of
decryption of encryption being the identity function. In fact, this is guaranteed
only with overwhelming probability. However, we ignore this issue here as one
can always demand perfect correctness from the obfuscation (which would result
in a public-key encryption with perfect functionality), or one can weaken the
functionality requirement for public-key encryption schemes.

Remark 4.1 (On the obfuscatability of secret-key encryption). In the following,
we simply assume a secret-key encryption scheme with obfuscatable encryption
algorithm. One may wonder how realistic that assumption is. First, there are
unobfuscatable secret-key cryptosystems; any scheme that enjoys ciphertext in-
tegrity [14] in a “publicly verifiable way” cannot be obfuscated. That is, imagine
that a keypair of a digital signature scheme is made part of the secret key, and any
ciphertext is signed using the signing key, while the verification key is included
in every ciphertext. Then by the functionality requirement, an obfuscation must
be able to sign messages (i.e., ciphertexts) under this signing key (note that the
“real” verification key can be obtained by oracle access to encryption, so the
obfuscator cannot make up a different signing key). However, by unforgeability
of the signature scheme, no simulator can do so with oracle access to encryption
only.

But, on the other hand, specific secret-key encryption schemes can be ob-
fuscated: imagine a public-key encryption scheme where the public key is part
of every ciphertext.5 The ability to encrypt arbitrary messages can then be ac-
quired with one black-box query to the encryption oracle, hence if we view such
a scheme as secret-key encryption, its encryption algorithm can be obfuscated.

So we find ourselves in a situation where we cannot hope for an all-purpose
obfuscation (for secret-key encryption). In contrast, we hope for efficient ob-
fuscations of specific schemes. We are unfortunately not able to give concrete
examples here; instead, we simply assume such obfuscations and see how we
could benefit:

5 This trick was suggested by a TCC referee.

10

Theorem 4.1 If a secret-key encryption scheme SKE that is IND-CPA is turned
into a public-key encryption scheme using the method above with an obfuscator
satisfying Definition 3.1, then the resulting scheme is an IND-CPA secure public-
key encryption scheme.

Proof. For the sake of brevity, we will write EK(·) for SKE.Enc(1k,K, ·) and OEK

for an obfuscation thereof. Let a PPT adversary A = (A1, A2) be an adversary
of the public-key scheme whose advantage is

AdvIND−CPA =
∣∣∣Pr[K ← SKE.KeyGen(1k), OEK

← O(K),

(m0,m1, h)← A1(OEK
), b← {0, 1} : A2(h, OEK

(mb)) = b]− 1
2

∣∣∣.
(In the above we have split the adversary in two and use h to denote state infor-
mation it might wish to relay.) We must show that this advantage is negligible.
By approximation of obfuscation, we have

AdvIND−CPA ≈
∣∣∣Pr[K ← SKE.KeyGen(1k), OEK

← O(K),

(m0,m1, h)← A1(OEK
), b← {0, 1} : A2(h, EK(mb)) = b]− 1

2

∣∣∣,
where X ≈ Y denotes that |X − Y | is negligible.

If we view A as a distinguisher against the obfuscation (that chooses b on its
own and uses its oracle access to EK(·) to obtain EK(mb)), then Definition 3.1
guarantees the following. There must be a simulator S that, given only oracle
access to EK , produces an output O′

EK
indistinguishable from OEK

from A’s
point of view, yielding

AdvIND−CPA ≈
∣∣∣Pr[K ← SKE.KeyGen(1k), O′

EK
← SEK ,

(m0,m1, h)← A1(O′
EK

), b← {0, 1} : A2(h, EK(mb)) = b]− 1
2

∣∣∣.
Now consider the adversary (A′

1, A2) of the symmetric scheme SKE that runs
SEK to obtain O′

EK
and then runs A = (A1, A2), replacing OEK

with O′
E′

K
.

From the above it follows that

AdvIND−CPA ≈
∣∣∣Pr[K ← SKE.KeyGen(1k),

(m0,m1, h)← A′
1
EK (1k), b← {0, 1} : A2(h, EK(mb)) = b]− 1

2

∣∣∣,
and since the term on the right hand side is negligible by assumption, it follows
that A’s advantage against the public-key scheme is negligible as well. ut

A stronger security requirement for secret-key and public-key encryption
schemes is indistinguishability of ciphertexts under adaptive chosen-ciphertext

11

attacks (IND-CCA, see [24]; for secret-key schemes, this is also called FTG-CCA
in [2]). This notion is very similar to IND-CPA security, only an attacker (who
tries to distinguish encryptions of two self-chosen plaintexts) is also given ac-
cess to a decryption oracle. (Obviously, that access is limited in the sense that
decryption of the ciphertext the adversary should distinguish is not allowed.)

It is natural to ask whether an IND-CCA secure secret-key scheme can be
directly converted to an IND-CCA secure public-key scheme by obfuscating the
encryption function. The next theorem shows that the answer is unfortunately
negative:

Theorem 4.2 Assuming that there is an IND-CCA secure secret-key encryp-
tion scheme SKE with obfuscatable encryption algorithm. Then, there is also
another obfuscatable, IND-CCA secure secret-key encryption scheme SKE′ and
an obfuscator O′ for SKE′ such that, after obfuscating the encryption function
O′, the result is not an IND-CCA secure public-key encryption scheme.

Proof. Assume an IND-CCA secure secret-key encryption scheme SKE that is
obfuscatable in the sense of Definition 3.1. Modify SKE into a scheme SKE′ as
follows: the modified key generation outputs (K, r) for a key K as produced
by SKE.KeyGen and a uniformly chosen random k-bit string r. A message m
is encrypted under key (K, r) to (c, d), where c ← SKE.Enc(1k,K,m) and d is
the empty bitstring. A ciphertext (c, d) is decrypted under secret-key (K, r) to
m ← SKE.Dec(1k,K, c) if d is the empty bitstring, to K is d = r, and to ⊥
otherwise.

The IND-CCA security of SKE′ can be reduced to that of SKE: say that
A′ is an IND-CCA adversary on SKE′. A corresponding adversary A on SKE
can internally simulate A′ and only needs to translate oracle calls accordingly.
Namely, A appends to each SKE-encryption an empty component d so as to
make it an SKE′-encryption; decrpytion queries (c, d) are answered depending
on d: if d is empty, the query is relayed to A’s own decryption oracle, otherwise A
answers the query on its own with ⊥. (Note that this ensures that A never asks
for decryption of the challenge ciphertext, since by assumption A′ does not do
so.) Since A′ can have only negligible probability in guessing r, this provides A′

with a view at most negligibly away from its own SKE′-IND-CCA game. Hence
A is successful iff A′ is, and thus, SKE′ is IND-CCA secure because SKE is.

Consider an obfuscator O for the encryption algorithm of SKE that satisfies
Definition 3.1. Modify O into O′, such that obfuscations produced by O′ append
an empty bitstring d to encryptions. Furthermore, make O′ include r in the
obfuscation. Since only the encryption algorithm is considered for obfuscation,
O′ still satisfies Definition 3.1. (Specifically, a simulator S′ for O′ can be obtained
from a simulator S for O by simply appending a uniformly selected k-bit string
r to the output of S.)

However, applying O′ to SKE.Enc yields a public key encryption scheme in
which r is part of the public key. Any query of the form (c, r) to the decryption
oracle can be used by an IND-CCA attacker to obtain K and thus break the
scheme. ut

12

Note that the precondition in Theorem 4.2—namely, an obfuscatable IND-
CCA secure secret-key encryption scheme—is satisfiable by an IND-CCA public-
key encryption scheme with a the argument from Remark 4.1.

Although, by Theorem 4.2, a direct construction of an IND-CCA secure
public-key scheme is not possible using obfuscation, this does not mean that
Definition 3.1 is not useful in this context: using Theorem 4.1 combined with a
generic conversion from, say, IND-CPA to NM-CPA such as [23], one still obtains
at least a non-malleable public-key scheme.

4.2 Transforming Message Authentication Codes

Another obvious application of obfuscation is to transform message authenti-
cation codes (in which a secret key is used for authenticating and verifying a
message) into signature schemes (in which a secret key is used for signing, i.e.,
authenticating, a message, but in which the verification key is public). Intuitively,
this could be done by obfuscating the verification algorithm of the message au-
thentication code. To begin with we will introduce the necessary concepts.

A message authentication code MAC consists of the three PPT algorithms
MAC.Key, MAC.Sign and MAC.Verify, where

– MAC.Key(1k) outputs a secret key K,
– MAC.Sign(1k,K,m) signs a message m ∈ {0, 1}∗ under key K and outputs

a signature µ,
– MAC.Verify(1k,K,m, µ) verifies a signature µ to the message m.

As a functionality (or, correctness) requirement, one demands that under any
possible key K, verifying a legitimately generated signature should always suc-
ceed. Again, relaxations are possible.

We demand for security that it should be hard for a PPT adversary to come
up with a valid message/signature pair without knowing the secret key. Here, the
adversary may request signatures of messages of its choice from a signing oracle.
(Of course, signatures which are obtained through that oracle do not count
as successful forgeries.) Since we explicitly allow that the signing algorithm is
probabilistic, there may be multiple signatures for a single message. Therefore,
we also equip the adversary with an oracle for verifying messages. Formally,
a message authentication code MAC is secure under adaptive chosen-message
attacks, or MAC-CMA secure, if and only if, for all PPT adversaries A, the
following probability is negligible.

Pr
[
K ← MAC.KeyGen(1k), (m,µ)← AMAC.Verify(1k,K,·,·),MAC.Sign(1k,K,·)(1k) :

MAC.Verify(1k,K,m, µ) = 1
]

Analogously, a weaker notion of security, namely security under verify-only at-
tacks, or MAC-VOA, can be derived by omitting the signing oracle from the
above definition. Note that we have restricted here to PPT adversaries; actually,
there are even schemes that achieve unconditional security [25].

13

The natural public-key analogue of message authentication codes are digital
signature schemes. These are identical to message authentication codes, only the
key generation algorithm outputs two keys: one public key that is used for verify-
ing signatures, and a private key that is used for signing messages. Correctness is
defined as for message authentication codes. The security notions SIG-CMA and
SIG-VOA are defined exactly analogously to their message authentication code
counterparts (only the adversary is given the public verification key in addition
to 1k).

So, in a digital signature scheme, verification is public, whereas in a message
authentication code it requires a secret key. Thus, the verification algorithm of
a message authentication code is a natural candidate for obfuscation. In fact,
by obfuscating the verification algorithm of a message authentication code, we
syntactically obtain a digital signature scheme. (As in the case of secret/public-
key encryption, we ignore the perfect functionality requirement; here either the
functionality requirement on the obfuscation must be perfect, or the functionality
definition for digital signature schemes must be weakened.)

Technically, this means that the key generation SIG.KeyGen of the trans-
formed scheme outputs a secret key K obtained from MAC.KeyGen along with
an obfuscation of the verification function,O(MAC.Verify(1k,K, ·, ·)), (with hard-
coded secret key) as the public key. (Signing is unchanged, and verification simply
means using the algorithm given by the public key.)

Remark 4.2 (On the obfuscatability of message authentication). We will simply
assume a message authentication code with obfuscatable verification algorithm.
Again, one may wonder how realistic that assumption is. First, there are certain
(artificial) MACs whose verification algorithm cannot be obfuscated. (In par-
ticular, there can be no general-purpose MAC authenticator.) Since this is less
straightforward to see than the existence of unobfuscatable secret-key encryption
schemes, we now sketch such a MAC. (This is basically the general construction
from [1, Section 3] adapted to the MAC interface.)

Let MAC be a MAC-VOA secure MAC. Define MAC′ through

– MAC′.KeyGen(1k) := (K, α, β) for K ← MAC.KeyGen(1k) and uniformly
chosen α, β ∈ {0, 1}k.

– MAC′.Sign(1k,K ′,m) = (0, µ) for µ ← MAC.Sign(1k,K,m), where K ′ is
parsed as (K, α, β).

– MAC′.Verify(1k,K ′,m, (0, µ)) = MAC.Verify(1k,K, µ)
– MAC′.Verify(1k,K ′,m, (1, µ)) = 1 iff µ(α) = β, where µ is interpreted as an

algorithm description.6

– MAC′.Verify(1k,K ′,m, (2, µ, i)) =“the i-th bit of β”, but only if µ = α (oth-
erwise, MAC′.Verify returns 0).

First, it is easy to see that with oracle access to MAC′.Verify, no valid (in the
sense of MAC′.Verify) “signatures” of the form (1, µ) or (2, µ) can be generated.
Hence, MAC′ inherits MAC’s MAC-VOA security.
6 Here and in the further analysis, we ignore complexity issues; techniques similar to

those from [1] can and must be used to make MAC′.Verify PPT.

14

But now consider a distinguisher D who, on input an obfuscation O of
MAC′.Verify(1k,K ′, ·, ·), returns O(0k, (1, O′)), where the algorithm description
O′ is constructed from O such that

O′(x) = O(0k, (2, x, 1))|| . . . ||O(0k, (2, x, k)).

Then, functionality of an obfuscation dictates that O′(α) = β with overwhelming
probability, and hence, Pr[D(O) = 1] must be overwhelming. On the other hand,
no simulator can (with non-negligible probability, and from oracle access to
MAC′.Verify alone) produce a fake obfuscation Õ that satisfies Õ′(α) = β, so
Pr

[
D(Õ) = 1

]
is negligible. Hence, MAC′ cannot be obfuscated in the sense of

Definition 3.1.
On the other hand, there also are obfuscatable MACs. Similarly to the en-

cryption setting, any MAC-VOA secure digital signature scheme can be con-
verted into a MAC-VOA secure MAC that is obfuscatable: simply declare the
verification key part of the (secret) MAC key K. The obfuscation of the veri-
fication algorithm is simply the verification key. To achieve simulation of this
obfuscation in the sense of Definition 3.1, we cannot use the trick from the
encryption setting, where the public key was part of every encryption. In our
setting, the verification algorithm outputs only one bit, and we must take care
not to make a trivial signature forgery possible. However, a simulation of ob-
fuscation is possible by simply outputting a fresh verification key randomly. No
distinguisher can, with oracle access to the “right” verification routine, distin-
guish the “right” verification key from an independently generated one; to do
so, it would need to forge a signature, which would contradict the MAC-VOA
security of the digital signature scheme.

Analogously to the results in the previous section, we can make two state-
ments about the security of the digital signature schemes that are obtained by
obfuscating the verification algorithm of a message authentication code:

Theorem 4.3 Say that a message authentication code MAC is MAC-VOA. If
MAC is turned into a digital signature scheme by obfuscating using the method
above and using an obfuscator satisfying Definition 3.1, then the resulting scheme
is a SIG-VOA secure digital signature scheme.

Proof. The proof is very similar to the proof of Theorem 4.1 (in particular, the
idea is to first use the functionality and then the simulatability of obfuscation),
so we omit it. ut

Theorem 4.4 Assuming that there is a MAC-CMA secure message authenti-
cation code MAC with obfuscatable verification algorithm. Then there is also a
MAC-CMA secure message authentication code MAC′ and an obfuscator (in the
sense of Definition 3.1) O′ for MAC′’s verification function, such that the result
if not SIG-CMA secure as a digital signature scheme.

Proof. The proof is analogous to the proof of Theorem 4.2. First, assume an
obfuscatable MAC-CMA secure message authentication code MAC. Modify MAC

15

into a code MAC′ by including a uniformly selected r ∈ {0, 1}k to the secret key
during key generation. Signing and verification take places as before, except
that if m = r is to be signed, the signing algorithm appends K to the signature.
This authentication code is still MAC-CMA, since an attacker has negligible
probability of guessing r.

Any obfuscation O of the verification function can be modified into another
one O′ that includes the second part r of the secret key. If O satisfies Defini-
tion 3.1 for MAC, then so does O′ for MAC′, since a simulator that is to simulate
an obfuscation of the verification function can simply choose r by itself. (It
cannot be detected in doing so by only looking at the verification algorithm.)

However, applying O′ to the verification algorithm of MAC′ obviously leads
to a digital signature scheme that is not SIG-CMA secure: an attacker gets r
as part of the public key and simply needs to submit it to the signing oracle to
obtain the signing key K. ut

4.3 Deterministic Obfuscation of Point Functions

In this section we prove a concrete feasibility result for Definition 3.1 by showing
how to obfuscate a point function, as defined below.

Definition 4.1 (Point Functions). For k ∈ Z≥0 and x ∈ {0, 1}k, the point
function Px : {0, 1}k → {0, 1} is defined by Px(y) = 1 if y = x and 0 otherwise.
Define Pk = {Px : x ∈ {0, 1}k}.

We now show how to obfuscate point functions under Definition 3.1. Note
that the requirement that the obfuscation has the same functionality as the
original function follows directly from the construction.

Theorem 4.5 Let Π be a one-way permutation on {0, 1}k with respect to the
uniform distribution. Then the obfuscation O(x) = Π(x) satisfies Definition 3.1
with respect to the uniform distribution on Pk and where the obfuscated function
on input y and O(x) outputs 1 iff Π(y) = O(x).

Proof. Consider the simulator S that outputs a uniformly sampled y ∈ {0, 1}k.
We need to show that the difference from Definition 3.1 is negligible for any PPT
distinguisher D. This is done by

Pr
[
x← {0, 1}k : DPx(1k,Π(x)) = 1

]
= Pr

[
y ← {0, 1}k : DPy (1k,Π(y)) = 1

]
(∗)
≈ Pr

[
x, y ← {0, 1}k : DPx(1k,Π(y)) = 1

]
= Pr

[
x← {0, 1}k : DPx(1k, S(1k)) = 1

]
,

where X ≈ Y means that |X − Y | is negligible in k. Here, (∗) can be shown
by a reduction to the one-way property of Π. If there was a D for which (∗)
does not hold, this D can be used to invert Π with non-negligible probability. A
probabilistic Π-inverter D′ then internally simulates D and works as follows. If D

16

makes in any case at most, say, p(k) oracle queries, D′ chooses i ∈ {1, . . . , p(k)}
uniformly and answers all queries up to the i-th with 0 and outputs the i-th
query as a guess for a preimage. ut

Note 4.1. Very recently, [21] investigated to what extent point function obfus-
cations can be used to bootstrap other obfuscations. They did this under a
definition of obfuscation in which adversaries are bounded only in their number
of oracle queries, but not in the number of their computation steps. With respect
to this definition, [21] shows that there are circuits which can be obfuscated with
a random oracle, but not with just an oracle to a point function.

They also improve an upper bound on the concurrent self-composability of
Wee’s construction for point function obfuscation. Note that our construction,
under our definition, is self-composable, which follows easily from the obfuscator
being deterministic.

4.4 An Infeasibility Result

We conclude our work on Definition 3.1 by considering impossibility results on
previous notions of obfuscation. The two notions that come closest to the new
notion are simulation-based universal black box (Definition 2.3) and obfuscation
with respect to independent auxiliary input [11, Definition 4].

Wee [26] shows that in the standard model obfuscation of deterministic func-
tions with respect to Definition 2.3 is possible if and only if the functions are
efficiently and exactly learnable (meaning that with a polynomial number of
queries and effort one can construct a circuit that computes the function ex-
actly). Since point functions are not efficiently and exactly learnable, it is clear
from our positive result in the preceding section that Definition 3.1 is indeed a
relaxation.

However, for a deterministic function one possible distinguisher simply sam-
ples random inputs and checks whether the obfuscated function (or simulated
one) gives the same output as the real function (to which the distinguisher has
oracle access). Consequently, the simulated function needs to correspond to the
real function on all inputs, except for a small (and hard to find) fraction. Hence
a function should be efficiently approximately learnable, that is, with a polyno-
mial number of queries and effort one can construct a circuit that computes the
function except on a small (and hard to find) fraction of the inputs. This in par-
ticular rules out the obfuscation of deterministic signature schemes, public-key
decryption and pseudorandom functions.

To give a taste of a formal proof of the above, we give an explicit theorem and
proof for the impossibility to obfuscate a pseudorandom function [8], as defined
below.

Definition 4.2. [8] A family of functions F = {fk}, fk : {0, 1}k → {0, 1}k is
pseudorandom if any probabilistic polynomial time algorithm D the advantage∣∣∣[f ← fk : Df (1k) = 1

]
− Pr

[
r ← rk : Dr(1k)

]∣∣∣
is negligible in k where rk is the set of all functions from {0, 1}k to {0, 1}k.

17

Theorem 4.6 It is impossible to obfuscate a pseudorandom function under Def-
inition 3.1.

Proof. Suppose for contradiction that there is an obfuscator O that satisfies
Definition 3.1 when applied to a pseudorandom function family F = {fk}. For
f ← fk, consider the distinguisher D that, on input a supposed obfuscation g
and with oracle access to f , chooses x ∈ {0, 1}k and compares f(x) with g(x).
By functionality of the obfuscation, in case g = O(f), we may assume that
f(x) = g(x) with overwhelming probability.

Now by assumption, there is a simulator S for this distinguisher that sat-
isfies Definition 3.1. This S must thus be able to produce a function g with
f(x) = g(x), but it has only negligible probability of guessing x and thus, with
overwhelming probability, does not query its f -oracle at x.

Thus S can be used to predict f(x) with overwhelming probability without
explicitly querying f . Hence S can be modified into a distinguisher that distin-
guishes f from a truly random function r as in Definition 4.2, which contradicts
the pseudorandomness of F . ut

To conclude, in addition to potential applications, the results of this section
demonstrate that while it is satisfiable, Definition 3.1 is not appropriate for all
application scenarios.

5 Conclusion

We have presented a simulation-based definition that, on the one hand, allows for
obfuscating point functions, yet at the same time is strong enough for converting
secret-key cryptography into public-key cryptography.

We would like to stress again that we do not rule out unobfuscatability
results. In fact, we have shown certain scenarios in which obfuscation is not
possible. On the other hand, our positive results (in particular the simplicity
of our point function obfuscation) leave hope that obfuscations in interesting
cryptographic scenarios are possible. We have given toy examples for the case of
secret-key encryption or message authentication.

Acknowledgements

We are indebted to the Crypto 2006 and TCC 2007 referees who gave very valu-
able comments that helped to improve the paper. Specifically, the construction
from Section 4.4 was suggested by one referee, and in particular one TCC referee
had very constructive comments concerning presentation of our results. We also
thank Alex Dent for motivating discussions.

References

1. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (im)possibility of obfuscating programs. In Advances

18

in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 1–18. Springer-Verlag, 2001. Full version available at http:

//eprint.iacr.org/2001/069/.
2. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment

of symmetric encryption. In 38th Annual Symposium on Foundations of Computer
Science, pages 394–403. IEEE Computer Science Press, 1997.

3. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Advances in Cryptology - CRYPTO ’97, volume 1294 of Lecture
Notes in Computer Science, pages 455–469. Springer-Verlag, 1997.

4. R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash
functions. In 30th ACM Symposium on Theory of Computing, pages 131–140. ACM
Press, 1998.

5. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

6. Y. Dodis and A. Smith. Correcting errors without leaking partial information. In
37th ACM Symposium on Theory of Computing, pages 654–663. ACM Press, 2005.

7. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In Theory of Cryptography, TCC 2004, volume 2951 of Lecture
Notes in Computer Science, pages 258–277. Springer-Verlag, 2004.

8. O. Goldreich, S. Goldwasser and S. Micali. How to construct random functions.
Journal of the ACM, 33(4), pages 210-217, 1986.

9. O. Goldreich and L. Levin. A hard-core predicate to any one-way function. In 21st

ACM Symposium on Theory of Computing, pages 25–32. ACM Press, 1989.
10. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

11. S. Goldwasser and Y. Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In 46th IEEE Symposium on Foundations of Computer Science,
pages 553–562. IEEE Computer Society, 2005.

12. S. Hada. Zero-knowledge and code obfuscation. In Advances in Cryptology -
ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
443–457. Springer-Verlag, 2000.

13. R. Jaeschke. Encrypting C source for distribution. Journal of C Language Trans-
lation, 2(1), 1990.

14. J. Katz and M. Yung. Unforgeable Encryption and Chosen Ciphertext Secure
Modes of Operation. In Fast Software Encryption - FSE 2000, volume 1978 of
Lecture Notes in Computer Science, pages 284–299. Springer-Verlag, 2001.

15. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology - CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science,
pages 388–397. Springer-Verlag, 1999.

16. C. Linn and S. Debray. Obfuscation of executable code to improve resistance to
static disassembly. In 10th ACM Conference on Computer and Communications
Security, pages 290 – 299. ACM Press, 2003.

17. B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for obfus-
cation. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 20–39. Springer-Verlag, 2004.

18. U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In Theory
of Cryptography, TCC 2004, volume 2951 of Lecture Notes in Computer Science,
pages 21–39. Springer-Verlag, 2004.

19

19. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract).
In Theory of Cryptography, TCC 2004, volume 2951 of Lecture Notes in Computer
Science, pages 278–296. Springer-Verlag, 2004. Full version available at http:

//eprint.iacr.org/2003/120/.
20. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen

ciphertext attack. In 22nd ACM Symposium on Theory of Computing, pages 427–
437. ACM Press, 1990.

21. Arvind Narayanan and Vitaly Shmatikov. On the Limits of Point Function Ob-
fuscation. IACR ePrint Archive, May 2006. Online available at http://eprint.

iacr.org/2006/182.ps.
22. National Institute of Standards and Technology. Data Encryption Standard (DES),

1993. FIPS Publication 46-2.
23. R. Pass and a. shelat and V. Vaikuntanathan. Construction of a Non-Malleable

Encryption Scheme From Any Semantically Secure One. In Advances in Cryptology
- CRYPTO ’06, volume 4116 of Lecture Notes in Computer Science. Springer-
Verlag, 2006.

24. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology - CRYPTO ’91, volume 576
of Lecture Notes in Computer Science, pages 433–444. Springer-Verlag, 1992.

25. D. R. Stinson. Cryptography: Theory and Practice. CRC Press, 1995.
26. H. Wee. On obfuscating point functions. In 37th ACM Symposium on Theory of

Computing, pages 523–532. ACM Press, 2005.
27. A. C. Yao. Theory and applications of trapdoor functions (extended abstract). In

23rd Annual Symposium on Foundations of Computer Science, pages 80–91. IEEE
Computer Science Press, 1982.

A Composable Obfuscators

Additionally to our main definition from Section 3.1, we investigate another
obfuscation definition in this section.

A.1 Motivating Discussion

First, observe that Definition 3.1 allows not only to obfuscate point functions,
but also functions

Cα,β(x) :=
{

β if x = α
0 otherwise

and

Dα,β(C) :=
{

1 if C(α) = β
0 otherwise.

The functions Cα,β can be obfuscated with (Π(α), β) for a one-way permutation
Π, and the functions Dα,β can be obfuscated by (α, Π(β)). Similar to the case
of our point functions, a simulator can choose independent values α′, β′ and
obfuscate them without being caught by a distinguisher.

On the other hand, these functions form the basis for the construction of
Barak et al. [1, Section 3], and composing these functions in the right way (just as

20

in [1]) gives a family of functions which cannot be obfuscated. This in particular
holds for our Definition 3.1.

In other words: according to Definition 3.1, specific functions may be obfus-
catable, yet their composition may not be. Thus, Definition 3.1 does not enjoy
(general) composability. On the other hand, an obfuscator will in many cases be
employed only as a building block in a larger system, and it is natural to ask
the question of general composability.

We now proceed to give an obfuscation definition which does enjoy compos-
ability. However, as it will turn out, this definition is very restrictive, and neither
point functions nor the functions Cα,β resp. Dα,β from above can be obfuscated
under this composable definition.

Note that Goldwasser and Tauman Kalai [11] also mention composability as
motivation; they as well derive impossibility results for their definitions.

A.2 Indifferentiability

An attractive feature of simulatability-based security definitions is that they
guarantee composability of secure systems—a secure system can be used in larger
contexts without losing security. So, as another way of defining obfuscators, we
will use the theory developed for simulatable security, such as universal compos-
ability and reactive simulatability. We will opt for indifferentiability as described
by Maurer et al. [18]. This gives a natural definition capturing the security of
an obfuscated system when used in the real world.

Our main result in this section is a natural separation between a correct-
ness (pertaining to functionality) and a secrecy (pertaining to virtual black-box)
requirement.

A system A is indifferentiable from another system B if and only if, for all
secure cryptosystems C using B as a subsystem, the cryptosystem C using A
instead of B maintains its security. In casu, we want to replace a system based on
oracle access to FK with one based on an obfuscation O(K) (in conjunction with
G). To use the indifferentiability framework we need to define the interfaces of
both the real system (the one using the obfuscation GO(K)) and the ideal system
(the one based on oracle access to FK).

A.3 Our Composable Definition

The real and ideal systems in our cases with their interfaces are depicted in
Figure 1. The public interface models the interactions of the adversary (that
represents the network). In the present case, an adversary is restricted to receiv-
ing a copy of the obfuscated function. The private interface models what can
be used by an honest cryptosystem. Clearly, in the ideal world, this includes
oracle access to the functionality. In the real world this is modelled by oracle
access to the functionality of the obfuscation. Moreover, it is also desired that
the underlying secret key K is exported to be used elsewhere.

This leads us to the following statement.

21

Fig. 1: Composable Obfuscation

D

OGK′ , K K′

K′ ← O(K), K ← Kk

(a) Real

D

OFK , K OFK

K ← Kk

S

(b) Ideal

Definition A.1 (Composable Obfuscation). An obfuscation O for F is com-
posable iff there is a simulator S such that for all distinguishers D the quantity
below is negligible in k.∣∣∣Pr

[
K ← Kk, K̃ ′ ← SFK (1k) : DFK (K, K̃ ′) = 1

]
−

Pr
[
K ← Kk, K ′ ← O(K) : DGK′ (K, K ′) = 1

]∣∣∣
For the moment we do not specify the resources of S and D, although we do
require them to be equally resourced. Later we will investigate two cases: sta-
tistical (polynomially bounded queries, but computationally unbounded) and
computational (S and D are both PPT).

A.4 A Structural Result

We now define two separate properties of obfuscators, one relating to function-
ality and one relating to its virtual black-box property.

Definition A.2 (Composable Functionality). An obfuscation O for F sat-
isfies the composable functionality requirement iff for all distinguishers D the
following quantity is negligible in k.∣∣∣Pr

[
K ← Kk, K ′ ← O(K) : DFK (K, K ′) = 1

]
−

Pr
[
K ← Kk, K ′ ← O(K) : DGK′ (K, K ′) = 1

]∣∣∣
Definition A.3 (Composable Virtual Black-Box). An obfuscation O for
F satisfies the composable virtual black-box requirement iff there is a simulator

22

S such that for all distinguishers D the following quantity is negligible in k.

∣∣∣Pr[K ← Kk, K̃ ′ ← SFK (1k) : D(K, K̃ ′) = 1
]
−

Pr
[
K ← Kk, K ′ ← O(K) : D(K, K ′) = 1

]∣∣∣
With these definitions in place we can prove the following structural result:

Theorem A.1 An obfuscation O is composable iff it satisfies both the compos-
able functionality and the composable virtual black-box requirement.

Proof. Let D be an arbitrary algorithm with two inputs and one oracle, D′ an
algorithm with two inputs and no oracle, and S be an algorithm with one input
and one oracle. Write

εD
fun =

∣∣∣Pr
[
K ← Kk, K ′ ← O(K) : DFK (K, K ′) = 1

]
− Pr

[
K ← Kk, K ′ ← O(K) : DGK′ (K, K ′) = 1

]∣∣∣
εD′,S
vbb =

∣∣∣Pr
[
K ← Kk, K̃ ′ ← SFK (1k) : D′(K, K̃ ′) = 1

]
− Pr

[
K ← Kk, K ′ ← O(K) : D′(K, K ′) = 1

]∣∣∣
and

εD,S
obf =

∣∣∣Pr
[
K̃ ′ ← SFK (1k)K ← Kk, : DFK (K, K̃ ′) = 1

]
− Pr

[
K ← Kk, K ′ ← O(K) : DGK′ (K, K ′) = 1

]∣∣∣.
“⇐”: First, assume O is a composable obfuscator, which means that there is a
simulator S, such that for every D, the term εD,S

obf is negligible. We must show
that then, O has also the composable functionality and the composable virtual
black-box property. That is, we must give an S′ such that for each D and D′,
the terms εD

fun and εD′,S′

vbb are negligible.

For showing the former, assume an arbitrary D. Let S be as in the assump-
tion, and let Eh(K, K ′) = DFK (K, K ′) (i.e., E runs D and answers all oracle

23

queries from D by evaluating its first input argument). Consider

εD
fun =

∣∣∣Pr
[
DFK (K, K ′) = 1

]
− Pr

[
DGK′ (K, K ′) = 1

]∣∣∣
=

∣∣∣Pr
[
DFK (K, K ′) = 1

]
− Pr

[
DFK (K, K̃ ′) = 1

]
+ Pr

[
DFK (K, K ′) = 1

]
− Pr

[
DGK′ (K, K ′) = 1

]∣∣∣
≤

∣∣∣Pr
[
DFK (K, K ′) = 1

]
− Pr

[
DFK (K, K̃ ′) = 1

]∣∣∣
+

∣∣∣Pr
[
DFK (K, K̃ ′) = 1

]
− Pr

[
DGK′ (K, K ′) = 1

]∣∣∣
=

∣∣∣Pr
[
EFK (K, K ′) = 1

]
− Pr

[
EGK′ (K, K̃ ′) = 1

]∣∣∣ + εD,S
obf

= εE,S
obf + εD,S

obf ,

where f ← Kk, g ← O(K) and g′ ← SFK (1k). Since εD,S
obf and εD′,S

obf are negligible
by assumption, this shows that O has the composable functionality property.

For showing the latter, set S′ = S and let D′ be arbitrary. Let Dh(K, K ′) =
D′(K, K ′) (i.e., D behaves as D′ and ignores its oracle). Then εD′,S′

vbb is equal to
εD,S
obf by definition, and thus negligible by assumption.

24

“⇒”: Assume now that O fulfills the functionality and composable virtual black-
box requirements. This means that there is an S′ so that for each D and D′, the
terms εD

fun and εD′,S′

vbb are negligible. We need to give an S such that for all D,
also εD,S

obf is negligible.
Let S = S′, and let D be arbitrary. Let D′(f, g) = Df (f, g) (i.e., D′ runs D

and answers its oracle queries by evaluating its first argument). Consider

εD,S
obf =

∣∣∣Pr
[
DFK (K, K̃ ′) = 1

]
− Pr

[
DGK′ (K, K ′) = 1

]∣∣∣
=

∣∣∣Pr
[
DFK (K, K̃ ′) = 1

]
− Pr

[
DFK (K, K ′) = 1

]
+ Pr

[
DFK (K, K ′) = 1

]
− Pr

[
DGK′ (K, K ′) = 1

]∣∣∣
≤

∣∣∣Pr
[
DGK′ (K, K̃ ′) = 1

]
− Pr

[
DFK (K, K ′) = 1

]∣∣∣
+

∣∣∣Pr
[
DFK (K, K ′) = 1

]
− Pr

[
DGK′ (K, K ′) = 1

]∣∣∣
=

∣∣∣Pr
[
D′(K, K̃ ′) = 1

]
− Pr

[
D′(K, K ′) = 1

]∣∣∣ + εD
fun

= εD′,S
vbb + εD

fun = εD′,S′

vbb + εD
fun ,

where again K ← Kk, K ′ ← O(K) and K̃ ′ ← SFK (1k). Since εD′,S′

vbb and εD
fun

are negligible by assumption, so is εD,S
obf , which shows that O is a composable

obfuscator. ut

Note that we did not make any assumptions about the complexity class of D
and S; all that matters is that D′ falls into the same class as D, which is always
true.

A.5 Different Security Levels

We now investigate two natural classes for D and S, leading to statistical and
computational security.

Case 1: Statistical Security In this scenario D and S have unbounded in-
ternal resources, but their use of the interfaces is polynomially bounded. In
Theorem A.2 below we state that the functionality requirement in the statistical
security scenario simplifies to a statement without a distinguisher.

Theorem A.2 An obfuscator O for F satisfies the composable functionality
requirement of Definition A.2 against statistical adversaries and distinguishers iff
it satisfies the statistical functionality requirement in the sense of Definition 3.2,
i.e., iff there exists a negligible function ν such that for all k, the following holds:

εfun :=
∑
K,K′

Pr[K, K ′ : K ′ ← O(K),K ← Kk]max
x

(σ(GK′(x), FK(x))) ≤ ν(k).

Again, σ is used to denote the statistical distance.

25

Proof. To prove the statement we show that for all poly-query distinguishers,
their advantage is polynomially bounded in εfun . Furthermore we exhibit a poly-
query distinguisher that has advantage εfun .

The intuition is that the best an adversary can do is determine the above
maximum and query the function on that point. Moreover, a hybrid argument
easily shows that a single sample actually suffices (or at least is poly-reducible).
Hence we can upper bound the advantage of A in terms of properties of FK and
GK′ , where we still need to average out over all K and K ′.

On the other hand, there is an adversary that achieves the advantage gov-
erned by the statistical difference. The key observation is that determining the
value x for which maxx σ(FK(x), GK′(x)) is achieved can be done in polynomial
space: given a σ-oracle we can enumerate through all values of x in exponen-
tial time (but polynomial space) by keeping track of a counter for x and the
maximum value so far. A σ-oracle, for a given x ∈ Xk, can be implemented as
follows. For each element s in the range of FK and GK′ , compute the differ-
ence in Pr[FK(x) = s] and Pr[GK′(x) = s). This difference can be computed
by just running through all possible random tapes of F and G (there are only
finitely many to consider). Moreover, enumerating the elements of s is also pos-
sible with minimal memory, by indexing on the randomness r and checking for
freshness while enumerating over r for the difference computation. Now consider
the distinguisher that, on input K and K ′, first determines the x that maximizes
σ(FK(x), GK′(x)) and queries x to its oracle. ut

In a similar vein, the virtual black-box property implies the existence of a
simulator S such that∑

K,K̃′

Pr[K, K̃ ′ : K̃ ′ ← SFK ,K ← Kk]max
x

(σ(GK̃′(x), FK(x)) ≤ ν(k)

for a negligible ν. Note that in general this requirement is not sufficient for an
obfuscator to be virtual black-box. Indeed, one can imagine a situation where
different keys lead to identical functionality and where the obfuscator leaks some
of the redundant key material. Also note that one cannot necessarily use S as
an obfuscator, since S need not be polynomial time.

Case 2: Computational Security In this scenario, D and S are probabilistic
polynomial time machines. Hence it is arguably the most interesting and practi-
cally relevant scenario. It is also the most elusive scenario, in that it seems hard
to give a complete classification of functions that can or cannot be obfuscated
in this sense. Fortunately, the structural Theorem A.1 allows us to consider the
correctness and security properties separately.

When using the functionality requirement with respect to a computationally
bounded adversary, care has to be taken that the key K contains the right kind
of information. To illustrate this point, if one wants to obfuscate a signature
verification algorithm and the key K only contains the public key, the zero-
functionality is a valid obfuscation assuming existential unforgeability under a

26

key only attack (simply because it is not possible to create a valid signature in
this scenario, so the verification algorithm will necessarily always output zero in
this case).

The composable virtual black box definition is still a very strong one. For
instance, point functions cannot be obfuscated under Definition A.3, assuming
the key K contains the point at which the point function is non-zero. A distin-
guisher can always query the purported obfuscation at that point, so in particular
a “good” simulator would have to be able to learn the point from oracle access
alone (which is not possible).

The following is straightforward from the definitions:

Proposition A.1. If an obfuscation satisfies Definition A.3, then it satisfies
also Definition 3.1.

The converse implication does not hold (provided one-way permutations ex-
ist), as the obfuscations of point functions under Definition 3.1 in Theorem 4.5
demonstrates.

27

