
 1

Hybrid Protocol For Password-based Key

Exchange in Three-party Setting

TingMao Chang, Jin Zhou, YaJuan Zhang, YueFei Zhu

Abstract—Modular design is a common approach for
dealing with complex tasks in modern cryptology. The critical
of this approach is that designing a secure hybrid protocol. In
this paper, we study password-based key exchange in the
three-party setting within the UC framework and design a
hybrid protocol that UC-securely realizes such task. That is,
we firstly define an appropriate ideal functionality F3-pwKE for
password-based three-party key exchange. Next we partition
the task into two sub-tasks, three-party key distribution and
password-based two-party key exchange, and propose relevant
two ideal functionalities, F3-KD, FpwKE. Finally, we present a
(F3-KD, FpwKE) -hybrid protocol for password-based three-party
key exchange that is proved to be UC-secure with respect to
non- adaptive party corruption.

Keywords—Password-based, Universally composable, Key

exchange, Three-party setting, Hybrid protocol

I. INTRODUCTION

ro
al

tocols for password-based two-party key exchange
low two parties to use their shared password in

order to exchange a common session key. They are
designed to be secure even when the shared secret key
between two parties is a human-memorable password.
Passwords are mostly used because they are easier to
remember by humans than secrets keys with high
entropy. However, when a party wants to communicate
with many other parties, the number of password that a
party needs to remember may be linear in the number of
possible partners. In order to limit the number of
passwords that each party needs to remember,

password-based key exchange in the three-party setting,
where each party only shares a password with a trusted
server, have been received much attention in recent years.
The main advantage of this solution is that it provides
each party with the capability of communicating
securely with other parties in the system while only
requiring it to remember a single password. Its main
drawback is that the server is needed during the
establishment of all communication as in the Needham
and Schroeder protocol [1].

Password-based three-party key exchange has been
extensively studied in the last few years. The first work
in this area was the protocol of Needham and Schroeder
[1], which inspired the Kerberos distributed system [2].
Later, Bellare and Rogaway introduced a formal security
model in this scenario along with a construction of the
first provably-secure symmetric-key-based key
distribution scheme [3]. After then, a special but
important case in which the secret keys are drawn from a
small set of values was considered by Michel Abdalla
Pierre-Alain Fouque and David Pointcheval in [4]. In
addition, they proposed a first provable-secure protocol
in the three-party setting.

.A general framework for representing cryptographic
protocols and analyzing their security is proposed by
R.Canetti [5, 6]. The definitions of security, which is
called UC security, in the UC framework, follow an
approach which is referred to as “security by emulation
of an ideal process”. Informally speaking, this approach
proceeds as follows: firstly defining an ideal
functionality which captures the basic security
requirement for a task and a protocol is said to UC
securely realize this task if it “emulates” the ideal

P

 2

protocol for this ideal functionality. In contrast, the
definition of some conventional security follows a
different definitional approach which is called “security
by indistinguishability”, such as the definitions of AKE
security and CCA security. Researches on the
relationship between the indistinguishability-based
definition of security and the emulation-based definition
of security have become one of the significant topics in
cryptography [7]. It’s seen that the emulation-based
definition of security is more convenient in the design of
hybrid protocol. Any protocol that is proven to be UC
secure is guaranteed by UC composition theorem to
remain secure when run concurrently with arbitrary other
protocols.

The UC composition theorem is a powerful tool for
modular design and analysis of complex protocol. That
is, given a complex task, firstly design an ideal
functionality captures the basic idea and security
requirement for such task. Then, partition the task into
several, simple sub-tasks and design relevant sub-ideal
functionalities for these sub-tasks. Next, designs
sub-protocols that UC securely realize these sub-ideal
functionalities and in addition, design a hybrid protocol
that UC securely realizes the given ideal functionality
assuming that evaluation of the sub-ideal functionalities
is possible. Finally, use the composition theorem to
argue that the protocol composed from the already-
designed sub-protocols securely realizes the ideal
functionality, so the given task.

In this paper, we study and formulate an appropriate
ideal functionality, which captures the basic idea and
security requirements of password-based three-party key
exchange. Next, we partition the task for three-party key
exchange into two sub-tasks. One is password-based
two-party key exchange; the other is three-party key
distribution. Finally, we propose a hybrid protocol that
UC securely realizes such ideal functionality with
respect to non-adaptive party corruption.

II. PRELIMINARIES

We propose the description of the distributed system
in section A, sketch dictionary attacks in section B, and

recall some writing conventions for ideal functionality
and the definition of hybrid protocol within the UC
framework in section C.

A. Participants and initialization

For simplicity, we model the distributed system as a
fixed polynomial-size set of m client parties Π =
{P1,…,Pm}. The number m may be any polynomial
function of the security parameter k. In addition, there is
a trusted server PT which is not a member of Π . Each
party has a long-term password , while PiP isk T holds a

vector skT=(ski). Any two parties of together with
P

Π
T are allowed to run the three-party key exchange

protocol at any time (possibly concurrently) in order to
obtain a session key.

B. Dictionary attacks

Password-based key exchange protocols assume a
more realistic scenario in which secret keys are not
uniformly distributed over a large space, but rather
chosen from a small set of possible values (i.e.,
dictionary). One problem is that they are often subject to
so-called dictionary attack. Dictionary attacks are attacks
in which an adversary tries to break the security of a
scheme by a brute-force method, and tries all possible
combinations of secret keys in a given small set of
possible values (i.e., dictionary). Such attacks are
usually divided in two categories: off-line and on-line
dictionary attacks.

To address this problem, several protocols have been
designed to be secure even when the secret key is a
password. In this setting, an attacker has a noticeable
chance of impersonating one of the parties simply by
guessing the correct password and running the
prescribed protocol. Such an attack is called an on-line
dictionary attack, since one of the parties must be on-line
and ready to participate in the protocol as the attacker
exhaustively enumerates the dictionary in this way. Then,
guessing the password in these protocols means that
adversary must modify and replace the transmitted
messages. Therefore, failed guess can be easily detected
by participating parties.

 3

C. Some useful notions in the UC framework

Delayed output. We often want to capture the
fact that outputs generated by interactive protocol may
be delayed due to delays in message delivery. We say
that an ideal functionality F sends a delayed output v to
some party P if it engages in the following interaction:
Instead of simply outputting v to P, F first sends to the
adversary a note that it is ready to generate an output to
P. If the output is public, then the value v is included in
the note to the adversary. If the output is private, then v
is not mentioned in this note. Furthermore, the note
contains a unique identifier that distinguishes it from all
other messages sent by F to the adversary in this
execution. When the adversary replies to the note, F
outputs the value v to P.

Party corruptions. Adaptive party corruptions,
namely corruptions that occur as the computation
proceeds, based on the information gathered by the
adversary so far. Arguably, adaptive corruption of
parties is a realistic threat in existing networks.
Nonetheless, it is sometimes useful to consider also a
weaker threat model, where the identities of the
adversarially controlled parties are fixed before the
computation starts; this is the case of non-adaptive (or,
static) adversaries.

Hybrid protocol. Hybrid protocol is a special type
of protocol in the UC framework. In addition to
communicating via the adversary in the usual way, the
parties also make calls to the instances of ideal
functionalities. This is done in a straightforward way, by
calling the corresponding instance of the ideal protocol
for these ideal functionalities.

III. DEFINITION OF IDEAL FUNCTIONALITY

In this section, we formulate UC definition of
security for password-based three-party key exchange.

Given a domain G of key space, the basic idea of
three-party key exchange is to allow two uncorrupted
client parties to exchange the same session key that is
chosen from the domain G by the help of a trusted server,
as long as the shared password between each client party
and trusted server is identical. However, if any one of

parties is corrupted or the adversary correctly guesses
any one of two passwords, then the adversary is given
the power to fully determine the session key. It’s natural
that if corruption occurs, the adversary is unnecessary to
guess password.

Ideal functionality F3-pwKE

F3-pwKE proceeds as follows, given a domain G of key
space:
Trustedserver: Upon receiving a query (Trustedserver
sid,PT) from any party PT, record (Trustedserver,sid,PT)
and send this record to all the parties and adversary S.
Initialization: Upon receiving a query (NewSession,sid,
pid,Pi,pwi,role) from any party Pi (Pi ≠ PT), if pid=(Pi,
Pj,PT) for PT and some party Pj, then record (sid,pid,
Pi,pwi) and send (sid,pid,Pi,role) to S. Else, ignore this
query. Upon receiving a query (NewSession,sid,pid,PT,

,'
ipw '

jpw role) from party PT, if pid=(Pi,Pj,PT), then
record (sid,pid,PT

' ,i
'
jpw pw) and send (sid,pid,PT,role)

to S. If there are already three tuples of the form
(sid,pid,Pi,pwi), (sid,pid,Pj,pwj) and (sid,pid,PT,

'
ipw ,

'
jpw), record (Session,sid,pid,ready) and send it to S.

TestPassword: Upon receiving a query (TestPwd,
sid,pid,Pi, pw’) from the adversary S: If there is a record
of the form (sid,pid,Pi,pwi) which is fresh, then do:

1. If pwi=pw’, mark the record compromised and
reply to S with “correct guess".

2. If pwi ≠ pw’, mark the record interrupted
reply to S with “wrong guess".
Keygeneration: If the triple (Session,sid,pid,ready) has
been recorded, F3-pwKE choose , and record
(Key,sid,

r Gκ←⎯⎯
κ).

Keydelivery: 1. Upon receiving a query (NewKey,
sid,pid,Pi, 'κ) from S, assume that there are records of
the form (sid,pid,Pi,pwi), (sid,pid,Pj,pwj) and (sid,pid,PT,

' ',i jpw pw)
 If both and'

i ipw pw= '
j jpw pw= hold, then

do:
1) If no party is corrupted, and both (sid,pid,Pi,pwi)

and (sid,pid,Pj,pwj) are fresh, send a private
delayed output (Key,sid,pid,) to Pκ i.

2) If no party is corrupted, and either (sid,pid,Pi,
pwi) or (sid,pid,Pj,pwj) is interrupted, send a
public delayed output (Key,sid,pid,Pi,error) to Pi

 4

3) If either (sid,pid,Pi,pwi) or (sid,pid,Pj, pwj) is
compromised, or any party of Pi, Pj and PT is
corrupted, send (Key,sid,pid,) to P'κ i.

 if either or '
i ipw pw= '

j jpw pw= do not
hold, then do:

1) If Pi is corrupted, send (Key,sid,pid,) to P'κ i.
2) Else, send a public delayed output (Key,sid,pid,

Pi,error) to Pi.
2. Upon receiving a query (Key,sid,pid,Pi,error) from
the adversary S before any key has been already sent to
Pi, then send (Key,sid,pid,Pi,error) to Pi.

Fig 1: The three-party key exchange ideal functionality F3pwKE

We now briefly explain our ideal functionality

F3-pwKE. The full description is given in Figure 1. An
instance of F3-pwKE deals with the generation of a single
session key. The generation of multi-session key is

obtained by using , the multiple session

extension of F
3̂ pwKEF −

3-pwKE. Security for the multi-session case
is guaranteed via the UC and JUC theorems [5, 6].

In the definition of F3-pwKE, the password is chosen
by the environment who then hands it to the parties as
input. Since we quantify over all (polynomial-time)
environments, this implies that security is preserved for
all efficient password distributions, as well as when
arbitrarily-related passwords are used in different
sessions.

As expected, F3-pwKE begins with a trusted server
phase. When F3-pwKE is notified who is a trusted server, it
sends this message to all the parties as well as the
adversary. Next, F3-pwKE waits Newsession message that
would be sent by two client parties and a trusted server.
We remark that the “role” variable in the Newsession
message, such as (NewSession,sid,pid,Pi,pwi,role), is
included in order to let a party know its role－initiator,
responder or server－in the execution. This has no effect
on the security, but is needed for correct executions.
Once F3-pwKE receives notifications from the three parties
－with identical values of sid and pid, it enters a
“ready” state and sends ready message to the adversary.

In the F3-pwKE, a session is marked as compromised
if the adversary makes a successful password guess, and
the adversary can determine the session key for
compromised sessions. If the adversary makes an
incorrect password guess in a given session, then the
session is marked as interrupted and F3-pwKE will send
error message to all the uncorrupted parties in the
Keydelivery phase. Note that in the real world, making
a password guess means that adversary modifies the
transferred message. Therefore, incorrect password
guess can be easily detected by parties and result in error
in the execution of the protocol.

Then, F3-pwKE chooses a session key κ uniformly at
random from the domain G. Finally, this session key is
delivered to the two client parties after being requested
by the adversary. Note that for each client party, the
adversary may send two types of Keydelivery request.
One type is a key message (Key,sid,pid,Pi, 'κ), the other
is an error message (Key,sid,pid,Pi,error).

Two cases should be emphasized. One is that if the
shared key between any client party and trusted server is
not identical, F3-pwKE will send error message to all
uncorrupted parties. The other is that F3-pwKE will send
(Key,sid,pid,Pi,error) to Pi whenever it receives (Key,sid,
pid,Pi,error) from the adversary. This fact reflects that in
the execution of real-life protocol, the adversary can
easily cause error because it can modify and deliver the
transferred messages at will.

IV. BUILDING BLOCK

In this section we recall the definition for the
cryptographic primitives that we use in the construction
of hybrid protocol.

A. Decisional Diffie-Hellman assumption: DDH

Assume G is an abelian group and g is a generator. The
decisional Diffie-Hellman assumption, DDH, states,
roughly, that the distributions (gu, gv, guv) and (gu, gv, gw)
are computationally indistinguishable when u,v,w are
drawn at random from G.

 5

B. Message Authentication Code (MAC)

A message authentication code MAC = (Tag,Ver) is
defined by the following two algorithms: (1) A
generation algorithm Tag, possibly probabilistic, which
given a message m and a secret key sk, produces a tag μ;
and (2) A verification algorithm Ver, which given a tag
μ, a message m, and a secret key sk, outputs 1 if μ is a
valid tag for m under sk and 0, otherwise. The security
notion that we need for the MAC scheme is strong
existential unforgeability under chosen-message attacks
(EU-CMA), which is based on existential unforgeability
notion in [8]. In this notion, the adversary should be
unable to create a new valid message-tag pair, even after
seeing many such valid pairs.

C. Password-based key exchange (pwKE)

A (two-party) password-based key exchange is a
protocol where two parties use their shared password in
order to exchange a common session key. An ideal
functionality, FpwKE, for two-party password-based key
exchange and a real-life protocol that UC-securely
realize FpwKE is proposed by R.Canetti in [9]. We restate
FpwKE in the appendix A.

D. Three-party key distribution (KD)

The main idea of three-party key distribution is to allow
two client parties to obtain the same session key from
trusted server, as long as the shared private key between
each client party and trusted server is identical. We
propose an appropriate ideal functionality, F3-KD, for
three-party key distribution and a UC-secure real-life
protocol for F3-KD in [10]. A full description of F3-KD is
reviewed in the appendix B.

V. UC-SECURE PASSWORD-BASED THREE-PARTY KEY

EXCHANGE PROTOCOL

In this section, we propose a FpwKE,F3-KD-hybrid protocol
that UC securely realizes ideal functionality F3-pwKE.

First, we present our generic construction of the
protocol. This generic construction can be seen as a form
of complier, which transfers any UC-secure password-

based two-party exchange protocol into UC-secure
password-based three-party key exchange protocol.

Assume DDH assumption is hold in group G and g
is a generator, the generic construction of our protocol is
described in Figure 2. The full description of our
proposed protocol is described in Figure 3.

()()

(,)

(, , ,)

(, , ,)

j ji i

m i j

x x
m i j

y y
m i j

i T
sk pwKE pwsk pwKE pw

k KD sk sk

g MAC k g P P

g MAC k g P P

P P
==

=
←⎯⎯⎯⎯⎯→ ←⎯⎯⎯⎯⎯→
←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

jP

Fig 2: The generic construction of protocol

Protocol π
Assume DDH assumption is hold in group G and g is a
generator, π proceeds as follows,

1. Upon party PT is activated with a query
(Trustedserver,sid,PT), PT send (Trustedserver,sid,PT)
to all the parties and F3-KD. Upon PT receiving a query
(NewSession,sid,ssid1,ssid2,ssid3,pwi,pwj,role), if role=
server and pid=(Pi,Pj,PT), PT send (NewSession,sid,ssid1,
pid1,PT,pwi,role) with pid1=(Pi,PT) and (NewSession,
sid,ssid1,pid2,PT,pwji,role) with pid2=(Pj ,PT) to FpwKE.

2. Upon party Pi is activated with a query
(NewSession,sid,ssid1,ssid3,pid1,pwi,initiator) , Pi send
(NewSession,sid,ssid1,pid1,pwi,role) with pid1=(Pi,PT) to

pwKEF . Upon party Pj is activated with a query
(NewSession,sid,ssid2,ssid3,pid2,pwj,responder), Pj send
(NewSession,sid,ssid2,pid2,pwj,role) with pid2= (Pj,PT)
to pwKEF .

3. Upon parties Pi , PT both receiving
(sid,ssid1,pid1 ski) from pwKEF and parties Pj, PT also
both receiving (sid,ssid1,pid1,skj) from pwKEF , then do: Pi
send (NewSession,sid,ssid3,pid,Pi,ski,role), Pj send (New
-Session,sid,ssid3,pid,Pj,skj,role) and PT send (New-
Session,sid,ssid3,pid,PT,ski,skj,role) to F3-KD. In addition,
PT sends (Sessionkey,sid,ssid3,,pid) to F3-KD.

4. If Pi (Pj) receives error message from F3-KD, it
outputs error message to all other parties and terminates.
In this case, Pj also outputs error message and
terminates.

 6

5. Upon party Pi receiving (Key,sid,ssid3,pid,
) from Fmκ 3-KD, Pi choose x at random, computes

α =gx, (', , ,)x
i i jMAC g P Pσ κ= , and send (flow-

one,α , iσ) to Pj.
6. Upon party Pj receiving (Key,sid,ssid3,pid,
) from Fmκ 3-KD,, Pj choose y at random, computes

β =gy, (', , ,)y
j i jMAC g P Pσ κ= . Upon receiving

flow- one message from Pi, Pj send (flow-two, β , jσ) to
Pi.

7. Upon receiving flow-two message from Pj, Pi
checks if . If yes, P(, , , ,) 1m i j jVF P Pκ β σ = i compute

xκ β= and output (Key,sid,pid,), else output (Key,
sid,pid,error),. Either way P

κ
i terminates. Upon receiving

flow-one message from Pi, Pj checks if
. If yes, P(, , , ,) 1m i j iVF P Pκ α σ = j compute yκ α=

and output (Key,sid,pid), else output (Key,sid,pid,
error). Either way P

κ
j terminates.

Fig 3: The three-party key exchange protocol π

VI. PROOF OF UC-SECURITY

In this section, we will prove UC security of protocolπ .

Theorem 1 Assume that DDH assumption is hold in
the group G and (MAC,VF) is an EU-CMA secure
message authentication code, then password-based
three-party key exchange protocol π UC-securely
realizes F3-pwKE with respect to non-adaptive party
corruption. .
Proof In order to prove this theorem, we need to
show that for any PPT real-world adversary A, there is
an ideal-process adversary (simulator) S, such that no
poly-time environment Z can distinguish with
non-negligible probability whether it interacts with A
and parties running π in the real world, or with S and
(dummy) parties communicating with ideal functionality
in the ideal process. The description of simulator S is as
follows:

S will invoke an instance of adversary A and
simulates the execution of protocol π for A.
Thereafter, S makes use of the information that is sent in
the simulating protocol to achieve the goal that Z can’t

distinguish ideal process and real world. Since π is

(pwKEF ,F3-KD)-hybrid protocol, except for simulating the

behavior of all honest parties, S must simulates the
behavior of those two ideal functionalities.

The simulator S chooses pwi, pwj, sk’, sk”, '
mκ ,

while two passwords are pwi and pwj, two sub-session

keys which pwKEF should output are sk’ and sk”, and

sub-session key which F3-KD should output is '
mκ . The

detail of the description of S is as follows:
1. S generates pwi, pwj on behalf of all the parties for

protocolπ . Note that if either Pi or Pj is uncorrupted,
S must know the actual password of that party. In

addition, S chooses sk’, sk” on behalf of pwKEF and
'
mκ on behalf of F3-KD.

2. S invokes an instance of A, then messages from Z to
 are forwarded to A, and messages from A to S are

forwarded to Z. If party P
S

i or Pj is corrupted, S sends
pwi to A. If P = PT, S sends the internal state of
simulated party P together with pwi, pwj to A.

3. Upon receiving a message (Trustedserver,sid,PT)
from F3-pwKE, S sends this message to A. Upon
receiving a message (sid,pid,Pi,role) from F3-pwKE, S
begins simulating for A a copy of protocol π
(calledπ) with session ID is sid and partner ID is
pid. In addition, S starts to simulate party Pi.

4. Upon receiving a message (Session,sid,pid,ready)
from F3-pwKE (it means that the simulated protocol
π also is ready), S sends (sid,ssid1,pid1,Pi,role),
(sid,ssid1,pid1,PT,role) with pid1=(Pi,PT) and (sid,
ssid2,pid2,Pj,role), (sid,ssid2,pid2,PT,role) with pid2=

(Pj,PT) to A on behalf of pwKEF .

5. If receiving (TestPwd,sid,ssid1,pid1,Pi,pw1) for Pi
from the adversary A (it means both Pi and PT are
uncorrupted), S sends this message to F3-pwKE. After
then, if S receive “correct guess” from F3-pwKE, it
resets password of Pi to pw’, in addition, it responds

“correct guess” to A on behalf of pwKEF and marks

(sid,ssid1,pid1,Pi,pwi) as compromised on behalf of

pwKEF . Else, S respond “wrong guess” to A and

 7

marks (sid,ssid1,pid1,Pi pwi) as interrupted. If
receiving (TestPwd,sid,ssid1,pid1,Pj,pw2) for Pj from
the adversary A , S does similarly as above.

6. Upon the simulated pwKEF (in fact, S) receiving

(NewKey,sid,ssid1,pid1,Pi,sk1) from A, if Pi is
corrupted or the record (sid,ssid1,pid1,Pi,pwi) is
marked as compromised, S replace ski with sk1. If
the record (sid,ssid1,pid1,Pi,pwi) is marked as
interrupted, S sends (Key,sid,pid,Pi,error) to F3-pwKE.

(Note that pwKEF must send two different

sub-session key to Pi and PT in this case, then F3-KD
will send error message to Pi because the shared
private key between Pi and PT are not identical.)

Upon the simulated pwKEF (in fact, S) receiving

(NewKey,sid,ssid2,pid2,Pj,sk2) from A, S does
similarly.

7. If S has already sent two error messages to F3-pwKE
for Pi and Pj in step 6, it terminates the execution
ofπ . Else, S sends (sid,ssid3,pid,Pi,role), (sid,ssid3,
pid,Pj,role), (sid,ssid3,pid,PT, role) and (Session,sid,
ssid3,pid,ready) to A on behalf of F3-KD.

8. Upon the simulated F3-KD receiving (Key,sid,ssid3,
pid,Pi,) from A, If P1κ i is corrupted or the record

(sid,ssid1,pid1,Pi,pwi) is marked as compromised, S
replace with . If the simulated F'κ 1κ 3-KD receive

(Key,sid,ssid3,pid,Pi,error) from A,, S sends (Key,sid,
pid,Pi,error) to F3-pwKE. S does similarly with the
simulated Pj.(Note that the case that (sid,ssid1,pid1,
Pi,pwi) is marked as interrupted is impossible in
this step.)

9. If Pi is uncorrupted, S randomly chooses x’,

computes 'α , '
iσ and sends (flow-one, 'α , '

iσ) to A.

Else, S does nothing except waiting flow-one
message from A. Upon the simulated party Pj
receiving (flow-one, 1α , 1σ) from A, S checks if Pj is

corrupted. If not, S randomly chooses y’,

computes 'β , '
jσ and sends (flow-two, 'β , '

jσ) to A.

Else, S does nothing except waiting flow-two
message from A.

10. After the simulated party Pi receives a message

(flow-two, 2α , 2σ) from A, then S checks if Pi is

corrupted. If yes, S does nothing except waiting key
message or error message for Pi from A and sends
this message to F3-pwKE. Else, if Pi accepts and
outputs a session key , S sends (Key,sid,pid,P'κ i,

'
1
xα) to F3-pwKE. If Pi outputs error message

(Key,sid,pid,Pi,error), S sends (Key,sid,pid,Pi,error)
to F3-pwKE. Correspondingly, S does similarly for the
simulated party Pj.
From above construction, it’s easy to see that if

either PT, Pi or Pj is corrupted or A guess either pwi or
pwj successfully, Pi (Pj) will output as A wishes both in
the real world and ideal process.

Suppose that no party is corrupted. If A guess
passwords wrongly, Pi and Pj will output error message
both in the ideal process and in the real world. If there is
no password guessing query, we argue that in the real
world, Z will get no useful information of session key
from party Pi or Pj and the key output by Pi or Pj is
identical. The second statement hold is attributable to the
DDH assumption and the EU-CMA security of MAC.
Furthermore, Pi will output error message in the real
world iff Pi will output error message in the ideal world,
while Pi will output gxy in the real world iff Pi will output
κ in the ideal process. Since both gxy and κ are
chosen at random from group G, so suffice the
indistinguishability. (Note that we take the non-adaptive
party corruption into consideration, the case that occurs
in the proof of insecurity of “class” two-move Diffie-
Hellman protocol [11] is avoided.)

REFERENCES

[1] R. M. Needham and M. D. Schroeder. Using encryption for
authentication in large networks of computers. Communications of the
Association for Computing Machinery, 21(21):993–999, Dec. 1978.

[2] J. G. Steiner, B. C. Neuman, and J. L. Schiller. Kerberos: An
authentication service for open networks. In Proceedings of the USENIX
Winter Conference, pages 191–202, Dallas, TX, USA, 1988.

[3] M. Bellare and P. Rogaway: “Provably Secure Session Key Distribution
–the Three Party Case” in 28th Annual ACM Symposium on Theory of
Computing, pp 57–66, Philadephia, Pennsylvania, USA, May 22–24,
1996. ACM Press.

[4] M.Abdalla, P.Fouque and D.Pointcheval: “Password-Based
Authenticated Key Exchange in the Three-Party Setting” in IEEE

 8

Proceedings -- Information Security, Volume 153, issue 1, pp. 27-39,
March 2006.

[5] R. Canetti: “Universally Composable Security: A New Paradigm for
Cryptographic Protocols” in 42nd IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE, pp. 136–145, 2001.

[6] R. Canetti: “Universally Composable Security: A New Paradigm for
Cryptographic Protocols 2005” in. Revision 3 of ECCC Report
TR01-016

[7] R. Canetti and T. Rabin: “Universal Composition with Joint State” in
Advances in Cryptology Crypto 2003, LNCS vol. 2729, Springer–
Verlag, pp. 265–281, 2003.

[8] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System
Sciences, 61(3):362–399, 2000. (Cited on page 14.)

[9] J. Katz, J. Sun Shin. “Modeling Insider Attacks on Group Key-Exchange
Protocols” in http://eprint.iacr.org/2005/163

[10] Jin Zhou, TingMao Chang, YaJuan Zhang, YueFei Zhou. Universally
Composable Three-Party Key Distribution. in http://eprint.iacr.org/
2006/421

[11] R. Canetti and H. Krawczyk: “Universally Composable Notions of Key
Exchange and Secure Channels” in Eurocrypt 2002.Full version
available at http://eprint.iacr.org/2002/059.

APPENDIX

A Ideal functionality FpwKE

Ideal functionality FpwKE.

Initialization: Upon receiving a query (NewSession,sid,
pid,Pi,pwi,role) with pid=(Pi,Pj) from party Pi , send (sid,pid,
Pi,role) to S. In addition, if this is the first New Session query,
or if this is the second New Session query and there is a record
(sid,pid,Pj pwj), then record (sid,pid,Pi pwi) and mark this
record fresh.
TestPassword: Upon receiving a query (TestPwd,sid,
pid,Pi;pw’) from the adversary S: If there is a record of the
form (sid,pid,Pi pwi) which is fresh, then do:

1. If pwi = pw’, mark the record compromised and
reply to S with “correct guess".

2. If pwi ≠ pw’, mark the record interrupted and reply
with “wrong guess".
Keydelivery: Upon receiving a query (NewKey,sid,pid,Pi,
sk’) from S, where |sk|=l. If there is a record of the form
(sid,pid,Pi pwi), and this is the first New Key query for Pi,
then:

1. If this record is compromised, or either Pi or Pj is
corrupted, then output (key,sid,pid,sk) to Pi

2. If this record is fresh, and there is a record
(sid,pid,Pj pwj) with pwj = pwi, and a key sk’ was sent to ,Pj ,
and (sid,pid,Pj pwj) was fresh at the time, then output (key,
sid,pid,sk’) to Pi.

3. In any other case, pick a new random key sk’ of
length l and send (key, sid,pid,sk’) to Pi.

Either way, mark the record (sid,pid,Pi pwi) as completed

B Ideal functionality F3-KD

Ideal functionality F3-KD

Trustedserver: Upon receiving a query (Trustedserver,
sid,PT) from any party PT, then records (Trustedserver, sid,PT)
and sends (Trustedserver,sid,PT) to all the parties and the
adversary S.
Initialization: Upon receiving a query (NewSession, sid,pid,
Pi,ski,role) from any party Pi (i TP P≠), if pid= (Pi,Pj,PT) for
PT and some party Pj, then record (sid,pid, Pi,ski) and send
(sid,pid,Pi,role) to . Else, ignore this query. Upon receiving

a query (NewSession,sid,pid,P

S
T, ,role) from party P' ,isk sk '

j

'
j

T,

if pid=(Pi,Pj,PT), then record (sid,pid,PT,) and send

(sid,pid,P

' ,isk sk
T,role) to S. If there are already three tuples of the

form (sid,pid,Pi,ski), (sid,pid,Pj,skj) and (sid,pid,PT,),

then F

' ',i jsk sk
3-KD record (Session,sid,pid,ready) and send it to S.

Keygeneration: Upon receiving a message (Session-
key,sid,pid) from party PT (for party PT only), if the tuple
(Session,sid, pid,ready) has been recorded, then choose

, and record (Key,sid,pid,).In addition, if
any of P

{0,1}*Rκ ←⎯⎯ κ
i , Pj and PT is corrupted, send (Key, sid,pid,κ) to S.

Else, send (Key,sid, pid,key generated) to S.
Keydelivery: 1. Upon receiving a query (Key,sid,pid,Pi, 'κ)
from adversary S, if the key has been generated at that
time, then do:

κ

A. If there are records of the form (sid,pid,Pi,ski) and
' '(, , , ,T i j)sid pid P sk sk , '

i isk sk= , both PT and Pi are not

corrupted, then F3-KD send a private delay output (Key,sid,pid,
Pi,κ) to Pi. If either Pi or PT is corrupted, F3-KD send (Key,sid,
pid, κ) to S and send a public delay output (Key,sid,pid,
Pi, 'κ) to Pi .

B. If '
isk ski≠ , then if Pi and PT are uncorrupted, F3-KD

send a public delay output (Key,sid,pid,Pi,error) to Pi. Else,
send a public delay output (Key,sid,pid,Pi,). 'κ
2. Upon receiving (Key,sid,pid,Pi,error) from the adversary S
before any key has been already sent to Pi, then send
(Key,sid,pid,Pi,error) to Pi.

http://eprint.iacr.org/2005/163
http://eprint.iacr.org/%202006/421
http://eprint.iacr.org/%202006/421
http://eprint.iacr.org/2002/059

	I. INTRODUCTION
	II. Preliminaries
	A. Participants and initialization
	B. Dictionary attacks
	C. Some useful notions in the UC framework
	III. Definition of ideal functionality
	IV. Building block
	A. Decisional Diffie-Hellman assumption: DDH
	B. Message Authentication Code (MAC)
	C. Password-based key exchange (pwKE)
	D. Three-party key distribution (KD)

	V. UC-secure Password-Based Three-Party Key Exchange Protocol
	VI. Proof of UC-Security
	A Ideal functionality FpwKE
	B Ideal functionality F3-KD

