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Abstract—Modular design is a common approach for 
dealing with complex tasks in modern cryptology. The critical 
of this approach is that designing a secure hybrid protocol. In 
this paper, we study password-based key exchange in the 
three-party setting within the UC framework and design a 
hybrid protocol that UC-securely realizes such task. That is, 
we firstly define an appropriate ideal functionality F3-pwKE for 
password-based three-party key exchange. Next we partition 
the task into two sub-tasks, three-party key distribution and 
password-based two-party key exchange, and propose relevant 
two ideal functionalities, F3-KD, FpwKE. Finally, we present a 
(F3-KD, FpwKE) -hybrid protocol for password-based three-party 
key exchange that is proved to be UC-secure with respect to 
non- adaptive party corruption. 
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I. INTRODUCTION 

ro
al

tocols for password-based two-party key exchange 
low two parties to use their shared password in 

order to exchange a common session key. They are 
designed to be secure even when the shared secret key 
between two parties is a human-memorable password. 
Passwords are mostly used because they are easier to 
remember by humans than secrets keys with high 
entropy. However, when a party wants to communicate 
with many other parties, the number of password that a 
party needs to remember may be linear in the number of 
possible partners. In order to limit the number of 
passwords that each party needs to remember, 

                                                           
 

password-based key exchange in the three-party setting, 
where each party only shares a password with a trusted 
server, have been received much attention in recent years. 
The main advantage of this solution is that it provides 
each party with the capability of communicating 
securely with other parties in the system while only 
requiring it to remember a single password. Its main 
drawback is that the server is needed during the 
establishment of all communication as in the Needham 
and Schroeder protocol [1]. 

Password-based three-party key exchange has been 
extensively studied in the last few years. The first work 
in this area was the protocol of Needham and Schroeder 
[1], which inspired the Kerberos distributed system [2]. 
Later, Bellare and Rogaway introduced a formal security 
model in this scenario along with a construction of the 
first provably-secure symmetric-key-based key 
distribution scheme [3]. After then, a special but 
important case in which the secret keys are drawn from a 
small set of values was considered by Michel Abdalla 
Pierre-Alain Fouque and David Pointcheval in [4]. In 
addition, they proposed a first provable-secure protocol 
in the three-party setting. 

.A general framework for representing cryptographic 
protocols and analyzing their security is proposed by 
R.Canetti [5, 6]. The definitions of security, which is 
called UC security, in the UC framework, follow an 
approach which is referred to as “security by emulation 
of an ideal process”. Informally speaking, this approach 
proceeds as follows: firstly defining an ideal 
functionality which captures the basic security 
requirement for a task and a protocol is said to UC 
securely realize this task if it “emulates” the ideal 
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protocol for this ideal functionality. In contrast, the 
definition of some conventional security follows a 
different definitional approach which is called “security 
by indistinguishability”, such as the definitions of AKE 
security and CCA security. Researches on the 
relationship between the indistinguishability-based 
definition of security and the emulation-based definition 
of security have become one of the significant topics in 
cryptography [7]. It’s seen that the emulation-based 
definition of security is more convenient in the design of 
hybrid protocol. Any protocol that is proven to be UC 
secure is guaranteed by UC composition theorem to 
remain secure when run concurrently with arbitrary other 
protocols.  

The UC composition theorem is a powerful tool for 
modular design and analysis of complex protocol. That 
is, given a complex task, firstly design an ideal 
functionality captures the basic idea and security 
requirement for such task. Then, partition the task into 
several, simple sub-tasks and design relevant sub-ideal 
functionalities for these sub-tasks. Next, designs 
sub-protocols that UC securely realize these sub-ideal 
functionalities and in addition, design a hybrid protocol 
that UC securely realizes the given ideal functionality 
assuming that evaluation of the sub-ideal functionalities 
is possible. Finally, use the composition theorem to 
argue that the protocol composed from the already- 
designed sub-protocols securely realizes the ideal 
functionality, so the given task.  

In this paper, we study and formulate an appropriate 
ideal functionality, which captures the basic idea and 
security requirements of password-based three-party key 
exchange. Next, we partition the task for three-party key 
exchange into two sub-tasks. One is password-based 
two-party key exchange; the other is three-party key 
distribution. Finally, we propose a hybrid protocol that 
UC securely realizes such ideal functionality with 
respect to non-adaptive party corruption. 

 

II. PRELIMINARIES 

We propose the description of the distributed system 
in section A, sketch dictionary attacks in section B, and 

recall some writing conventions for ideal functionality 
and the definition of hybrid protocol within the UC 
framework in section C. 

A. Participants and initialization 

For simplicity, we model the distributed system as a 
fixed polynomial-size set of m client parties Π = 
{P1,…,Pm}. The number m may be any polynomial 
function of the security parameter k. In addition, there is 
a trusted server PT which is not a member of Π . Each 
party  has a long-term password , while PiP isk T holds a 

vector skT=(ski). Any two parties of  together with 
P

Π
T are allowed to run the three-party key exchange 

protocol at any time (possibly concurrently) in order to 
obtain a session key.  

 

B. Dictionary attacks  

Password-based key exchange protocols assume a 
more realistic scenario in which secret keys are not 
uniformly distributed over a large space, but rather 
chosen from a small set of possible values (i.e., 
dictionary). One problem is that they are often subject to 
so-called dictionary attack. Dictionary attacks are attacks 
in which an adversary tries to break the security of a 
scheme by a brute-force method, and tries all possible 
combinations of secret keys in a given small set of 
possible values (i.e., dictionary). Such attacks are 
usually divided in two categories: off-line and on-line 
dictionary attacks. 

To address this problem, several protocols have been 
designed to be secure even when the secret key is a 
password. In this setting, an attacker has a noticeable 
chance of impersonating one of the parties simply by 
guessing the correct password and running the 
prescribed protocol. Such an attack is called an on-line 
dictionary attack, since one of the parties must be on-line 
and ready to participate in the protocol as the attacker 
exhaustively enumerates the dictionary in this way. Then, 
guessing the password in these protocols means that 
adversary must modify and replace the transmitted 
messages. Therefore, failed guess can be easily detected 
by participating parties. 
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C. Some useful notions in the UC framework  

Delayed output.  We often want to capture the 
fact that outputs generated by interactive protocol may 
be delayed due to delays in message delivery. We say 
that an ideal functionality F sends a delayed output v to 
some party P if it engages in the following interaction: 
Instead of simply outputting v to P, F first sends to the 
adversary a note that it is ready to generate an output to 
P. If the output is public, then the value v is included in 
the note to the adversary. If the output is private, then v 
is not mentioned in this note. Furthermore, the note 
contains a unique identifier that distinguishes it from all 
other messages sent by F to the adversary in this 
execution. When the adversary replies to the note, F 
outputs the value v to P.  

Party corruptions.   Adaptive party corruptions, 
namely corruptions that occur as the computation 
proceeds, based on the information gathered by the 
adversary so far. Arguably, adaptive corruption of 
parties is a realistic threat in existing networks. 
Nonetheless, it is sometimes useful to consider also a 
weaker threat model, where the identities of the 
adversarially controlled parties are fixed before the 
computation starts; this is the case of non-adaptive (or, 
static) adversaries. 

Hybrid protocol.  Hybrid protocol is a special type 
of protocol in the UC framework. In addition to 
communicating via the adversary in the usual way, the 
parties also make calls to the instances of ideal 
functionalities. This is done in a straightforward way, by 
calling the corresponding instance of the ideal protocol 
for these ideal functionalities.  

 

III. DEFINITION OF IDEAL FUNCTIONALITY  

In this section, we formulate UC definition of 
security for password-based three-party key exchange.  

Given a domain G of key space, the basic idea of 
three-party key exchange is to allow two uncorrupted 
client parties to exchange the same session key that is 
chosen from the domain G by the help of a trusted server, 
as long as the shared password between each client party 
and trusted server is identical. However, if any one of 

parties is corrupted or the adversary correctly guesses 
any one of two passwords, then the adversary is given 
the power to fully determine the session key. It’s natural 
that if corruption occurs, the adversary is unnecessary to 
guess password.  

Ideal functionality  F3-pwKE

F3-pwKE proceeds as follows, given a domain G of key 
space: 
Trustedserver: Upon receiving a query (Trustedserver 
sid,PT) from any party PT, record (Trustedserver,sid,PT) 
and send this record to all the parties and adversary S.  
Initialization: Upon receiving a query (NewSession,sid, 
pid,Pi,pwi,role) from any party Pi (Pi ≠ PT), if pid=(Pi, 
Pj,PT) for PT and some party Pj, then record (sid,pid, 
Pi,pwi) and send (sid,pid,Pi,role) to S. Else, ignore this 
query. Upon receiving a query (NewSession,sid,pid,PT,

,'
ipw '

jpw role) from party PT, if pid=(Pi,Pj,PT), then 
record (sid,pid,PT

' ,i
'
jpw pw ) and send (sid,pid,PT,role) 

to S. If there are already three tuples of the form 
(sid,pid,Pi,pwi), (sid,pid,Pj,pwj) and (sid,pid,PT,

'
ipw , 

'
jpw ), record (Session,sid,pid,ready) and send it to S.  

TestPassword:  Upon receiving a query (TestPwd, 
sid,pid,Pi, pw’) from the adversary S: If there is a record 
of the form (sid,pid,Pi,pwi) which is fresh, then do:  

1. If pwi=pw’, mark the record compromised and 
reply to S with “correct guess".  

2. If pwi ≠ pw’, mark the record interrupted 
reply to S with “wrong guess". 
Keygeneration: If the triple (Session,sid,pid,ready) has 
been recorded, F3-pwKE choose , and record 
(Key,sid,

r Gκ←⎯⎯
κ ). 

Keydelivery:  1.  Upon receiving a query (NewKey, 
sid,pid,Pi, 'κ ) from S, assume that there are records of 
the form (sid,pid,Pi,pwi), (sid,pid,Pj,pwj) and (sid,pid,PT,

' ',i jpw pw ) 
 If both and'

i ipw pw= '
j jpw pw=  hold, then 

do: 
1) If no party is corrupted, and both (sid,pid,Pi,pwi) 

and (sid,pid,Pj,pwj) are fresh, send a private 
delayed output (Key,sid,pid, ) to Pκ i.  

2) If no party is corrupted, and either (sid,pid,Pi, 
pwi) or (sid,pid,Pj,pwj) is interrupted, send a 
public delayed output (Key,sid,pid,Pi,error) to Pi
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3) If either (sid,pid,Pi,pwi) or (sid,pid,Pj, pwj) is 
compromised, or any party of Pi, Pj and PT is 
corrupted, send (Key,sid,pid, ) to P'κ i. 

 if either  or '
i ipw pw= '

j jpw pw= do not 
hold, then do: 

1) If Pi is corrupted, send (Key,sid,pid, ) to P'κ i.  
2) Else, send a public delayed output (Key,sid,pid, 

Pi,error) to Pi. 
2.  Upon receiving a query (Key,sid,pid,Pi,error) from 
the adversary S before any key has been already sent to 
Pi, then send (Key,sid,pid,Pi,error) to Pi. 
 

Fig 1: The three-party key exchange ideal functionality F3pwKE

 
We now briefly explain our ideal functionality 

F3-pwKE. The full description is given in Figure 1. An 
instance of F3-pwKE deals with the generation of a single 
session key. The generation of multi-session key is 

obtained by using , the multiple session 

extension of F
3̂ pwKEF −

3-pwKE. Security for the multi-session case 
is guaranteed via the UC and JUC theorems [5, 6].  

In the definition of F3-pwKE, the password is chosen 
by the environment who then hands it to the parties as 
input. Since we quantify over all (polynomial-time) 
environments, this implies that security is preserved for 
all efficient password distributions, as well as when 
arbitrarily-related passwords are used in different 
sessions. 

As expected, F3-pwKE begins with a trusted server 
phase. When F3-pwKE is notified who is a trusted server, it 
sends this message to all the parties as well as the 
adversary. Next, F3-pwKE waits Newsession message that 
would be sent by two client parties and a trusted server. 
We remark that the “role” variable in the Newsession 
message, such as (NewSession,sid,pid,Pi,pwi,role), is 
included in order to let a party know its role－initiator, 
responder or server－in the execution. This has no effect 
on the security, but is needed for correct executions. 
Once F3-pwKE receives notifications from the three parties
－with identical values of sid and pid, it enters a 
“ready” state and sends ready message to the adversary.  

In the F3-pwKE, a session is marked as compromised 
if the adversary makes a successful password guess, and 
the adversary can determine the session key for 
compromised sessions. If the adversary makes an 
incorrect password guess in a given session, then the 
session is marked as interrupted and F3-pwKE will send 
error message to all the uncorrupted parties in the 
Keydelivery phase. Note that in the real world, making 
a password guess means that adversary modifies the 
transferred message. Therefore, incorrect password 
guess can be easily detected by parties and result in error 
in the execution of the protocol. 

Then, F3-pwKE chooses a session key κ uniformly at 
random from the domain G. Finally, this session key is 
delivered to the two client parties after being requested 
by the adversary. Note that for each client party, the 
adversary may send two types of Keydelivery request. 
One type is a key message (Key,sid,pid,Pi, 'κ ), the other 
is an error message (Key,sid,pid,Pi,error).  

Two cases should be emphasized. One is that if the 
shared key between any client party and trusted server is 
not identical, F3-pwKE will send error message to all 
uncorrupted parties. The other is that F3-pwKE will send 
(Key,sid,pid,Pi,error) to Pi whenever it receives (Key,sid, 
pid,Pi,error) from the adversary. This fact reflects that in 
the execution of real-life protocol, the adversary can 
easily cause error because it can modify and deliver the 
transferred messages at will. 

 

IV. BUILDING BLOCK  

In this section we recall the definition for the 
cryptographic primitives that we use in the construction 
of hybrid protocol. 

A. Decisional Diffie-Hellman assumption: DDH  

Assume G is an abelian group and g is a generator. The 
decisional Diffie-Hellman assumption, DDH, states, 
roughly, that the distributions (gu, gv, guv) and (gu, gv, gw) 
are computationally indistinguishable when u,v,w are 
drawn at random from G. 
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B. Message Authentication Code (MAC) 

A message authentication code MAC = (Tag,Ver) is 
defined by the following two algorithms: (1) A 
generation algorithm Tag, possibly probabilistic, which 
given a message m and a secret key sk, produces a tag μ; 
and (2) A verification algorithm Ver, which given a tag 
μ, a message m, and a secret key sk, outputs 1 if μ is a 
valid tag for m under sk and 0, otherwise. The security 
notion that we need for the MAC scheme is strong 
existential unforgeability under chosen-message attacks 
(EU-CMA), which is based on existential unforgeability 
notion in [8]. In this notion, the adversary should be 
unable to create a new valid message-tag pair, even after 
seeing many such valid pairs. 
 

C. Password-based key exchange (pwKE) 

A (two-party) password-based key exchange is a 
protocol where two parties use their shared password in 
order to exchange a common session key. An ideal 
functionality, FpwKE, for two-party password-based key 
exchange and a real-life protocol that UC-securely 
realize FpwKE is proposed by R.Canetti in [9]. We restate 
FpwKE in the appendix A.  
 

D. Three-party key distribution (KD) 

The main idea of three-party key distribution is to allow 
two client parties to obtain the same session key from 
trusted server, as long as the shared private key between 
each client party and trusted server is identical. We 
propose an appropriate ideal functionality, F3-KD, for 
three-party key distribution and a UC-secure real-life 
protocol for F3-KD in [10]. A full description of F3-KD is 
reviewed in the appendix B.  
 

V. UC-SECURE PASSWORD-BASED THREE-PARTY KEY 

EXCHANGE PROTOCOL  

In this section, we propose a FpwKE,F3-KD-hybrid protocol 
that UC securely realizes ideal functionality F3-pwKE.  

First, we present our generic construction of the 
protocol. This generic construction can be seen as a form 
of complier, which transfers any UC-secure password- 

based two-party exchange protocol into UC-secure 
password-based three-party key exchange protocol.  

Assume DDH assumption is hold in group G and g 
is a generator, the generic construction of our protocol is 
described in Figure 2. The full description of our 
proposed protocol is described in Figure 3. 
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Fig 2: The generic construction of protocol 

 

Protocol π  
Assume DDH assumption is hold in group G and g is a 
generator, π  proceeds as follows,  

1. Upon party PT is activated with a query 
(Trustedserver,sid,PT), PT send (Trustedserver,sid,PT) 
to all the parties and F3-KD. Upon PT receiving a query 
(NewSession,sid,ssid1,ssid2,ssid3,pwi,pwj,role), if role= 
server and pid=(Pi,Pj,PT), PT send (NewSession,sid,ssid1, 
pid1,PT,pwi,role) with pid1=(Pi,PT) and (NewSession, 
sid,ssid1,pid2,PT,pwji,role) with pid2=(Pj ,PT) to FpwKE.  

2. Upon party Pi is activated with a query 
(NewSession,sid,ssid1,ssid3,pid1,pwi,initiator) , Pi send 
(NewSession,sid,ssid1,pid1,pwi,role) with pid1=(Pi,PT) to 

pwKEF . Upon party Pj is activated with a query 
(NewSession,sid,ssid2,ssid3,pid2,pwj,responder), Pj send 
(NewSession,sid,ssid2,pid2,pwj,role) with pid2= (Pj,PT) 
to pwKEF . 

3. Upon parties Pi , PT both receiving 
(sid,ssid1,pid1 ski) from pwKEF  and parties Pj, PT also 
both receiving (sid,ssid1,pid1,skj) from pwKEF , then do: Pi 
send (NewSession,sid,ssid3,pid,Pi,ski,role), Pj send (New 
-Session,sid,ssid3,pid,Pj,skj,role) and PT send (New- 
Session,sid,ssid3,pid,PT,ski,skj,role) to F3-KD. In addition, 
PT sends (Sessionkey,sid,ssid3,,pid) to F3-KD. 

4. If Pi (Pj) receives error message from F3-KD, it 
outputs error message to all other parties and terminates. 
In this case, Pj also outputs error message and 
terminates. 
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5. Upon party Pi receiving (Key,sid,ssid3,pid,
) from Fmκ 3-KD, Pi choose x at random, computes 

α =gx, ( ', , , )x
i i jMAC g P Pσ κ= , and send (flow- 

one,α , iσ ) to Pj. 
6. Upon party Pj receiving (Key,sid,ssid3,pid,
) from Fmκ 3-KD,, Pj choose y at random, computes 

β =gy, ( ', , , )y
j i jMAC g P Pσ κ= . Upon receiving 

flow- one message from Pi, Pj send (flow-two, β , jσ ) to 
Pi. 

7. Upon receiving flow-two message from Pj, Pi 
checks if . If yes, P( , , , , ) 1m i j jVF P Pκ β σ = i compute 

xκ β= and output (Key,sid,pid, ), else output (Key, 
sid,pid,error),. Either way P

κ
i terminates. Upon receiving 

flow-one message from Pi, Pj checks if
. If yes, P( , , , , ) 1m i j iVF P Pκ α σ = j compute yκ α=

and output (Key,sid,pid ), else output (Key,sid,pid, 
error). Either way P

κ
j terminates. 

 
Fig 3: The three-party key exchange protocol π  

 

VI. PROOF OF UC-SECURITY 

In this section, we will prove UC security of protocolπ . 
 
Theorem 1 Assume that DDH assumption is hold in 
the group G and (MAC,VF) is an EU-CMA secure 
message authentication code, then password-based 
three-party key exchange protocol π  UC-securely 
realizes F3-pwKE with respect to non-adaptive party 
corruption. . 
Proof In order to prove this theorem, we need to 
show that for any PPT real-world adversary A, there is 
an ideal-process adversary (simulator) S, such that no 
poly-time environment Z can distinguish with 
non-negligible probability whether it interacts with A 
and parties running π  in the real world, or with S and 
(dummy) parties communicating with ideal functionality 
in the ideal process. The description of simulator S is as 
follows: 

S will invoke an instance of adversary A and 
simulates the execution of protocol π  for A.  
Thereafter, S makes use of the information that is sent in 
the simulating protocol to achieve the goal that Z can’t 

distinguish ideal process and real world. Since π  is 

( pwKEF ,F3-KD)-hybrid protocol, except for simulating the 

behavior of all honest parties, S must simulates the 
behavior of those two ideal functionalities.  

The simulator S chooses pwi, pwj, sk’, sk”, '
mκ , 

while two passwords are pwi and pwj, two sub-session 

keys which pwKEF  should output are sk’ and sk”, and 

sub-session key which F3-KD should output is '
mκ . The 

detail of the description of S is as follows: 
1. S generates pwi, pwj on behalf of all the parties for 

protocolπ . Note that if either Pi or Pj is uncorrupted, 
S must know the actual password of that party. In 

addition, S chooses sk’, sk” on behalf of pwKEF  and 
'
mκ on behalf of F3-KD. 

2. S invokes an instance of A, then messages from Z to 
 are forwarded to A, and messages from A to S are 

forwarded to Z. If party P
S

i or Pj is corrupted, S sends 
pwi to A. If P = PT, S sends the internal state of 
simulated party P together with pwi, pwj to A.  

3. Upon receiving a message (Trustedserver,sid,PT) 
from F3-pwKE, S sends this message to A. Upon 
receiving a message (sid,pid,Pi,role) from F3-pwKE, S 
begins simulating for A a copy of protocol π  
(calledπ ) with session ID is sid and partner ID is 
pid. In addition, S starts to simulate party Pi.  

4. Upon receiving a message (Session,sid,pid,ready) 
from F3-pwKE (it means that the simulated protocol 
π  also is ready), S sends (sid,ssid1,pid1,Pi,role),  
(sid,ssid1,pid1,PT,role) with pid1=(Pi,PT) and (sid, 
ssid2,pid2,Pj,role), (sid,ssid2,pid2,PT,role) with pid2= 

(Pj,PT) to A on behalf of pwKEF . 

5. If receiving (TestPwd,sid,ssid1,pid1,Pi,pw1) for Pi 
from the adversary A (it means both Pi and PT are 
uncorrupted), S sends this message to F3-pwKE. After 
then, if S receive “correct guess” from F3-pwKE, it 
resets password of Pi to pw’, in addition, it responds 

“correct guess” to A on behalf of pwKEF  and marks 

(sid,ssid1,pid1,Pi,pwi) as compromised on behalf of 

pwKEF . Else, S respond “wrong guess” to A and 
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marks (sid,ssid1,pid1,Pi pwi) as interrupted. If 
receiving (TestPwd,sid,ssid1,pid1,Pj,pw2) for Pj from 
the adversary A , S does similarly as above. 

6. Upon the simulated pwKEF (in fact, S) receiving 

(NewKey,sid,ssid1,pid1,Pi,sk1) from A, if Pi is 
corrupted or the record (sid,ssid1,pid1,Pi,pwi) is 
marked as compromised, S replace ski with sk1. If 
the record (sid,ssid1,pid1,Pi,pwi) is marked as 
interrupted, S sends (Key,sid,pid,Pi,error) to F3-pwKE. 

(Note that pwKEF  must send two different 

sub-session key to Pi and PT in this case, then F3-KD 
will send error message to Pi because the shared 
private key between Pi and PT are not identical.) 

Upon the simulated pwKEF (in fact, S) receiving 

(NewKey,sid,ssid2,pid2,Pj,sk2) from A, S does 
similarly. 

7. If S has already sent two error messages to F3-pwKE 
for Pi and Pj in step 6, it terminates the execution 
ofπ . Else, S sends (sid,ssid3,pid,Pi,role), (sid,ssid3, 
pid,Pj,role), (sid,ssid3,pid,PT, role) and (Session,sid, 
ssid3,pid,ready) to A on behalf of F3-KD.  

8. Upon the simulated F3-KD receiving (Key,sid,ssid3, 
pid,Pi, ) from A, If P1κ i is corrupted or the record 

(sid,ssid1,pid1,Pi,pwi) is marked as compromised, S 
replace with . If the simulated F'κ 1κ 3-KD receive 

(Key,sid,ssid3,pid,Pi,error) from A,, S sends (Key,sid, 
pid,Pi,error) to F3-pwKE. S does similarly with the 
simulated Pj.(Note that the case that (sid,ssid1,pid1, 
Pi,pwi) is marked as interrupted is impossible in 
this step.) 

9. If Pi is uncorrupted, S randomly chooses x’, 

computes 'α , '
iσ and sends (flow-one, 'α , '

iσ ) to A. 

Else, S does nothing except waiting flow-one 
message from A. Upon the simulated party Pj 
receiving (flow-one, 1α , 1σ ) from A, S checks if Pj is 

corrupted. If not, S randomly chooses y’,  

computes 'β , '
jσ and sends (flow-two, 'β , '

jσ ) to A. 

Else, S does nothing except waiting flow-two 
message from A.  

10. After the simulated party Pi receives a message 

(flow-two, 2α , 2σ ) from A, then S checks if Pi is 

corrupted. If yes, S does nothing except waiting key 
message or error message for Pi from A and sends 
this message to F3-pwKE. Else, if Pi accepts and 
outputs a session key , S sends (Key,sid,pid,P'κ i, 

'
1
xα ) to F3-pwKE. If Pi outputs error message 

(Key,sid,pid,Pi,error), S sends (Key,sid,pid,Pi,error) 
to F3-pwKE. Correspondingly, S does similarly for the 
simulated party Pj.  
From above construction, it’s easy to see that if 

either PT, Pi or Pj is corrupted or A guess either pwi or 
pwj successfully, Pi (Pj) will output as A wishes both in 
the real world and ideal process.  

Suppose that no party is corrupted. If A guess 
passwords wrongly, Pi and Pj will output error message 
both in the ideal process and in the real world. If there is 
no password guessing query, we argue that in the real 
world, Z will get no useful information of session key 
from party Pi or Pj and the key output by Pi or Pj is 
identical. The second statement hold is attributable to the 
DDH assumption and the EU-CMA security of MAC. 
Furthermore, Pi will output error message in the real 
world iff Pi will output error message in the ideal world, 
while Pi will output gxy in the real world iff Pi will output 
κ  in the ideal process. Since both gxy and κ  are 
chosen at random from group G, so suffice the 
indistinguishability. (Note that we take the non-adaptive 
party corruption into consideration, the case that occurs 
in the proof of insecurity of “class” two-move Diffie- 
Hellman protocol [11] is avoided.) 
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APPENDIX 
 

A Ideal functionality FpwKE 

 
Ideal functionality  FpwKE. 

Initialization:  Upon receiving a query (NewSession,sid, 
pid,Pi,pwi,role) with pid=(Pi,Pj) from party Pi , send (sid,pid, 
Pi,role) to S. In addition, if this is the first New Session query, 
or if this is the second New Session query and there is a record 
(sid,pid,Pj pwj), then record (sid,pid,Pi pwi) and mark this 
record fresh. 
TestPassword:  Upon receiving a query (TestPwd,sid, 
pid,Pi;pw’) from the adversary S: If there is a record of the 
form (sid,pid,Pi pwi) which is fresh, then do:  

1. If pwi = pw’, mark the record compromised and 
reply to S with “correct guess".  

2. If pwi ≠ pw’, mark the record interrupted and reply 
with “wrong guess". 
Keydelivery:  Upon receiving a query (NewKey,sid,pid,Pi, 
sk’) from S, where |sk|=l. If there is a record of the form 
(sid,pid,Pi pwi), and this is the first New Key query for Pi, 
then: 

1. If this record is compromised, or either Pi or Pj is 
corrupted, then output (key,sid,pid,sk) to Pi 

2. If this record is fresh, and there is a record 
(sid,pid,Pj pwj) with pwj = pwi, and a key sk’ was sent to ,Pj , 
and (sid,pid,Pj pwj) was fresh at the time, then output (key, 
sid,pid,sk’) to Pi. 

3. In any other case, pick a new random key sk’ of 
length l and send (key, sid,pid,sk’)  to Pi. 

Either way, mark the record (sid,pid,Pi pwi) as completed

 

B Ideal functionality F3-KD

 
Ideal functionality  F3-KD

Trustedserver: Upon receiving a query (Trustedserver, 
sid,PT) from any party PT, then records (Trustedserver, sid,PT) 
and sends (Trustedserver,sid,PT) to all the parties and the 
adversary S. 
Initialization:  Upon receiving a query (NewSession, sid,pid, 
Pi,ski,role) from any party Pi ( i TP P≠ ), if pid= (Pi,Pj,PT) for 
PT and some party Pj, then record (sid,pid, Pi,ski) and send 
(sid,pid,Pi,role) to . Else, ignore this query. Upon receiving 

a query (NewSession,sid,pid,P

S
T, ,role) from party P' ,isk sk '

j

'
j

T, 

if pid=(Pi,Pj,PT), then record (sid,pid,PT, ) and send 

(sid,pid,P

' ,isk sk
T,role) to S. If there are already three tuples of the 

form (sid,pid,Pi,ski), (sid,pid,Pj,skj) and (sid,pid,PT, ), 

then F

' ',i jsk sk
3-KD record (Session,sid,pid,ready) and send it to S.   

Keygeneration:  Upon receiving a message (Session- 
key,sid,pid) from party PT (for party PT only), if the tuple 
(Session,sid, pid,ready) has been recorded, then choose 

, and record (Key,sid,pid, ).In addition, if 
any of P

{0,1}*Rκ ←⎯⎯ κ
i , Pj and PT is corrupted, send (Key, sid,pid,κ ) to S. 

Else, send (Key,sid, pid,key generated) to S. 
Keydelivery: 1. Upon receiving a query (Key,sid,pid,Pi, 'κ ) 
from adversary S, if the key has been generated at that 
time, then do: 

κ

A. If there are records of the form (sid,pid,Pi,ski) and 
' '( , , , ,T i j )sid pid P sk sk , '

i isk sk=  , both PT and Pi are not 

corrupted, then F3-KD send a private delay output (Key,sid,pid, 
Pi,κ ) to Pi. If either Pi or PT is corrupted, F3-KD send (Key,sid, 
pid, κ ) to S and send a public delay output (Key,sid,pid, 
Pi, 'κ ) to Pi . 

B. If '
isk ski≠ , then if Pi and PT are uncorrupted, F3-KD 

send a public delay output (Key,sid,pid,Pi,error) to Pi. Else, 
send a public delay output (Key,sid,pid,Pi, ). 'κ
2. Upon receiving (Key,sid,pid,Pi,error) from the adversary S 
before any key has been already sent to Pi, then send 
(Key,sid,pid,Pi,error) to Pi. 
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