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Abstract: In this paper, we will propose a new synchronous stream cipher 
named DICING, which can be taken as a clock-controlled one but with a new 
mechanism of altering steps. With the simple construction, DICING has 
satisfactory performance, faster than AES about two times. For the security, 
there have not been found weakness for the known attacks, the key sizes can 
be 128bits and 256bits respectively.  
. 
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1. Introduction  
 
In a synchronous stream cipher, the ciphertext is generally made by bitwise adding (XOR) the 
plaintext with a binary sequence called keystream. In case that the cipher is abused or the plaintext 
of some ciphertext are known by some people, and so the keystream will become visible for them, 
the analysis for this case is called the plaintext-known analysis, a secure keystream should satisfy 
two basic conditions: The first is that the original key can not be recovered from the keystream, 
the second is that the contents of the bits in the keystream should be unpredictable for an 
adversary, in other words, for the adversaries the keystream should look like a random one, i.e. 
pseudo-random. Clearly, if the keystream sequence is periodic and the period is short, then it will 
be predictable, thus the keystream should have enough large period. It is known that the technique 
of the linear feedback shift registers (LFSR) is able to generate the larger periods of sequences, so 
LFSRs are often used in the stream ciphers as the component parts. However, LFSR also has an 
obvious weakness that the each bit in a LFSR’s sequence is linearly related to the initial state, and 
so this implies that the initial state is easy deduced from some of the later bits in the sequence, the 
famous Berlekamp-Massey’s algorithm is such a example of the algorithms. In the almost of 
known attacks such as correlation attacks, algebraic attacks and distinguishing attacks, etc. just 
exploited the weakness of LFSR. So, LFSR-based stream ciphers should interfere the linear 
relations in the bits of the LFSRs, the clock-controlled methods comes from this consideration.  
 
The proposal cipher DICING may be taken as a clock-controlled one, but with a new mechanism 
of altering steps. It consists of a controller and a combiner. In the proposal cipher, we will 
substitute the LFSR with the LFSR-like called projector (Pr.). A projector consists of an element 

tσ  called state from some finite field )2( mGF and an updating rule. The rule of updating states 

is that multiplying tσ  with kx , k is an integer, namely,   

t
k

t x σσ ⋅=+1 .                          (1.1) 

The finite fields used in here are )2( mGF , 126,127,128 orm = . In other word, the operation 

shift in LFSR now is replaced by multiplying kx  in the field )2( mGF .  

The key sizes in DICING can be 128 bits or 256 bits, and the size of initial value may be taken as 
large as 256 bits, and the size of output of DICING is 128 bits.  
 

In this paper the finite field )2(GF  is simply denoted as F , and [ ]xF is the polynomial ring 

of unknown x over the field F. The symbols ⊕ , ⊗will represent the bitwise addition XOR, 

bitwise and, that is the operation &  in C , and symbols >>, <<, |  and ~ stand for the 

operations right-shift, left-shift , concatenate and complement respectively. 

Suppose that ζ is a binary string, denoted by biti][ζ and bitji ],[ζ  the i-th bit and the segment 



from i-th bit to j-th bit respectively, and there are the similar expressions bytebyte jii ],[,][ ζζ  and 

wordword jii ],[,][ ζζ  measured in bytes and 32-bits words respectively, and if the meaning is 

explicit from the context, the low-index bit, byte and word will be omitted.  
 
2. Construction    
 
As general stream ciphers, the proposal cipher is also encrypt the plaintext and decrypt the 
ciphertext by adding bitwise a binary string called keystream, namely,  

Ciphertext Plain text Keystream= ⊕                  (2.1) 

The keystream generator contains two main parts, a controller H and a combiner C. The controller 

H is made from two projectors 1Γ , 2Γ  and two counters tD′ , tD ′′  which are also called dices. 

Denoted by tα  and tβ  the states of 1Γ  and 2Γ  in time t  respectively, which come from 

the finite fields 1E  and 2E  respectively, 1 1[ ] / ( )x p x=E F  and 2 2[ ] / ( )x p x=E F , 

)(1 xp  and )(2 xp  are the primitive polynomials with degree 127 and 126 respectively, which 

expression are given in the List 1. They satisfy the simple recurrence equations 

8 8
1 1, , 0,1, 2, .. .i i i ix x iα α β β+ += ⋅ = ⋅ = .          (2.2) 

The dices tD′  and tD ′′  are two integers to record the last eight bits of tα  and tβ  

respectively. The combiner C also contains two projectors 3Γ  and 4Γ , which are based on the 

two finite fields 3E and 4E respectively, 3 3[ ] / ( )x p x=E F , 4 4[ ] / ( )x p x=E F , )(3 xp  and 

)(4 xp are primitive polynomials of degree 128 given in the List 1. Denoted by tω  and tτ the 

states of 3Γ  and 4Γ in the time t  respectively, 3tω ∈E  and 4tτ ∈E . Denoted by 

)( ttt DDD ′′⊕′= , 1 ( &15),ta D= +  1 ( 4)tb D= + >> , they satisfy  

t
b

tt
a

t xx ττωω ⋅=⋅= ++ 11 , .                     (2.3) 

Besides, we use two memorizes tu  and tv to assemble tω and tτ  respectively,  

1 1, , 0t t t t t tu u v v for tω τ− −= ⊕ = ⊕ > ,               (2.4) 

The initial values 0 0 0, , uω τ  and 0v will be specified in the later. 



Suppose that K  is a finite field )2( 8GF , [ ] / ( )x p x=K F , )(xp  is an irreducible 

polynomial of degree eight, which expression is given in the List 1. We define S-box 0 ( )S x as 

127
0 ( ) 5 ( 3) ,S x x x= ⋅ ⊕ ∈K .                  (2.5) 

We also adopt the representation )(0 ζS  for a bytes string ζ to represent that S-box 0S  

substitute each byte of the string ζ . 

The startup includes two subprocesses keysetup and ivsetup, where the basic materials as the 
secret key and key-size will be input and the internal states will be initialized. Besides, in the 

keysetup we will make a key-defined the S-box ( )S x from 0 ( )S x and a diffusion transformation 

L . The process is as following.  

For a string ρ of 8 bytes, we define an 8-bits vector Vρ  and a 8 8× matrix M ρ : 

[ ] [8 ] ,0 8,bitV i i i iρ ρ= + ≤ <        u lM T J Tρ = ⋅ ⋅ .             (2.6) 

where 88, )( ×= jiu aT  and , 8 8( )l i jT b ×= are the upper-triangular matrix and the lower-triangular 

matrix respectively,  

, ,

[8 ] , [8 ] ,
1 , 1 ,
0 , 0 ,

bit bit

i j i j

i j if i j i j if i j
a if i j b if i j

if i j if i j

ρ ρ+ < + >⎧ ⎧
⎪ ⎪= = = =⎨ ⎨
⎪ ⎪> <⎩ ⎩

      (2.7) 

and J is a key-defined permutation matrix, for the simplicity, here take 1.J =   

Suppose that K  is the secret key, let [0,15] [16,31]byte byteK Kλ = ⊕ , if | | 256K = , else 

[0,15]byteKλ = , and [0,7] , [8,15]byte byteλ λ λ λ′ ′′= = ,define two affine transformations on K  

                   ( ) ( ), ( ) ( ),A x M x B x M x xλ λ′ ′′= = ∈K .             (2.8) 

 Denoted by 1 ,V V Vλ λ′ ′′= ⊕ and 2 8( ,1)V V ROTL Vλ λ′ ′′= ⊕ , and then define a new S-box 

( )S x and a transformation L on 4K , 

0 2 1( ) ( ) ,

A B A A B
B A A B A

S x S x V V L
A A B A B

A B A B A

⊕⎛ ⎞
⎜ ⎟⊕⎜ ⎟= ⊕ ⊕ =
⎜ ⎟⊕
⎜ ⎟

⊕⎝ ⎠

.    (2.9) 

Suppose that ζ is a string of n bytes, if 4n k=  we also view it as a string of k words, and 



write ( )L ζ to represent that L takes on the each word of ζ . Simply, we denote  

( ) ( )Q L Sζ ζ= ⋅ .                       (2.10) 

In the ivsetup , the second step of the startup, the internal states will be initialized with the secret 
key and the initial value. In the generating keystream we will employ one mask of 16 bytes, which 
are denoted by η .  

For a 32-bytes string ζ we define a bytes permutation φ : ( )φζ φ ζ= , [ ] [4 mod31]i iφζ ζ= , 

for 0 31i≤ < , and [31] [31]φζ ζ= . Let K̂ K= if 256K =  else ˆ | ( )K K K= ∼ , denoted 

by ˆ ˆ(~ [16,31] ) | (~ [0,15] )byte byteK K K= . We define the functions  

ˆ( ) ( ( )), ( ) ( ( ( ) ) ).F Q G F F F K Kζ φ ζ ζ ζ= = ⊕ ⊕           (2.11)   

Suppose that IV is the initial value of 32-bytes, e is the base of natural logarithm and c the 

integral part of 57!e ⋅ , and , 0 3i iξ ≤ ≤ , are four 32-bytes strings defined as  

0 1( ), ( ), 1, 2,3.i iG IV c G c iξ ξ ξ −= ⊕ = ⊕ =            (2.12) 

The internal states are initialized respectively as following 

0 0 0 0 1 0 0 2 0 0 3[0,15] [16,31], ( , ) , ( , ) , ( , ) ,u vη ξ ξ ξ α β ξ ω τ ξ′= ⊕ = = =      (2.13) 

where 2 2 2[0,126] | [128,253]ξ ξ ξ′ = , i.e. 0 2 0 2[0,126], [128,253].α ξ β ξ= =   

If 3 0,ξ = the states 0ω and 0τ will be re-set as  

0 0
ˆ( , ) Kω τ = .                           (2.14) 

.Note   For a secret key, there is at most one IV such that 3 0.ξ =  

After initializing, the process enters the recurrence part of generating keystream, each cycle 
includes two sub-processes of updating and combining. In the updating, all the states are updated 
from the time 1t −  to the time t  as stated in (2.2) ~ (2.4). Suppose that u and v  are two 
16-bytes strings, which are also viewed as 4 4×  matrices of bytes in the ordinary way. Denoted 
by TM the transposition of a matrix M , the combining function is defined as  

( , ) (( ( ) ) ) .TC u v Q Q u v η= ⊕ ⊕                     (2.15) 

Denoted by tz the keystream in the time t , ( 0)t > , then  

( , )t t tz C u v= .                           (2.16) 

We have summarized the whole process in a sketch as Fig. 1. 
 



 
List of the Primitive Polynomials used 

 
                           

Polynomials               Expression 

)(xp  1568 ++++ xxxx  

)(1 xp  127 89 41 3( 1)( 1)x x x x+ + + +  

)(2 xp  126 83 35 7( 1)( 1)x x x x+ + + +  

)(3 xp  128 96 67 32 3( 1)( 1)x x x x x+ + + + +  

)(4 xp  128 96 64 37 7 5( 1)( 1)x x x x x x+ + + + + +  

 
List 1 

 
 

The Sketch of Encryption Process 
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                                    ( , )C u v  

  
                             Keystream 

                     Plaintext          ⊕        Ciphertext      

                               
 

Fig.1 
 
 
 
3.  Security Analysis 
 
In the beginning of this section, we will show some results about the periods and distributions for 

This is the

recurrence part 



the proposal stream cipher, and then give an investigation with respect to standard cryptanalytic 
attacks, finally provide some results of statistic tests. 
 
Period and Distribution 

Denote ( )tzπ  as the period of a sequence tz . 

 
Proposition 1   

126 127( ) (2 1)(2 1),tDπ = − −                          (3.1) 

126 127 128( ) ( ) (2 1)(2 1)(2 1) / 3t tπ ω π τ= = − − −                 (3.2) 

 

Proof.  Note that polynomials )(1 xp  and )(2 xp  are primitive, and the order of x  in the 

fields 1E  and 2E  are 12127 −  and 12126 −  respectively, hence  

                          127 126( ) 2 1, ( ) 2 1t tπ α π β= − = − ,                 (3.3)  

and equation (3.1) is followed for 126 127(2 1,2 1) 1− − = . 

Write 1
ik

i i xω ω −= ⋅ , and let )12)(12( 126127 −−=n , 
0

i
i n

m k
< ≤

= ∑ , it is easy to calculate that 

for each integer , 1 16c c< ≤ , the occurrence times of c  in the sum above is 

249 123 1222 2 2− −  and integer 1 occurs one more times than the number. Thus, 

249 123 122(2 2 2 ) 136 1m = − − ⋅ + ,                     (3.4) 

and  

                            
1241 2 5 17

0 0
m

n x xω ω ω − ⋅ ⋅= ⋅ = ⋅                        (3.5) 

In the field 3E or 4E , the order of x  is equal to 1282 1− , and 128 124(2 1,2 5 17 1) 3− ⋅ ⋅ − = , 

the formula (3.2) is followed.                                                     

 

Note that 1 1, ,t t t t t tu u v vω τ− −⊕ = ⊕ =  so we have  

 
Corollary 1 

126 127 128( ), ( ) (2 1)(2 1)(2 1) / 3t tu vπ π ≥ − − − .               (3.6) 

 



In order to have some knowledge about the distributions of the sequences , , ,t t tuω τ and tv , we 

show the following results. 
 

Proposition 2 Suppose that [ ] / ( )x q x=E F  is a finite field )2( mGF , )(xq  is a primitive 

polynomial of degree m , and s is a positive integer, let )(xg be the generating function 

0
( ) k

k s
g x x

≤ <

= ∑ , 
0 2 1

( ) ( )
m

n i
i

i

g x c n x
≤ < −

= ∑ , then for each integer i , 0 2 1mi≤ < − . 

)12/(1)/)((lim −=
→∝

mn
in

snc                       (3.7) 

 

Proof.  Let )(/)( npsnc i
n

i = , then 1)( =∑ np
i

i . Denoted by { }( ) min ( ) ,ii
p n p n′ =  

{ }( ) max ( )ii
p n p n′′ = . It is easy to know that the sequence { ( )}p n′ is non-decreasing and the 

sequence { ( )}p n′′ is non-increasing. Suppose that lim ( )
n

p n μ′ = , j and k are two integers 

such that ( ) ( )jp n p n′= , ( ) ( )kp n p n′′= , without loss generality, we can assume that 

lim ( ) lim ( )jn n
p n p n μ′ = = . Let d  be the least non-negative integer such that 

)12(mod −≡− mdjk , and ⎡ ⎤ 0/ dsd = , then it has 

                                           

sdsd
npnp

npdnp
m

jk
jj +

−−
≥

+

−
≥−+

μ)12/(1)()(
)()( 0 . 

Let ,→∝n  it follows that 

                                 
12

1
−

= mμ .                                  

 

Denoted by ˆ( )P once  the probability of the event once occurs under the assumption the dices 

tD′ and tD′′  behave randomly. Then the Proposition 2 can be rewritten as following, for any 

integer 128, 0 2 1i i≤ < − ,  

128

1ˆlim ( )
2 1

i
tn

P xω
→∝

= =
−

, 128

1ˆlim ( )
2 1

i
tn

P xτ
→∝

= =
−

.       (3.8) 

Similarly, we have 
 

Proposition 3   For 3 4,orμ∀ ∈E E , it has 



128

1ˆlim ( )
2tt

P u μ
→∝

= = ,  128

1ˆlim ( )
2tt

P v μ
→∝

= = ,               (3.9) 

moreover, for any finite subset J ⊂ Z , denoted by ,J J
t i t t i t

i J i J
U u V v+ +

∈ ∈

= =⊕ ⊕ , if 

0 00, 0J JU V≠ ≠ , then 

128

1ˆlim ( )
2

J
tt

P U μ
→∝

= = ,  128

1ˆlim ( )
2

J
tt

P V μ
→∝

= = .             (3.10) 

 
Proof. The proof is similar to the one of Proposition 2, but note that the any element in 

3 4,orE E is a polynomial with degree less than 128 , and so can be represented as a combination 

of { }127

0t i i
u + =

, the detail proof is omitted.                                             

 
In the next, we give a discussion in respect to the main ones of the known attacks. 
  
Correlation Attack 
For a binary segment x  of length l , denote by  

1

0
( ) [ ]

l

i
x x iδ

−

=

=⊕                             (3.11) 

Suppose that )(xf is a function from nF  to mF , for na∈F and mb∈F , 0≠a , let 

)&())(&())(,,( xbxfaxfbaL δδ ⊕= .               (3.12) 

We call the equations 

,0))(,,( =xfbaL or 1))(,,( =xfbaL                (3.13) 

the linear approximations of function )(xf with coefficients a and b , and define 

( , , ) ( , , ( ))
x

d f a b L a b f x=∑ ,                     (3.14) 

( , , ) (2 ( , , ) 2 ) / 2m mf a b d f a bΛ = − ,                (3.15) 

                           { }),,(max)(
,

baff
ba

Λ=Δ ,                       (3.16) 

{ })0,,(max)(
00 aff

a
Λ=Δ

≠
,                       (3.17) 

If the variable x is from some LFSR, we know that a linear approximation will return to an 

equation about the initial bits { } 1
0 0
[ ] lx i −

. The main idea of correlation attack is to find the l  

linear approximations with higher probabilities by statistic means called parity checks.  
Clearly, to form such an attack should have enough many correlations. There are two ways known 



to find these correlations. One way is by squaring and shifting a correlation polynomial iteratively. 

It is not difficult to know that the number of the correlations that one tx satisfy is about 

)2/(log2 kNtm ⋅≈ ,                         (3.18) 

where the parameters kN , and t  are the length of the known keystream, the length of a 

correlation and the number of nonzero terms in a correlation polynomial [5].  

In the case of the key space is 256 bits, and ,64≤t  from formula (3.18) it has 

142 .m ≤                               (3.19) 

This implies that the attack will be incapable when the bias of the parity check sequence 71/ 2 .<  

The output size of DICING is 128 bits, so it is difficult to find ( , , )d C a b  and ( )CΔ  for the 

computer capability limited. Nevertheless, we can provide an estimate for the upper bound about 

the bias. For the S-box ( )S x used in DICING, it has 

3( ) 1 2SΔ =                             (3.20) 

Moreover, in the combining function ( , )C u v , there are at least five S-boxes are activated, so we 

obtained the following estimation 

15( ) 1 2CΔ ≤ .                           (3.21) 

So, the correlation attack in this case is not feasible for DICING. 
The second way is to select polynomial multiples, it is known that to find N multiples with the 
weight (number of nonzero monomials) no higher than w , the required computations is  

/( 1)( 2 )r w wCost N −≥ ⋅ ,                       (3.22) 

where the parameter r is the degree of the connection polynomial, cf. [2]. 
On the other hand, we know that the bias of the parity check formed by w  linear approximations 

with bias Δ  is about wΔ , so, by the theory of hypothesis testing, about 2( )wO −Δ  tests of 

parity checks are needed. From (3.21), we have known that 151/ 2Δ ≤ , and in the formula (3.22) 

let 2 302 , 128,w wN r−= Δ = =  then the required computations will be greater than  

(30 128) /( 1) 3272 2w w w+ − > ,  
thereby, this kind of correlation attack is also impossible for the cipher DICING. 
 
Algebraic Attack. 
The main idea of algebraic attack is that taking every possible monomial in the Boolean function 



as a new variable, so the original algebraic equations become the linear equations but the number 
of the variables increases. If the size of the input is m bits, then the number of the monomials of 

order no greater than k  is ∑
≤≤ ki

i
mC

0
, to see [1].  

In DICING, the S-box 127
0 )3(5)( ⊕⋅= xxS , it can be written as  

0 0 1 7( ) ( , ,..., )S x f f f= ,                      (3.23) 

where )(xfi , 0 7i≤ ≤ , are the Boolean functions of order seven. As we have used the S-boxes 

two times in the combining function ( , )t tC u v , so, the number of new variables after the 

linearization will be about 116
128

0 49
2 2i

i
C

≤ ≤

≈∑ , In order to set up 1162  linear equations over the 

field F , 1092 output blocks are needed. We have seen that in DICING the relations between state 

tω (or tτ ) and state 1+tω (or 1+tτ ) are not known, the successful probability of a guess the 

relation from the time t  to time 1+t  is no more than 42/1 , and so the successful probability 

of a guess the relation between tu and ktu + is no more than k×42/1 . Therefore, algebraic attack 

for DICING is impossible. 
 
Distinguishing Attack 
To guarantee a good randomness, it is required that the keystream should not be distinguished 
from a truly random sequence with computations less than the exhaustive search. A usual one of 
this kind of attacks is as the following. Assume that some linear approximations 

))(,,( xfbaL with bias s21 , and the states ix  satisfy the correlation  

                               1,0 orxi
Ji

=⊕
∈

                             (3.24) 

where J ⊂ Z  is a finite subset of the non-negative integers. Then we have 

1,0))(&()(,,( orxfaxfbaL i
Ji

i
Ji

==⊕⊕
∈∈

δ .           (3.25) 

Denoted by ( ) ( )t i
i J

y t f x +
∈

=⊕ , the cardinality J w= , then it is easy to know that the 

sequence ( )y t  is of the distribution with the bias about 1 2ws , that is, 

0 ( ( )) 1/ 2wsy tΔ ≈ .                          (3.26) 

By the theory of hypothesis testing, through about 2(2 )wsO sample tests will distinguish this 

distribution from a random one with a significant level.  

In order to analysis the cipher DICING, let 1, ba and 2b be the arrays of length 16 bytes, write 



),( 21 bbb = . From Proposition 2 and 3, we know that the distribution of the sequences tu  and 

tv are nearly uniform, and it is clear the values of the function ( )T ζ is uniformly distributed, so 

if 1 0,b = or 2 0b = , then it is easy to know that  

128

1( ( , ), , )
2

d C u v a b ≤ .                       (3.27) 

This means that if the linear approximation ),),,(( bavuCL is applied to a distinguishing attack, 

it should be 1 0b ≠ , 2 0b ≠ . Consequently, if a subset J ⊂ Z  is applied to form a parity check, 

then it should be that  

0i
i J

u
∈

=⊕  and  0i
i J

v
∈

=⊕ .                      (3.28) 

We call a subset J ⊂ Z  as a correlation set if J satisfies the equations (3.28). Define 

{ }max ,J b a a b J= − ∈ , we conjecture that there is no identical correlation set J with 

( )tJ uπ< , where term identical means independent of the key K . On the other hand, 

suppose J ⊂ Z  is a correlation set, denoted by ( ) t i
i J

y t z +
∈

=⊕ , then   

                               15
0 ( ( )) 1/ 2 Jy t ⋅Δ ≤ , 

and so  

8.J ≤                          (3.29) 

 
Time-memory trade-off Attacks 

With the transformations ,Q transposition T  and S-box ( )S x such that the content of each bit 

will effect all the other bits in at most two cycles, so there are no the correspondences between 
some of small isolated parts of the states and the keystream. 
 
Guess-and-Determine Attacks 
For the same reason as above, it seems no flaws in the proposal cipher for this attack. 
 
Inversion Attacks 

With the mask η and the S-box ( )S x and the transformation L are key-defined, which are not 

easy taken off unless take 642 tries for each, thus we think that the inversion attack will be 
difficult to feasible.  
 
Chosen-IV Attacks 



The initialization and combining functions also have protected DICING against the chosen-IV 
attacks, that is, the attacks in the transverse direction.  
 
Collision Attacks 
The places should be paid attension to collision attacks are the initialization and the updating of 

internal states. In the initialization of DICING, the function ( )G ζ is injective if the secret key 

K is fixed, so 0ξ ’s will be different for the different IV and so iξ ’s will be different, 0 3i≤ ≤ . 

Moreover, in the beginning of theis section we have shown a explicit bounds of the periods of the 

internal states , ,t t tuω τ and tv , thus there will no be chance of collision attacks to DICING.        

 
Timing Attacks  
In DICING, the process of updating states is dependent on the values of dice D , which is 
variable, so maybe there will be some difference in implementation time for some different values 
of dice D . But we know that the distribution of these values of dice D  are very balanced, 
hence the difference will be made up in a series of updating processes. Besides, with our reference 
code, we also have not found a remarkable timing gap in the initialization process .   
 
Some Tests in Statistics  
We have made some tests about the statistic property of DICING. One test is in respect to the bias 

of linear approximations, for 1 2 2 , 0,1, ...,127,da b b d= = = =  with 302 blocks of outputs, the 

maximum bias 13.51/ 2≤ . Another test is for the distributions of the bit segments of the keystream, 

we have calculated the frequencies of segments of length 10 bits with 302 blocks of outputs, the 

standard deviation of the frequencies 23.51/ 2≤ , indicates that it is very balanced in the 

distribution. 
 
 
4. Implementation 
 
In the platform of 32-bit Windows OS and Intel ® Celeron 2.66G, 64-bit processor, Borland C++ 
5.0, the performance of DICING is as following  
 

Report of Performance 
 

Sub-processes                 Time or Rate 
Keysetup                  6850 cycles 
IVsetup                  1800 cycles 

Keystream Rate            13.5 cycles/byte or 216 cycles/block 
 



List 2 
 
 
The presented algorithm DICING now is one of candidates for eSTREAM [4], but here with a 

little difference from [4] in (2.8) and (2.9), the vector 1V has been moved into S-box ( )S x from 

the transformation ( )A x , for the detail please refer to the papers[3], [4] and [6] .  

 
5. The reduced versions for DICING 
 
The algorithm DICING presented above is a very conservative one, the users who wish to strive 
for a faster rate may adopt the reduced version as following, simply take the combining function 

   ( , ) ( ) ,C u v Q u v= ⊕                             (5.1) 

and omit the Pr. tβ . In this way, the keystream rate may be decreased about 3 /cycles byte . We 

think the reduced one will also have sufficient security.  
In the case there are no attacks for conditional branching, the combining function may be taken as 

( ) [0] 0,
( , )

( ) [0] 1.
Q u v if

C u v
Q v u if

α
α

⊕ =⎧
= ⎨ ⊕ =⎩

                  (5.2) 

The later keystream will have larger period and will be more difficult for mathematical 
cryptanalysis.  
 
 
References 
 
[1] N. Courtois, W. Meier, Algebraic attack on stream ciphers with linear feedback, In Advances in 

Cryptology—EUROCRYPT ’2003, LNCS 2656, 346-359, Springer-Verlag, 2003.  
[2] G. Dj Golic, Computation of low-weight parity-check polynomials, Electronic Letters, vol 

32(21), Oct(1996), 1981-1982. 
[3] A.P. Li, A New Stream Cipher: DICING, now available at  
     http://www.ecrypt.eu.org/stream/dicing.html 
[4] A.P. Li, ------An update for phase2 of eSTREAM, now available at  
     eSTREAM - The ECRYPT Stream Cipher Project - Phase 2 
[5] W. Meier and O. Staffelbach, Fast correlation attacks on certain stream ciphers, Journal of 

Cryptology,1(3) (1989), 159–176.  
[6] Gilles Piret, Practical Attacks on one Version of DICING. Available at 

http://www.ecrypt.eu.org/stream/papersdir/051.pdf 


