
A NEW STREAM CIPHER: DICING

Li An-Ping

Beijing 100085, P.R.China

apli0001@sina.com

Abstract: In this paper, we will propose a new synchronous stream cipher
named DICING, which can be taken as a clock-controlled one but with a new
mechanism of altering steps. With the simple construction, DICING has
satisfactory performance, faster than AES about two times. For the security,
there have not been found weakness for the known attacks, the key sizes can
be 128bits and 256bits respectively.
.

Keywords: stream cipher, LFSR, projector, finite field, correlation attack, algebraic
attack, distinguishing attack.

1. Introduction

In a synchronous stream cipher, the ciphertext is generally made by bitwise adding (XOR) the
plaintext with a binary sequence called keystream. In case that the cipher is abused or the plaintext
of some ciphertext are known by some people, and so the keystream will become visible for them,
the analysis for this case is called the plaintext-known analysis, a secure keystream should satisfy
two basic conditions: The first is that the original key can not be recovered from the keystream,
the second is that the contents of the bits in the keystream should be unpredictable for an
adversary, in other words, for the adversaries the keystream should look like a random one, i.e.
pseudo-random. Clearly, if the keystream sequence is periodic and the period is short, then it will
be predictable, thus the keystream should have enough large period. It is known that the technique
of the linear feedback shift registers (LFSR) is able to generate the larger periods of sequences, so
LFSRs are often used in the stream ciphers as the component parts. However, LFSR also has an
obvious weakness that the each bit in a LFSR’s sequence is linearly related to the initial state, and
so this implies that the initial state is easy deduced from some of the later bits in the sequence, the
famous Berlekamp-Massey’s algorithm is such a example of the algorithms. In the almost of
known attacks such as correlation attacks, algebraic attacks and distinguishing attacks, etc. just
exploited the weakness of LFSR. So, LFSR-based stream ciphers should interfere the linear
relations in the bits of the LFSRs, the clock-controlled methods comes from this consideration.

The proposal cipher DICING may be taken as a clock-controlled one, but with a new mechanism
of altering steps. It consists of a controller and a combiner. In the proposal cipher, we will
substitute the LFSR with the LFSR-like called projector (Pr.). A projector consists of an element

tσ called state from some finite field)2(mGF and an updating rule. The rule of updating states

is that multiplying tσ with kx , k is an integer, namely,

t
k

t x σσ ⋅=+1 . (1.1)

The finite fields used in here are)2(mGF , 126,127,128 orm = . In other word, the operation

shift in LFSR now is replaced by multiplying kx in the field)2(mGF .

The key sizes in DICING can be 128 bits or 256 bits, and the size of initial value may be taken as
large as 256 bits, and the size of output of DICING is 128 bits.

In this paper the finite field)2(GF is simply denoted as F , and []xF is the polynomial ring

of unknown x over the field F. The symbols ⊕ , ⊗will represent the bitwise addition XOR,

bitwise and, that is the operation & in C , and symbols >>, <<, | and ~ stand for the

operations right-shift, left-shift , concatenate and complement respectively.

Suppose that ζ is a binary string, denoted by biti][ζ and bitji],[ζ the i-th bit and the segment

from i-th bit to j-th bit respectively, and there are the similar expressions bytebyte jii],[,][ζζ and

wordword jii],[,][ζζ measured in bytes and 32-bits words respectively, and if the meaning is

explicit from the context, the low-index bit, byte and word will be omitted.

2. Construction

As general stream ciphers, the proposal cipher is also encrypt the plaintext and decrypt the
ciphertext by adding bitwise a binary string called keystream, namely,

Ciphertext Plain text Keystream= ⊕ (2.1)

The keystream generator contains two main parts, a controller H and a combiner C. The controller

H is made from two projectors 1Γ , 2Γ and two counters tD′ , tD ′′ which are also called dices.

Denoted by tα and tβ the states of 1Γ and 2Γ in time t respectively, which come from

the finite fields 1E and 2E respectively, 1 1[] / ()x p x=E F and 2 2[] / ()x p x=E F ,

)(1 xp and)(2 xp are the primitive polynomials with degree 127 and 126 respectively, which

expression are given in the List 1. They satisfy the simple recurrence equations

8 8
1 1, , 0,1, 2, .. .i i i ix x iα α β β+ += ⋅ = ⋅ = . (2.2)

The dices tD′ and tD ′′ are two integers to record the last eight bits of tα and tβ

respectively. The combiner C also contains two projectors 3Γ and 4Γ , which are based on the

two finite fields 3E and 4E respectively, 3 3[] / ()x p x=E F , 4 4[] / ()x p x=E F ,)(3 xp and

)(4 xp are primitive polynomials of degree 128 given in the List 1. Denoted by tω and tτ the

states of 3Γ and 4Γ in the time t respectively, 3tω ∈E and 4tτ ∈E . Denoted by

)(ttt DDD ′′⊕′= , 1 (&15),ta D= + 1 (4)tb D= + >> , they satisfy

t
b

tt
a

t xx ττωω ⋅=⋅= ++ 11 , . (2.3)

Besides, we use two memorizes tu and tv to assemble tω and tτ respectively,

1 1, , 0t t t t t tu u v v for tω τ− −= ⊕ = ⊕ > , (2.4)

The initial values 0 0 0, , uω τ and 0v will be specified in the later.

Suppose that K is a finite field)2(8GF , [] / ()x p x=K F ,)(xp is an irreducible

polynomial of degree eight, which expression is given in the List 1. We define S-box 0 ()S x as

127
0 () 5 (3) ,S x x x= ⋅ ⊕ ∈K . (2.5)

We also adopt the representation)(0 ζS for a bytes string ζ to represent that S-box 0S

substitute each byte of the string ζ .

The startup includes two subprocesses keysetup and ivsetup, where the basic materials as the
secret key and key-size will be input and the internal states will be initialized. Besides, in the

keysetup we will make a key-defined the S-box ()S x from 0 ()S x and a diffusion transformation

L . The process is as following.

For a string ρ of 8 bytes, we define an 8-bits vector Vρ and a 8 8× matrix M ρ :

[] [8] ,0 8,bitV i i i iρ ρ= + ≤ < u lM T J Tρ = ⋅ ⋅ . (2.6)

where 88,)(×= jiu aT and , 8 8()l i jT b ×= are the upper-triangular matrix and the lower-triangular

matrix respectively,

, ,

[8] , [8] ,
1 , 1 ,
0 , 0 ,

bit bit

i j i j

i j if i j i j if i j
a if i j b if i j

if i j if i j

ρ ρ+ < + >⎧ ⎧
⎪ ⎪= = = =⎨ ⎨
⎪ ⎪> <⎩ ⎩

 (2.7)

and J is a key-defined permutation matrix, for the simplicity, here take 1.J =

Suppose that K is the secret key, let [0,15] [16,31]byte byteK Kλ = ⊕ , if | | 256K = , else

[0,15]byteKλ = , and [0,7] , [8,15]byte byteλ λ λ λ′ ′′= = ,define two affine transformations on K

 () (), () (),A x M x B x M x xλ λ′ ′′= = ∈K . (2.8)

 Denoted by 1 ,V V Vλ λ′ ′′= ⊕ and 2 8(,1)V V ROTL Vλ λ′ ′′= ⊕ , and then define a new S-box

()S x and a transformation L on 4K ,

0 2 1() () ,

A B A A B
B A A B A

S x S x V V L
A A B A B

A B A B A

⊕⎛ ⎞
⎜ ⎟⊕⎜ ⎟= ⊕ ⊕ =
⎜ ⎟⊕
⎜ ⎟

⊕⎝ ⎠

. (2.9)

Suppose that ζ is a string of n bytes, if 4n k= we also view it as a string of k words, and

write ()L ζ to represent that L takes on the each word of ζ . Simply, we denote

() ()Q L Sζ ζ= ⋅ . (2.10)

In the ivsetup , the second step of the startup, the internal states will be initialized with the secret
key and the initial value. In the generating keystream we will employ one mask of 16 bytes, which
are denoted by η .

For a 32-bytes string ζ we define a bytes permutation φ : ()φζ φ ζ= , [] [4 mod31]i iφζ ζ= ,

for 0 31i≤ < , and [31] [31]φζ ζ= . Let K̂ K= if 256K = else ˆ | ()K K K= ∼ , denoted

by ˆ ˆ(~ [16,31]) | (~ [0,15])byte byteK K K= . We define the functions

ˆ() (()), () ((())).F Q G F F F K Kζ φ ζ ζ ζ= = ⊕ ⊕ (2.11)

Suppose that IV is the initial value of 32-bytes, e is the base of natural logarithm and c the

integral part of 57!e ⋅ , and , 0 3i iξ ≤ ≤ , are four 32-bytes strings defined as

0 1(), (), 1, 2,3.i iG IV c G c iξ ξ ξ −= ⊕ = ⊕ = (2.12)

The internal states are initialized respectively as following

0 0 0 0 1 0 0 2 0 0 3[0,15] [16,31], (,) , (,) , (,) ,u vη ξ ξ ξ α β ξ ω τ ξ′= ⊕ = = = (2.13)

where 2 2 2[0,126] | [128,253]ξ ξ ξ′ = , i.e. 0 2 0 2[0,126], [128,253].α ξ β ξ= =

If 3 0,ξ = the states 0ω and 0τ will be re-set as

0 0
ˆ(,) Kω τ = . (2.14)

.Note For a secret key, there is at most one IV such that 3 0.ξ =

After initializing, the process enters the recurrence part of generating keystream, each cycle
includes two sub-processes of updating and combining. In the updating, all the states are updated
from the time 1t − to the time t as stated in (2.2) ~ (2.4). Suppose that u and v are two
16-bytes strings, which are also viewed as 4 4× matrices of bytes in the ordinary way. Denoted
by TM the transposition of a matrix M , the combining function is defined as

(,) ((())) .TC u v Q Q u v η= ⊕ ⊕ (2.15)

Denoted by tz the keystream in the time t , (0)t > , then

(,)t t tz C u v= . (2.16)

We have summarized the whole process in a sketch as Fig. 1.

List of the Primitive Polynomials used

Polynomials Expression

)(xp 1568 ++++ xxxx

)(1 xp 127 89 41 3(1)(1)x x x x+ + + +

)(2 xp 126 83 35 7(1)(1)x x x x+ + + +

)(3 xp 128 96 67 32 3(1)(1)x x x x x+ + + + +

)(4 xp 128 96 64 37 7 5(1)(1)x x x x x x+ + + + + +

List 1

The Sketch of Encryption Process

Initializing

 Updating states

 (,)C u v

 Keystream

 Plaintext ⊕ Ciphertext

Fig.1

3. Security Analysis

In the beginning of this section, we will show some results about the periods and distributions for

This is the

recurrence part

the proposal stream cipher, and then give an investigation with respect to standard cryptanalytic
attacks, finally provide some results of statistic tests.

Period and Distribution

Denote ()tzπ as the period of a sequence tz .

Proposition 1

126 127() (2 1)(2 1),tDπ = − − (3.1)

126 127 128() () (2 1)(2 1)(2 1) / 3t tπ ω π τ= = − − − (3.2)

Proof. Note that polynomials)(1 xp and)(2 xp are primitive, and the order of x in the

fields 1E and 2E are 12127 − and 12126 − respectively, hence

 127 126() 2 1, () 2 1t tπ α π β= − = − , (3.3)

and equation (3.1) is followed for 126 127(2 1,2 1) 1− − = .

Write 1
ik

i i xω ω −= ⋅ , and let)12)(12(126127 −−=n ,
0

i
i n

m k
< ≤

= ∑ , it is easy to calculate that

for each integer , 1 16c c< ≤ , the occurrence times of c in the sum above is

249 123 1222 2 2− − and integer 1 occurs one more times than the number. Thus,

249 123 122(2 2 2) 136 1m = − − ⋅ + , (3.4)

and

1241 2 5 17

0 0
m

n x xω ω ω − ⋅ ⋅= ⋅ = ⋅ (3.5)

In the field 3E or 4E , the order of x is equal to 1282 1− , and 128 124(2 1,2 5 17 1) 3− ⋅ ⋅ − = ,

the formula (3.2) is followed.

Note that 1 1, ,t t t t t tu u v vω τ− −⊕ = ⊕ = so we have

Corollary 1

126 127 128(), () (2 1)(2 1)(2 1) / 3t tu vπ π ≥ − − − . (3.6)

In order to have some knowledge about the distributions of the sequences , , ,t t tuω τ and tv , we

show the following results.

Proposition 2 Suppose that [] / ()x q x=E F is a finite field)2(mGF ,)(xq is a primitive

polynomial of degree m , and s is a positive integer, let)(xg be the generating function

0
() k

k s
g x x

≤ <

= ∑ ,
0 2 1

() ()
m

n i
i

i

g x c n x
≤ < −

= ∑ , then for each integer i , 0 2 1mi≤ < − .

)12/(1)/)((lim −=
→∝

mn
in

snc (3.7)

Proof. Let)(/)(npsnc i
n

i = , then 1)(=∑ np
i

i . Denoted by { }() min () ,ii
p n p n′ =

{ }() max ()ii
p n p n′′ = . It is easy to know that the sequence { ()}p n′ is non-decreasing and the

sequence { ()}p n′′ is non-increasing. Suppose that lim ()
n

p n μ′ = , j and k are two integers

such that () ()jp n p n′= , () ()kp n p n′′= , without loss generality, we can assume that

lim () lim ()jn n
p n p n μ′ = = . Let d be the least non-negative integer such that

)12(mod −≡− mdjk , and ⎡ ⎤ 0/ dsd = , then it has

sdsd
npnp

npdnp
m

jk
jj +

−−
≥

+

−
≥−+

μ)12/(1)()(
)()(0 .

Let ,→∝n it follows that

12

1
−

= mμ .

Denoted by ˆ()P once the probability of the event once occurs under the assumption the dices

tD′ and tD′′ behave randomly. Then the Proposition 2 can be rewritten as following, for any

integer 128, 0 2 1i i≤ < − ,

128

1ˆlim ()
2 1

i
tn

P xω
→∝

= =
−

, 128

1ˆlim ()
2 1

i
tn

P xτ
→∝

= =
−

. (3.8)

Similarly, we have

Proposition 3 For 3 4,orμ∀ ∈E E , it has

128

1ˆlim ()
2tt

P u μ
→∝

= = , 128

1ˆlim ()
2tt

P v μ
→∝

= = , (3.9)

moreover, for any finite subset J ⊂ Z , denoted by ,J J
t i t t i t

i J i J
U u V v+ +

∈ ∈

= =⊕ ⊕ , if

0 00, 0J JU V≠ ≠ , then

128

1ˆlim ()
2

J
tt

P U μ
→∝

= = , 128

1ˆlim ()
2

J
tt

P V μ
→∝

= = . (3.10)

Proof. The proof is similar to the one of Proposition 2, but note that the any element in

3 4,orE E is a polynomial with degree less than 128 , and so can be represented as a combination

of { }127

0t i i
u + =

, the detail proof is omitted.

In the next, we give a discussion in respect to the main ones of the known attacks.

Correlation Attack
For a binary segment x of length l , denote by

1

0
() []

l

i
x x iδ

−

=

=⊕ (3.11)

Suppose that)(xf is a function from nF to mF , for na∈F and mb∈F , 0≠a , let

)&())(&())(,,(xbxfaxfbaL δδ ⊕= . (3.12)

We call the equations

,0))(,,(=xfbaL or 1))(,,(=xfbaL (3.13)

the linear approximations of function)(xf with coefficients a and b , and define

(, ,) (, , ())
x

d f a b L a b f x=∑ , (3.14)

(, ,) (2 (, ,) 2) / 2m mf a b d f a bΛ = − , (3.15)

 { }),,(max)(
,

baff
ba

Λ=Δ , (3.16)

{ })0,,(max)(
00 aff

a
Λ=Δ

≠
, (3.17)

If the variable x is from some LFSR, we know that a linear approximation will return to an

equation about the initial bits { } 1
0 0
[] lx i −

. The main idea of correlation attack is to find the l

linear approximations with higher probabilities by statistic means called parity checks.
Clearly, to form such an attack should have enough many correlations. There are two ways known

to find these correlations. One way is by squaring and shifting a correlation polynomial iteratively.

It is not difficult to know that the number of the correlations that one tx satisfy is about

)2/(log2 kNtm ⋅≈ , (3.18)

where the parameters kN , and t are the length of the known keystream, the length of a

correlation and the number of nonzero terms in a correlation polynomial [5].

In the case of the key space is 256 bits, and ,64≤t from formula (3.18) it has

142 .m ≤ (3.19)

This implies that the attack will be incapable when the bias of the parity check sequence 71/ 2 .<

The output size of DICING is 128 bits, so it is difficult to find (, ,)d C a b and ()CΔ for the

computer capability limited. Nevertheless, we can provide an estimate for the upper bound about

the bias. For the S-box ()S x used in DICING, it has

3() 1 2SΔ = (3.20)

Moreover, in the combining function (,)C u v , there are at least five S-boxes are activated, so we

obtained the following estimation

15() 1 2CΔ ≤ . (3.21)

So, the correlation attack in this case is not feasible for DICING.
The second way is to select polynomial multiples, it is known that to find N multiples with the
weight (number of nonzero monomials) no higher than w , the required computations is

/(1)(2)r w wCost N −≥ ⋅ , (3.22)

where the parameter r is the degree of the connection polynomial, cf. [2].
On the other hand, we know that the bias of the parity check formed by w linear approximations

with bias Δ is about wΔ , so, by the theory of hypothesis testing, about 2()wO −Δ tests of

parity checks are needed. From (3.21), we have known that 151/ 2Δ ≤ , and in the formula (3.22)

let 2 302 , 128,w wN r−= Δ = = then the required computations will be greater than

(30 128) /(1) 3272 2w w w+ − > ,
thereby, this kind of correlation attack is also impossible for the cipher DICING.

Algebraic Attack.
The main idea of algebraic attack is that taking every possible monomial in the Boolean function

as a new variable, so the original algebraic equations become the linear equations but the number
of the variables increases. If the size of the input is m bits, then the number of the monomials of

order no greater than k is ∑
≤≤ ki

i
mC

0
, to see [1].

In DICING, the S-box 127
0)3(5)(⊕⋅= xxS , it can be written as

0 0 1 7() (, ,...,)S x f f f= , (3.23)

where)(xfi , 0 7i≤ ≤ , are the Boolean functions of order seven. As we have used the S-boxes

two times in the combining function (,)t tC u v , so, the number of new variables after the

linearization will be about 116
128

0 49
2 2i

i
C

≤ ≤

≈∑ , In order to set up 1162 linear equations over the

field F , 1092 output blocks are needed. We have seen that in DICING the relations between state

tω (or tτ) and state 1+tω (or 1+tτ) are not known, the successful probability of a guess the

relation from the time t to time 1+t is no more than 42/1 , and so the successful probability

of a guess the relation between tu and ktu + is no more than k×42/1 . Therefore, algebraic attack

for DICING is impossible.

Distinguishing Attack
To guarantee a good randomness, it is required that the keystream should not be distinguished
from a truly random sequence with computations less than the exhaustive search. A usual one of
this kind of attacks is as the following. Assume that some linear approximations

))(,,(xfbaL with bias s21 , and the states ix satisfy the correlation

 1,0 orxi
Ji

=⊕
∈

 (3.24)

where J ⊂ Z is a finite subset of the non-negative integers. Then we have

1,0))(&()(,,(orxfaxfbaL i
Ji

i
Ji

==⊕⊕
∈∈

δ . (3.25)

Denoted by () ()t i
i J

y t f x +
∈

=⊕ , the cardinality J w= , then it is easy to know that the

sequence ()y t is of the distribution with the bias about 1 2ws , that is,

0 (()) 1/ 2wsy tΔ ≈ . (3.26)

By the theory of hypothesis testing, through about 2(2)wsO sample tests will distinguish this

distribution from a random one with a significant level.

In order to analysis the cipher DICING, let 1, ba and 2b be the arrays of length 16 bytes, write

),(21 bbb = . From Proposition 2 and 3, we know that the distribution of the sequences tu and

tv are nearly uniform, and it is clear the values of the function ()T ζ is uniformly distributed, so

if 1 0,b = or 2 0b = , then it is easy to know that

128

1((,), ,)
2

d C u v a b ≤ . (3.27)

This means that if the linear approximation),),,((bavuCL is applied to a distinguishing attack,

it should be 1 0b ≠ , 2 0b ≠ . Consequently, if a subset J ⊂ Z is applied to form a parity check,

then it should be that

0i
i J

u
∈

=⊕ and 0i
i J

v
∈

=⊕ . (3.28)

We call a subset J ⊂ Z as a correlation set if J satisfies the equations (3.28). Define

{ }max ,J b a a b J= − ∈ , we conjecture that there is no identical correlation set J with

()tJ uπ< , where term identical means independent of the key K . On the other hand,

suppose J ⊂ Z is a correlation set, denoted by () t i
i J

y t z +
∈

=⊕ , then

 15
0 (()) 1/ 2 Jy t ⋅Δ ≤ ,

and so

8.J ≤ (3.29)

Time-memory trade-off Attacks

With the transformations ,Q transposition T and S-box ()S x such that the content of each bit

will effect all the other bits in at most two cycles, so there are no the correspondences between
some of small isolated parts of the states and the keystream.

Guess-and-Determine Attacks
For the same reason as above, it seems no flaws in the proposal cipher for this attack.

Inversion Attacks

With the mask η and the S-box ()S x and the transformation L are key-defined, which are not

easy taken off unless take 642 tries for each, thus we think that the inversion attack will be
difficult to feasible.

Chosen-IV Attacks

The initialization and combining functions also have protected DICING against the chosen-IV
attacks, that is, the attacks in the transverse direction.

Collision Attacks
The places should be paid attension to collision attacks are the initialization and the updating of

internal states. In the initialization of DICING, the function ()G ζ is injective if the secret key

K is fixed, so 0ξ ’s will be different for the different IV and so iξ ’s will be different, 0 3i≤ ≤ .

Moreover, in the beginning of theis section we have shown a explicit bounds of the periods of the

internal states , ,t t tuω τ and tv , thus there will no be chance of collision attacks to DICING.

Timing Attacks
In DICING, the process of updating states is dependent on the values of dice D , which is
variable, so maybe there will be some difference in implementation time for some different values
of dice D . But we know that the distribution of these values of dice D are very balanced,
hence the difference will be made up in a series of updating processes. Besides, with our reference
code, we also have not found a remarkable timing gap in the initialization process .

Some Tests in Statistics
We have made some tests about the statistic property of DICING. One test is in respect to the bias

of linear approximations, for 1 2 2 , 0,1, ...,127,da b b d= = = = with 302 blocks of outputs, the

maximum bias 13.51/ 2≤ . Another test is for the distributions of the bit segments of the keystream,

we have calculated the frequencies of segments of length 10 bits with 302 blocks of outputs, the

standard deviation of the frequencies 23.51/ 2≤ , indicates that it is very balanced in the

distribution.

4. Implementation

In the platform of 32-bit Windows OS and Intel ® Celeron 2.66G, 64-bit processor, Borland C++
5.0, the performance of DICING is as following

Report of Performance

Sub-processes Time or Rate
Keysetup 6850 cycles
IVsetup 1800 cycles

Keystream Rate 13.5 cycles/byte or 216 cycles/block

List 2

The presented algorithm DICING now is one of candidates for eSTREAM [4], but here with a

little difference from [4] in (2.8) and (2.9), the vector 1V has been moved into S-box ()S x from

the transformation ()A x , for the detail please refer to the papers[3], [4] and [6] .

5. The reduced versions for DICING

The algorithm DICING presented above is a very conservative one, the users who wish to strive
for a faster rate may adopt the reduced version as following, simply take the combining function

 (,) () ,C u v Q u v= ⊕ (5.1)

and omit the Pr. tβ . In this way, the keystream rate may be decreased about 3 /cycles byte . We

think the reduced one will also have sufficient security.
In the case there are no attacks for conditional branching, the combining function may be taken as

() [0] 0,
(,)

() [0] 1.
Q u v if

C u v
Q v u if

α
α

⊕ =⎧
= ⎨ ⊕ =⎩

 (5.2)

The later keystream will have larger period and will be more difficult for mathematical
cryptanalysis.

References

[1] N. Courtois, W. Meier, Algebraic attack on stream ciphers with linear feedback, In Advances in

Cryptology—EUROCRYPT ’2003, LNCS 2656, 346-359, Springer-Verlag, 2003.
[2] G. Dj Golic, Computation of low-weight parity-check polynomials, Electronic Letters, vol

32(21), Oct(1996), 1981-1982.
[3] A.P. Li, A New Stream Cipher: DICING, now available at
 http://www.ecrypt.eu.org/stream/dicing.html
[4] A.P. Li, ------An update for phase2 of eSTREAM, now available at
 eSTREAM - The ECRYPT Stream Cipher Project - Phase 2
[5] W. Meier and O. Staffelbach, Fast correlation attacks on certain stream ciphers, Journal of

Cryptology,1(3) (1989), 159–176.
[6] Gilles Piret, Practical Attacks on one Version of DICING. Available at

http://www.ecrypt.eu.org/stream/papersdir/051.pdf

