
> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

1

Universally Composable Three-Party Key 
Distribution

Jin Zhou, TingMao Chang, YaJuan Zhang, YueFei Zhu 

 
Abstract—In this paper, we formulate and realize a definition 

of security for three-party key distribution within the universally 
composable (UC) framework. That is, an appropriate ideal 
functionality that captures the basic security requirements of 
three-party key distribution is formulated. We show that UC 
definition of security for three-party key distribution protocol is 
strictly more stringent than a previous definition of security 
which is termed AKE-security. Finally, we present a real-life 
protocol that securely realizes the formulated ideal functionality 
with respect to non-adaptive adversaries. 
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I. INTRODUCTION 

rotocols for three-party key distribution allow two client 
parties in the distributed system to obtain the same session 

key from a trusted server via the shared private key between 
each client party and trusted server. These protocols are basic 
building blocks for contemporary distributed system (eg. 
three-party key distribution protocol can be used as a modular 
for constructing three-party key exchange protocol [1]). 

Session key distribution in the three-party setting is studied 
by Needham and Schroeder, which is the trust model assumed 
by the popular Kerberos authentication system [2]. The 
provable security for three-party key distribution is provided 
by Mihir Bellare and Phillip Rogaway by giving the definition 
of security called AKE-security [3]. (It is emphasized that 
AKE-security is also an accepted definition of security of 
other cryptographic tasks, such as group key exchange and 
key exchange.)   

A general framework for representing cryptographic 
protocols and analyzing their security is proposed by 
R.Canetti [4, 5]. The framework allows defining the security 
properties of practically cryptographic tasks. Most importantly, 
it is shown that protocols proven secure in this framework 
maintain their security under a very general composition 
operation, called universal composition, with an unbounded 
number of copies of arbitrary protocols running concurrently. 
Similarly, definitions of security formulated in this framework 
are called universally composable (UC).  

The definition of AKE-security follows a definitional 
approach which is called “security by indistinguishability”. In 
contrast, definitions in the UC framework follow a different 
definitional approach which is referred to as “security by 

emulation of an ideal process”. In the last few years, 
researches on the relation between indistinguishability-based 
definition of security and emulation-based definition of 
security have become one of the significant topics in 
cryptography [6]. One case where definitions follow the two 
approaches were shown to be equivalent is semantically 
secure encryption against chosen plaintext attacks. However, 
in most other cases the two approaches result in distinct 
definitions of security, where the emulation approach usually 
results in a strictly more restrictive definition. One example, 
there exists an AKE-secure group key exchange protocol is 
not UC-secure [7]. Another example, a key exchange protocol 
is AKE-secure but do not satisfy the emulation-based 
definition of security [8].  

 
 

In this paper, we formulate an appropriate ideal 
functionality that captures the basic security requirements of 
three-party key distribution, and prove that UC definition of 
security for three-party key distribution protocol is strictly 
more stringent than AKE-security. So a real-life protocol 
which securely realizes the formulated ideal functionality with 
respect to non-adaptive adversaries is proposed. Therefore, the 
formulated functionality with security-preserving composition 
property can be used as a simple building block for modular 
designs and analysis of complex cryptographic protocols. 

II. PRELIMINARIES 
Section A proposes the description of the distributed system. 

Next, section B reviews the adversarial model. Section C 
sketches the definition of AKE-security. Finally section D 
recalls some writing conventions for ideal functionality. 

A. Participants and initialization 
For simplicity, we model the distributed system as a fixed 

polynomial-size set of m client parties Π = {P1,…,Pm}. The 
number m may be any polynomial function of the security 
parameter k. In addition, there is a trusted server PT which is 
not a member of Π . Each party  has a long-term secret 

key , while P
iP

isk T holds a vector skT=(ski). Any two parties of 

Π together with PT are allowed to run the three-party key 
distribution protocol at any time (possibly concurrently) in 
order to obtain a session key. We denote instance s of client 
party Pi as s

iP , and denote instance t of trusted server PT as . t
TP

B. Adversarial model 
In a real attack, the adversary capabilities are modeled 

P 
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using various oracles. The interaction between an adversary 
and the protocol participants which is called AKE interaction 
occurs only via oracle queries. These queries are as follows: 

Execute(P1,s1,Pj,s2,PT,t,ssid,pid): The output of this query 
consists of the messages that were exchanged during the 
honest execution of the protocol with the session (ssid,pid) 
among the client instances 1s

iP and 2s
jP  and trusted server 

instance . t
TP

SendClient(P,s,M): The output of this query is the message 
that client instance P P

s would generate upon receipt of message 
M. 

SendServer(PT,s,M): The output of this query is the 
message that server instance  would generate upon receipt 
of message M. 

t
TP

StrongCorrupt(P): The output of this query is the internal 
state of any instances of party P which are concurrently 
executing the protocol, including the long-term secret key of 
party P. 

Reveal(P,s): It provides the adversary with the session key 
held by the instance P P

s. 
Test(P,s): This query does not correspond to any real-world 

action, but provides a means of defining security. This query 
is allowed only when PP

s has accepted. In response to this 
oracle call, a random bit b is chosen. If b=0 a random session 
key is output, while if b=1 the session key of Ps

P  is output. The 
adversary is allowed to access this oracle only once, at any 
time during its execution. 

C. AKE security 
We briefly sketch the definition of AKE-security. A party P 

is corrupted if the adversary queries StrongCorrupt(P). A 
session (sid,pid) is corrupted if there exists a P pid∈ who is 

corrupted while there is an instance sP in this session 
(possibly with P P= ) who has not yet terminated. Say an 
instance sP associated with session (ssid,pid) is fresh if the 
adversary has never queried Reveal ( , ')P s for any instance 

'sP in this session, and the session (ssid,pid) is not corrupted. 
The adversary succeeds (denoted by event Succ) if it queries 
the Test oracle regarding a fresh instance, and correctly 
guesses the value of the bit b used by the Test oracle in 
answering this query. Define the advantage of adversary A 
attacking protocol π  to be ( )Advantage Aπ =  

Pr( ) 1/ 2succ − . Protocol π  is said to be AKE-secure if, for 

any poly-time adversary A, the advantage of adversary A is 
negligible.  

D. Some writing conventions for ideal functionality 
Delayed  output.  We often want to capture the fact that 

outputs generated by interactive protocol may be delayed due 
to delays in message delivery. We say that an ideal 
functionality F sends a delayed output v to some party P if it 
engages in the following interaction: Instead of simply 

outputting v to P, F first sends to the adversary a note that it is 
ready to generate an output to P. If the output is public, then 
the value v is included in the note to the adversary. If the 
output is private, then v is not mentioned in this note. 
Furthermore, the note contains a unique identifier that 
distinguishes it from all other messages sent by F to the 
adversary in this execution. When the adversary replies to the 
note, F outputs the value v to P.  

Party  corruptions.  Adaptive party corruptions, namely 
corruptions that occur as the computation proceeds, based on 
the information gathered by the adversary so far. Arguably, 
adaptive corruption of parties is a realistic threat in existing 
networks. Nonetheless, it is sometimes useful to consider also 
a weaker threat model, where the identities of the 
adversarially controlled parties are fixed before the 
computation starts; this is the case of non-adaptive (or, static) 
adversaries.  

III. UNIVERSALLY COMPOSABLE THREE-PARTY KEY 
DISTRIBUTION 

In this section, we formulate UC definition of security for 
three-party key distribution and show that any UC-secure 
three-party key distribution protocol is automatically AKE-
secure. 

A. Three-party key distribution in the UC framework 
The security requirements of a given task  are captured via 

a set of instructions for a “trusted party” that obtains the 
inputs of the participants and provides them with the desired 
outputs. We call the algorithm run by the trusted party an 
ideal functionality. Informally, a protocol is said to securely 
realize the given task if running the protocol amounts to 
“emulating” an ideal process where the parties hand their 
inputs to a trusted party with the appropriate functionality and 
obtain their outputs from it. Thus, to formulate a definition of 
UC-security for three-party key distribution protocols, we 
specify an appropriate functionality F3-KD for three-party key 
distribution in Figure 1.  

The basic idea of F3-KD is to allow two client parties to 
obtain the same session key from trusted server, as long as the 
shared private key between each client party and trusted 
server is identical. 

 We now briefly explain the functionality. As expected, the 
functionality begins with a trustedserver phase in which the 
functionality waits to be notified who is a trusted server and 
tells all the parties as well as the adversary.  

Next, the functionality waits to be notified by two client 
parties and a trusted server who are supposed to take part in 
an execution of the protocol. Once F3-KD receives a 
notification from the three parties－with identical values of 
sid and pid, the functionality enters a “ready” state and sends 
ready message to the adversary. 

F3-KD does not generate the session key until it receives a 
message (Sessionkey,sid,pid) from PT. This reflects that in the 
execution of real-life protocol, the session key should be 
generated only by PT. Then F3-KD chooses a session key  
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κ uniformly at random from{0 . At this point, if any of 
two client parties and trusted server is corrupted, F

,1}k

3-KD sends 
to the adversary. Else, it sends a message (Key,sid, 

pid,keygenerated)  to the adversary. Finally, this session key is  
delivered to the two client parties. In particular, the session 
key is delivered to each client party only after being requested 
by the adversary. Note that for each client party, the adversary 
may send two types of Keydelivery request. One type is a key 
message(Key,sid,pid,P

κ

i, ), the other is a error message 
(Key,sid,pid,P

'κ
i,error). It is emphasized that F3-KD will send a 

message (Key,sid,pid,Pi,error) to Pi whenever it receives a 

message (Key,sid,pid,Pi,error) from the adversary. This 
reflects that in the execution of real-life protocol, the 
adversary can easily cause the error because it can modify and 
deliver transferred messages at will. 

Ideal functionality  F3-KD

Trustedserver: Upon receiving a query (Trustedserver,sid, 
PT) from any party PT, then records (Trustedserver,sid,PT) and 
sends (Trustedserver,sid,PT) to all the parties and the 
adversary S. 
Initialization:  Upon receiving a query (NewSession,sid,pid, 
Pi,ski,role) from any party Pi ( i

 

B. Relation to AKE security 
We say a three-party key distribution protocol is UC-secure 

if it securely realizes the ideal functionality F3-KD .In other 
words, for any adversary A, there exists an ideal adversary S 
such that no PPT environment Z can determine whether it is 
interacting with A and parties running with the protocol or 

acting with S in the ideal process and the ideal 
functionality F

TP P≠ ), if pid=(Pi,Pj,PT) for 
PT and some party Pj, then record (sid,pid,Pi,ski) and send 
(sid,pid,Pi,role) to . Else, ignore this query. Upon receiving 
a query from 
party P

S
' '( , , , , , ,T i jNewSession sid pid P sk sk role inter

3-KD. Next, we will prove UC definition of 
security for three-party key distribution is strictly stronger 
than AKE-security.  
Theorem 1 Any UC-secure three-party key distribution 
protocol is AKE-secure. 

Proof Let π  be a UC-secure three-party key distribution 
protocol, and π̂  be the multi-session extension of π  which 
UC-securely realizes 3̂ KDF − (the multi-session extension of F3-

KD). Assume to the contrary that π̂  is not AKE-secure. Then 
there exists an adversary  breaking the AKE-security of Â π̂  
with non-negligible probability. Recall that UC definition of 
security respects to the “dummy” adversary , we use  to 
construct an environment Z so that for any ideal process 
adversary S, Z can distinguish whether it interacts with the 
“dummy” adversary D  and parties running 

D Â

π̂  in the real 
world, or with S and dummy parties communicating with 

3̂ KDF −  in the ideal process. Environment Z will run as a 
subroutine, Z proceeds as follows: 

Â

)

'
j

)

T, if pid=(Pi,Pj,PT), then record (sid,pid,PT, ) 
and send (sid,pid,P

' ',i jsk sk
T,role) to S. If there are already three tuples 

of the form (sid,pid,Pi,ski), (sid,pid,Pj,skj) and (sid,pid,PT, 
), then F' ,isk sk 3-KD record (Session,sid,pid,ready) and send 

it to S.   
Keygeneration:  Upon receiving a message (Sessionkey,sid, 
pid) from party PT (for party PT only), if the tuple (Session,sid, 
pid,ready) has been recorded, then choose , 
and record (Key,sid,pid, ).In addition, if any of P

{0,1}*Rκ ←⎯⎯
κ i , Pj and PT 

is corrupted, send (Key,sid,pid, ) to S. Else, send (Key,sid, 
pid,keygenerated) to S. 

κ

Keydelivery: Upon receiving a query( , , , , 'iKey sid pid P κ from 
the adversary S, if the key has been generated at that time, 
then do: 

κ

1. If there are records of the form (sid,pid,Pi,ski) and 
' '( , , , ,T i j )sid pid P sk sk , '

i isk sk=  , both PT and Pi are not 
corrupted, then F3-KD send a private delayed output 
(Key,sid,pid, Pi, ) to Pκ i. If either Pi or PT is corrupted, F3-KD 
send (Key,sid, pid, ) to S and send a public delayed output 
(Key,sid,pid, P

κ
i, ) to P'κ i . 

2. If , then if P'
isk sk≠

1. When  queries Execute(PÂ 1,s1,Pj,s2,PT,t,ssid,pid), Z 
activates a new session with session ID ssid, partner ID pid. In 
addition, Z records as an uncompleted and 
unexposed session. 

1( , , , )s t
i TP P ssid pidi i and PT are uncorrupted, F3-KD 

send a public delayed output (Key,sid,pid,Pi,error) to Pi. Else, 
send a public delayed output (Key,sid,pid,Pi, ' ). κ

Upon receiving a query (Key,sid,pid,Pi,error) from the 
adversary S before any key has been already sent to Pi, then 
send (Key,sid,pid,Pi,error) to Pi. 

2. When  queries SendClient(P,s,M), Z checks if there is 
an uncompleted session ( , . If not, Z returns 
“invalid query". Otherwise, Z delivers M to the appropriate 

session of party P, and returns to 

Â
, , )s t

TP P ssid pid

Â  the response of P. 
3. When  queries SendServer(PÂ T,t,M), Z checks if there 

is an uncompleted session ( , . If not, Z 
returns “invalid query". Otherwise, Z delivers M to the 
appropriate session of party P

, , )s t
TP P ssid pid

T, and returns to  the response 
of P

Â
T. 

4. When party outputs (Key,sid,pid,PP i, κ ), Z records 
( , , , , )s t

TP P ssid pid κ  as a completed session. 

5. When  queries Reveal(P,s), Z checks if there is a 
completed session ( , . If not, Z return 

“invalid query". Otherwise, Z gives to 

Â
, , , )s t

TP P ssid pid κ

κ Â  and marks the 

 
Fig 1: The three-party key distribution functionality F3-KD
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session as exposed. 
6. When  queries StrongCorrupt(P), Z corrupts party P 

and provides 

Â
Â  with the internal state of P. In addition, Z 

marks P and all the uncompleted sessions belonging to P as 
corrupted. Moreover, any sessions invoked by P in the future 
will be marked exposed. 

7. When  queries Test(P,s), Z who checks if there is a 
record  marked as completed and 
unexposed. If not, Z outputs a random bit and halts. Otherwise, 
Z flips a coin . If b=0, Z provides  with a 

random session key. If b=1, Z provides  with 

Â
( , , , , )s t

TP P ssid pid κ

{0,1}b ← Â

Â κ . Also, Z 
marks the session as tested. 

8. When  outputs a guess bit b’, Z proceeds as follows: Â
(a) Z finds the tested session record ( , , , , )s t

TP P ssid pid κ  
and then finds all the sessions whose session ID is ssid 
and marks them as matching. 

(b) Z checks if any of sessions marked as tested or 
matching is exposed. If it is, Z outputs a random bit. 
Otherwise, Z outputs 1 if b’=b and outputs 0 if b b′ ≠ . 

From the above construction of Z, we argue that if Z 
interacts with  in the real world, then  within Z sees in 
fact an AKE interaction with protocol

Â Â
π̂ . Thus, in this case, Z 

outputs 1 with non-probability better than 1/2. But, when Z 
interacts with S and dummy parties in the ideal process, the 
view of Z is statistically independent of b. Thus, in this case, 
b’=b with probability exactly one half. Then, it leads to the 
contradiction that Z can distinguish the real world and ideal 
world with non-probability probability.            # 

The inverse of this theorem is not held. Note that AKE-
security doesn’t imply agreement. (Our notion of agreement 
requires that any partnered instances (of uncorrupted players) 
agree on the session key they output [7].) However, it’s easy 
to see that any UC-secure three-party key distribution protocol 
must guarantee agreement. 

IV. UC-SECURE THREE-PARTY KEY DISTRIBUTION 
PROTOCOL  

Since AKE-security doesn’t guarantee UC-security, we            
must propose a real-life protocol that securely realizes F3-KD. 
The core of our proposed protocol is given in Fig 2. 

 
1 .

2 . ,

3 . ,
3 . ,  

i j i

j T i j

T i i i

T j j j

flow P P R

flow P P R R

flow A P P
flow B P P

μ σ
μ σ

→

→

→
→

 

( , , )i

Protocol πΙ  
0. When party PT is activated with a input (Trustedserver, 

sid,PT), PT send (Trustedserver,sid,PT), to all the parties. 
Upon receiving a query (NewSession,sid,ssid,pid,ski,skj,role), 
if role=server, ski, skj that has the form of ski=  

and , while pid= (P

( ,enc
isk

)mac
isk =( , )enc mac

j j jsk sk sk i,Pj,PT) , then 

PT does nothing except waiting flow-two message as 
described below. 

1. When party Pi is activated with a input (NewSession,sid, 
pid,Pi,ski,role), while pid=(Pi,Pj,PT) and , it 
does as follows. If role=responder, it does nothing (except 
waiting flow-one message as described below), if role 
=initiator, it chooses R

( ,enc mac
i isk sk )

i at random and sends (flow-one,Ri) to 
Pj. (From this point on, assume that Pi is activated with a 
query (NewSession,sid,ssid,pid,ski,intiator) and Pj is activated 
with a query (NewSession,sid,ssid,pid,skj, responder).  

2. When Pj receives a message (flow-one,Ri) from Pi, it 
chooses Rj at random and sends (flow-two,Ri,Rj) to PT. 

3. When PT receives a message (flow-two,Ri,Rj) from Pj, it 
chooses , ,i jr rκ  at random and computes ( ,enc

i iE sk ,μ κ=  
 ,)ir ( , ,enc )j j jE sk rμ κ= , ( , , , ,mac

i i i j i iMAC sk P P R )σ μ=   
and ( , , , ,mac )j j i j j jMAC sk P P Rσ μ= . Then, PT  sends (f  low-
three, , )i iμ σ   and (flow-three, , )j jμ σ   to Pi and Pj  
respectively.  

4. When Pi receives a message (flow-three, , )j jμ σ from PT, 
it checks if . If yes, P( , , , , , )mac

i i i j i iVF sk P P Rμ σ =1
)

i accepts and 
computes ( ,enc

i iD skκ μ=  and   outputs (Key,sid,pid,Pi, 
)κ , else outputs (Key,sid,pid,Pi,error). Either way Pi 

terminates.  
When Pj receives a message(flow-three, , )i iμ σ from PT, it 

checks if . If yes, P( , , , , , )mac
j j i j j jVF sk P P Rμ σ =1

)
j accepts and 

computes ( ,enc
j jD skκ μ= and outputs (Key,sid,pid,Pj, 

)κ

enc
i iE sk rμ κ= )( , , , ,mac

i i i j i iMAC sk P P Rσ μ=  

( , , )enc
j j jE sk rμ κ= )( , , , ,mac

j j i j j jMAC sk P P Rσ μ=  

 
Fig 2: the core of our proposed protocol: 

 
 

The full description of UC-secure three-party key 
distribution protocol πΙ  can be found in Fig 3. 

V. PROOF OF SECURITY 

In this section, we will prove UC-security of protocol πΙ . 
Theorem 2 Assume that (E, D) is a CCA-secure symmetric 

, else outputs (Key,sid,pid,Pj,error). Either way Pj 
terminates. 

 
Fig 3: The three-party key distribution protocol πΙ  
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encryption scheme, that (MAC, VF) is EU-CMA-secure 
message authentication scheme, then three-party key 
distribution protocol πΙ  securely realizes F3-KD with respect to 
non-adaptive adversaries. 

 
Proof In order to prove this theorem, we need to show that 

for any PPT real-world adversary A, there is an ideal-process 
adversary (simulator) S, such that no poly-time environment Z 
can distinguish with non-negligible probability whether it 
interacts with A and parties running πΙ  in the real world, or 
with S and (dummy) parties communicating with ideal 
functionality in the ideal process. The description of simulator 
S as follows: 

When initialized with the security parameter k, the 
simulator first runs the key generation algorithms of 
symmetric encryption scheme E and message authentication 
MAC, both with security parameter k, thus obtaining key 
pairs  and . Then S 

initializes the real-world adversary A. Thereafter, the 
simulator S interacts with the environment Z, the ideal 
functionality F

( ,enc mac
i i isk sk sk= ) )( ,enc mac

j j jsk sk sk=

3-KD, and its subroutine A. This interaction is 
implemented by the simulator S just following the protocol 
πΙ  on behalf of all the honest parties. The detail of the 
description of S is as follows: 

1. S generates key  and sk( ,enc mac
i i isk sk sk= ) ,j=  

 on behalf of all parties for protocol

( enc
jsk

)mac
jsk 1π . 

2. S invokes an instance of A, then messages from Z to S 
are forwarded to A, and messages from A to S are forwarded 
to Z. If party Pi (Pj) is corrupted, S sends ('isk '

jsk ) to A. If PT 

is corrupted, S sends the internal state of simulated party PT 
together with to A.  ' ,isk sk '

j

3. When S receives a message (Trustedserver,sid,PT) from 
F3-KD, S sends this message to A. When S receives a message 
(sid,pid,Pi,role) from F3-KD, S begins simulating for A a copy 
of protocol πΙ (calledπΙ ) being run by Pi with session ID sid 
and partner ID pid. From this now on, any messages sent by A 
to Pi are processed by this simulated copy of πΙ , and any 

messages output by the simulated copy of πΙ  are given to A. 
4. Recall the definition of delayed output. If S receives a 

delayed output query which is key delivery message or key 
error message for some dummy party, it doesn’t respond this 
query until the relevant simulated party in the πΙ  has 
terminated.  

5. When S receives a message (Session,sid,pid,ready) from 
F3-KD (it means the simulated protocol πΙ  also be ready), S 

checks if Pi is corrupted. If not, S generates (flow-one, '
iR ) 

and sends it to A on behalf of Pi. Else, S does nothing except 

waiting flow-one message from A. 
6. When the simulated party Pj receives (flow-one, R1) from 

A, S checks if Pj is corrupted. If not, S generates (flow-
two, '

1, jR R ) and sends it to A on behalf of Pj. Else, S does 

nothing except waiting flow-two message from A. 
7. When the simulated trusted party PT receiving (flow-two, 

R1,R2) from A,  
a) If trusted server PT is corrupted. S does nothing except 

waiting flow-three message from A.  
b) Else, if either Pi or Pj is corrupted. In this case, S must 

receive (Key,sid,pid, )κ  from F3-KD. Then S use κ  for 
generating flow-three messages, Else, S chooses a 
session key 'κ  randomly for generating flow-three 
messages. Either way, S sends the two generated flow-
three messages ' '(flow- three, , )i iμ σ  and  (flow-

' 'three, , )j jμ σ  to A on behalf of trusted server PT. 

8. After the simulated party Pi receives a message  (flow-
1 1three, , )μ σ  from A, then S checks if Pi is corrupted. If yes, S 

does nothing except waiting key message or error message for 
Pi from A and sends this message to F3-KD. Else, if Pi accepts 
and outputs a session key , S sends (Key,sid,pid,P'κ i 

1( , ))iD sk μ to F3-KD.. If Pi outputs error message (Key,sid,pid,Pi, 
error), S sends (Key,sid,pid,Pi,error) to F3-KD. Then, S does 
similarly for the simulated party Pj.  

 
From the above construction of simulator S, it’s easy to see 

that if PT or Pi (Pj) is corrupted, Pi (Pj) will output the key 
message or error message as A wishes both the real world and 
the ideal process.  

Suppose that no party is corrupted. Then in the real world, 
Z will get no useful information of the session key from each 
party P and the key output by P is identical to the random key 
chosen by trusted server PT. The first statement hold is 
attributable to the CCA security of symmetric encryption 
scheme E, while the second statement hold is attributable to 
the EU-CMA security of MAC. Furthermore, Pi will output 
error message in the real world iff Pi will output error message 
in the ideal process, while Pi will output '  in the real world 
iff P

κ
i will output κ  in the ideal process. Since both 'κ and 

κ  are chosen randomly, so suffice the indistinguishability. 
(Note that we take the non-adaptive adversary into 
consideration, the case that occurs in the proof of insecurity of 
“class” two-move Diffie-Hellman protocol [8] is avoided.) 
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