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Abstract. Pairing based cryptography is a new public key cryptographic
scheme. An elliptic curve suitable for pairing based cryptography is called
a “pairing-friendly” elliptic curve. After Mitsunari, Sakai and Kasahara’s
traitor tracing scheme and Boneh and Boyen’s short signature scheme,
many protocols based on pairing-related problems such as the q-weak
Diffie-Hellman problem have been proposed. In Eurocrypt 2006, Cheon
proposed a new efficient algorithm to solve pairing-related problems and
recently the complexity of Cheon’s algorithm has been improved by
Kozaki, Kutsuma and Matsuo. Due to these two works, an influence
of Cheon’s algorithm should be considered when we construct a suit-
able curves for the use of a protocol based on a pairing-related problem.
Among known methods for constructing pairing-friendly elliptic curves,
ones using cyclotomic polynomials such as the Brezing-Weng method
and the Freeman-Scott-Teske method are affected by Cheon’s algorithm.
In this paper, we study how to reduce a security loss of a cyclotomic
family by Cheon’s algorithm. The proposed method constructs many
pairing-friendly elliptic curves with small security loss by Cheon’s algo-
rithm suitable for protocols based on pairing-related problems.
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1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which
was proposed around 2000 by three important works due to Joux [15], Sakai,
Ohgishi and Kasahara [22] and Boneh and Franklin [5]. In these last two papers,
the authors constructed an identity-based encryption scheme by using the Weil
pairing of elliptic curves. An elliptic curve suitable for pairing-based cryptog-
raphy is called a “pairing-friendly” elliptic curve. It is very important to find
an efficient method to construct pairing-friendly elliptic curves. There are many
works on this topic: Miyaji, Nakabayashi and Takano [19], Cocks and Pinch [9],
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Brezing and Weng [8], Barreto and Naerig [1], Scott and Barreto [21], Freeman,
Scott and Teske [12] and so on.

In 2002, Mitsunari, Sakai and Kasahara proposed a new traitor tracing
scheme based on the q-weak Diffie-Hellman problem [18]. The q-weak Diffie-
Hellman problem is described as follows: Let g be an element of prime order `
in an abelian group and α ∈ (Z/pZ)∗. Then the q-weak Diffie-Hellman problem
asks [1/α]g for given g, [α]g, [α2]g,. . . , [αq]g. In 2004, Boneh and Boyen pro-
posed a short signature scheme based on the q-strong Diffie-Hellman problem.
After these two works, many protocols have been proposed based on q-weak
Diffie-Hellman-like problems: [2], [3], [4], [20] and so on.

Before 2006, there had been no known efficient algorithm to solve the discrete
logarithm problem related to the above protocols which works faster than the
rho method and the square root method. However, in Eurocrypt 2006, Cheon
proposed a new efficient algorithm which compute the discrete logarithm of the
q-strong Diffie-Hellman problem [7]. Let ` be a group order, and g, [α]g, [αd]g
given elements where d is a positive divisor of ` − 1. Cheon’s algorithm can
compute α from these data in O(log `(

√
`/d +

√
d)) group operations. In the

same paper, Cheon gave an algorithm which computes α for a given g, [αi]g for
i = 1, 2, . . . , 2d in O(log `(

√
`/d + d)) group operations where d is a divisor of

` + 1. Recently, Kozaki, Kutsuma and Matsuo showed that the complexity of
Cheon’s algorithm can be reduced to O(

√
`/d+

√
d) for d|(`−1) and O(

√
`/d+d)

for d|(`+1), respectively [16]. It is obvious that the complexity is reduced when
d(<

√
`) becomes larger. When d = O(`1/2), the cost becomes O(`1/4) which

is much smaller than the rho method and the square root method. Hence, one
should be careful about the order of an elliptic curve used for protocols based on
the q-weak Diffie-Hellman problem, the q-strong Diffie-Hellman problem or other
related problems. In all methods for constructing pairing-friendly elliptic curves
except for the Cocks-Pinch method, the order of an elliptic curve is given by an
irreducible polynomial `(x). If `(x) ± 1 is reducible, there is a big security loss
due to Cheon’s algorithm. In fact, for an example for k = 10 in [11], for k = 12 in
[1], all examples in [8], and curves obtained by using cyclotomic fields in [12], the
polynomials have a polynomial factor of degree 1 or 2. Though the advantage
of cyclotomic methods is that one can take the ratio ρ of bit length between
the size of the defining field and the order of the group less than two, these are
affected by Cheon’s algorithm for the use of protocols based on pairing-related
problems.

In this paper, we study how to reduce a security loss of a cyclotomic family
by Cheon’s algorithm keeping its advantage for the value of ρ. We propose an
improved method by which we can obtain pairing-friendly elliptic curves with a
small security loss. The key idea is to take ` as a proper divisor of Φk(x) where
k = 2n for a prime n and Φk is the k-th cyclotomic polynomial. Heuristically, the
proposed method gives pairing-friendly elliptic curves curves whose security loss
by Cheon’s algorithm is within 5 bits for k ≤ 38. We note that ρ of constructed
curves is kept as ρ < 2, moreover almost same as the Freeman-Scott-Teske
method.
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We give the outline of this article. In Section 2, we recall the Weil paring and
the condition to construct a secure and efficient pairing based cryptosystem.
In Section 3, we recall the q-weak/strong Diffie-Hellman problem and Cheon’s
algorithm. In Section 4, for known methods of constructing pairing-friendly el-
liptic curves, we study the affect of Cheon’s algorithm on them. In Section 5,
we study how to reduce the security loss of cyclotomic methods and give an im-
proved method to construct pairing-friendly elliptic curves with small security
loss. We also gives examples obtained by using the proposed method. Finally,
we summarize our result in Section 6.

2 Pairing based cryptosystem

Let K := Fq be a finite field with q elements and E an elliptic curve defined over
K. The finite abelian group of K-rational points of E and its order are denoted
by E(K) and #E(K), respectively. Assume that E(K) has a subgroup G of a
large prime order. The most simple case is that E(K) = G, that is, the order of
E(K) is prime. Let ` be the order of G. We denote by E[`] the group of `-torsion
points of E(K) where K is an algebraic closure of K. In the following, we denote
log2 x by lg x.

For a positive integer ` coprime to the characteristic of K, the Weil pairing
is a map

e` : E[`]× E[`] → µ` ⊂ K̂∗

where K̂ is the field extension of K generated by coordinates of all points in E[`],
K̂∗ is the multiplicative group of K̂ and µ` is the group of `-th roots of unity
in K̂∗. For the details of the Weil pairing, see [23] for example. The key idea of
pairing based cryptography is based on the fact that the subgroup G = 〈P 〉 is
embedded into the multiplicative group µ` ⊂ K̂∗ via the Weil pairing or some
other pairing map.

The extension degree of the field extension K̂/K is called the embedding
degree of E with respect to `. It is known that E has the embedding degree
k with respect to ` if and only if k is the smallest integer such that ` divides
qk− 1. In pairing based cryptography, the following conditions must be satisfied
to make a system secure:

– the order ` of a prime order subgroup of E(K) should be large enough so
that solving a discrete logarithm problem on the group is computationally
infeasible and

– qk should be large enough so that solving a discrete logarithm problem on
the multiplicative group F∗qk is computationally infeasible.

Moreover for an efficient implementation of a pairing based cryptosystem, the
following are important:

– the embedding degree k should be appropriately small and
– the ratio lg q/ lg ` should be appropriately small.
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Elliptic curves satisfying the above four conditions are called “pairing-friendly”
elliptic curves.

In practice, it is currently recommended that ` should be larger than 2160

and qk should be larger than 21024.
In the following, we only consider the case K = Fp where p is an odd prime.

3 Protocols based on pairing-related problem and
Cheon’s algorithm

3.1 Pairing-related problems

A new traitor tracing scheme proposed by Mitsunari, Sakai and Kasahara [18]
in 2002 is based on the q-weak Diffie-Hellman problem. The definition of the
q-weak Diffie-Hellman problem is as follows.

Definition 1 (The q-weak Diffie-Hellman problem). Let G be an abelian
group whose order is a large prime number `. The q-weak Diffie-Hellman problem
asks [1/α]g for a (q + 1)-tuple (g, [α]g, [α2]g, . . . , [αq]g) where g ∈ G and α ∈
(Z/`Z)×.

The q-weak Diffie-Hellman problem is also called the “q-Diffie-Hellman in-
version problem” in [2].

In 2004, Boneh and Boyen proposed a short signature scheme based on the
q-strong Diffie-Hellman problem which is defined as follows [3].

Definition 2 (The q-strong Diffie-Hellman problem). Let G be an abelian
group whose order is a large prime number `. The q-strong Diffie-Hellman prob-
lem asks a pair ([1/(α+a)]h, a) where a is any element in (Z/`Z)× for a (q+2)-
tuple (h ∈ H, g, [α]g, [α2]g, . . . , [αq]g) where H is an abelian group of order `,
g ∈ G and α ∈ (Z/pZ)×.

After Mitsunari, Sakai and Kasahara’s work [18] and Boneh and Boyen’s
work [3], many protocols without random oracles have been proposed based on
weak Diffie-Hellman-like problems, e.g. [2], [4], [20]. In the following, we call such
kind of problems the “pairing-related problems”.

For the definition of other pairing-related problems, e.g. the q-bilinear Diffie-
Hellman inversion problem and the (q+1)-bilinear Diffie-Hellman exponent prob-
lem, see [2], [4] and so on.

3.2 Cheon’s algorithm and its improvement

In Eurocrypt 2006, Cheon [7] proposed an algorithm to solve the q-weak/strong
Diffie-Hellman problem. Very recently, Kozaki, Kutsuma and Matsuo [16] im-
proved the complexity of Cheon’s algorithm for the q-weak Diffie-Hellman prob-
lem. For an abelian group G of prime order `, if ` − 1 has a positive divisor
less than or equal to q, then their improved algorithm can solve the q-weak
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Diffie-Hellman problem within O
(√

`/d +
√

d
)

group operations using space

for O
(
max

(√
`/d,

√
d
))

group elements. There also exists an ` + 1 variant of
this algorithm. The details of the results in [16] are as follows:

Theorem 1 ([16]). Let g be an element of prime order ` in an abelian group.
Suppose that d is a positive divisor of ` − 1. If g, [α]g and [αd]g are given,
α can be computed within O

(√
`/d +

√
d
)

group operations using space for

O
(
max

(√
`/d,

√
d
))

group elements.

Theorem 2 ([16]). Let g be an element of prime order ` in an abelian group.
Suppose that d is a positive divisor of `+1 and [αi]g for i = 1, 2, . . . , 2d are given.
Then α can be computed within O

(√
`/d + d

)
group operations using space for

O
(
max

(√
`/d,

√
d
))

group elements.

Remark 1. In the original result of Cheon [7], the complexity in the above
two theorems were given by O

(
log `

(√
`/d +

√
d
))

and O
(
log `

(√
`/d + d

))

group operations, respectively.

3.3 The Effect of Cheon’s algorithm for constructing
pairing-friendly elliptic curves

In this section, we consider the effect of Cheon’s algorithm on known methods
which construct pairing-friendly elliptic curves.

With respect to Cocks-Pinch method, the group size ` can be randomly
chosen. So it is not difficult to avoid the security loss by Cheon’s algorithm. See
Section 6 of [16] for the details.

Except for Cocks-Pinch method, since the group order ` is given by a poly-
nomial `(x), we should be careful about the effect of Cheon’s algorithm. More
precisely, if a polynomial `(x)±1 is reducible and its non-trivial polynomial fac-
tor h(x) has a small degree, there is a (lg h(x))/2 bits security loss by Cheon’s
algorithm. In the following, we see the security loss by Cheon’s algorithm for
each method using polynomials.

The MNT method and its variant. In the MNT method based on Miyaji,
Nakabayashi and Takano’s result [19], the following polynomials are used: `(x) =
12x2±6x+1 for k = 3, `(x) = x2+2x+2 or x2+1 for k = 4 and `(x) = 4x2±2x+1
for k = 6. Except for `(x) = `2 + 2` + 2 in the case k = 4, `(x) − 1 is divisible
by x. For the generalized MNT method such as Galbraith, McKee and Valença’s
method [13], there are some cases that `(x)±1 are reducible. Since the degree of
`(x) equals two, this fact does not lead directly that Cheon’s algorithm affects
on these methods.
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A Cyclotomic Family. There are some methods using a cyclotomic polynomial
as `(x), e.g. Brezing and Weng’s method [8] and Freedman, Scott and Teske’s
method [12]. We call these methods a “cyclotomic family”. The advantage of a
cyclotomic family is that one can take curves with relatively small ρ(< 2).

All of them use a cyclotomic polynomial to set a prime ` as ` = Φk(x) or
` = Φck(x) for some c > 1 where k is the embedding degree. Then, ` − 1 is
factored by x at least. Moreover, if ck = 2m, then ` − 1 is factored by x2m−1

,
otherwise ` − 1 is factored by x(x + 1) or x(x − 1). The size of x is about
lg `/ϕ(ck) bits, c ≥ 1, where ϕ is the Euler phi function. Hence, if x < q (resp.
x(x + 1) < q), the complexity to solve the q-weak Diffie-Hellman problem is
reduced to O(

√
`1−1/ϕ(ck) +

√
`1/ϕ(ck)) (resp. O(

√
`1−2/ϕ(ck) +

√
`2/ϕ(ck))) group

operations.

Other methods. For k = 10, Freeman gave the following family [11].

p(x) = 25x4 + 25x3 + 25x2 + 10x + 3

`(x) = 25x4 + 25x3 + 15x2 + 5x + 1

Dy2 = 15x2 + 10x + 3

For this family, `(x)± 1 factor as

`(x)− 1 = 5x(5x3 + 5x2 + 3xz + 1)

`(x) + 1 = (5x2 + 1)(5x2 + 5x + 2).

The following two examples are given in [11].

` = 503189899097385532598571084778608176410973351
` = 61099963271083128746073769567450502219087145916434839626301

The former is a 149 bit prime and the latter is a 196 bit prime. For each example,
`− 1 factors as

`− 1 = 2 · 52 · 853 · (a 33 bit prime) · (a 39 bit prime) · (a 63 bit prime)

`− 1 = 22 · 52 · 7 · (a 29 bit prime) · (a 44 bit prime) · (a 114 bit prime)

respectively. Cheon’s algorithm affects on each case.
For k = 12, Barreto and Naerig gave the following family [1].

`(x) = 36x4 + 36x3 + 18x2 + 6x + 1

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

Dy2 = 3(6x2 + 4x + 1)

For this family, `(x)± 1 factor as

`(x)− 1 = x(6x3 + 6x2 + 3x + 1)

`(x) + 1 = (3x2 + 3x + 1)(6x2 + 1).
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The following example is given in [1].

` = 1461501624496790265145447380994971188499300027613 (160 bit)

For this example, we have

`− 1 =22 · 3 · (a 24 bit prime) · (a 38 bit prime) · (a 39 bit prime)
· (a 57 bit prime)

` + 1 =2 · 7 · 13 · 19 · 1279 · 1861 · 21227 · (a 19 bit prime) · (a 21 bit prime)
· (a 24 bit prime) · (a 50 bit prime).

Hence Cheon’s algorithm affects on it.

4 How to reduce a security loss of a cyclotomic family

In this section, we consider the way to reduce the security loss by Cheon’s algo-
rithm for a cyclotomic family with embedding degree k = 2n, n an odd prime.
The idea is to take ` as a proper divisor of Φk(x).

4.1 The condition of a large prime factor of Φk(x)

We study the condition for the large prime factor ` of Φk(x). Note that when
k = 2n and n is an odd prime, Φ2n(x) = Φn(−x).

Lemma 1. Let n and ` be primes and x an integer. If Φn(x) ≡ 0 (mod `), then
` = n or ` ≡ 1 (mod n).

Proof. Assume that Φn(x) ≡ 0 (mod `) and ` 6= n. Then Φn(x) ≡ 0 (mod `)
yields that x gives a primitive n-th root of unity in (Z/`Z)×. Hence n divides
#(Z/`Z)× = `− 1; that is, ` ≡ 1 (mod n). ut

Theorem 3. Let k be a positive integer of the form k = 2n, where n is an odd
prime. Let x be an integer, ` a large prime greater than n and s a small integer
such that Φk(x) = s`. Then the following hold:

1. If s is divisible by n, then x ≡ −1 (mod n) and s is not divisible by n2.
2. If s = n, then `− 1 is divisible by x + 1.
3. If s is not divisible by n, then x 6≡ −1 (mod n).

Remark 2. In Theorem 3, note that by the assumption ` > n and Lemma 1,
`− 1 is divisible by n. Moreover, it is easy to see that `2 − 1 is divisible by 24.
Hence (` + 1)(`− 1) is divisible by 24n. We also note that If s is a small prime
which divides Φk(x) for an integer x, then s = n or s ≡ 1 mod n.



8

Proof. First, note that `−1 = Φk(x)/s−1 = (Φn(−x)− s) /s. Second, note that
if x 6≡ −1, then Φk(x) = Φn(−x) = ((−x)p − 1) /(−x−1) ≡ (−x−1)/(−x−1) =
1 (mod n) and hence, if n divides s, we have x ≡ −1 (mod n).

(1) From the above, if n divides s, then x ≡ −1 (mod n). Hence we only have
to show that n2 does not divide s. Write s = tn where t is an integer. Since ` ≡ 1
(mod n) from the assumption of the theorem and Φn(−x)− tn = Φk(x)− tn =
tn(`−1), we have that Φn(−x)− tn ≡ 0 (mod n2). Since Φn(−x) ≡ n (mod n2)
in this case, we have that t 6≡ 0 (mod n); that is, n2 does not divide s.

(2) If s = n, then since Φk(−1)− s = Φn(1)− n = 0, Φk(x)− s has a factor
x + 1. More precisely, we have Φk(x)− n = Φn(−x)− n = −(x + 1)((−x)n−2 +
2(−x)n−3+ · · ·+(n−2)x+(n−1)). Since x+1 ≡ 0 (mod n) in this case and n is
an odd prime, (−x)n−2+2(−x)n−3+ · · ·+(n−2)(−x)+(n−1) ≡ n(n−1)/2 ≡ 0
(mod n). Hence we have `− 1 = (Φn(−x)− n)/n has a factor x + 1.

(3) Suppose that x ≡ −1 (mod n). Then Φk(x) ≡ Φn(1) ≡ 0 (mod n). This
contradicts the assumption that n does not divide s. ut

In particular, the case (2) in Theorem 3 is not suitable for the protocols based
on pairing-related problems if we consider an affect of Cheon’s algorithm.

Remark 3. For the case that k is an odd prime, that is k = n, we have a similar
result.

4.2 Our construction

From the result of the previous section, we propose a method to construct
pairing-friendly elliptic curves with small security loss by Cheon’s algorithm.

We only consider the case that k is in the form k = 2n where n is an
odd prime. Our construction is an improved version of the Freeman-Scott-Teske
method. Since the Freeman-Scott-Teske method needs a field extension, we
should use Φck(x) where c is an extension degree. So when we take ` as a proper
divisor of a cyclotomic polynomial in the Freeman-Scott-Teske method, ` and
p become much larger. Here we improve the Freeman-Scott-Teske method such
that we can obtain the small ρ value with not so much large ` and p even when
we take ` as a proper divisor of a cyclotomic polynomial.

First note that for k = 2n with an odd prime n, if g is a primitive k-th root
of unity in a field K, then

√−g = g(n+1)/2 belongs to K. Our idea is to use this√−g = g(n+1)/2 as
√−D. The advantage to use such

√−D is that we do not
need to extend a cyclotomic field Q(ζk) to obtain a small value of ρ = lg p/ lg `.
In the following, we describe our method which is divided into two cases: (1) the
case of a general n, (2) the case of n ≡ 1 (mod 4).

The general case. Let g be a positive integer such that Φk(g) = s` for a very
small integer s and a large prime `. Then, g is a primitive k-th root of unity
modulo ` and

√−g ≡ g(n+1)/2 (mod `). Take D, a, b (0 < D, a, b < `) as follows:

D := g, a := g + 1, b :≡ (g − 1)g(n+1)/2/g (mod `).
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Then, p = (a2 + Db2)/4 = O(gn+2) and ` = O(gϕ(n)) = O(gn−1), where ϕ
denotes the Euler phi function.

Since s is very small, we have ρ ∼ (n + 2)/(n− 1) as p, ` →∞.

Improvement for n ≡ 1 (mod 4). When n ≡ 1 (mod 4), we can improve
the asymptotic value of ρ.

Let g, Φk(g) = s` be as in the general case. Then, g is a primitive k-th root
of unity modulo ` and

√−g ≡ g(n+1)/2 (mod `). Note that g(n+1)/2 is also a
primitive k-th root of unity modulo `. Take D, a, b (0 < D, a, b < `) as follows:

D := g, a := g(n+1)/2 + 1, b :≡ (g(n+1)/2 − 1)g(n+1)/2/g (mod `).

Then, since

b ≡ (g(n+1)/2 − 1)g(n−1)/2 ≡ gn − g(n−1)/2 ≡ −1− g(n−1)/2 (mod `),

p = (a2 + Db2)/4 = O(gn+1) and ` = O(gϕ(n)) = O(gn−1).
Since s is very small, we have ρ ∼ (n + 1)/(n− 1) as p, ` →∞.
The algorithm of our construction is given as follows.

Algorithm 1 (Curve construction with small security loss by Cheon’s algo-
rithm)

Input: n: an odd prime; α, β, q: positive integers
Output: p, ` : primes,

E/Fp : an elliptic curve over Fp such that #E(Fp) = ` and its
embedding degree equals k = 2n.

Step 1: Find g ∈ Z>0 such that Φk(g) = s` where ` is a large prime, s is
a small prime ( 6= n) or n·(a small prime) and

`− 1 = 2n(a positive integer ≤ 2α)
∏

(prime ≥ q)

` + 1 = 2(a positive integer ≤ 2β)
∏

(prime ≥ q)

Step 2: Set a := g if n ≡ 3 (mod 4) and a := g(n+1)/2 if n ≡ 1 (mod 4).
Take b as a positive integer (< `) such that b ≡ (a− 2)g(n+1)/2/g
(mod `). Set D := g and check whether p := (a2+Db2)/4 is prime
or not. If not, return to Step 1.

Step 3: Use the CM method and output the result.

Remark 4. The positive integer q in the input is a parameter of the q-weak/strong
Diffie-Hellman problem. The size of q depends on a protocol and the ability of
attackers. The positive integers α and β in the input are parameters which de-
termine the bound of the security loss by Cheon’s algorithm. We take α = β = 6
for examples in the next section.
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Remark 5. Using the CM method, we can construct an ordinary elliptic curves
with the complex multiplication by an order of the imaginary quadratic field
K = Q(

√−D), D > 0. Refer to [14] for the details of the calculation. In general,
for a large D, it is hard to construct the elliptic curve by the CM method.
Therefore we must be careful with the size of D.

In our method, we set D = g. If g is not square free, then we set the square
free part of g as D. So the size of g is important when we construct the elliptic
curve using the CM method. But as stated in [12], we can construct an elliptic
curve by using the CM method for D < 1010. Hence our method is effective to
construct pairing-friendly elliptic curves.

4.3 Examples

Here we show examples of pairing-friendly elliptic curves with small security loss
by Cheon’s algorithm. The following examples are obtained by using Algorithm
1 with q = 250 and α = β = 6 for 14 ≤ k ≤ 38. The security loss of these
examples is within 5 bits, if the parameter q in the weak/strong Diffie-Hellman
problem is less than 50 bits.

k 14
x 1083603511
s 29
` 55824446131714375710467270162691899840740433320567739 (176 bit)

p 51496017014989011498494367998093518344894496635664050001399\
1240135020678496405311

ρ 1.53017
`− 1 2 · 7 · (a 69 bit prime) · (a 103 bit prime)
` + 1 22 · 3 · 5 · (a 65 bit prime) · (a 106 bit prime)

k 22
x 2169245
s 67
` 34435869083893646715039335514954459125462349808949323158099\

743 (205 bit)

p 58877786517045158480579461956011716339017570871437492980201\
25450311726006289864629

ρ 1.32879
`− 1 2 · 11 · (a 74 bit prime) ·(a 127 bit prime)
` + 1 25 · 3 · (a 73 bit prime) · (a 125 bit prime)
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k 26
x 83647
s 131
` 895628588110024088164630713805121667532341241783716653231

(190 bit)

p 20523450351754980408769703428272332811368092974952355784416\
0697479999

ρ 1.19947
`− 1 2 · 5 · 13 · (a 55 bit prime) · (a 128 bit prime)
` + 1 24 · 3 · (an 84 bit prime) · (a 100 bit prime)

k 34
x 1730735
s 17 · 137
` 27830402151707213772790243425060710128851524965270716441651\

11328554663063808567192444024844854329 (321 bit)

p 48538978648626809809653096381338491065159598631595616079566\
88321815318124568522625897243485762842754461264104559

ρ 1.15803
`− 1 23 · 17 · (a 92 bit prime) · (a 222 bit prime)
` + 1 2 · 3 · 5 · (a 102 bit prime) · (a 214 bit prime)

k 38
x 422017
s 2281
` 79033772326705018830502245444409438041774479438057073363711\

630220987237178915490932609778746724313 (326 bit)

p 33874025807138240665499623427646024497140999922941667223498\
12927081355741867650294171908202450963933866119466570911873

ρ 1.20054
`− 1 23 · 3 · 19·(a 66 bit prime)·(a 71 bit prime)· (an 83 bit prime)·(a 99 bit

prime)
` + 1 2 · 7 · (a 74 bit prime) · (a 118 bit prime) · (a 131 bit prime)

5 Conclusion

In this article, we studied the effect of Cheon’s algorithm on known methods of
constructing pairing-friendly elliptic curves. We showed that Cheon’s algorithm
affects on methods using cyclotomic polynomials. We considered the way to re-
duce the security loss of a cyclotomic family by Cheon’s algorithm and proposed
a method to construct pairing-friendly elliptic curves with small security loss by
Cheon’s algorithm. Also we showed examples of curves obtained by using our
method.



12

References

1. P.S.L.M. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime or-
der, In Proceedings of SAC 2005 Workshop on Selected Areas in Cryptography,
LNCS3897, pp. 319–331. Springer, 2006.

2. D. Boneh and X. Boyen, Efficient selective-ID secure identity-based encryption
without random oracles, Advances in Cryptology – EUROCRYPT 2004 (C. Cachin
and J. Camenisch, eds.), LNCS 3027, Springer-Verlag, 2004, pp. 223–238.

3. D. Boneh and X. Boyen, Short signatures without random oracles, Advances in
Cryptology – EUROCRYPT 2004 (C. Cachin and J. Camenisch, eds.), LNCS 3027,
Springer-Verlag, 2004, pp. 56–73.

4. D. Boneh, X. Boyen and E.-J. Goh, Hierarchical identity based encryption with
constant size ciphertext, Cryptology ePrint Archive, Report 2005/015, 2005, An
extended abstract appears in Advances in Cryptology - EUROCRYPT 2005 (R.
Cramer, ed.), LNCS 3494, Springer-Verlag, 2005, pp. 440–456.

5. D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, SIAM
Journal of Computing, 32(3) (2003), pp. 586–615.

6. I.-F. Blake, G. Seroussi and N.-P. Smart, Advances in Elliptic Curve Cryptography,
Cambridge University Press, 2005.

7. J. H. Cheon, Security Analysis of the Strong Diffie-Hellman Problem, Advances in
Cryptology - EUROCRYPT 2006, LNCS 4004, pp. 1–11, Springer, 2006.

8. F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography,
Design, Codes and Cryptography, 37 (2005), pp. 133–141.

9. C. Cocks and R. G. E. Pinch, Identity-based cryptosystems based on the Weil pair-
ing, Unpublished manuscript, 2001.

10. D. Freeman, Methods for constructing pairing-friendly elliptic curves, 10th Work-
shop on Elliptic Curves in Cryptography (ECC 2006), Toronto, Canada, September
2006.

11. D. Freeman, Constructing Pairing-Friendly Elliptic Curves with Embedding Degree
10, Cryptology ePrint Archive, Report 2006/026, 2006 http://eprint.iacr.org/.

12. D. Freeman, M. Scott and E. Teske, A taxonomy of pairing-friendly elliptic curves,
Cryptology ePrint Archive, Report 2006/372, 2006 http://eprint.iacr.org/.

13. S. Galbraith, J. McKee and P. Valença, Ordinary abelian varieties having small
embedding degree, In Proc. Workshop on Mathematical Problems and Techniques
in Cryptology, pp. 29–45. CRM, Barcelona, 2005.

14. IEEE Computer Society, New York, USA. IEEE Standard Specifications For
Public-Key Cryptography - IEEE Std 1363-2000, 2000.

15. A. Joux, A one round protocol for tripartite Diffie-Hellman, In Algorithmic Number
Theory Symposium ANTS-IV, volume 1838 of Lecture Notes in Computer Science,
pp. 385–393. Springer-Verlag, 2000. Full version: Journal of Cryptology 17 (2004),
263–276.

16. S. Kozaki, T. Kutsuma and K. Matsuo, Remarks on Cheon’s algorithms for pairing-
related problems, to appear in the proceedings of “Pairing 2007”, Yokohama, Japan,
2007.

17. T. Kutsuma and K. Matsuo, Remarks on Cheon’s algorithms for pairing-
related problems, In 2007 Symposium on Cryptography and Information Security
(SCIS2007), Nagasaki, Japan, 2007.

18. S. Mitsunari, R. Sakai and M. Kasahara, A new traitor tracing, IEICE Trans.
Fundamentals E85-A (2002), no. 2, pp. 481–484.



13

19. A. Miyaji, M. Nakabayashi and S. Takano, New explicit conditions of elliptic curve
traces for FR-reduction, IEICE Transactions on Fundamentals E84-A(5) (2001),
pp. 1234–1243.

20. T. Okamoto, Efficient blind and partially blind signatures without random oracles,
TCC 2006 (S. Halevi and T. Rabin, eds.), LNCS 3876, Springer-Verlag, 2006, pp.
80–99.

21. M. Scott and P.S.L.M. Barreto, Generating more MNT elliptic curves, Designs,
Codes and Cryptography 38 (2006), pp. 209–217.

22. R. Sakai, K. Ohgishi and M. Kasahara, Cryptosystem based on pairing, In 2000
Symposium on Cryptography and Information Security (SCIS 2000), Okinawa,
Japan, 2000.

23. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106,
1986.


