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Abstract

A new invariant of the set of n-variable Boolean functions with respect to the
action of AGL(n, 2) is studied. Application of this invariant to prove affine nonequiv-
alence of two Boolean functions is outlined. The value of this invariant is computed
for PSap type bent functions.

1 Introduction

A function from F2n into F2 is called a Boolean function on n variables. The set of all such
functions is denoted by Bn. Two Boolean function f and g are said to be affine equivalent
if there exists an A ∈ GL(n, 2) - the group of all invertible F2-linear transformations
over F2n - and b ∈ F2n such that g(x) = f(Ax + b) for all x ∈ F2n . The group of
transformations containing all the invertible affine transformations of the form x 7→ Ax+ b
where A ∈ GL(n, 2) and b ∈ F2n is denoted by AGL(n, 2) and a general element in
the group is written as (A, b). The {Trn

1 (λx)|λ ∈ F2n} is the set of linear functions
from F2n into F2, where Trn

1 (x) = x + x2 + x22
+ . . . + x2n−1

is called the trace function.
Walsh-Hadamard transformation of f ∈ Bn at λ ∈ F2n is f̂(λ) =

∑
x∈F2n

(−1)f(x)+Trn
1 (λx).

The multiset [f̂(λ)|λ ∈ F2n ] is called the Walsh-Hadamard spectrum of f . A function
is called bent if and only if its Walsh-Hadamard spectrum takes the values ±2

n
2 . The

autocorrelation of a Boolean function is defined by Cf (λ) =
∑

x∈F2n
(−1)f(x)+f(x+λ). The

autocorrelation spectrum of a Boolean function the multiset [Cf (λ)|λ ∈ F2n ]. For any bent
function all the entries in the autocorrelation spectrum is zero - in fact is a characterization
of a bent function. Probably the most well known invariants of a Boolean function are
its Walsh-Hadamard spectrum and autocorrelation spectrum along with algebraic degree.
These may be used for partial solution to the problem of deciding whether any two given
Boolean functions are not affine equivalent. However in case of bent functions the first two
invariants are identical over the complete class and therefore if two bent fucntions have the
same algebraic degree we cannot distinguish them by using these invariants. The action
of AGL(m, 2) on bent functions has been studied by Hou [5, 6]. An algorithm to decide
whether two Boolean functions are affine equivalent or not and in case so to compute the
matrix A and the element b is proposed by Meng, Yang and Zhang [7]. It is to be noted
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that introduction of new invariants of Boolean functions has the potential of improving
any algorithm in this direction. Moreover given any bent function to decide that it is not
affine equivalent to a partial spreads bent is a particularly difficult problem [1, 3, 4]. In
this paper we introduce a new invariant and provide a partial solution to this problem.

2 Description of the invariant

Suppose f ∈ Bn and supp(f) = {x ∈ F2n|f(x) = 1}. Consider the set

Sn(f(x)) = {{a, b}|f(a) = f(b) = f(a + b) = 1}.

Define Mn : Bn −→ Z by Mn(f(x)) = |Sn(f(x))|.

Lemma 1 Suppose g(x) = f(Ax) for some A ∈ GL(n, 2). Then Mn(f) = Mn(g).

Proof : Consider φ : Sn(f(x)) −→ Sn(g(x)), defined by φ : (a, b) 7→ (A−1a, A−1b). Clearly
this map is bijective hence Mn(f(x)) = Mn(g(x)).

Theorem 1 If g(x) = f(Ax + b) for some A ∈ GL(n, 2) and b ∈ F2n then Mn(g(x +
A−1b)) = Mn(f(x)).

Proof : Putting x = y + A−1b we obtain g(y + A−1b) = f(A(y + A−1b) + b) = f(Ay).
Since Mn(f(Ay)) = Mn(f(y)) by lemma 1, we obtain, Mn(g(y + A−1b)) = Mn(f(y)).

By using the above theorem we outline a method of deciding whether two given Boolean
functions f, g ∈ Bn are not affine equivalent. Suppose ζ is a primitive element of F2n .

• Step 1: Construct the following multiset:

[Mn(g(x)), Mn(g(x + 1)), Mn(g(x + ζ)), Mn(g(x + ζ2)), . . . ,Mn(g(x + ζ2n−2))]

Let us call this M -spectrum of g(x).

• Step 2: Compute Mn(f(x)).

• Step 3: If Mn(f(x)) 6= Mn(g(x+ζ i)) for all i = 0, 1, . . . , 2n−2 along with Mn(f(x)) 6=
Mn(g(x)) we conclude that f(x) is not affine equivalent to g(x).

Clearly above is a necessary but not sufficient condition for affine equivalence.

Remark 1 It is to be noted that Mn(f(x)) is the number of triangles formed at each vertex
of the Cayley graph corresponding to the function f .
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3 The invariant Mn on PSap

In this section the value of Mn(f(x)) for f ∈ PSap is computed. It is to be noted that
this is the only subclass of PS type bent functions which can be effectively constructed
and till date no PS type bent function is known which is not affine equivalent to a PSap

type function. The class PSap is partitioned into two subclasses PS−
ap and PS+

ap such that
PSap = PS−

ap ∪ PS+
ap. Their definitions are given below: For n = 2p and ζ a primitive

element of F2n define Vi = ζ iF2p , V ∗
i = ζ iF2p\{0}. F2n = ∪i∈CVi where C = {0, 1, 2, . . . , 2p}.

Definition 1 A function f ∈ Bn is a PS−
ap (PS+

ap) type bent if and only if supp(f) =
∪i∈IV

∗
i (supp(f) = ∪i∈IVi) where I ⊆ C and |I| = 2p−1 (|I| = 2p−1 + 1)

We prove the following theorem.

Theorem 2 Suppose n = 2p and f is a PSap type bent function on n variables. Then

1. If f ∈ PS−
ap then

Mn(f(x)) =

(
2p − 1

2

)
2p−1 +

(
2p−1

2

)
(2p−1 − 2)(2p − 1).

2. If f ∈ PS+
ap then

Mn(f(x)) =

(
2p − 1

2

)
(2p−1 + 1) +

(
2p−1 + 1

2

)
(2p−1− 1)(2p − 1) + (2p − 1)(2p−1 + 1).

Proof :
(a) We have to count the number of sets {a, b} (a 6= b) such that f(a) = f(b) = f(a+b) = 1.
Suppose f ∈ PS−

ap, V ∗
i ⊆ supp(f). If a, b ∈ V ∗

i then a + b ∈ V ∗
i . For each i ∈ I there are(

2p−1
2

)
such {a, b}. Then the total number of such pairs is

(
2p−1

2

)
2p−1.

Suppose i, j ∈ I and i 6= j. For any a ∈ V ∗
i we have |{a + x|x ∈ V ∗

j } ∩ V ∗
k | = 1 if i 6=

k and j 6= k, otherwise |{a + x|x ∈ V ∗
j } ∩ V ∗

k | = 0. |I \ {i, j}| = 2p−1 − 2, Thus if a is fixed
in V ∗

i and x varies over V ∗
j then a + x is 1 exactly 2p−1 − 2 times. Number of ways i, j

can be chosen is
(
2p−1

2

)
and the number of ways a can be chosen is 2p − 1. Thus value of

|Sn(f(x))| = Mn(f(x)) is

Mn(f(x)) =

(
2p − 1

2

)
2p−1 +

(
2p−1

2

)
(2p−1 − 2)(2p − 1).

(b) Similar argument proves this part. It is to be remembered that in this case f(0) = 1.
This explains the third term (2p − 1)(2p−1 + 1) in the expression for Mn(f(x)).
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