
1

Authenticated Interleaved Encryption
and its Application to Wireless Sensor Networks

Claude Castelluccia, INRIA
claude.castelluccia@inria.fr

Abstract—

We present AIE (Authenticated Interleaved Encryption),
a new scheme that allows nodes of a network to exchange
messages securely (i.e. encrypted and authenticated) with-
out sharing a common key or using public key cryptogra-
phy.

Our scheme is well adapted to networks, such as ad hoc,
overlay or sensor networks, where nodes have limited ca-
pabilities and can share only a small number of symmet-
ric keys. It provides privacy and integrity. An eavesdrop-
per listening to a communication is unable to decrypt it
and modify it without being detected. We show that our
proposal can be used in wireless sensor networks to send
encrypted packets to very dynamic sets of nodes without
having to establish and maintain group keys. These sets
of nodes can be explicitly specified by the source or can
be specified by the network according to some criteria,
such as their location, proximity to an object, tempera-
ture range. As a result, a node can, for example, send
encrypted data to all the nodes within a given geograph-
ical area, without having to identify the destination nodes
in advance.

Finally we show that our proposal can be used to imple-
ment a secure and scalable aggregation scheme for wire-
less sensor networks.

I. INTRODUCTION

Wireless sensor networks are often deployed in public
and unattended environments. As a result, any malicious
node can easily eavesdrop on communications and retrieve
sensitive information. It is therefore essential to encrypt
communications.

However encryption in wireless sensor networks is
problematic since nodes have limited CPU and memory
capabilities. Public key encryption is too CPU expensive
and only symmetric cryptography algorithms can possibly
be used. Symmetric cryptography requires the communi-
cating nodes to share a common secret. Since wireless sen-
sor networks are often very large and dynamic, it cannot be
expected that each node be configured with a pairwise key
with all the nodes the network. Furthermore public key
exchange protocols, such as Diffie-Hellman key exchange,
require too much resource and are excluded. Some prob-
abilistic key exchange protocols have been proposed [1],
but they still require few protocol exchanges and are there-
fore not practical if the communication is short-lived (i.e.
a node only wants to send one or two packets).

One common feature to many sensor networks is the
need to communicate secretly with arbitrary sub-groups
of sensors. Such communication may be short-lived and
consist of only few messages. Furthermore the members
of these groups might be very dynamic and unknown to
the source. The group members might actually be defined
on the basis of some criteria, such as location, proximity
to an object, temperature range or any other environmental
property. Existing group keying solutions [2] are not appli-
cable to small and dynamic groups. Most of them assume
that the group is rather stable, revocation is a rare event,
and that the size of the group is quite close to the entire
nodes population.

The only two possible approaches today are either to
encrypt a message as many times as there are receivers (as-
suming the source shares a key with each of the receivers)
or to enumerate all possible sensor subsets. Both solutions
are clearly unpractical, highly inefficient and unworkable
in any realistic sensor network. Novel methods are needed.

Our Contributions: We propose a new scheme that allows
two nodes of a network to exchange messages securely
(i.e. encrypted and authenticated) without sharing a com-
mon key or using public key cryptography. Our scheme
also solves the short-lived group encryption problem de-
scribed previously. It allows a node to send encrypted
packets to very dynamic sets of nodes without having to
establish or update group keys. These sets of nodes can be
explicitly specified by the source or can be specified by the
network according to some criteria, such as their location.
As a result, a node can, for example, send encrypted data
to all the nodes within a given geographical area, without
having to identify the destination nodes in advance. Fi-
nally we show that our proposal can be used to securely
aggregate encrypted data.

Our proposed scheme is based on stream ciphers and
does not rely on any public key cryptography algorithms.
It is therefore very efficient and well adapted to wireless
sensor networks. It provides privacy and integrity pro-
tection. It is secure against passive eavesdroppers, and
secure against active attackers as long as no more than �

consecutive nodes get compromised, where � is a system
parameter.

Organization: The remainder of this paper is organized as
follows. Section III-B introduces our scheme in detail. It
presents the Interleaved Encryption technique. It then in-
troduces a variant, the Authenticated Interleaved Encryp-

2

tion scheme, that provides authentication in addition to pri-
vacy protection. Section III shows how the AIE proposal
can be used to solve the short-lived secure group commu-
nication problem. It also explains how our proposal can
be useful to implement a secure and scalable aggregation
scheme for wireless sensor networks. The related work is
presented in Section IV. Section V concludes our work.

II. INTERLEAVED ENCRYPTION

A. Assumptions/Security Model

We describe the assumptions regarding the network be-
fore we present our schemes in detail.

1) Key distribution Model: We assume the Leap-frog
key distribution model [3]. In this model, each node

�
shares a secret key, ����� � with each of its direct neighbors�
. Furthermore node

�
shares a key, � � ��� � with each of

node
�
’s direct neighbors. These keys are not known to

node
�

(see Figure 1).
These keys can be configured in a setup phase, when

the nodes are first deployed, by a network administrator or
using some kind of probabilistic key pre-distribution pro-
tocols [1]. We also assume that a node can check whether
its neighbors have been revoked from the network. The
details of the key establishment and revocation are out of
the scope of this paper.

1 2

3

9

5 6

7

10

4
8

k_{1,2}

kn_{1,2}

Fig. 1. Key Distribution Model. Node 	�
 shares a secret key, �
�� �
with node 	�� . It also shares a key, ����
�� � with 	�� ’s direct neighbors, i.e.	�� , 	�� , 	�� and 	�� . This key is not known to 	�� .

2) Commutative Encryption: Our interleaved encryp-
tion proposal relies on a commutative encryption scheme
i.e. an encryption scheme, denoted as � ���� �! #"%$, that
satisfies the following property: � ���� �'&()� ���� �+*+ #"%$#$�,
� ���� �+*- .� ���� �!&()"/$.

Most block ciphers are not commutative. However
stream ciphers are commutative. Stream cipher encryption
and decryption operations are defined as follows:
� ���10+� "%$2,3"546�+7 and 8:9 �10;� "%$<,3"=4>�?7 , where �+7
is a stream key generated from a pseudo-random generator
keyed with the secret key � . Since the @�ACB (exclusive

OR, 4) operation is commutative, stream ciphers are
commutative. More specifically,:
� ��� 0�D � � ��� 0FE � "%$#$, � " 4 �?7 E $G4 � D ,� "=4H�+7 D $I4H�?7 E ,J� ���10KEL� � ���101D(� "%$#$.

Some public key encryption schemes, such as the Pohlig
Hellman encryption scheme, are also commutative. For
simplicity, we assume a stream cipher in the description of
our scheme.

3) Security Model: Our goal is to design a scheme that
allows a node M to send a message " privately to a node 8
without having to establish a secret key. Our scheme must
be secure against passive and active attackers. A passive
attacker should not be able to decrypt and recover the mes-
sage. An active attacker should not be able to modify the
message without being detected and should not be able to
recover the message " .

4) Terminology: The following notations appear in the
rest of this paper.N � ��� � : is the secret key shared between node O � and

node OP� .N � � ��� � : is the secret key shared between node OQ� and
OP� ’s neighbors. This key is unknown to OR� .N �TS ��� � : is the Initialization Vector -IV- used by node
OU� to encrypt a message for node OR� . Note that

�TS ��� �
must be unique for each message. It could, for exam-
ple, be implemented as a counter.N � ���� S .�!)"/$ is a stream cipher encryption algorithm
that encrypts message " using the key � and the IVS

. For example the stream cipher RC4 can be used in
our scheme. In the case, � ��� 0 � S V�! #"%$ = RC4(v,k)
xor m.N 8W9 �(� S .�! � $ is the decryption algorithm that decrypts
the cipher � into the plaintext " using the key �
and the IV

S
. If RC4 is used, 8W9 �(� S .�! � $ = c xor

RC4(v,k).N6X ��� �:,5� ���� S .�L��� �(#"%$. X ��� � is the result of the en-
cryption of message " with the key �;��� � and the IVS

.N6X � ��� �%,Y� ���(� S .� � ��� �(#"%$. X ��� � is the result of the
encryption of message " with the key � � ��� � and the
IV
S
.N6X ��� � A X�Z � [,\� ���� S � .� ��� �)� ���� S Z .� Z � [#"%$. Note

that since we use a commutative steam cipher,X ��� � A X�Z � [, X�Z � [A X ��� � .
B. The Basic Interleaved Encryption Protocol

This section describes the basic interleaved encryption
protocol. It is assumed that node M wants to privately send
a message " to node 8 . All the nodes along the path from
M to 8 are denoted O]� , where O_^ is the source, O D the
first node on the path,..., and OQ` the final destination.

It is also assumed that each node only knows the next
hop on the path to the destination node 8 and that each
node O_� on the route shares a pairwise key, ����� �ba D , with
O_�ca D . It is also assumed that O]� shares a key, � � ��� �ca D with
O_�ca D ’s neighbors.

3

1) Protocol Description: The protocol executed by
each node O � , on the path from M to 8 , is described in
Table I:

Interleaved Encryption Scheme (1)

- If (i==0) then ��� computes ��� ��	� ��
��� �
�� ��� ��
� � � �
�������� and forwards � � to�
 .
- If
�� �	� � � then ��� computes ��� �� ����
� � �"! �)� �"!
 � � ����
� �#!
�� � � � �#!
 � and recovers

the secret message that was sent by �$� .
- If (i==D-1) then ��% computes &�% �� ����
� � %! �)� %!
 � � ����
� %�!
�� % � � %�!
 � and � % ��	� ��
��% � %('
�� &�% � and forwards ��% to ��%('
 .
- Else � % computes & % �� ����
� � %! �)� %!
 � � ����
� %�!
�� % � � %�!
 � and � % ��	� ��
��% � %('
�� �	� ��
� � % � %)'
�� &�% ��� and forwards ��% to� %('

TABLE I

2) An example: This section gives an example of the
previous algorithm using the network displayed on Fig. 2.

- The source node, M , selects two random Initialization
Vectors,

�TS+* � D and
�TS+* � E , computes� * , � ���� �TS+* � E .� � * � D)� ���� �TS+* � D .� * � D)"/$)$, and

sends the message , 8% VM �TS-* � D � S+* � E � */. to node O D
(i.e. the first node on the path toward D).

- Node O D computes 0 D ,J8:9 �� � S+* � D .� * � D � * $ and re-
trieves � ���(� �TS+* � E V� � * � D)"/$ (note that since O D does
not know � � * � D , it cannot recover "). It then selects
two random values,

�TS D � E and
�TS D � 1 , computes � D ,

� ���� �TS D � 1 .� � D � E .� ���� � S D � E V� D � E 20 D $)$ and sends the
message : ,C8% .M �TS * � E � S D � E �TS D � 1 � D . to node O E .

- O E computes 0 E ,
8W9 �(� �TS D � E .� D � E)8:9 �� �TS * � E .� � * � D � D $#$ and re-
trieves � ���� � S E � 1(.� � D � E)"/$ (since O E does not
know � � D � E , it cannot recover "). It then selects
two random values,

�TS D � E and
�TS D � 1 , computes�1E , � ���� �TS E � 3(.� ��E � 1()� ���� �TS E � 1(.� E � 1(20 E $)$ and

sends the message: , 8% VM �TS D � 1 �TS E � 1 � S E � 3(�KE . to
node O�1 .

- ...
- Node O_� receives message
,C8% .M� �TS �4 E � � �TS �54 D � � � S �54 D � �ca D � �4 D . from O �54 D ,
computes
0 � , 8:9 �� � S �54 D � � .� �4 D � �)8:9 �� �TS �4 E � � .� � �54 E � �4 D � �54 D $)$
and retrieves � ���� � S �54 D � �ba D .� � �4 D � � #"%$ (since O �
does not know � � �4 D � � , it cannot recover "). It then
selects two random values,

�TS ��� �ca D and
� S ��� �ca E . If

node O_�ca D is node 8 , i.e. the destination node, node
OU� computes � ��, � ���� �TS ��� �ca D V�(��� �ca D 60 � $ and sends
the message: , 8% VM �TS �4 D � �ca D �TS ��� �ca D � � . to node
OU�ba D . If node O_�ca D is not the destination, it computes� � , � ���(� �TS ��� �ca E .� � ��� �ca D .� ���� �TS ��� �ba D V�(��� �ba D 60 � $)$
and sends the message:
,C8% .M� �TS �4 D � �ca D �TS ��� �ca D �TS ��� �ba E � � . to node O_�ca D .

- Node D (destination) computes
8W9 �(� �TS+7 4 D � 7 V� 7 4 D � 7)8:9 �� �TS+7 4 E � 7 V� � 7 4 E � 7 4 D � 7 $#$
and retrieves the original message " .

8989889898:9::9:

1 2

3

5 6

10

4

C_{1,2}oCn_{1,2}

Cn_{2,5}oC_{5,10}

Cn_{1,2}oC_{2,5}oCn_{2,5}

Fig. 2. Interleaved Encryption: Node ; sends a message, < , securely
to node ;2= . Node ; encrypts < with �
�� � and � �
�� � and sends the results
to node > . Node > decrypts the message with �(
�� � and encrypts it with���)� � and ���-�)� � . The results is sent to node ? . Node ? decrypts the
message with � �)� � and ���
�� � , and encrypts it with � �)�
 � . The result is
sent to node ;2= . Node ;2= decrypts the message with �C�)�
 � and � �-�)� � ,
and retrieves the initial message < .

C. Security Analysis

1) Privacy protection analysis: This section analyzes
the security of the privacy/confidentiality of the Inter-
leaved encryption scheme in presence of passive and ac-
tives attackers. The goal of an attacker is to decrypt and
retrieve the message " .

a) Passive attacks: The encryption scheme de-
scribed in the previous section is secure against pas-
sive attackers. A node O]� , on the path, can retrieve
� ���� � � �54 D � � #"%$. However since it does not know � � �54 D � �
and since � ���(�A@ $ is semantically secure, it cannot retrieve
" . Furthermore an eavesdropper, that is not on the path,
see, the message " encrypted three times with three dif-
ferent keys and cannot retrieve it.

b) Active attacks: As explained above, the pro-
tocol is secure against isolated compromised nodes.
As in [3], the message " can only be retrieved
if two adjacent nodes, one of them being on the
path, collude. In fact, an attacker that compromises
nodes OU� and O_�54 D obtains the keys � � �4 D � � , �L�4 D � � ,
�L��� �ca D and � � ��� �ca D . When it receives the cipher� �54 D , � ���� � � �54 D � �# .� ���� �L�54 D � �# .� ���� � � �4 E � �54 D #"%$#$#$
from node OU�54 E , it can recover the plaintext " . How-
ever, as shown later in Section III-A, our scheme can
in some situations be extended to become resistant to � -
compromised nodes, where � is a system parameter.

4

Furthermore, an active attacker (a compromised node)
can modify the destination field of the message.The
message will then be delivered to the wrong destina-
tion and recovered. This attack is possible because
an intermediate node cannot authenticate the message
and verify its integrity. In particular it cannot verify
whether the node, it received the packet from, did not
modify it (its destination address for example). The
solution is to authenticate/sign the destination address
such that intermediate nodes can reject packets whose
destination address has been modified. However since
the message changes at each intermediate node, mes-
sage authentication code (MAC) can not be used (even
interleaved-authentication cannot be used [4], [5]). The
proposed solution is to link the encryption key and the
destination address, 8 . For example, instead of using the
key �L��� � ,the key ������ � , ��� 7 � � �(��� ����� 8���� � A ��� 9C��� � $ could
be used, where � A ��� 9 ��� � is a unique random value or
a counter sent together with the encrypted message. If
IV-based mode of operation is used, as in RC4, another so-
lution is to derive the IV from a nonce and the destination
address, for example 	�
5, ��� 7 � � � A ��� 9�)8W$. As a result
if node OU�54 D changes the destination address 8 with 8 [,
Node OU� will receive a message � �54 D from O_�54 D equal to
� ���� �TS [�4 D � � .�L�4 D � �) � � ���� � S �54 E � �) .� � �54 E � �4 D
� ���� �TS [�4 D � �54 E .� �4 D � �ca D #"%$#$)$#$, where

�TS [�.� Z ,��� 7 � � � A ��� 9 �.� Z)8 [$ and
�TS �)� Z , ��� 7 � � � A ��� 9 �.� Z)8W$.

Node O � then computes 0 [� , 8W9 �(� �TS [�4 D � � .� �54 D � � ,
8:9 �� � S [�54 E � � .� � �54 E � �4 D � � $)$. Since node O �4 E
used

� S
instead of

�TS [, O � will not retrieve
0 � , � ���� �TS �54 D � �ba D V� � �4 D � �) #"%$ but
0 [� ,J8:9 �� �TS [�54 E � � V� � �4 E � �54 D)� ���� �TS �54 E � � .�L�54 E � �#
� ���� �TS �4 D � �ca D .�L�4 D � �ca D #"%$#$#$)$. Since

�TS [�4 E � � and
�TS �54 E � �

are different, 0 [� will differ from 0#� . This error will then
propagate until the destination node 8:[and will scramble
the ciphertext.. As a result, 8 [won’t be able to correctly
decrypt the message and retrieve the correct plaintext " .
The previous attack will fail.

As a result, this modified interleaved encryption scheme
is secure against active attackers as long as no more than
two adjacent nodes are not compromised.

2) Integrity Protection Analysis: This section analyzes
the security of our proposal in term of integrity. The goal
of an attacker is not, as in the previous section, to retrieve
" but to modify " without the destination 8 noticing it.

Since message authentication is not provided, an active
attacker can modify the message (and therefore the cor-
responding plaintext) in transit by modifying some bits.
Since our scheme is based on a stream cipher, the desti-
nation has no way of detecting it. This is an attack on
the integrity. This problem can be solved by having the
source encrypting the message � � "%$��� " instead of " ,
where � �2@ $ is a redundancy function. An attacker would
then be able to modify " but not � � "%$. Modification of
the message could then be detected by the destination node
[6].

It is believed that this combination of encryption and re-

dundancy functions provide plaintext integrity (see remark
5.3 of [7]) if a stream cipher and a redundancy function
such as AXU are used. Furthermore if the authentication
tag is positioned before the message, instead of at the end,
the AXU property is sufficient to provide cipher unforge-
ability (CUF-CPA).

An encryption scheme is ciphertext unforgeable if it
is infeasible for an attacker � that has access to an en-
cryption oracle ������ with the key � to produce a valid
ciphertext under � not generated by ������� as response to
one of the queries by � [7]. Using the message length as
an input of the redundancy function might also be a good
design practice to avoid the attack described in [8].

D. Authenticated Interleaved Encryption

The section describes an extension of the basic protocol
that provides integrity and privacy security against active
attacks.

- The source node selects two nonces
� A ��� 9 * � E and � A ��� 9 * � D and computes�TS * � E , � � � A ��� 9 * � E ��� 8���� M�$ and

�TS * � D ,� � � A ��� 9 * � D ��� 8���� M�$. It then generates � * ,
� ���� �TS+* � E V� � * � D .� ���� � S+* � D .� * � D)"���� � � " ���9 � $#$)$,
where � �2@ $ is a redundancy function and � 9 �

is the length of message " . The message
,C8% .M� � A ��� 9 * � D � A ��� 9 * � E � * . is sent to node
O D (i.e. the first node on the path toward D).

- Node O D computes
�TS+* � D , � � � A ��� 9 * � D ��� 8���� M�$,

0 D , 8:9 �� �TS+* � D V� * � D � * $ and retrieves:
� ���� �TS * � E V� � * � D)"/$. It then selects two nonces

� A ��� 9 D � E and � A ��� 9 D � 1 and computes
� S D � E ,� � � A ��� 9 D � E ��� 8���� M�$ and

� S D � 1 , � � � A ��� 9 D � 1 ��� 8���� M�$.
It generates � D ,
� ���� �TS D � 1 .� � D � E .� ���� � S D � E V� D � E 60 D $)$ and sends the
message: ,C8% .M� � A ��� 9 ^�� E � A ��� 9 D � E � A ��� 9 D � 1 � D .
to node O E .

- O E computes 0 E ,
8W9 �(� �TS D � E .� D � E)8:9 �� �TS+* � E .� � * � D � D $#$ and re-
trieves � ���� � S D � 1(.� � D � E #"%$. It then selects two
nonces, � A ��� 9 E � 1 and � A ��� 9 E � 3 , and computes �1E ,
� ���� �TS E � 3(.� ��E � 1 .� ���� � S E � 1 V� E � 1 60 E $)$. It sends the
message ,C8% .M � A ��� 9 D � 1 � A ��� 9 E � 1 � A ��� 9 E � 3(�KE . to
node O�1 .

- ...
- Node O � receives message
,C8% .M� � A ��� 9 �54 E � � � A ��� 9 �54 D � � � A ��� 9 �4 D � �ca D � �54 D .
from O �54 D , computes

�TS �4 D � � , � � � A ��� 9 �4 D � � ��� 8W$,�TS �54 E � � , � � � A ��� 9 �4 E � � ��� 8W$ and 0 � ,
8W9 �(� �TS �4 D � �# .�L�4 D � �))8W9 �(� �TS �4 E � �) .� � �4 E � �54 D � �54 D $#$.
It then retrieves � ���� �TS �4 D � �ca D .� � �54 D � � �� $.
OU� selects two nonces, � A ��� 9 ��� �ba D
and � A ��� 9C��� �ca E , computes � � ,
� ���� �TS ��� �ba E .� � ��� �ca D .� ���� � S ��� �ca D V�(��� �ca D 60 � $)$
and sends the message:
,C8% .M� � A ��� 9C�54 D � �ba D � A ��� 9C��� �ba D � A ��� 9 ��� �ca E � � . to
node OU�ca D .

5

Note that if node O �ca D is the final destination D, node
O � computes � � , � ���� �TS ��� �ca D .� ��� �ca D 20 � $.

- Node 8 (destination) computes
8W9 �(� �TS 7 4 D � 7 V� 7 4 D � 7)8W9 �(� �TS 7 4 E � 7 V� � 7 4 E � 7 4 D � 7 $#$
and retrieves the plaintext @ ��� " . It accepts the mes-
sage " if @ , � � " ��9 � $. Otherwise the message "
is rejected.

III. APPLICATIONS

The proposed AIE scheme is well adapted to devices,
such as wireless sensors, with very limited computing and
storage capabilities since it does not rely on public key
cryptography and does not require a lot of storage. If

�
is the network’s degree, i.e. the average number of neigh-
bors each node has, � � � E $ keys are required per node.

AIE can be used for many different applications. It can,
for example, be used by a sensor to send secret data to
nodes it does not share a security association with or that
are defined by the network according to some criteria (lo-
cation, functionality).

Another important application of AIE is short-lived
broadcast encryption. With AIE, a node can send en-
crypted messages to very dynamic groups without having
to establish and maintain group keys.

Finally, our scheme can be used together with the se-
cure homomorphic stream cipher proposed in [9] to pro-
vide scalable secure aggregation of encrypted data in wire-
less sensor networks.

These applications are detailed in the rest of this section.

A. Securing Unicast Communication

AIE can be used by a sensor to send secret data to nodes
it does not share a security association with. If the net-
work uses a link state based routing scheme, a node only
knows the newt hop to its final destination. In the case, the
protocol described in Section II-B.1 can be used.

If the network uses a distance vector based routing
scheme, the source actually knows all the nodes along the
path to the destination. In this case, a more elaborate and
more secure scheme can be used. This scheme is described
in the rest of this section.

1) Key distribution model: In this scheme, we assume
that each node do not only share a pairwise key with its di-
rect neighbors but also with its ��� � A�� neighbors. Fig. 3
illustrates this key model. On this example, � is set to 2.
Each node shares a pairwise key with each of its direct
neighbors and each of its 2-hop neighbors. For example,
node 1 shares a pairwise key with each of its direct neigh-
bors, i.e. nodes * , � and � , and with its 2-hop neighbors,
i.e. nodes � , 	 and
 . These keys can be configured using
a protocol such as the one described in [1].

2) Protocol description: The protocol, executed by
each node OU� , is described by Table II. It is assumed that
node O_^ wants to send a secret message to node O]` , and
that O D is the first node on the path from OU^ to OU` , O E

1 2

3

9

5 6

7

10

4
8

k_{1,2}

k_{1,7}
k_{1,4}

k_{1,3}

k_{1,6}

k_{1,5}

Fig. 3. Key model. Each node shares a pairwise key with each of its
n-hop neighbors (n=2). This figures shows the keys that the node 1 shares
with its direct neighbors and two-hop neighbors.

Interleaved Encryption Scheme (2)

- If
�� �	� � � then ��� computes � � ��	� ��
� � �
�� �	� ��
� � � ��������� � �	� ��
�
�� � ��������� and
forwards ��� to �
 .

- If
�� �	� � � then � � computes � � �� ����
� �#! �� � � � ����
� �#! � '
�� � ������ � ����
� �#!
�� � � ���"!
2�����
and recovers the secret message that was sent by �$� .

- Else ��% computes &�% �� ����
� %�! �� % � � � ��
� %! � '
�� % ������ � ����
� %�!
�� % � � %!
 �����
and � % � �	� ��
� % � %)'
 � ��� ��
� � % � %('
 ����� � �	� ��
� % � %)' � � & % �����
and forwards ��% to ��%('

TABLE II

the second node,...and O]` the destination node. It is also
assumed that �L��� � ,�� if

��� & or
��� � .

This protocol is illustrated by the example of Fig. 4. In
this example, node & sends a secret message " to node
&�� using Interleaved Encryption (n=2). Node & encrypts
" with � D � E and � D � � and forwards the result � D to node * .
Node * decrypts � D with � E � D . It then encrypts the result
with � E � � and � E � D ^ and gets �1E . Upon reception of �1E ,
Node 	 decrypts it with � E � � and � D � � . It then encrypts the
result with ���1� D ^ and gets � � . Upon reception � � , Node &��
decrypts it with � E � � and ���1� D ^ and retrieve " .

3) Security Analysis: Since the message " is en-
crypted several times on each link, this protocol is secure
against passive attacks.

It is also secure against active attacks as long as less than
� consecutive nodes on the path do not get compromised.
It is therefore more secure than the scheme described in
Section II-B.1. However it requires each node on the path
to know its � next nodes on the path to the destination.
This information is not always available.

Note also that the integrity protection mechanism de-
scribed in Section II-D can also be used to protect this pro-
tocol.

6

�����
�����
���
���

1 2

3

5 6

10

4

C_{1,2}oC_{1,5}

C_{2,10}oC_{5,10}

Cn_{1,2}oC_{2,5}oC_{2,10}

Fig. 4. Secure Unicast using Interleaved Encryption.

B. Dynamic Short-lived Multicast

One important service common to many sensor net-
works is the need to privatly communicate with arbitrary
subsets of the network’s sensors. These groups might
actually be very dynamic and short-lived. In fact they
might only consist of one command or one reply and, thus,
a single message. Furthermore the members of group
might be defined by the source or actually defined by the
network on the basis of some arbitrary characteristic such
as location, remaining battery power, and proximity to
objects, temperature range or any other environmental
property (see example2 described below). Existing group
keying solutions [2] are not applicable to small and
dynamic groups. Most of them assume that the group is
rather stable, revocation is a rare event, and that the size
of the group is quite close to the entire nodes population.
These protocols require several rounds and are therefore
not practical for short-lived groups. The only two possible
approaches today are either to encrypt a message as many
times as there are receivers (assuming the source shares a
key with each of the receivers) or to enumerate all possible
sensor subsets. Both solutions are clearly unpractical,
highly inefficient and unworkable in any realistic sensor
network. The first solution drastically increases the source
load and the transmission bandwidth. The second one is
highly non-scalable since all possible sensor subsets need
to be pre-defined in advance. This is very difficult for
large networks. Novel methods are definetly needed.

Protocol description: Our AIE scheme can be used to
design a solution to the short-lived multicast encryption
problem. We assume that a random node M wants to send
a message " securely to a subset, 8 , of nodes of the net-
work. The nodes contained in this subset can be explicitly
defined by the source, i.e. 8 , , O D .O E @(@)@ O � . or can
be implicitly defined by a criteria, i.e. “ 8 =all the nodes

that satisfy criteria C” (for example “C=all the nodes that
are in the geographical area R”). In the later case, the deci-
sion is made locally by the forwarding nodes, as illustrated
later by example 2. We also assume that the leap-frog key
model, described in Section II-A.1 is used.

The protocol is described as follows:
- M sends to each of its neighbors O]� a packet that is

composed of a header that specifies 8 , the destina-
tions nodes or the criteria, and the message " en-
crypted with the keys � * � � and � � * � � as described in
Section . Note that if O � is part of the destination
group, the message " is only encrypted once, with
� * � � .

- Upon reception of a packet, a node O]� verifies
whether it is on the destination list or if it satisfies
the reception criteria (i.e. it is within the area �). If
this is the case, it decrypts the message once (with
the key it shares with the forwarding node) and
retrieves the message plaintext, " . It O]� is not on the
destination list, it decrypts the message once or twice
depending on whether it is only one-hop or several
hops away from the source. It then encrypts twice for
each of the neighbors that are on the multicast tree:
with the keys it shares with its direct neighbor and
two-hop neighbors. Note that if one of the neighbors
is on the destination list or satisfies the reception
criteria, it only encrypts the message once (with the
key it shares with this neighbor, as explained in the
previous section).

If node OU� has
�

neighbors, it has to perform *��� � � & $ E encryptions. We assume for simplicity that M
sends the messages to all its neighbors, i.e. broadcast
is used. However if a tree-based multicast scheme
is used, the message is only sent to the neighbors
that are on the delivery tree. Note that the messages
sent to each neighbor are different since they are en-
crypted using different keys.

- The message then propagates along the delivery tree
until it reaches all destination nodes.

Example1: Figure 5 illustrates how our scheme can be
used to securely multicast a message " to a set of nodes.
In this example, node O D sends a message to the list of
nodes 85, , O�� .O�� .O D ^ . .
O D encrypts " with � D � E and � � D � E . It then sends

the result, X D � E A X � D � E to O E together with the list of
destination nodes, 8 , to O E . Upon reception of this
message, O E identifies, using its routing protocol, the next
node(s) towards the destination. In this case, the next
node toward 8 is O�	 . It then decrypts the message with
� D � E , and retrieves X � D � E and encrypts result with � E � 	 and
� ��E � 	 . The resulting message, �1E , X � D � E A X E � 	 A X ��E � 	 ,
is forwarded to O�	 together with 8 . O�	 finds out that 8 E
and 8 � are its direct neighbors and that 8 � is reachable
via 8 � . It decrypts �1E with � � D � E and � E � 	 , and sends
the result, X ��E � 	 , encrypted with �
	1� � to O � and the result

7

encrypted with � � � � to O�� . Since O�� is on the destination
list, it decrypts the message it received, i.e. X � E � 	 A X 	1� �
with � 	1� � and � � E � 	 to retrieve " . Identically since O � is
on the destination list, it decrypts the message it received,
i.e. X ��E � 	�A X 	K� � , with �
	1� � and � ��E � 	 to retrieve " . O �
finally encrypts " with � � � D ^ and forwards the result to
O D ^ that can then retrieve " .

��������������������

������������

������������

1 2

3 8

9

5

7

10

Source

D3

D1

D2

4

Cn_{1,2} o C_{2,7} o Cn_{2,7}

C_{1,2} o Cn_{1,2}

Cn−2,7} o C_{7,9}

C_{9,10}

Cn_{2,7} o C_{7,8}

Fig. 5. Short-lived Multicast. Node 	�
 multicasts a secret message to
nodes 	�� , 	
	 and 	
 = .

Example2: Figure 6 illustrates the protocol when the
source does not specify the list of destination nodes but
instead a reception criteria. In this example, the reception
criteria is “all the nodes within the geographical area R”.
Both nodes O � and O D ^ satisfy this criteria. We assume
that each node is able to verify whether its direct neigh-
bors and itself satisfy the reception criteria.

The source, O D encrypts " with � D � E and � � D � E . It then
sends the result, X D � E A X � D � E to O E together with the cri-
teria, 8 , to O E . It also sends the message " , encrypted
with � D � 1 and � � D � 1 , to O 1 . However for simplicity sake,
we only consider the messages that are on the path to the
destination nodes. Upon reception of this message, O E
finds out that its neighbor O � satisfies the criteria. It there-
fore decrypts the message with � D � E (and retrieve X � D � E)
and encrypts the result with � E � � . The resulting message,�KE , X � D � E A X E � � , is forwarded to O�	 together with 8 .
O E also, possibly, encrypts X � D � E with � E � 	 and � ��E � 	 and
forwards the results to O 	 . Upon reception of the mes-
sage, O � finds out that it satisfies the reception criteria.
It therefore decrypts the message with � � D � E and � E � � to
retrieve the message " . Since its neighbors 8 D ^ also sat-
isfies the reception criteria, it forwards the message " en-
crypted with � �1� D ^ to it. 8 D ^ can then retrieve the message
" .

C. Aggregation of Interleaved Encrypted Data

1) background and problem statement: Wireless sen-
sor networks (WSNs) are ad-hoc networks composed of
tiny devices with limited computation and energy capaci-
ties. For such devices, data transmission is a very energy-
consuming operation. It thus becomes essential to the life-

�����
�����
��
��

���
���
���
���

1 2

3

9

7

Source

4

7

5

10

Area R

C_{1,2} o Cn_{1,2}

Cn_{1,2}oC_{2,5}

C_{5,10}

Fig. 6. Location-Based Short-lived Multicast. Node 	
 multicasts a
secret message to all nodes with area � , i.e. nodes 	�� and 	�
 �

time of a WSN to minimize the number of bits sent by each
device. One well-known approach is to aggregate sensor
data (e.g., by adding) along the path from sensors to the
sink. Aggregation becomes especially challenging if end-
to-end privacy between sensors and the sink is required,
i.e. when the communication between each sensor and the
sink is encrypted using a key that is not known to the ag-
gregators.

[9] proposes a simple and provably secure additively ho-
momorphic stream cipher that allows efficient aggregation
of encrypted data. This new cipher only uses modular ad-
ditions (with very small moduli) and is therefore very well
suited for CPU-constrained devices.

The main idea of the scheme presented in [9] is to re-
place the @ ACB (Exclusive-OR) operation typically found in
stream ciphers with modular addition (�), as described by
Table III.

Additively Homomorphic Encryption Scheme

Encryption:
1) Represent message � as integer ����� � ���������

where � is large integer.
2) Let � be a randomly generated keystream, where � �
� � ���������

3) Compute � � ��� ��
 � � � ��� � � �! �
#"%$'& � �
Decryption:

1) � ����
�� � � �(�9� � � � �
#"%$'& �9�
Addition of Ciphertexts:

1) Let �
 � �	� ��
 �
 � �
 �(�9� and � � ��	� ��
 � � � � � �(�9�
2) For � � �
) � � , � ����
��
* � ��� � ��� � � �
+ � �

TABLE III

It is assumed that �-, " � � . Due to the com-
mutative property of addition, the above scheme is addi-

8

tively homomorphic. In fact, if � D , � ���(� " D .� D �� $ and� E ,J� ���� " E .� E �� $ then � D � � E ,J� ���� " D �U" E .� D �
� E �� $.

Note that if � different ciphers � � are added, then �
must be larger than ������ D " � , otherwise � ACBCB 9 � 0 � 9 7 7 is
not provided. In fact if ������ D " � is larger than � , decryp-
tion will results in a value "�� that is smaller than � . In
practice, if �>,G" � @ � " � $ then � should be selected as
� , *	� Z�
������� � ����� .

The keystream � can be generated by using a stream
cipher, such as RC4, keyed with a node’s secret key 7 � and
a unique message id. This secret key pre-computed and
shared between the node and the sink, while the message id
can either be included in the query from the sink or derived
from the time period in which the node is sending its values
in (assuming some form of synchronization).

It is shown that aggregation based on this cipher can be
used to efficiently compute statistical values such as mean,
variance and standard deviation of sensed data, while
achieving significant bandwidth gain. In fact, a proba-
bilistic encryption scheme, denoted � ��� 0-� $, is additively-
homomorphic if for any instance ���	� � $ of the encryption
scheme, given � D , � ����01D � " D $ and �1E , � ���10FE�� " E $,
there exists a key � such that

��D 4 �KE , � ���10-� " D 4 " E $
In other words, the result of the application of function
4 on plaintext values may be obtained by decrypting the
result of 4 applied to the corresponding encrypted values.

Additive aggregation can also be used to compute the
variance, standard deviation and any other moments on
the measured data. For example, in case of variance, each
aggregator not only computes the sum, M , �

0
��� D @ � , of

the individual values sent by its � children, but also the
sum of their squares:
 , �

0
��� D @

E
� . Eventually, the sink

obtains two values: the sum of the actual samples which it
can use to compute the mean and the sum of the squares
which it can use to compute the variance.

One limitation of this proposal is that the identi-
ties of the non-responding nodes (or responding nodes,
whichever is expected to be smaller) need to be sent along
with the aggregate to the sink. If the network is unreliable,
this can represent an important overhead and scalability
problem. It is therefore important to devise methods for
reducing this cost.

We show in the following section that Interleaved
Encryption can be used to solve this problem.

2) Our solution: Aggregation of Interleaved Encrypted
Data : This section explains how the previous scheme
can be used in an interleaved encryption mode to solve the
identity transmission and scalability problems described in
the previous section.

We assume for simplicity and without loss of generality
that the network is structured as a tree. The sink is a top,

the aggregators are the intermediate nodes and the sensors
are the leaves. Sensors encrypt their sensed data and send
the result to their local aggregator. Each aggregator se-
curely aggregates the data it receives from its children and
forwards the results to the next aggregator (i.e. its parent
in the tree) toward the sink.

We also assume that each node shares a pairwise key
with its direct parent, its 2-hop parent, 3-hop parent,...and
n-hop parent, where � is a system parameter. Fig. 7 illus-
trates this key model. In this example, � is set to 3. Each
node shares a pairwise key with its parent, 2-hop parent
(grand-parent) and 3-hop parent. For example, Node &
shares a key with nodes 	 , � and � . These keys can be
establishment using a scheme such as [1].

When a sensor, O]� , sends a message, its encrypts it � -
time using the additively homomorphic scheme described
in [9]. The first time with the key it shares with its direct
parent, the second time with the key it shares with its 2-
hop parent,..., the ��� � time with the key its shares with its
� -hop parent. The sensor sends the result � � to its parent
along with its identifier.

An aggregator ! � adds up all the ciphers � Z it receives
from all of its direct children. It then decrypts the results
using the sum of the pairwise keys it shares with each of
its direct children, * � � A�� children,..., � � � A�� children.
The result is then encrypted � times with the keys it shares
with its parent, 2-hop parent,..., and �"� � . The result is
forwarded to ! � ’s parent along with the identifiers of the
children that have contributed to the resulting cipher. The
messages get then securely aggregated hop-by-hop until
the sink.

1 2

5

d2d1

7

Sink

d3

d8
8

3 4

6

9 10

11

d10

d4

k_{2,5}

k_{7,9}

k_{1,7}

k_{1,9}

k_{1,5}

k_{5,7}

k_{5,11}

k_{5,9}

k_{2,7}

k_{2,9}

k_{7,11}

Fig. 7. Aggregation of Interleaved Encrypted Data: Key model.

Figure 8 illustrates secure aggregation with our inter-
leaved encrypted data scheme. In this example, � is set to
3. The sensors O D , O E , O 1 , O 3 , O�� and O D ^ send their
data, respectively

� D , � E , � 1 , � 3 , � � and
� D ^ , to the sink

(O D.D $. The nodes O � , O$# , O 	 , O�� are aggregators.
Node O D encrypts its data

� D 3 times: with � D � � , � D � 	
and � D � � , and sends the result � D to O � together with its

9

5

3

d1+d2+k_{1,7}+kn_{2,7}+k_{1,9}+k_{2,9}+d_5+
k_{5,7}+k_{5,9}+k_{5,11}; ID1, ID2;

d1+k_{1,5}+k_{1,7}+k_{1,9}

d1+d2+k_{1,9}+k_{2,9}+d_5+ k_{5,9}+k_{5,11}+
d3+d4+k_{3,9}+k_{4,9}+d6+ k_{6,9}+k_{6,11}+
+d7+k_{7,9}+k_{7,11}; ID1,ID2,ID3,ID4,ID5,ID6

k_{5,11}+d1+d2+d_5+
d3+d4+d6 +k_{6,11}+

d7+k_{7,11} +d8+k_{8,11}+d9+k_{9,11}
ID5,ID6,ID7,ID8

9

d8+k_{8,9}+kn_{8,9}

8 d8

10

d10

Sink
11

6

1 2 4

d4+k_{4,6}+k_{4,7}

7

k_{6,7}+k_{6,9}+k_{6,11};ID3, ID4;
d3+d4+k_{3,7}+k_{4,7}+k_{3,9}+k_{4,9}+d6+

d3 d4d2d1

d3+k_{3,6}+k_{3,7}+k_{3,9}

d2+k_{2,5}+k_{2,7}+k_{2,9}

+k_{4,9}

Fig. 8. Aggregation of Interleaved Encrypted Data. Data �
 , �1� , ��� ,
�K� and � � are securely aggregated by the aggregators 	�� , 	�� and 	�� ,
on their way to the sink.

identifier. Similarly O E encrypts its data
� E with � E � � , � E � 	

and � E � � , and sends the result �1E to O � together with its
identifier. O � decrypts � D with � D � � and �1E with � E � � and
adds the results. It then encrypts the sum with � �1� 	 , ���1� �
and ���1� D)D and sends the result, � � together with the identi-
fiers of O D and O E to O�	 . Similarly, node O�1 encrypts its
data

� 1 with �-1K� # , �-11� 	 and �-1K� � , and sends the result � 1 to
O$# together with its identifier. O 3 encrypts its data

� 3 with
� 31� # , � 3�� 	 and � 31� � , and sends the result � 3 to O$# . O # de-
crypts � 1 with � 11� # and � 3 with � 3�� # and adds the results. It
then encrypts the sum with � # � 	 , � # � � and � # � D)D and sends
the result, � # together with the identifiers of O E and O 1
to O�	 . As a result, O�	 receives � � from O � and � # from
O # . It decrypts � � with ���K� 	 , � D � 	 and � E � 	 and obtains the
value @ . It then decrypts � # with � # � 	 , �-1K� 	 and � � 3�� 	 and
obtains the value � . It encrypts the sum of @ and � with
�
	K� � and �
	K� D.D , and sends the results � 	 to O � together with
the identifiers of O � , O # , O D , O E , O 1 and O 3 . O � en-
crypts its data

�
� with � � � � , � � � D.D and sends the result � � to

O � . O � adds � � and � � and decrypts the results with � 	K� � ,
�
� � � , � # � � , � �1� � , � 3�� � , � 1K� � , � E � � and � D � � . It then encrypts the
results with �
� � D)D and obtains � � . � � is then sent to O D.D
together with the identifier of O � , O 	 , O # and O � . Note
that the identifiers of O D , O E , O 1 and O 3 do not need to
be forwarded anymore.

The sink O D.D decrypts the message it re-
ceived with � � � D)D , � � � D)D , �
	K� D.D , � # � D.D and � �1� D.D
and retrieves the sum of the plaintext values i.e� D � � E � � 1 � � 3 � � � � � # � �

	 � �
� � �

� .

3) Security vs Bandwith tradeoff: With the previous
scheme, each aggregator has to forward at most � � 4

D
��� D � �

identities, where
�

is the degree of the tree, i.e. number
of children per node. This is much less than the original
scheme. In the original scheme, the number of identities

to be forwarded increases as the aggregated message gets
closer to the root. At the level

�
of the tree (

� , � being
the leaves), � � � � $ identities has to be forwarded by each
aggregator. If the aggregator tree has many levels, this can
become problematic. In contract, with AIE, the number of
identities to be forwarded is bounded and only depends on
the parameters � and

�
, where

�
is smaller than

�
. With

the example of Fig.8, each node has to forward at most 6
identities if AIE is used. With the original scheme, this
number can go up to 12.

However the AIE based scheme is less secure than the
original scheme. An attacker that corrupts � consecutive
nodes can actually retrieve the aggregated value at the low-
est corrupted aggregator in the tree. For example, in Fig.
8 if an attacker corrupts node 5, 7, and 9, it is able to re-
trieve the aggregated value available at node 5, i.e.

� D + � E .
With the original scheme, corrupting aggregators does not
reveal any information about the aggregated value.

There is a clear tradeoff between the number of identi-
ties to be forwarded (i.e. bandwidth cost) and security. By
decreasing � , the bandwith cost decreases but so does the
security. By increasing � , the bandwith cost and security
increase. If � , & , our scheme is similar to hop-by-hop
encryption. This configuration is optimal in term of
bandwith but very weak security-wise. On the other hand,
if � , �

(where
�

is the number of level in the tree), our
scheme is similar to the original aggregation scheme of
[9]. Its bandwith cost is high but its security is maximum.

4) Data Integrity Protection: The authenticated
scheme proposed in Section II-D cannot be used with ag-
gregation. In fact, since the plaintext is changing as the
data are being aggregated (i.e. added) and the aggregators
do not have access to the plaintext data, the redundancy
check will fail. Furthermore, by definition, the redundancy
function cannot be homomorphically additive. Therefore
only the basic scheme, as defined in Section II-B is appli-
cable.

We suggest, in this case, to authenticate the messages
hop-by-hop to prevent external attackers from modifying
messages. This protects against external attackers but not
compromised nodes. A compromised node can modify
the encrypted message but still computes the correct au-
thentication tag. The modification will then be undetected.
However, we argue that this does not reduce security since
when aggregation is performed any aggregator or sensor
can add arbitrary value to the plaintext and falsify the ag-
gregated value. Note that such an attack does actually
not require the attacker to compromise any node since the
sensed data can itself be modified. As explained in [10],
other techniques are needed to verify the plausibility of
the resulting aggregate and increases the aggregation re-
siliency. In WSNs, authentication does not provide data
authenticity, but can instead be used to enforce access con-
trol, i.e. to prevent unauthorized nodes from injecting fake
packets in the networks. This access control can efficiently
be performed with hop-by-hop authentication and does not

10

require end-to-end authentication.
Hop-by-hop authentication is therefore sufficient and is

probably the best level of integrity protection that can be
provided with secure aggregation.

IV. RELATED WORK

There have been several new key establishment propos-
als for wireless sensor networks recently. Most of them
are based on the random key pre-distribution that was pro-
posed by Eschenauer and Gligor [1]. In this scheme, each
sensor is configured with a random subset of a large pool
of keys. These keys are used for point-to-point security
by having a sender use a key known to be shared by the
receiver. Chan et al. [11] improves and analyzes this
scheme. Du et al. [12] extends the Eschenauer-Gligor
scheme with a Blom pairwise key-generation scheme. Liu
and Ning [13] proposes a polynomial-based key distribu-
tion scheme. All of these schemes are pretty effective for
point-to-point communications. However most of them
require some message exchanges and are therefore not
adapted to short-lived communications. Furthermore none
of them are applicable to group communications.

Current group keying schemes either rely on some
Diffie-Hellman group extensions [14], [15], and are there-
fore not adapted to sensor networks, or requires assume
that the groups are pretty stable [2]. These later schemes,
referred to as “broadcast encryption”, are not applicable
when the receiver subset is much smaller than the entire
sensor population.

Vogt [4] and Zha et al. [5] have proposed data integrity
protection schemes for secure node-to-node communica-
tions based on interleaved authentication. Goodrich [3] ex-
tended this work to broadcast and group integrity. These
schemes are very related to our proposal but do not pro-
vide privacy protection. AIE builds on these approaches to
provide authenticated and encrypted group security.

V. CONCLUSION AND FUTURE WORK

This paper presents a new scheme that allows CPU and
storage constrained nodes of a network to securely ex-
change messages (i.e. encrypted and authenticated) with-
out sharing a common key or using public key cryptogra-
phy. Our scheme can, for example, be used by a sensor to
send secret data to a node it does not share a security asso-
ciation with or that are defined by the network according to
some criteria (location, functionality). It can also be used
to solve the so-called “short-lived broadcast encryption”
problem. It allows a node to send encrypted packets to
very dynamic sets of nodes without having to establish or
maintain group keys. These sets of nodes can be explicitly
specified by the source or can be specified by the network
according to some criteria, such as their location, proxim-
ity to an object or functionality (i.e. aggregators/sinks). As
a result, a node can, for example, send encrypted data to all
the nodes within a given geographical area, without having
to identify the destination nodes in advance.

We also show that our proposal can be used to imple-
ment a secure and scalable aggregation scheme for wire-
less sensor networks.

Authentication Interleaved Encryption can optionally
provide source anonymity, since the destination does not
need to know the source to decrypt the message. This
might be a useful feature for some applications.

Our scheme is secure against passive attackers and iso-
lated active attackers. An attacker that compromises two
adjacent nodes (or � adjacent nodes, according to the ap-
plications) on the path can recover the encrypted messages.
However, a node, even compromised, that is listening to
communications is unable to decrypt them. As a result,
the security provided by our solution is better than the se-
curity of schemes based on global group keys (all the net-
work nodes share a common group key) or on hop-by-hop
encryption (the messages are decrypted/encrypted hop-by-
hop until they reach the destination). With these schemes,
any curious or compromised node can listen to the com-
munications. On the other hand, our scheme is less secure
than schemes that use end-to-end encryption. However, as
argued earlier in this paper, it is not always feasible and
practical to establish secret keys between communicating
nodes in constrained environments, such as wireless sensor
networks, especially for short-lived communications. Fur-
thermore, current secure group communication solutions
are not adapted to very dynamic and short-lived groups
since they assume that group members are stable and re-
vocations are rare events. To our knowledge, the AIE pro-
posal is the first scheme to provide a solution to the chal-
lenging short-lived secure broadcast problem.

REFERENCES

[1] L. Eschenauer and V. D. Gligor, “A Key Management Scheme for
Distributed Sensor Networks,” ACM CCS, pp. 41–47, 2000.

[2] Sandro Rafaeli and David Hutchison, “A survey of key manage-
ment for secure group communication,” ACM Computing Surveys,
vol. 35, pp. 309–329, 2003.

[3] M. Goodrich, “Leap-frog packet linking and diverse key distribu-
tions for improved integrity in network broadcasts,” in IEEE Secu-
rity and Privacy, May 2005.

[4] Harald Vogt, “Integrity preservation for communication in sensor
networks,” Tech. Rep. 434, ETH Zurich, Institute for Pervasive
Computing, Feb. 2004.

[5] Sencun Zhu, Sanjeev Setia, Sushil Jajodia, and Peng Ning, “An
Interleaved Hop-by-Hop Authentication Scheme for Filtering False
Data in Sensor Networks,” Security and Privacy, 2004.

[6] Jee An and Mihir Bellare, “Does encryption with redundancy pro-
vide authenticity?,” in EUROCRYPT, 2001.

[7] Hugo Krawczyk, “The order of encryption and authentication for
protecting communications (or: how secure is SSL?),” in CRYPTO,
2001.

[8] David Wagner, “Attacks on the hash-then-encrypt (for stream ci-
pher),” http://www.cs.berkeley.edu/ daw/my-posts/mdc-broken2.

[9] Claude Castelluccia, Einar Mykletun, and Gene Tsudik, “Efficient
aggregation of encryption data in wireless sensor networks,” in
IEEE Mobiquitous, 2005.

[10] David Wagner, “Resilient Aggregation in Sensor Networks,” Work-
shop on Security of Ad Hoc and Sensor Networks, 2004.

[11] H. Chan, A. Perrig, and D. Song, “Random key predistribution
schemes for sensor networks,” in IEEE Security and Privacy Sym-
posium, 2003.

[12] W. Du, J.Deng, Y. Han, and P. Varshney, “A pairwise pre-
distribution scheme for wireless sensor networks,” in ACM Conf.
Computer and Communication Security, 2003.

11

[13] D. Liu and P. Ning, “Establishing pairwise keys in distributed sen-
sor networks,” in ACM Conf. Computer and Communication Secu-
rity, 2003.

[14] Michael Steiner, Gene Tsudik, and Michael Waidner, “Key agree-
ment in dynamic peer groups,” in IEEE Transactions on Parallel
and Distributed Systems, July 2000.

[15] Yongdae Kim, Adrian Perring, and Gene Tsudik, “Simple and fault-
tolerant key agreement for dynamic collaborative groups,” in ACM
Conference on Computer and Communications Security, November
2000, pp. 235–244.

