
> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

1

Universally Composable Three-Party Key
Distribution

Jin Zhou, TingMao Chang, YaJuan Zhang, YueFei Zhu

Abstract—In this paper, we formulate and realize a definition

of security for three-party key distribution within the universally
composable (UC) framework. That is, an appropriate ideal
functionality that captures the basic security requirements of
three-party key distribution is formulated. We show that UC
definition of security for three-party key distribution protocol is
strictly more stringent than a previous definition of security
which is termed AKE-security. Finally, we present a real-life
protocol that securely realizes the formulated ideal functionality
with respect to non-adaptive adversaries.

Keywords—Key distribution, Universally composable, AKE-
security

I. INTRODUCTION

rotocols for three-party key distribution allow two client
parties in the distributed system to obtain the same session

key from a trusted server via the shared private key between
each client party and trusted server. These protocols are basic
building blocks for contemporary distributed system (eg.
three-party key distribution protocol can be used as a modular
for constructing three-party key exchange protocol [1]).

Session key distribution in the three-party setting is studied
by Needham and Schroeder, which is the trust model assumed
by the popular Kerberos authentication system [2]. The
provable security for three-party key distribution is provided
by Mihir Bellare and Phillip Rogaway by giving the definition
of security called AKE-security [3]. (It is emphasized that
AKE-security is also an accepted definition of security of
other cryptographic tasks, such as group key exchange and
key exchange.)

A general framework for representing cryptographic
protocols and analyzing their security is proposed by
R.Canetti [4, 5]. The framework allows defining the security
properties of practically cryptographic tasks. Most importantly,
it is shown that protocols proven secure in this framework
maintain their security under a very general composition
operation, called universal composition, with an unbounded
number of copies of arbitrary protocols running concurrently.
Similarly, definitions of security formulated in this framework
are called universally composable (UC).

The definition of AKE-security follows a definitional
approach which is called “security by indistinguishability”. In
contrast, definitions in the UC framework follow a different
definitional approach which is referred to as “security by

emulation of an ideal process”. In the last few years,
researches on the relation between indistinguishability-based
definition of security and emulation-based definition of
security have become one of the significant topics in
cryptography [6]. One case where definitions follow the two
approaches were shown to be equivalent is semantically
secure encryption against chosen plaintext attacks. However,
in most other cases the two approaches result in distinct
definitions of security, where the emulation approach usually
results in a strictly more restrictive definition. One example,
there exists an AKE-secure group key exchange protocol is
not UC-secure [7]. Another example, a key exchange protocol
is AKE-secure but do not satisfy the emulation-based
definition of security [8].

In this paper, we formulate an appropriate ideal
functionality that captures the basic security requirements of
three-party key distribution, and prove that UC definition of
security for three-party key distribution protocol is strictly
more stringent than AKE-security. So a real-life protocol
which securely realizes the formulated ideal functionality with
respect to non-adaptive adversaries is proposed. Therefore, the
formulated functionality with security-preserving composition
property can be used as a simple building block for modular
designs and analysis of complex cryptographic protocols.

II. PRELIMINARIES
Section A proposes the description of the distributed system.

Next, section B reviews the adversarial model. Section C
sketches the definition of AKE-security. Finally section D
recalls some writing conventions for ideal functionality.

A. Participants and initialization
For simplicity, we model the distributed system as a fixed

polynomial-size set of m client parties Π = {P1,…,Pm}. The
number m may be any polynomial function of the security
parameter k. In addition, there is a trusted server PT which is
not a member of Π . Each party has a long-term secret

key , while P
iP

isk T holds a vector skT=(ski). Any two parties of

Π together with PT are allowed to run the three-party key
distribution protocol at any time (possibly concurrently) in
order to obtain a session key. We denote instance s of client
party Pi as s

iP , and denote instance t of trusted server PT as . t
TP

B. Adversarial model
In a real attack, the adversary capabilities are modeled

P

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

2

using various oracles. The interaction between an adversary
and the protocol participants which is called AKE interaction
occurs only via oracle queries. These queries are as follows:

Execute(P1,s1,Pj,s2,PT,t,ssid,pid): The output of this query
consists of the messages that were exchanged during the
honest execution of the protocol with the session (ssid,pid)
among the client instances 1s

iP and 2s
jP and trusted server

instance . t
TP

SendClient(P,s,M): The output of this query is the message
that client instance P P

s would generate upon receipt of message
M.

SendServer(PT,s,M): The output of this query is the
message that server instance would generate upon receipt
of message M.

t
TP

StrongCorrupt(P): The output of this query is the internal
state of any instances of party P which are concurrently
executing the protocol, including the long-term secret key of
party P.

Reveal(P,s): It provides the adversary with the session key
held by the instance P P

s.
Test(P,s): This query does not correspond to any real-world

action, but provides a means of defining security. This query
is allowed only when PP

s has accepted. In response to this
oracle call, a random bit b is chosen. If b=0 a random session
key is output, while if b=1 the session key of Ps

P is output. The
adversary is allowed to access this oracle only once, at any
time during its execution.

C. AKE security
We briefly sketch the definition of AKE-security. A party P

is corrupted if the adversary queries StrongCorrupt(P). A
session (sid,pid) is corrupted if there exists a P pid∈ who is

corrupted while there is an instance sP in this session
(possibly with P P=) who has not yet terminated. Say an
instance sP associated with session (ssid,pid) is fresh if the
adversary has never queried Reveal (, ')P s for any instance

'sP in this session, and the session (ssid,pid) is not corrupted.
The adversary succeeds (denoted by event Succ) if it queries
the Test oracle regarding a fresh instance, and correctly
guesses the value of the bit b used by the Test oracle in
answering this query. Define the advantage of adversary A
attacking protocol π to be ()Advantage Aπ =

Pr() 1/ 2succ − . Protocol π is said to be AKE-secure if, for

any poly-time adversary A, the advantage of adversary A is
negligible.

D. Some writing conventions for ideal functionality
Delayed output. We often want to capture the fact that

outputs generated by interactive protocol may be delayed due
to delays in message delivery. We say that an ideal
functionality F sends a delayed output v to some party P if it
engages in the following interaction: Instead of simply

outputting v to P, F first sends to the adversary a note that it is
ready to generate an output to P. If the output is public, then
the value v is included in the note to the adversary. If the
output is private, then v is not mentioned in this note.
Furthermore, the note contains a unique identifier that
distinguishes it from all other messages sent by F to the
adversary in this execution. When the adversary replies to the
note, F outputs the value v to P.

Party corruptions. Adaptive party corruptions, namely
corruptions that occur as the computation proceeds, based on
the information gathered by the adversary so far. Arguably,
adaptive corruption of parties is a realistic threat in existing
networks. Nonetheless, it is sometimes useful to consider also
a weaker threat model, where the identities of the
adversarially controlled parties are fixed before the
computation starts; this is the case of non-adaptive (or, static)
adversaries.

III. UNIVERSALLY COMPOSABLE THREE-PARTY KEY
DISTRIBUTION

In this section, we formulate UC definition of security for
three-party key distribution and show that any UC-secure
three-party key distribution protocol is automatically AKE-
secure.

A. Three-party key distribution in the UC framework
The security requirements of a given task are captured via

a set of instructions for a “trusted party” that obtains the
inputs of the participants and provides them with the desired
outputs. We call the algorithm run by the trusted party an
ideal functionality. Informally, a protocol is said to securely
realize the given task if running the protocol amounts to
“emulating” an ideal process where the parties hand their
inputs to a trusted party with the appropriate functionality and
obtain their outputs from it. Thus, to formulate a definition of
UC-security for three-party key distribution protocols, we
specify an appropriate functionality F3-KD for three-party key
distribution in Figure 1.

The basic idea of F3-KD is to allow two client parties to
obtain the same session key from trusted server, as long as the
shared private key between each client party and trusted
server is identical.

 We now briefly explain the functionality. As expected, the
functionality begins with a trustedserver phase in which the
functionality waits to be notified who is a trusted server and
tells all the parties as well as the adversary.

Next, the functionality waits to be notified by two client
parties and a trusted server who are supposed to take part in
an execution of the protocol. Once F3-KD receives a
notification from the three parties－with identical values of
sid and pid, the functionality enters a “ready” state and sends
ready message to the adversary.

F3-KD does not generate the session key until it receives a
message (Sessionkey,sid,pid) from PT. This reflects that in the
execution of real-life protocol, the session key should be
generated only by PT. Then F3-KD chooses a session key

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

3

κ uniformly at random from{0 . At this point, if any of
two client parties and trusted server is corrupted, F

,1}k

3-KD sends
to the adversary. Else, it sends a message (Key,sid,

pid,keygenerated) to the adversary. Finally, this session key is
delivered to the two client parties. In particular, the session
key is delivered to each client party only after being requested
by the adversary. Note that for each client party, the adversary
may send two types of Keydelivery request. One type is a key
message(Key,sid,pid,P

κ

i,), the other is a error message
(Key,sid,pid,P

'κ
i,error). It is emphasized that F3-KD will send a

message (Key,sid,pid,Pi,error) to Pi whenever it receives a

message (Key,sid,pid,Pi,error) from the adversary. This
reflects that in the execution of real-life protocol, the
adversary can easily cause the error because it can modify and
deliver transferred messages at will.

Ideal functionality F3-KD

Trustedserver: Upon receiving a query (Trustedserver,sid,
PT) from any party PT, then records (Trustedserver,sid,PT) and
sends (Trustedserver,sid,PT) to all the parties and the
adversary S.
Initialization: Upon receiving a query (NewSession,sid,pid,
Pi,ski,role) from any party Pi (i

B. Relation to AKE security
We say a three-party key distribution protocol is UC-secure

if it securely realizes the ideal functionality F3-KD .In other
words, for any adversary A, there exists an ideal adversary S
such that no PPT environment Z can determine whether it is
interacting with A and parties running with the protocol or

acting with S in the ideal process and the ideal
functionality F

TP P≠), if pid=(Pi,Pj,PT) for
PT and some party Pj, then record (sid,pid,Pi,ski) and send
(sid,pid,Pi,role) to . Else, ignore this query. Upon receiving
a query from
party P

S
' '(, , , , , ,T i jNewSession sid pid P sk sk role inter

3-KD. Next, we will prove UC definition of
security for three-party key distribution is strictly stronger
than AKE-security.
Theorem 1 Any UC-secure three-party key distribution
protocol is AKE-secure.

Proof Let π be a UC-secure three-party key distribution
protocol, and π̂ be the multi-session extension of π which
UC-securely realizes 3̂ KDF − (the multi-session extension of F3-

KD). Assume to the contrary that π̂ is not AKE-secure. Then
there exists an adversary breaking the AKE-security of Â π̂
with non-negligible probability. Recall that UC definition of
security respects to the “dummy” adversary , we use to
construct an environment Z so that for any ideal process
adversary S, Z can distinguish whether it interacts with the
“dummy” adversary D and parties running

D Â

π̂ in the real
world, or with S and dummy parties communicating with

3̂ KDF − in the ideal process. Environment Z will run as a
subroutine, Z proceeds as follows:

Â

)

'
j

)

T, if pid=(Pi,Pj,PT), then record (sid,pid,PT,)
and send (sid,pid,P

' ',i jsk sk
T,role) to S. If there are already three tuples

of the form (sid,pid,Pi,ski), (sid,pid,Pj,skj) and (sid,pid,PT,
), then F' ,isk sk 3-KD record (Session,sid,pid,ready) and send

it to S.
Keygeneration: Upon receiving a message (Sessionkey,sid,
pid) from party PT (for party PT only), if the tuple (Session,sid,
pid,ready) has been recorded, then choose ,
and record (Key,sid,pid,).In addition, if any of P

{0,1}*Rκ ←⎯⎯
κ i , Pj and PT

is corrupted, send (Key,sid,pid,) to S. Else, send (Key,sid,
pid,keygenerated) to S.

κ

Keydelivery: Upon receiving a query(, , , , 'iKey sid pid P κ from
the adversary S, if the key has been generated at that time,
then do:

κ

1. If there are records of the form (sid,pid,Pi,ski) and
' '(, , , ,T i j)sid pid P sk sk , '

i isk sk= , both PT and Pi are not
corrupted, then F3-KD send a private delayed output
(Key,sid,pid, Pi,) to Pκ i. If either Pi or PT is corrupted, F3-KD
send (Key,sid, pid,) to S and send a public delayed output
(Key,sid,pid, P

κ
i,) to P'κ i .

2. If , then if P'
isk sk≠

1. When queries Execute(PÂ 1,s1,Pj,s2,PT,t,ssid,pid), Z
activates a new session with session ID ssid, partner ID pid. In
addition, Z records as an uncompleted and
unexposed session.

1(, , ,)s t
i TP P ssid pidi i and PT are uncorrupted, F3-KD

send a public delayed output (Key,sid,pid,Pi,error) to Pi. Else,
send a public delayed output (Key,sid,pid,Pi, '). κ

Upon receiving a query (Key,sid,pid,Pi,error) from the
adversary S before any key has been already sent to Pi, then
send (Key,sid,pid,Pi,error) to Pi.

2. When queries SendClient(P,s,M), Z checks if there is
an uncompleted session (, . If not, Z returns
“invalid query". Otherwise, Z delivers M to the appropriate

session of party P, and returns to

Â
, ,)s t

TP P ssid pid

Â the response of P.
3. When queries SendServer(PÂ T,t,M), Z checks if there

is an uncompleted session (, . If not, Z
returns “invalid query". Otherwise, Z delivers M to the
appropriate session of party P

, ,)s t
TP P ssid pid

T, and returns to the response
of P

Â
T.

4. When party outputs (Key,sid,pid,PP i, κ), Z records
(, , , ,)s t

TP P ssid pid κ as a completed session.

5. When queries Reveal(P,s), Z checks if there is a
completed session (, . If not, Z return

“invalid query". Otherwise, Z gives to

Â
, , ,)s t

TP P ssid pid κ

κ Â and marks the

Fig 1: The three-party key distribution functionality F3-KD

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

4

session as exposed.
6. When queries StrongCorrupt(P), Z corrupts party P

and provides

Â
Â with the internal state of P. In addition, Z

marks P and all the uncompleted sessions belonging to P as
corrupted. Moreover, any sessions invoked by P in the future
will be marked exposed.

7. When queries Test(P,s), Z who checks if there is a
record marked as completed and
unexposed. If not, Z outputs a random bit and halts. Otherwise,
Z flips a coin . If b=0, Z provides with a

random session key. If b=1, Z provides with

Â
(, , , ,)s t

TP P ssid pid κ

{0,1}b ← Â

Â κ . Also, Z
marks the session as tested.

8. When outputs a guess bit b’, Z proceeds as follows: Â
(a) Z finds the tested session record (, , , ,)s t

TP P ssid pid κ
and then finds all the sessions whose session ID is ssid
and marks them as matching.

(b) Z checks if any of sessions marked as tested or
matching is exposed. If it is, Z outputs a random bit.
Otherwise, Z outputs 1 if b’=b and outputs 0 if b b′ ≠ .

From the above construction of Z, we argue that if Z
interacts with in the real world, then within Z sees in
fact an AKE interaction with protocol

Â Â
π̂ . Thus, in this case, Z

outputs 1 with non-probability better than 1/2. But, when Z
interacts with S and dummy parties in the ideal process, the
view of Z is statistically independent of b. Thus, in this case,
b’=b with probability exactly one half. Then, it leads to the
contradiction that Z can distinguish the real world and ideal
world with non-probability probability. #

The inverse of this theorem is not held. Note that AKE-
security doesn’t imply agreement. (Our notion of agreement
requires that any partnered instances (of uncorrupted players)
agree on the session key they output [7].) However, it’s easy
to see that any UC-secure three-party key distribution protocol
must guarantee agreement.

IV. UC-SECURE THREE-PARTY KEY DISTRIBUTION
PROTOCOL

Since AKE-security doesn’t guarantee UC-security, we
must propose a real-life protocol that securely realizes F3-KD.
The core of our proposed protocol is given in Fig 2.

1 .

2 . ,

3 . ,
3 . ,

i j i

j T i j

T i i i

T j j j

flow P P R

flow P P R R

flow A P P
flow B P P

μ σ
μ σ

→

→

→
→

(, ,)i

Protocol πΙ
0. When party PT is activated with a input (Trustedserver,

sid,PT), PT send (Trustedserver,sid,PT), to all the parties.
Upon receiving a query (NewSession,sid,ssid,pid,ski,skj,role),
if role=server, ski, skj that has the form of ski=

and , while pid= (P

(,enc
isk

)mac
isk =(,)enc mac

j j jsk sk sk i,Pj,PT) , then

PT does nothing except waiting flow-two message as
described below.

1. When party Pi is activated with a input (NewSession,sid,
pid,Pi,ski,role), while pid=(Pi,Pj,PT) and , it
does as follows. If role=responder, it does nothing (except
waiting flow-one message as described below), if role
=initiator, it chooses R

(,enc mac
i isk sk)

i at random and sends (flow-one,Ri) to
Pj. (From this point on, assume that Pi is activated with a
query (NewSession,sid,ssid,pid,ski,intiator) and Pj is activated
with a query (NewSession,sid,ssid,pid,skj, responder).

2. When Pj receives a message (flow-one,Ri) from Pi, it
chooses Rj at random and sends (flow-two,Ri,Rj) to PT.

3. When PT receives a message (flow-two,Ri,Rj) from Pj, it
chooses , ,i jr rκ at random and computes (,enc

i iE sk ,μ κ=
 ,)ir (, ,enc)j j jE sk rμ κ= , (, , , ,mac

i i i j i iMAC sk P P R)σ μ=
and (, , , ,mac)j j i j j jMAC sk P P Rσ μ= . Then, PT sends (f low-
three, ,)i iμ σ and (flow-three, ,)j jμ σ to Pi and Pj
respectively.

4. When Pi receives a message (flow-three, ,)j jμ σ from PT,
it checks if . If yes, P(, , , , ,)mac

i i i j i iVF sk P P Rμ σ =1
)

i accepts and
computes (,enc

i iD skκ μ= and outputs (Key,sid,pid,Pi,
)κ , else outputs (Key,sid,pid,Pi,error). Either way Pi

terminates.
When Pj receives a message(flow-three, ,)i iμ σ from PT, it

checks if . If yes, P(, , , , ,)mac
j j i j j jVF sk P P Rμ σ =1

)
j accepts and

computes (,enc
j jD skκ μ= and outputs (Key,sid,pid,Pj,

)κ

enc
i iE sk rμ κ=)(, , , ,mac

i i i j i iMAC sk P P Rσ μ=

(, ,)enc
j j jE sk rμ κ=)(, , , ,mac

j j i j j jMAC sk P P Rσ μ=

Fig 2: the core of our proposed protocol:

The full description of UC-secure three-party key
distribution protocol πΙ can be found in Fig 3.

V. PROOF OF SECURITY

In this section, we will prove UC-security of protocol πΙ .
Theorem 2 Assume that (E, D) is a CCA-secure symmetric

, else outputs (Key,sid,pid,Pj,error). Either way Pj
terminates.

Fig 3: The three-party key distribution protocol πΙ

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

5

encryption scheme, that (MAC, VF) is EU-CMA-secure
message authentication scheme, then three-party key
distribution protocol πΙ securely realizes F3-KD with respect to
non-adaptive adversaries.

Proof In order to prove this theorem, we need to show that

for any PPT real-world adversary A, there is an ideal-process
adversary (simulator) S, such that no poly-time environment Z
can distinguish with non-negligible probability whether it
interacts with A and parties running πΙ in the real world, or
with S and (dummy) parties communicating with ideal
functionality in the ideal process. The description of simulator
S as follows:

When initialized with the security parameter k, the
simulator first runs the key generation algorithms of
symmetric encryption scheme E and message authentication
MAC, both with security parameter k, thus obtaining key
pairs and . Then S

initializes the real-world adversary A. Thereafter, the
simulator S interacts with the environment Z, the ideal
functionality F

(,enc mac
i i isk sk sk=))(,enc mac

j j jsk sk sk=

3-KD, and its subroutine A. This interaction is
implemented by the simulator S just following the protocol
πΙ on behalf of all the honest parties. The detail of the
description of S is as follows:

1. S generates key and sk(,enc mac
i i isk sk sk=) ,j=

 on behalf of all parties for protocol

(enc
jsk

)mac
jsk 1π .

2. S invokes an instance of A, then messages from Z to S
are forwarded to A, and messages from A to S are forwarded
to Z. If party Pi (Pj) is corrupted, S sends ('isk '

jsk) to A. If PT

is corrupted, S sends the internal state of simulated party PT
together with to A. ' ,isk sk '

j

3. When S receives a message (Trustedserver,sid,PT) from
F3-KD, S sends this message to A. When S receives a message
(sid,pid,Pi,role) from F3-KD, S begins simulating for A a copy
of protocol πΙ (calledπΙ) being run by Pi with session ID sid
and partner ID pid. From this now on, any messages sent by A
to Pi are processed by this simulated copy of πΙ , and any

messages output by the simulated copy of πΙ are given to A.
4. Recall the definition of delayed output. If S receives a

delayed output query which is key delivery message or key
error message for some dummy party, it doesn’t respond this
query until the relevant simulated party in the πΙ has
terminated.

5. When S receives a message (Session,sid,pid,ready) from
F3-KD (it means the simulated protocol πΙ also be ready), S

checks if Pi is corrupted. If not, S generates (flow-one, '
iR)

and sends it to A on behalf of Pi. Else, S does nothing except

waiting flow-one message from A.
6. When the simulated party Pj receives (flow-one, R1) from

A, S checks if Pj is corrupted. If not, S generates (flow-
two, '

1, jR R) and sends it to A on behalf of Pj. Else, S does

nothing except waiting flow-two message from A.
7. When the simulated trusted party PT receiving (flow-two,

R1,R2) from A,
a) If trusted server PT is corrupted. S does nothing except

waiting flow-three message from A.
b) Else, if either Pi or Pj is corrupted. In this case, S must

receive (Key,sid,pid,)κ from F3-KD. Then S use κ for
generating flow-three messages, Else, S chooses a
session key 'κ randomly for generating flow-three
messages. Either way, S sends the two generated flow-
three messages ' '(flow- three, ,)i iμ σ and (flow-

' 'three, ,)j jμ σ to A on behalf of trusted server PT.

8. After the simulated party Pi receives a message (flow-
1 1three, ,)μ σ from A, then S checks if Pi is corrupted. If yes, S

does nothing except waiting key message or error message for
Pi from A and sends this message to F3-KD. Else, if Pi accepts
and outputs a session key , S sends (Key,sid,pid,P'κ i

1(,))iD sk μ to F3-KD.. If Pi outputs error message (Key,sid,pid,Pi,
error), S sends (Key,sid,pid,Pi,error) to F3-KD. Then, S does
similarly for the simulated party Pj.

From the above construction of simulator S, it’s easy to see

that if PT or Pi (Pj) is corrupted, Pi (Pj) will output the key
message or error message as A wishes both the real world and
the ideal process.

Suppose that no party is corrupted. Then in the real world,
Z will get no useful information of the session key from each
party P and the key output by P is identical to the random key
chosen by trusted server PT. The first statement hold is
attributable to the CCA security of symmetric encryption
scheme E, while the second statement hold is attributable to
the EU-CMA security of MAC. Furthermore, Pi will output
error message in the real world iff Pi will output error message
in the ideal process, while Pi will output ' in the real world
iff P

κ
i will output κ in the ideal process. Since both 'κ and

κ are chosen randomly, so suffice the indistinguishability.
(Note that we take the non-adaptive adversary into
consideration, the case that occurs in the proof of insecurity of
“class” two-move Diffie-Hellman protocol [8] is avoided.)

REFERENCES
[1] M.Abdalla, P.Fouque and D.Pointcheval: “Password-Based

Authenticated Key Exchange in the Three-Party Setting” in IEEE
Proceedings -- Information Security, Volume 153, issue 1, pp. 27-39,
March 2006.

[2] J. Steiner, C. Newman and J. Schiller, Kerberos: “An Authentication
Service for Open Network Systems” in Proceedings of the USENIX
Winter Conference, pp. 191–202, 1988

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) <

6

[3] M. Bellare and P. Rogaway: “Provably Secure Session Key Distribution
–the Three Party Case” in 28th Annual ACM Symposium on Theory of
Computing, pp 57–66, Philadephia, Pennsylvania, USA, May 22–24,
1996. ACM Press.

[4] R. Canetti: “Universally Composable Security: A New Paradigm for
Cryptographic Protocols” in 42nd IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE, pp. 136–145, 2001.

[5] R. Canetti: “Universally Composable Security: A New Paradigm for
Cryptographic Protocols 2005” in. Revision 3 of ECCC Report TR01-
016

[6] R. Canetti and T. Rabin: “Universal Composition with Joint State” in
Advances in Cryptology Crypto 2003, LNCS vol. 2729, Springer–
Verlag, pp. 265–281, 2003.

[7] J. Katz, J. Sun Shin. “Modeling Insider Attacks on Group Key-Exchange
Protocols” in http://eprint.iacr.org/2005/163

[8] R. Canetti and H. Krawczyk: “Universally Composable Notions of Key
Exchange and Secure Channels” in Eurocrypt 2002.Full version
available at http://eprint.iacr.org/2002/059.

http://eprint.iacr.org/2005/163
http://eprint.iacr.org/2002/059

	I. INTRODUCTION
	II. Preliminaries
	A. Participants and initialization
	B. Adversarial model
	C. AKE security
	D. Some writing conventions for ideal functionality
	III. Universally Composable Three-Party Key Distribution
	A. Three-party key distribution in the UC framework
	B. Relation to AKE security

	IV. UC-secure Three-Party Key Distribution Protocol
	V. Proof of Security

