
Foundations of Secure E-Commerce: The Order Layer

Amir Herzberg, Igal Yoffe

Bar-Ilan University, Ramat-Gan, 52900, Israel
{herzbea,ioffei}@cs.biu.ac.il

October 18, 2006

Abstract

We present specifications and provable protocol, for secure ordering and provision of
digital goods and services. Notably, our protocol includes fully automated resolution of
disputes between providers and customers. Disputes may involve the timely receipt of
orders and goods, due to communication failures and malicious faults, as well as disputes
of fitness of goods and order. The protocol and specifications are modular, with precise
yet general-purpose interfaces. This allows usage as an underlying service to different e-
commerce scenarios and applications, in particular secure online banking and brokerage.
The protocol is practical, efficient, reliable and secure, under realistic failure and delay
conditions. Our design and specifications are a part of a layered architecture for secure
e-commerce applications [18].

Keywords: Certified delivery, cryptographic protocol, e-banking, fair exchange, layered spec-
ifications, non-repudiation, secure e-commerce, secure orders.
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1 Introduction

Dispute resolution are key to modern commerce. Consider the most basic trade, a client sub-
mitting an order for some goods or service. Different disputes may arise between the parties,
e.g. regarding the quality of the goods or the time of delivery. Disputes may result from inten-
tional attempts to cheat by either client or server (provider, bank, etc.), or from unintentional
delivery problems.

In simple trades, there is exchange of goods, or of goods for payment. In such cases, parties
can use a trusted third party, ensuring fair exchange, and thereby preventing disputes. However,
often the server is obliged to provide the service or goods, upon receipt of appropriate order. In
such cases, the server should compensate the client if it fails to provide the goods or services. In
these (common) cases, dispute resolution is the only viable option. Modern commerce employs
multiple mechanisms to ensure efficient and fair dispute resolution, ranging from signed orders
and receipts to arbiters, notaries and courts. The efficiency and security of dispute resolution
are critical.

Clearly, disputes are critical also for digital transactions and electronic commerce. There are
many works on preventing and resolving disputes for electronic orders and goods; see Section 6
(related works). In particular, provably-secure fair-exchange protocols ensure that either both
parties receive appropriate content (e.g. goods, payment, or contract), or neither party receive
content.

However, fair-exchange cannot force the server to provide the goods or service, as required by
many applications, e.g. e-banking and e-brokerage. Such applications require dispute resolution
mechanisms, based on evidences, as for non-electronic transactions. Indeed, the provision of
such evidences is one of the main goals of digital signatures. There are many designs and
standards for producing (digitally signed) evidences for electronic transactions; see Section 6.

However, existing works on production of evidences for electronic orders, do not include
rigorous specifications and proofs of security. Furthermore, existing works do not present an
automated dispute resolution process. Indeed, current e-commerce systems depend on manual
resolution - or simply on customers accepting the records of the service providers (e.g., broker,
bank, clearing house). This is problematic, especially since communication systems are subject
to failures, and computer systems are subject to attacks.

In this work, we present precise specifications and a provably-secure protocol for secure
orders, including a fully automated process for dispute resolution, between a provider of digital
goods and services, and its customers. Our design is efficient, practical and modular, with clear
interfaces to applications and lower layers.
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Our protocol is quite simple; however, the definition of appropriate, flexible, extensible yet
well-defined specifications is non-trivial. The specifications, which we consider as the main
challenge, allow resolving of disputes involving the timely receipt of orders and goods, due to
communication failures and malicious faults, as well as disputes on the fitness of the goods to
the order. This includes malicious buyers, which claim that an order was never placed, or that
goods were not received (in time), as well as malicious sellers, which provide inappropriate or
late good or services.

The design we present is flexible, and supports many types of e-commerce orders or trans-
actions, allowing its use as underlying layer for secure commerce protocols. In our layered
architecture design [18] each network principal employs secure e-commerce application layers,
including payment layers, the order layer (in this paper) and an attestation layer, as a bot-
tom layer; see Figure 1. Each layer provides evidences for the upper layers. For instance, the
attestation layer, used by our order-layer protocol, issues to the sender evidences of message
delivery (EOD) or of failure to submit message (EOFS) (see Table 2); these become part of the
evidences, e.g. of goods delivery (EOGD), produced by the order layer.

Our specifications and design support arbitrary trade validation function for orders, provided
as a ‘black box’ function. The trade validation function is defined as part of an agreement
between the client and server. This allows dispute resolution for complex orders and goods,
supporting many, diverse e-commerce applications. For example, the ‘order’ may specify a
security, price and order type (e.g. ‘buy 100 shares at 10$’); the ‘goods’ may be a signed
receipt, specifying the results of the execution and current status of the account (with 100
more shares, and 1000$ less available funds).

Contribution of this work. Our main contribution is the specifications of the order
layer, as a fully-automated, well-defined service, to e-commerce protocols and applications. We
also present an efficient, practical and yet provably-secure order layer protocol. Our model
and analysis are the first application of the adversarial layered specification framework [17].
A final contribution is our validation constructions, where every e-commerce layer defines its
validation functions for automated dispute resolution, which is efficient and fair to all parties.
An extended abstract version of this work appeared in [19].

Organization. The rest of the paper is organized as follows. In the next section we
describe, informally, the lower layers (model); specifically, attestation layer, communication
layer and digital signatures. In Section 3 we informally describe the order layer functionality
and specifications and discuss the handling of typical fraud scenarios. Next, in the same section
we show the order layer protocol implementation. We present the formal specifications in
Section 4, and the analysis and poof of security of the protocol, in Section 5. In Section 6 we
survey related work, and the last section concludes.

Notation. Throughout this document, we use dot notation: α.β, to denote element β of
a record or tuple α.

2 Lower layers: Attestation, Communication and Signa-
tures

The order layer, see Figure 1 would employ lower layer services, such as attestation layer, for
certified, attested, delivery; communication layer for non-attested communication, and signa-
ture scheme. We describe the services in the following sections.
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Figure 1: Secure e-commerce layers vs. Internet layers.

2.1 Attestation layer

The Attestation layer is the lowest secure e-commerce layer, see Figure 1. Attestation layer is
based on top of a communication (transport) layer, such as, for example, TCP [28], TLS/SSL [7,
5, 12], and provides additional certification services. Attestation layer has three parties: client,
server, and notary. The notary is a trusted third party (TTP) and acts as time-stamping and
certification (attestation) provider.

Attestation Agreement. An attestation channel requires the parties to agree on an
attestation agreement, specified in Table 1. The agreement, which is received from upper layer
(in particular, we would generate such agreement from upper layer agreement, see lines 15-20 of
Figure 4) specifies identities (by address and public key), for the sender, recipient and TTP. An

Agreement Field Description
C=(C.addr, C.vkatt), S=(S.addr, The identities of the principals participating in the
S.vkatt), N=(N.addr, N.vkatt) agreement; client (C), server (S) and notary (N), respectively.

Principal’s identity is an (addr,vkatt) tuple,
of principal’s address and public validation key.

Table 1: Attestation agreement.

Evidence Field Description
type Evidences of origin, delivery and failed submission,

EOO, EOD, EOFS, respectively.
ctime Evidence creation time.
msg The message sent.
σ Signature over evidence fields.

Table 2: Attestation evidence structure.

attestation evidence structure, as in Table 2, is a time-stamped and signed statement, regarding
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the delivery of messages. The attestation evidence e is containing evidence type, e.type, the
message e.msg that the evidence refers to, an evidence creation time e.ctime, and signature e.σ.
There are three types of evidence provided by the attestation layer:

Evidence of Delivery (EOD), is an evidence for the message sender, that the intended mes-
sage recipient received the message (during given time interval). EOD is signed by the
recipient (and used by the sender).

Evidence of Origin (EOO), is an evidence that the message originated from the claimed
sender (during given time interval). The EOO evidence is signed by the sender (and used
by the recipient).

Evidence of Failure and Submission (EOFS), allows the sender to prove sending the mes-
sage in question (during given time interval), even if the message was not received due to
communication failures, or if the recipient failed to acknowledge receiving it. The EOFS
is signed by the notary (and used by the sender).

Validation. The validation Validate(AttAgr,e) efficient predicate returns whether the evi-
dence e (Table 2) is valid, under the attestation agreement AttAgr. The validation functionality
is not related to any particular instance of attestation module, and could be invoked by any
third party, which had obtained the attested communication agreement and the evidence in
question.

Attestation interface. The interface between payment and attestation layers is described
in Table 3, and consists of initialization interface and an interface to send and receive message
along with their respective evidences.

Method Direction Description

Init(1k,r,addr) in Initializes layer, with security parameter, 1k, randomness r
InitResult(vk,∆att) out and principal’s address addr. Returns generated validation key vk

of the initializer and layer’s delay bound ∆att.
OpenChannel(AttAgr,ρ) in Establishes an attested channel for the role ρ ∈ {‘S’, ‘C’, ‘N’},

client, server and notary, respectively.
OpenChannelResult(success) out Notifies the principal on attestation channel establishment.
CloseChannel() in Closes an attested communication channel.
Send(AttAgr,m) in Sends a message m on an open channel.
SendResult(AttAgr,e) out Returns an attestation evidence, Table 2, for previously sent

message on attestation channel AttAgr, or value of CommFail.
Receive(AttAgr,e) out Delivery of evidence of origin e, Table 2, which also includes

the message, e.msg, over an attestation channel identified by
AttAgr agreement. Similarly to SendResult also used for channel
failure CommFail notification.

Table 3: Attestation layer interface.

Initialization. Attestation initialization is two phased, where in ‘Init’, the attestation
layer generates secret and validation key pair, keeps the secret key and in ‘InitResult’ returns
the validation key. In ‘OpenChannel’ a certified delivery channel is established with the party
specified by the agreement supplied as an input. The established channel is uni-directional,
with one party acting as a client, which is able to send messages, and thus obtain EOD or
EOFS evidences, and the other party acting as a server, which receives EOOs. Communicating
both ways would require dual-channel establishment, with each party being a client on one
channel, and server on the other.
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2.1.1 Attestation layer: Informal specifications

Intuitively, it should be hard to fake attestation evidences. More specifically, it should be
hard to fake attestation evidences if parties are valid, i.e., proper initialization of attestation
layer took place, and an attestation channel was correctly and successfully opened. Another
requirement, we would make from an attestation layer, is that we would demand it provides to
upper layer only evidences which had passed the attestation validation function.

Now let us highlight some of the specifications of the attestation layer; see the full specifi-
cations in Appendix A.7, or in [16].

Correctness specifications. Typically, our attestation layer correctness specifications are
‘adversarial win’ predicates on attestation interfaces. For example, the “fake-EOD” predicate
SF−EOD

ATT (Appendix A.7, Definition 43) specifies that if an EOD evidence e was generated, and
e passes Att.Validate(AttAgr,e), for an attestation agreement AttAgr, then for a honest server,
which had opened an attestation channel with AttAgr, the predicate is true if no ‘Att.Receive’
took place with the message specified by the EOD, in the time specified by the evidence.
Similarly we define additional predicates for faking EOO and EOFS evidences.

The specifications are defined over execution X of a protocol machine (see Appendix A.7).
For such execution,

SI-Recv
ATT (X),SI-Send

ATT (X) (Appendix A.7,Definition 40–41) all evidences delivered by attes-
tation layer of non-adversarial attestation parties, pass attestation validation function.

SF−EOO
ATT (X),SF−EOD

ATT (X),SF−EOFS
ATT (X) (Appendix A.7,Definition 42–44) fake attestation

evidences (adversarial win).

Liveness specifications. The liveness conditions are as follows: If both client and notary
are valid parties, and communication link between the client and notary is sustained, then
client would obtain, within bounded time, an evidence for a sent message. Furthermore, addi-
tional condition specifies, that if the server is also a valid party, and communication channel is
sustained, at least with the notary, for both parties, then client would receive an EOD for sent
message.

The following specifications are over lower layers interfaces events, so the specification would
not be bound to any specific attestation layer protocol implementation,

SINIT
ATT (X) (Appendix A.7,Definition 35) attestation parties share uniform delay bounds,

and for properly initialized parties an attestation channel could be established.

SLINK
ATT (X) (Appendix A.7,Definition 39) if no attestation failure was indicated then there

are evidence for sent messages, and if pairwise links are sustained (at least to notary)
between non-adversarial attestation parties, sent messages are delivered with respective
evidences.

2.2 Communication layer

We can use any basic communication mechanism for direct communication between the notary
and the client/server. We only need several methods: ‘Comm.Init’ which receives protocol
machine’s address addr and returns the communication delay bound ∆comm; ‘Comm.Send’ and
‘Comm.Receive’, both with (ρ,m) arguments, for sending or respectively receiving a message m
to or from a party ρ. We expect the ‘Comm.Send’ to have a result value of true or CommFail.

Summarizing we very shortly review communication layer specifications, an adversarial en-
vironment is to uphold for X, protocol execution,

SLINK
COMM(X) (Appendix A.5, Definition 26) specifies that if there we no communication

failure indication between two principals then sent messages are delivered.
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SINIT
COMM(X) (Appendix A.5, Definition 27) specifies that communicating parties initializa-

tion is bounded in time, and all parties share communication timeout delay.

2.3 Signature Scheme

We adapt common digital signature scheme definition [14], where (DS.π,DS.Verify) pair, is a
protocol DS.π, which includes two interfaces DS.Gen,DS.Sign, key and signature generation,
respectively (and their respective output interfaces), and DS.Verify is poly-time verification
algorithm (we would sometimes omit the DS prefix for briefness, when usage is clear from
context). While full definition and specifications are provided in Appendix A.6, we would
only mention that SSound

DS (X) predicate on execution X ∈ X means that generated signatures
pass verification and SDS .AW (X) defines adversarial win against the signature scheme in an
execution.

3 Order Layer: Overview and Protocol

3.1 Informal description and overview

There are various reasons to create a layered model for e-commerce, varying from modularity
and contemporary software architectural reasons to ease of implementation and formal verifi-
cation. We begin by describing, in brief, the functionality of an order layer, built on top of
communication and attestation layers. Later sections would include more detailed scenarios,
implementation and analysis.

An order layer transaction involves three principals, an order client, server, and a notary
which is a trusted party. The latter may not be necessary in an optimistic scenario, where parties
are honest, and no communication failures occur. Furthermore, we assume, for simplicity, the
same notary is the one to provide attestation services for sent messages.

To participate in an order layer transaction, the client and server must agree on identities,
public validation keys and roles. In addition the parties should agree on an efficient trade
validation function, ValidateTrade, for mapping orders and the corresponding goods to several
return values, indicating whether the order is valid, or whether the goods match the order.

An order layer transaction begins with an order client issuing an order message to the server,
as shown in Figure 2.

Figure 2: Order flow without faults. Client places a valid order, receives valid goods in return, and
obtains evidence of goods and receipt (EOGR). The EOGR is formed from evidence of delivery for the
order, as a proof of order placement and evidence of origin for the goods, as a proof of goods source.
In a similar way the server obtains evidence of goods delivery (EOGD) for the vended goods.
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The client obtains an evidence of delivery for the placed order and waits for the goods
to arrive. When goods arrive, their validity is checked by the ValidateTrade function, and
the order transaction terminates, with the client obtaining an evidence of goods and receipt
(EOGR), which constitutes of the order agreement, order placement evidence (EODorder in the
figure), and evidence of goods origin by the server (EOOgoods). The validity of the former goods
is assured in the context of the OrderAgr agreement signed between the client and the server.

We present simple and efficient evidence arbitration in Section 3.3, Figure 12. For example,
when aforementioned EOGR evidence would reach an arbiter, the arbiter would invoke the
evidence validation function. The evidence validation function would check the validity of the
order and goods by the same ValidateTrade function from the order agreement, and validate the
EOD and EOO evidences, by deriving from the order agreement, the lower-layer (attestation)
agreement between the client and the server, and invoking lower layer validation function for
the aforementioned delivery and origin evidences, attaining full and automatic resolution of
EOGR validity.

Figure 3: Delivery of invalid goods. When invalid goods are received from the server by the client,
the client issues an evidence of failed order (EOFO) to upper e-commerce layer. While the server could
also issue an evidence of goods delivery (EOGD) to upper layer, it would be considered invalid (marked
with asterisk), as arbiter’s ValidateTrade check, according to the order agreement between the client
and the server, would fail for such goods, and thus the entire EOGD would fail order layer Validate
check.

We show additional scenario in Figure 3, where a faulty or malicious server issues unsuitable
goods. At client side, validation of such goods, along with the corresponding order would fail,
and client would obtain an evidence of failed order (EOFO), which would be made of the
evidence of placed order delivery and evidence of origin for the (unsuitable) goods. Later, such
evidence would be considered valid by an arbiter, for valid order EOD and valid goods EOO,
as the arbiter would invoke the same ValidateTrade function, defined by the order agreement
between the parties. Similarly, while the faulty server could have issued an evidence of goods
delivery (EOGD) to the upper layer, for the invalid goods, such evidence would be deemed
invalid by an arbiter, again by way of invocation of the ValidateTrade function from the order
layer agreement signed between the principals.

Consider the following, typical, e-commerce disputes, and how they are handled in our
scheme.

Disputes on Delivery or Quality. Client claims an order was placed, server denies. This
claim could be easily resolved as the claiming principal would have an evidence for his
order, either an evidence of failed order (EOFO) or evidence of goods and receipt (EOGR),
that also includes the order evidence. Additional typical claim is that invalid order or
goods were received from the other principal. This claim is easily verified, as verification
of former evidences includes invocation of ValidateTrade function to match order to goods.
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Disputes on order placement. Client claims order was not placed. Server should be able
to refute this, by presenting EOGD or EOFGD evidences. In both cases the evidences
includes the order, and an evidence of origin (EOO) for that order, which means the order
is approved and non-repudiable.

We formally define order layer specifications in Section 4.2. Informally, we expect an order
layer protocol to uphold a range of conditions, on the order layer interfaces, such as the following
non-comprehensive list:

Valid evidences. Valid protocol parties should always issue valid order layer evidences to
upper layers, i.e., evidences that pass Order.Validate (see Section 4.2, Definition 6).

Fair evidences. If client had obtained valid EOGR, goods evidence for an order, and server
and notary are valid parties, then the server had surely obtained evidence of goods delivery
(or evidence failed goods delivery - as our protocol would support recovery). On the
opposite, if the server presents valid evidence of goods delivery, EOGD, then the client
had obtained EOGR, evidence of goods and receipt (see Section 4.2, Definition 12, 13).

Attainable evidences. Valid and honest server would always receive evidence for issued
goods, if there is reliable communication between the server and the notary (see Sec-
tion 4.2, Definition 16). Even if there is a communication failure between server and
notary, the server would still issue an evidence of client’s order (EOCO) to upper layer
(see Definition 15). As a motivation for the later scenario, consider a honest stock broker
which had performed stock exchange operation, however which is unable to send acknowl-
edgment to the client, due to a communication failure. The broker, however, is required
to support its taken action based on client’s order, in front of an arbiter, with an evidence
of client order.

Negligible probability of successful attack. We expect the probability of the protocol run
being incorrect to be negligible in the security parameter. Basically, it should be hard to
forge the order layer evidences (Section 4.2, Definitions 7–11). For example, the predicate
describing fake EOGR (Definition 7) considers an execution where a valid EOGR evidence
is output, however, there was no vend of goods specified by that EOGR at a valid (and
honest) server.

Non-Notarized Communication Failures. Recovery from non-notarized communica-
tion failures is possible for honest parties. Consider the case where a client (or similarly a server)
issuing an order request, receives in return a communication failure (instead of an EOD). The
client could not possibly know whether the channel had failed, before the request had been
delivered (and server had obtained an EOO), or afterwards, and the failure had prevented the
client from receiving an EOD (or EOFS). For recovery from the former, honest parties could
include with the next order or goods response the EOO evidences received from other parties.
Thus, the state of an order transaction, that had experience communication failure, between
honest parties, would be unknown only until the next order transaction successfully completes.

3.2 Agreements, Evidences and Interface

The order layer encapsulates operations (“orders”) related to funds, e-brokerage, or digital
goods and services. The layer provides the service for placing an order for goods or services
by a client, and validating that the server returned order result adhere to an order agreement
between the principals.
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3.2.1 Order Agreement and ValidateTrade function

We define an order agreement between trading parties as specified in Table 4. An order agree-
ment is used to generate attestation agreements between order client and server. The order
agreement also specifies a trade validation function, ValidateTrade(order,to,goods,tg), which re-
ceives an order and order creation time to ∈ R, and respectively, goods and goods vend time
tg ∈ R. The ValidateTrade function provides versatility of trade by allowing the client and the
server to agree on appropriate goods and services similarly to traditional trade agreements. The
function should have BadOrder, BadGoods, OrderOk, GoodsOk return values. The BadOrder
return value is issued for an order which is invalid under the agreement, regardless of the value
of goods. The second, BadGoods return value, is issued for goods which do not match the order,
the OrderOk returned for valid order, without goods; and the GoodsOk status is returned when
the corresponding goods match the order, in the context of the order agreement.

Since good provision is not always immediate, the order agreement additionally includes
Ωgoods, which is a bound on goods delivery time, taking into account the communication delays
and time it make take the server to generate the goods.

In addition to efficiency requirement from the ValidateTrade function, we somewhat simplify
the requirements on the relation of goods to orders and for ease of analysis have need for
ValidateTrade function to be monotonic in its two time coordinates, up to the goods delivery
bound specified by the order agreement, i.e.,
1. ValidateTrade(order, to, ⊥, ⊥) = OrderOk =⇒

ValidateTrade(order, t′o, ⊥, ⊥) = OrderOk, ∀to, t′o ∈ R, s.t., to ≤ t′o
(valid orders continue to be always valid),

2. ValidateTrade(order, to, goods, tg) = GoodsOk =⇒
ValidateTrade(order, to, goods, t′g) = GoodsOk, ∀to, tg, t′g ∈ R, s.t.,

(tg ≤ t′g ≤ to + Ωgoods)
(once valid goods continue to be valid, unless goods claimed time is
past agreement bound),

3. ValidateTrade(order, to, ⊥, ⊥) = OrderOk ∧ ((tg < to) ∨ (tg > to + Ωgoods)) =⇒
ValidateTrade(order, to, goods, tg) = BadGoods, ∀to, tg ∈ R
(if goods claimed time is before order time, or past agreement bound,
goods are considered invalid),

Agreement Field Description
ValidateTrade(order,torder, Trade validation function. Validates that issued goods at time
goods,tgoods) returns status; tgoods match an order created at torder time. The return

value is status ∈ { OrderOk, BadOrder, GoodsOk, BadGoods }
Ωgoods Bound on goods issue time as considered by previous

ValidateTrade. After Ωgoods, no goods considered valid.
C.addr, C.vkatt, C.vkorder, S.addr, Order layer participating principals. A client (C), server (S)
S.vkatt, S.vkorder, N.addr, N.vkatt, and a notary (N), each as a (addr, vkatt, vkorder) tuple
N.vkorder of address, and pair of validation keys, respectively.

Table 4: Order agreement.

3.2.2 Order interface

The interface between the application and order layer, Table 5, defines the initialization, order-
ing goods or services, and validation of order results. In the first, Init phase, each order layer
machine establishes its own identity, as returned by attestation layer. Using this information a
principal may establish order agreements with other network principals.
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Method Direction Description

Init(1k,ρ,r,addr) in Initializes the order layer, with security parameter 1k,
address addr, role ρ ∈ {‘S’, ‘C’, ‘N’} and randomness r.

InitResult(vk,∆order) out Returns initializer’s validation key(s) vk, and a ∆order bound
on evidence return time.

OpenChannel(OrderAgr,ρ) in Opens an order channel with the principals
specified by OrderAgr agreement using role ρ.

OpenChannelResult(status) out Notifies the application layer of the order channel
establishment success.

CloseChannel() in Closes an order channel.
OrderResult(OrderAgr,e) out Returns CommFail or order evidence e result,

for an order on OrderAgr agreement open channel.
Client

Order(OrderAgr,order) in Instructs the order layer to issue an order,
described by order, over an order channel
established over an OrderAgr agreement.

Server
VendRequest(OrderAgr,order) out Instructs the application layer to issue goods,

described by order, and implicitly by the
order agreement, in the order context.

VendRequestResult(OrderAgr,goods) in Returns goods vended by upper layer.

Table 5: Order layer interface.

When an order channel is established, order transactions are invoked with Order event, sup-
plying client specified order information which could define funds transfer options, e-brokerage
conduct, digital goods request, and possibly other relevant information (e.g., original merchant
offer for digital goods). We then expect an OrderResult event within finite time, as governed
by ∆order returned from order layer initialization interface, and goods delivery bound, specified
in the order agreement.

On the server side, we assume an application (or upper) level functionality to issue goods or
services, using VendRequest interface. The goods and services are issued in the context of the
order agreement specified for the open order channel, and are verifiable by order agreement’s
ValidateTrade.

Order Evidence Field Description
type Evidences of placed order, failed order, goods delivery,

failed goods delivery, or client order
EOGR, EOFO, EOGD, EOFGD, EOCO, respectively.

ctime Evidence generation time.
order The order specified by the evidence.
goods The corresponding goods.
σ Order layer proof, for the above evidence.

Table 6: Order layer evidences structure.

3.2.3 Order Layer Notary

For simplicity, we assume that the parties agree on a single notary, which is trusted to resolve
disputes both regarding the contents of orders and goods (order layer disputes), as well as
disputes regarding the timely delivery of orders and goods (attestation layer disputes). This
implies that the order layer protocol does not provide evidences for failure of the order-layer
notary itself to perform its function, e.g. to provide timely evidences. This allows our protocol
to use the order layer notary also as the attestation layer notary, and to use attestation layer
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only between client and server, and ordinary communication between notary and the client and
the server. We believe it is straightforward, although messy, to extend the specification and
protocol, to allow separate notary for the attestation layer, providing evidences of failures of
the order layer notary.

3.2.4 Order Evidences

The structure of order layer evidences is shown in Table 6. The evidences include various trade
related evidences, as specified below, and evidence’s e proof e.σ consists of lower, attestation
layer evidences.

Evidence of Goods and Receipt (EOGR), is client’s (buyer) proof that the correspond-
ing order had reached the server (seller), and that goods had been obtained for the order.

Evidence of Goods Delivery (EOGD), is server’s (seller) proof that the goods issued for
client’s order had reached the client.

Evidence of Failed Order (EOFO), is client’s proof that the order process had failed. It
could either be the case that the order message itself was not acknowledged by the server,
or if it was acknowledged but the server did not issue goods.

Evidence of Failed Goods Delivery (EOFGD), is server’s proof that the goods delivery
process had failed, since the goods message was not acknowledged by the client.

Evidence of Client Order (EOCO), when server goods delivery process results in a com-
munication failure, and goods delivery status is unknown, the server’s order layer returns
EOCO as a proof, that an order was indeed placed. It is typical desire of a service provider
to prove (to upper layer, and consequently to an arbiter) that an action was taken due
to client order. The EOCO evidence is issued in the case an order was placed but the
corresponding service or goods could not be delivered due to server’s own communication
failure (thus even EOFS is not obtainable from attestation layer on server side), where
the server should at least present a proof of client’s order.

3.3 The OL-protocol

We present the order layer OL-protocol in Figures 4–7, containing the implementation for
the initialization (common to all participants), server, notary and client, respectively. The
OL-protocol employs signature scheme DS, defined, with specifications, in Appendix A.6. In
initialization, Figure 4, the attested channels are opened between each pair of roles specified
in the order agreement (Table 4), namely, client, server and notary. Next, in Figures 5-7, the
protocol implementation describes how each party acts upon receiving a messages, over regular
and attested channels.

The protocol interaction is of a request-response form. As shown in in Figure 2, in a
faultless execution, the client sends a valid order and receives valid goods in return; both client
and server obtain order layer evidences for the process, EOGR (evidence of goods and receipt)
and EOGD (evidence of goods delivery), respectively. For a dishonest server issuing invalid
goods, as shown in Figure 3, the client would obtain an EOFO (evidence of failed order), and
while the dishonest server could try and provide an EOGD to an upper layer, it would be
disqualified by the order layer arbitration function. On the other hand, if valid goods delivery
fails, as in Figure 8, the server would obtain EOFGD (evidence of failed goods delivery), and
if order delivery fails the client would obtain EOFO, as shown in Figure 9.

Additionally, the protocol is optimistic, from order layer outlook. The client is placing the
order at the server and expects to receive the goods. If goods are not received (possibly due
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1: on Order.Init(1k,ρ,r,addr) :
2: ∆comm = Comm.Init(addr)

3: (vkatt,∆att) = Att.Init(1k,r,addr)
4: ∆order = 2 · ∆att + 4 · ∆comm

5: if ρ = ‘N’

6: vkorder = DS.Gen(1k,r)
7: else
8: vkorder = ⊥
9: Order.InitResult((vkatt,vkorder),∆order)

10: on Order.OpenChannel(OrderAgr′, ρ′) :
11: OrderAgr = OrderAgr’
12: success = (ρ = ρ′) ∧ (OrderAgr.ρ = (addr,vkatt,vkorder)) // check identity same as in Init
13: if ρ ∈ {‘C’,‘N’}
14: //prepare two attestation agreements, one for each direction

15: AttAgr{C,S} = OrderAgr.((C.addr,C.vkatt),(S.addr,S.vkatt),(N.addr,N.vkatt))

16: AttAgr{S,C} = OrderAgr.((S.addr,S.vkatt),(C.addr,C.vkatt),(N.addr,N.vkatt))
17: if ρ = ‘S’
18: //prepare same attestation agreements, reversing roles

19: AttAgr{C,S} = OrderAgr.((S.addr,S.vkatt),(C.addr,C.vkatt),(N.addr,N.vkatt))

20: AttAgr{S,C} = OrderAgr.((C.addr,C.vkatt),(S.addr,S.vkatt),(N.addr,N.vkatt))
21: if ρ ∈ {‘C’,‘S’}
22: success ∧= Att.OpenChannel(AttAgr{C,S},‘C’) ∧
23: ∧ Att.OpenChannel(AttAgr{S,C},‘S’)
24: else // ρ = ‘N’

25: success ∧= Att.OpenChannel(AttAgr{C,S},‘N’) ∧
26: ∧ Att.OpenChannel(AttAgr{S,C},‘N’)
27: Order.OpenChannelResult(success)

Figure 4: Initialization in OL-protocol for order layer parties, ρ ∈ {‘S’, ‘C’, ‘N’}, saves digital signature
DS instantiation, addr, ∆att, ∆comm, OrderAgr and derived attestation agreements as principal’s state.

1: on Att.Receive(AttAgr{C,S},oe={EOO,ctime,order,σ}) :
2: if ValidateTrade(oe.msg,oe.ctime,⊥,⊥) = OrderOk // good order
3: goods = VendRequest(OrderAgr,order) // application provides goods

4: ge = Send(AttAgr{S,C},goods) // get evidence for goods delivery
5: if (ge.type = EOD)
6: OrderResult(OrderAgr,{EOGD,ge.ctime,oe.msg,ge.msg,{oe,ge}})
7: if (ge.type = EOFS)
8: OrderResult(OrderAgr,{EOFGD,ge.ctime,oe.msg,ge.msg,{oe,ge}})
9: if (ge=CommFail)
10: OrderResult(OrderAgr,{EOCO,oe.ctime,oe.msg,⊥,{oe,⊥}})
11: on Comm.Receive(N,(AttAgr{C,S},oe={EOD,ctime,order,σ})) :

12: if Att.Validate(AttAgr{C,S},oe) ∧ ValidateTrade(oe.msg,oe.ctime,⊥,⊥) = OrderOk

13: Comm.Send(N,(AttAgr{S,C},ge))

Figure 5: Order layer OL-protocol for the Server.
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1: on Comm.Receive(C,(AttAgr{C,S},oe={EOD,ctime,order,σ})) :

2: if Att.Validate(AttAgr{C,S},oe) ∧ ValidateTrade(oe.msg,oe.ctime,⊥,⊥) = OrderOk
3: set timer for 2 · ∆comm

4: Comm.Send(S,(AttAgr{C,S},oe))

5: on Comm.Receive(S,(AttAgr{S,C},ge={EOFS,ctime,goods,σ})) :

6: if timer set ∧ Att.Validate(AttAgr{S,C},ge)
7: cancel timer

8: Comm.Send(C,(AttAgr{S,C},ge))

9: on Comm.Receive(S,(AttAgr{S,C},ge={EOD,ctime,goods,σ})) :

10: if timer set ∧ Att.Validate(AttAgr{S,C},ge)
11: if ValidateTrade(oe.msg,oe.ctime,ge.msg,ge.ctime) = GoodsOk
12: cancel timer // client is cheating

13: on timer :
14: Comm.Send(C,(OrderAgr,DS.Sign({EOFO,currtime(),order,⊥})))

Figure 6: Order layer OL-protocol for the Notary.

1: on Order(OrderAgr,order) :
2: if ValidateTrade(order,currtime(),⊥,⊥) = OrderOk

3: oe = Send(AttAgr{C,S},order)
4: if (oe = EOFS) OrderResult(OrderAgr,{EOFO,oe.ctime,oe.msg,⊥,{oe,⊥}})
5: if (oe = EOD) set timerserver for ∆att + OrderAgr.Ωgoods

6: if (oe=CommFail) OrderResult(OrderAgr,CommFail)

7: on timerserver :
8: set timernotary for 4 · ∆comm // goods were not received on time

9: Comm.Send(N,(AttAgr{C,S},oe))

10: on Comm.Receive(N,(OrderAgr,e={EOFO,ctime,order,⊥,σ})) :
11: if Order.Validate(OrderAgr,e,‘C’) // implicit check of notary’s signature
12: OrderResult(OrderAgr,e)

13: on Receive(AttAgr{S,C},ge={EOO,ctime,goods,σ}) :

14: on Comm.Receive(N,(AttAgr{S,C},ge={EOFS,ctime,goods,σ})) :

15: if Att.Validate(AttAgr{S,C},ge) // may not be true only for Comm.Receive (line 14)
16: cancel timerserver
17: if ValidateTrade(oe.msg,oe.ctime,ge.msg,ge.ctime) = GoodsOk
18: OrderResult(OrderAgr,{EOGR,ge.ctime,oe.msg,ge.msg,{oe,ge}})
19: else OrderResult(OrderAgr,{EOFO,ge.ctime,oe.msg,ge.msg,{oe,ge}})
20: on timernotary :
21: OrderResult(OrderAgr,CommFail)

Figure 7: Order layer OL-protocol for the Client. The protocol terminates for the order and cancels
timers after first OrderResult.
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Figure 8: Failed goods delivery flow. A valid order is received by the server, however, goods delivery
fails with an evidence of failure and submission and thus evidence of failed goods delivery is issued by
server’s order layer to upper e-commerce layer.

Figure 9: Failed order flow. The client obtains an evidence of failure and submission for the order
message, from the attestation layer, and wraps the evidence as order layer’s evidence of failed order.
Whether the EOFO would be considered valid by arbitrating party depends on whether the order
described by the failed message is valid, as checked by ValidateTrade function from order agreement
between parties.

Figure 10: Recovery from transient client-notary (and server-client) communication failure. The server
did issue goods for client order, and was issued an evidence of failure and submission. Overall, the
server have obtained order layer evidence of failed goods delivery. When the server is later contacted by
the notary, it forwards the evidence of failure and submission for the goods, which includes the goods
message, to the notary. The notary, in turn, forwards it to the client. If goods are valid client issues
evidence of goods and receipt (and evidence of failed order for invalid goods).
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Figure 11: Failed order flow for a failed server. As in previous scenario, Figure 11, goods are not
obtained by the client. An order is placed by the client, which retains an evidence of delivery for the
order, however, no goods are received in return. After waiting ∆att to allow server goods message to
reach the client over the attested channel between the two, the evidence of delivery for order placement
is forwarded to the notary over regular communication channel with delay ∆comm. If the order is valid,
and yet goods are not sent by server to the notary, the notary is the one to issue an evidence of failed
order to the client.

to client’s own communication failure), order failure recovery process is initiated, as shown in
Figures 10 and 11. In Figure 10, the recovery process involves sending an order EOD (evidence
of delivery) to the notary, after the goods were not received by the client. The order content
and order creation time (taken from the EOD attestation evidence) would be validated, and if
valid the order EOD would be forwarded to the server, which should return the EOFS goods
evidence to the notary. After checking for goods fitness, the notary would forward the evidence
back to the client. In the case client is cheating the server would provide the notary an EOD for
(valid) goods, hence, notary would conclude the goods has been already delivered and would
abort recovery process. Additional case, described in Figure 11, is when no valid goods are
provided by the server, up to a pre-defined communication delay, and the notary would issue
self-signed EOFO (evidence of failed order) to the client.

We now shortly describe the protocol implementation as shown in Figures 4–7. For concise-
ness the protocol is for a single, unique, order; extension for multiple orders is trivial.

Initialization. The initialization code, shown in Figure 4 is split two fold, initializing an
OL-protocol machine (‘Order.Init’ event handler) and opening an order channel (‘Or-
der.OpenChannel’ event handler). When protocol machine is initialized it initializes the
lower layers, communication and attestation layer, receiving the machine address, commu-
nication and attestation delay bounds and attestation validation key, respectively. Next,
if the machine is in the notary role, it generates additional pair of keys for signing and val-
idating EOFO evidences. When opening an order channel, the protocol machine validates
that the identity used in the order agreement is the correct one, generates two attestation
agreements (one for each direction between order-client and order-server, as messages
are sent two ways), and returns order channel open success indication as dependent on
successful opening of the two attestation channels. After opening the two attestation
channels, the OL-protocol machine is ready to participate in the order process.

Server. The server implementation, in Figure 5, handles two events: a received order event
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(lines 1–10) and recovery for failed order (lines 11–13). The order processing is trivial:
upon receiving an order EOO evidence from attestation layer, goods are requested from
upper layer, and are sent to the client. The evidence for the sent goods (if available)
together with the evidence for the order composes the order layer evidence the server
provides to upper layer in ‘OrderResult’. For the recovery process, lines 11–13, the server
is contacted by the notary over a regular, non-attested channel and presents it with a
(valid) EOD of an order, meaning that the client claims it did not receive the issued
goods - as could be if the server had obtained an EOFS for the goods message. When
such request is received the server responds to the notary with the goods evidence for the
order.

Notary. The order layer notary implementation is shown in Figure 6; notice that in addition,
the notary machine also runs an attestation-layer notary. Notary’s order layer functional-
ity is to support the recovery process for failed orders, and to issue notary-signed EOFO
if recovery fails and server is unable to provide the goods. Upon receiving an order EOD
on line 1, the notary checks for evidence and order validity, and forward the message to
the server, waiting for a response (lines 5, 9) or response timeout (line 13). The response
could be goods EOFS, line 5, which is checked for validity and forwarded back to the
client (thus completing recovery process), or goods EOD, line 9, the meaning of which is
that the client is cheating (as server shows it did deliver goods). If the client is cheating
the recovery process is aborted. On the other hand, if no evidence was received from the
server, line 13, the notary signs an EOFO, effectively placing the blame for communication
failure on the server.

Client. Implementation of OL-protocol for client side is shown in Figure 7. The order process
begins on line 1, and progresses with obtaining an attestation evidence for a sent order.
If the order message did reach the server (EOD was obtained) a recovery timer is set
(recovery begins on line 7) and the client begins to wait for server’s response (line 13),
otherwise the order process terminates with EOFO if communication failure was notarized
(EOFS was obtained for the sent order message), or with a plain communication failure.
If server response is obtained on line 13, a corresponding ‘OrderResult’, which depends on
the received goods fitness, is issued to upper layer. Otherwise, on timer wakeup, recovery
process is initiated (as it could be the case that client was experiencing communication
failures which prevented him from receiving the goods) and the order EOD which proves
the server did receive the order is sent over a regular communication channel to the
notary; additional timer is set for receiving notary’s response (lines 7 and 9). If no notary
response would be received by the time of second timer wakeup, communication failure
would be declared (line 20), otherwise, it is expected that either the notary would provide
an EOFO (line 10) as an evidence of server failure or would forward evidence of the goods
sent by the server (line 13).

Validation. The validation functionality, Validate(OrderAgr,e,ρ), Figure 12, is common to all
parties. That is, an automatic dispute resolution system, or an arbiter, upon dispute,
would instantiate the order layer, and supply the relevant order agreement along with
the the protocol-specific order evidence e, and the checking role ρ ∈ {‘C’, ‘S’}, which is
used to decide the direction lower attestation agreement should be derived from the order
agreement (a single order channel is built on two attestation channels, since delivery of
messages is both ways). The order layer evidences are typically composed of pairs of
relevant attestation evidences1.

1The order layer validation algorithm specified in Figure 12 efficiently decides whether order layer evidences
are valid, for the identities supplied in the order agreement. The identities are typically specified as communi-
cation addresses and public signature verification keys of the parties. However, its up to the upper layer or the
arbiter to map the identities to real physical or legal entities, e.g., by means of X.509 certificates [1].
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4 Specifications

For the protocol analysis we adopt a layered analysis, where having concrete and well-defined
specifications for both the layer below the analyzed layer and the analyzed layer itself, we
relate the two specifications and show that given an adversary which ‘breaks’ the analyzed
layer specifications, we could use this adversary to either ‘break’ the lower-layer specifications,
or ‘break’ signature scheme specifications in the analyzed layer. In Figure 13 we show the
specifications we are to consider. The order layer specification, SORDER would be defined as
set of requirement on the general interface of the layer, which particular implementation we have
provided in previous Section 3.3, the lower layer specifications SATT and SCOMM , respectively
for attestation and communication layers, are also to be defined on layers interfaces, not be
tied to any concrete implementation of the aforementioned layers.

The rest of this section is devoted for formalizing specification for order layer, first by
defining some notation and general terms, then presenting the requirements, i.e., initialization,
correctness and liveness specifications of the order layer.

4.1 Model, Notation and General terms

We provide the execution model formalism in Appendix A; the following paragraphs shortly
summarize the general concepts, so the reader could immediately proceed to Section 4.2.

Single protocol executions result from the interaction of protocol machines with an adversary
representing the rest of the world. A single protocol execution is defined by a sequence of rounds,
where each round consists of one invocation of the adversary A, and then one invocation of
the protocol π. We model the adversary A as a function from the sequence of all outputs of
the protocol so far, to the next input to the protocol. Then we consider multiple instances of
the protocol, each running with its own state, to represent multiple processors (from set P of
protocol machine processors identities) running the protocol. At each round i, the adversary A
invokes a specific instance (processor) pi of the protocol. For shorthand, an event of protocol
π is a tuple ξ =<p, ι, vι>, where p ∈ P is processor identity, ι ∈ π.IIN ∪ π.IOUT is protocol
interface and vι ∈ {0, 1}∗, is the value of the interface.

We use X to denote the set of single protocol executions (of any π,A and randomness R).
We use the shorthand notation t(ξ) to refer to the time of event ξ in an execution and use
additional notation of ξ ∈ X[t0, t1], to denote that event’s occurrence time, t(ξ), was in the
interval [t0, t1] ⊂ R, or just ξ ∈ X[t0] to denote specific, t(ξ) = t0, event time.

4.2 Order layer specifications

4.2.1 Initialization specifications

We begin with defining bounded and proper initialization (similarly to attestation layer specifi-
cations (Appendix A.7) along with a valid open predicate, to specify parties that have correctly
opened an order channel. However, we first assume, for simplicity, that a global ∆order delay is
shared by all initialized machines, as in the next predicate,

Definition 1 (Uniform initialization SINIT−U
ORDER predicate) Predicate SINIT−U

ORDER (X) is true
for execution X ∈ X, if ∃∆order ∈ R s.t., for every event
<p, ‘Order.InitResult’, ((vk0, vk1),∆)>∈ X : ∆ = ∆order, where p ∈ P, vk0, vk1 ∈ {0, 1}∗.

We also define a liveness predicate assuring initialization is bounded, for simplicity, with
the previous ∆order delay bound,
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Order.Validate(OrderAgr,e,ρ):
1: if (DS.Verify(e,OrderAgr.N.vkorder) ∧ e.type=EOFO) return true

2: (oe,ge) = e.σ // order and goods attestation evidences.
3: if ρ = ‘C’

4: AttAgr{C,S} = OrderAgr.((C.addr,C.vkatt),(S.addr,S.vkatt),(N.addr,N.vkatt))

5: AttAgr{S,C} = OrderAgr.((S.addr,S.vkatt),(C.addr,C.vkatt),(N.addr,N.vkatt))
6: if ρ = ‘S’

7: AttAgr{C,S} = OrderAgr.((S.addr,S.vkatt),(C.addr,C.vkatt),(N.addr,N.vkatt))

8: AttAgr{S,C} = OrderAgr.((C.addr,C.vkatt),(S.addr,S.vkatt),(N.addr,N.vkatt))
9: if ge 6= ⊥ // check evidence time validity
10: if e.ctime 6= ge.ctime return false

11: else if e.ctime 6= oe.ctime return false

Client evidences:

12: case e.type=EOFO:
13: if oe.type = EOFS

14: return Att.Validate(AttAgr{C,S},oe) ∧ e.order = oe.msg ∧
15: ∧ ValidateTrade(e.order,oe.ctime,⊥,⊥)=OrderOk
16: if oe.type = EOD

17: return Att.Validate(AttAgr{C,S},oe) ∧ Att.Validate(AttAgr{S,C},ge) ∧
18: ∧ ValidateTrade(e.order,oe.ctime,e.goods,ge.ctime)=BadGoods ∧
19: ∧ e.order = oe.msg ∧ ge.type = EOO|EOFS ∧ e.goods = ge.msg

20: case e.type=EOGR:

21: return Att.Validate(AttAgr{C,S},oe) ∧ Att.Validate(AttAgr{S,C},ge) ∧
22: ∧ ValidateTrade(e.order,oe.ctime,e.goods,ge.ctime)=GoodsOk ∧
23: ∧ e.order = oe.msg ∧ e.goods = ge.msg ∧
24: ∧ ge.type = EOO|EOFS ∧ oe.type = EOD

Server evidences:

25: case e.type=EOFGD:

26: return Att.Validate(AttAgr{C,S},oe) ∧ Att.Validate(AttAgr{S,C},ge) ∧
27: ∧ ValidateTrade(e.order,oe.ctime,e.goods,ge.ctime)=GoodsOk ∧
28: ∧ ge.type = EOFS ∧ oe.msg = e.order ∧ ge.msg = e.goods ∧
29: ∧ oe.type = EOO

30: case e.type=EOGD:

31: return Att.Validate(AttAgr{C,S},oe) ∧ Att.Validate(AttAgr{S,C},ge) ∧
32: ∧ ValidateTrade(e.order,oe.ctime,e.goods,ge.ctime)=GoodsOk ∧
33: ∧ ge.type = EOD ∧ oe.msg = e.order ∧ ge.msg = e.goods ∧
34: ∧ oe.type = EOO

35: case e.type=EOCO:

36: return Att.Validate(AttAgr{C,S},oe) ∧ oe.type = EOO ∧ oe.msg = e.order ∧
37: ∧ ValidateTrade(e.order,oe.ctime,⊥,⊥)=OrderOk

38: return false

Figure 12: Implementation of order layer Validate efficient algorithm for order evidence validation. In
the algorithm, for brevity and simplicity, we assume that the notary N, is also the notary of the order
agreement attestation channels.
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Figure 13: Layered adversarial specifications model for the protocol.

Definition 2 (Bounded initialization SINIT−B
ORDER predicate) Predicate SINIT−B

ORDER (X) is true
for execution X ∈ X, if for every event

ξ =< p, ‘Order.Init’, (1k, r, addr) >∈ X,

there is an event

< p, ‘Order.InitResult’, ((vk0, vk1),∆) >∈ X[t(ξ), t(ξ) + ∆order],

where p ∈ P and vk0, vk1, addr, r ∈ {0, 1}∗ and ∆ ∈ R. In that case we also say that in execution
X, protocol machine p is properly initialized for order with address addr and validation keys
vk0, vk1.

Next, denote by AGRORDER the domain of possible order agreements. We define that
protocol machine processor has opened a valid order channel if it was properly initialized, and
had returned successful channel open indication when was supplied a valid order agreement. In
addition, for simplicity, valid client machines restrict the (adversarial) upper layer to issue valid
orders and valid server machines restrict the upper layer to issue goods which fit the orders.

Definition 3 (Valid order role Order.ValidOpen predicate) Predicate
Order.ValidOpen(X, OrderAgr, p, ρ) is true for execution X ∈ X, order agreement OrderAgr ∈
AGRORDER, protocol machine processor p ∈ P, and role ρ ∈ {‘S’, ‘C’, ‘N’}, if p is properly
initialized for order with address addr, validation keys vk0, vk1, and for every event

ξ =< p, ‘Order.OpenChannel’, (OrderAgr, ρ) >∈ X,

s.t., OrderAgr.ρ = (addr, vk0, vk1), there was an event

< p, ‘Order.OpenChannelResult’, true >∈ X[t(ξ), t(ξ) + ∆order],

and in addition,
∀ζ =<p, ‘Order’, (OrderAgr, order)>∈ X :

OrderAgr.V alidateTrade(order, t(ζ),⊥,⊥) = OrderOk,
and
∀ζ =<p, ‘VendRequest’, (OrderAgr, order)>∈ X, there is a subsequent event
ς =<p, ‘VendRequestResult’, (OrderAgr, goods)>∈ X[t(ζ), t(ζ) + OrderAgr.Ωgoods], s.t.,

OrderAgr.V alidateTrade(order, t(ζ),⊥,⊥) = OrderOk =⇒
OrderAgr.V alidateTrade(order, t(ζ), goods, t(ς)) = GoodsOk.
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As in attestation, we define additional liveness predicate, to bound the time to open a
channel.

Definition 4 (Bounded open channel SBOC
ORDER(X) predicate) Predicate SBOC

ORDER(X) is true
for execution X ∈ X, if for every event

ξ =< p, ‘Order.OpenChannel’, (OrderAgr, ρ) >∈ X,

there was an event

< p, ‘Order.OpenChannelResult’, res >∈ X[t(ξ), t(ξ) + ∆order],

where p ∈ P, OrderAgr ∈ AGRATT, res ∈ {0, 1}∗, ρ ∈ {‘S’, ‘C’, ‘N’}.

The following predicate combines all initialization predicates.

Definition 5 (Initialization SINIT
ORDER predicate) For execution X ∈ X,

SINIT
ORDER(X) ≡ SINIT−B

ORDER (X) ∧ SINIT−U
ORDER (X) ∧ SBOC

ORDER(X)

4.2.2 Correctness specifications

We begin by defining a predicate to identify delivery of invalid evidences to upper layer,

Definition 6 (Invalid order result SI-OR
ORDER predicate) Predicate SI-OR

ORDER(X) is true for
execution X ∈ X, if there exist processor p ∈ P, order agreement OrderAgr ∈ AGRORDER, role
ρ ∈ {‘S’, ‘C’} and event <p, ‘OrderResult’, (OrderAgr, e)>∈ X, s.t.,

Order.ValidOpen(X, OrderAgr, p, ρ) = true ∧ Order.Validate(OrderAgr, e) = false

Remark 1 We assume, for simplicity, in the rest of this section, that goods are always to be
issued immediately, i.e., ∀OrderAgr ∈ AGRORDER : OrderAgr.Ωgoods = 0. The extension of
the rest of the predicates in this section with non-zero goods issue time, is trivial, e.g., see
footnote for Definition 8.

We now define adversarial win predicates on the order layer interfaces. In the following
predicate, we define that an adversarial client had succeeded in forging evidence of goods and
receipt if it provides valid evidence of such, for a honest server, which had never issued the
goods in the evidence.

Definition 7 (Forging evidence of goods and receipt SF−EOGR
ORDER predicate) Predicate SF−EOGR

ORDER (X)
is true for execution X ∈ X, if an adversary A outputs an order agreement and evidence,
(OrderAgr, e), s.t.,

1. Order.Validate(OrderAgr, e) is true, and

2. e.type = EOGR, and

3. ∃n ∈ P,Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

4. ∃s ∈ P, Order.ValidOpen(X, OrderAgr, s, ‘S’) = true, and

5. <s, ‘VendRequestResult’, (OrderAgr, e.goods)>/∈ X[e.ctime].

Next, we define as adversarial win, if a valid evidence of goods delivery could be output,
but no order described by the evidence took place, or no goods were actually delivered, to a
honest client.
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Definition 8 (Forging evidence of goods delivery SF−EOGD
ORDER predicate) Predicate SF−EOGD

ORDER (X)
is true for execution X ∈ X, if an adversary A outputs an order agreement and evidence,
(OrderAgr, e), s.t.,

1. Order.Validate(OrderAgr, e) is true, and

2. e.type = EOGD, and

3. ∃n ∈ P,Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

4. ∃c ∈ P, Order.ValidOpen(X, OrderAgr, c, ‘C’) = true, and

(a) <c, ‘Order’, (OrderAgr, e.order)>/∈ X[e.ctime−∆order, e.ctime] 2, or

(b) <c, ‘OrderResult’, (OrderAgr, {EOGR, ctime, order, e.goods, σ})>/∈ X[e.ctime−∆order, e.ctime].

For forgery of an evidence of failed order, we define a predicate to capture a valid EOFO
evidence, where, however, the goods issued by the application to server’s order layer are always
valid, and there was sustained communication between the notary and the server.

Definition 9 (Forging evidence of failed order SF−EOFO
ORDER predicate) Predicate SF−EOFO

ORDER (X)
is true for execution X ∈ X, if an adversary A outputs an order agreement and evidence,
(OrderAgr, e), s.t.,

1. Order.Validate(OrderAgr, e) is true, and

2. e.type = EOFO, and

3. ∃s ∈ P, Order.ValidOpen(X, OrderAgr, s, ‘S’) = true, and

4. ∃n ∈ P, Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

5. SLinkOk
ATT (X, AttAgr{C,S}, e.ctime−∆order, e.ctime,∆att, ‘S’) = true, and

6. SLinkOk
ATT (X, AttAgr{S,C}, e.ctime−∆order, e.ctime,∆att, ‘C’) = true,

where AttAgr{C,S} = OrderAgr.((C.addr, C.vkatt), (S.addr, S.vkatt), (N.addr,N.vkatt)) and AttAgr{S,C} =
OrderAgr.((S.addr, S.vkatt), (C.addr, C.vkatt), (N.addr,N.vkatt)).

For forgery of an evidence of failed goods delivery, we define a predicate to capture a valid
EOFGD evidence, where, however, the goods issued by the application to server’s order layer
are always valid, and there was sustained communication between the notary and the client.

Definition 10 (Forging evidence of failed goods delivery SF−EOFGD
ORDER predicate) Predicate

SF−EOFGD
ORDER (X) is true for execution X ∈ X, if an adversary A outputs an order agreement and

evidence, (OrderAgr, e), s.t.,

1. Order.Validate(OrderAgr, e) is true, and

2. e.type = EOFGD, and

3. ∃c ∈ P, Order.ValidOpen(X, OrderAgr, c, ‘C’) = true, and

4. ∃n ∈ P, Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

5. SLinkOk
ATT (X, AttAgr{S,C}, e.ctime−∆order, e.ctime,∆att, ‘S’) = true,

2See Remark 1; if we are to consider OrderAgr.Ωgoods 6= 0, condition should be rewritten as
<c, ‘Order’, (OrderAgr, e.order)>/∈ X[e.ctime−∆order −OrderAgr.Ωgoods, e.ctime]
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where AttAgr{S,C} = OrderAgr.((S.addr, S.vkatt), (C.addr, C.vkatt), (N.addr,N.vkatt)).

For forgery of evidence of client order, we require a valid EOCO evidence, where, however,
no client order have been placed.

Definition 11 (Forging evidence of client order SF−EOCO
ORDER predicate) Predicate SF−EOCO

ORDER (X)
is true for execution X ∈ X, if an adversary A outputs an order agreement and evidence,
(OrderAgr, e), s.t.,

1. Order.Validate(OrderAgr, e) is true, and

2. e.type = EOCO, and

3. ∃c ∈ P, Order.ValidOpen(X, OrderAgr, c, ‘C’) = true, and

4. ∃n ∈ P, Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

5. <c, ‘Order’, (OrderAgr, e.order)>/∈ X[e.ctime].

We define additional predicates, to capture fairness of evidence exchange for both sides, i.e.,
if the client have got an evidence for the order, then the server has also obtained one, and vice
versa. We begin with server, and state that if the client presents an evidence of goods and
receipt, the server must have obtained an evidence of goods delivery or failed goods delivery
(see Figure 10 to recall that our protocol supports recovery in the EOFGD case, and the client
may still obtain EOGD with notary’s assistance).

Definition 12 (Server Evidence for Client Evidence SN-SEfCE
ORDER predicate) Predicate SN-SEfCE

ORDER (X)
is true for execution X ∈ X, if an adversary A outputs an order agreement and evidence,
(OrderAgr, ec), s.t.,

1. Order.Validate(OrderAgr, ec) is true, and

2. ec.type = EOGR, and

3. ∃s ∈ P, where Order.ValidOpen(X, OrderAgr, s, ‘S’) = true, and

4. ∃n ∈ P,Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

5. <s, ‘OrderResult’, (OrderAgr, es)>/∈ X[ec.ctime, ec.ctime+∆order], s.t., es.order = ec.order
and es.goods = ec.goods, and es.type = EOGD ∨ EOFGD,

6. SLinkOk
ATT (X, AttAgr{S,C}, e.ctime−∆order, e.ctime,∆att, ‘C’) = true,

where AttAgr{S,C} = OrderAgr.((S.addr, S.vkatt), (C.addr, C.vkatt), (N.addr,N.vkatt)).

Definition 13 (Client evidence for server evidence SN-CEfSE
ORDER predicate) Predicate SN-CEfSE

ORDER (X)
is true for execution X ∈ X, if an adversary A outputs an order agreement and evidence,
(OrderAgr, es), s.t.,

1. Order.Validate(OrderAgr, es) is true, and

2. es.type = EOGD, and

3. ∃c ∈ P, where Order.ValidOpen(X, OrderAgr, c, ‘C’) = true, and

4. ∃n ∈ P,Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

5. <c, ‘OrderResult’, (OrderAgr, ec)>/∈ X[es.ctime−∆order, es.ctime], s.t., ec.order = es.order
and ec.goods = es.goods, and ec.type = EOGR.
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We now combine the above predicates to define adversarial win specification for attestation
layer.

Definition 14 (Adversarial win SORDER.AW predicate) Let SORDER.AW (X) be order
layer adversarial win specification for execution X ∈ X,

SORDER.AW (X) ≡ SLINK
ATT (X) ∧ SINIT

ATT (X) ∧ ¬SATT.AW (X) ∧ (SI-OR
ORDER(X)∨

∨ SF−EOGR
ORDER (X) ∨ SF−EOGD

ORDER (X) ∨ SF−EOFO
ORDER (X)∨

∨ SF−EOFGD
ORDER (X) ∨ SF−EOCO

ORDER (X) ∨ SN-SEfCE
ORDER (X) ∨ SN-CEfSE

ORDER (X))

4.2.3 Liveness specifications

The first liveness predicate is to assert that a honest server, selling goods, will always provide
an evidence for upper layer.

Definition 15 (Server gets evidence SSE1

ORDER predicate) Predicate SSE1
ORDER(X) is true

for execution X ∈ X, if for every protocol machine processor s ∈ P s.t., for every event
ζ =<s, ‘VendRequestResult’, (OrderAgr, goods)>∈ X, where OrderAgr ∈ AGRORDER, that
was preceded by a matching ξ =<s, ‘VendRequest’, (OrderAgr, order)>∈ X event, s.t.,

1. ∃n ∈ P,Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

2. Order.ValidOpen(X, OrderAgr, s, ‘S’) = true, and

3. OrderAgr.V alidateTrade(order, t(ξ),⊥,⊥) = OrderOk,

there was an <s, ‘OrderResult’, (OrderAgr, e)>∈ X[t(ζ), t(ζ) + ∆order] event, s.t.,

1. e.goods = goods, and

2. e.type = EOGD ∨ EOFGD ∨ EOCO, and

3. Order.Validate(OrderAgr, e) = true.

The second liveness requirement we define is about sustained link to notary for honest
parties. The predicate is to assert that when client gets an evidence of goods and receipt, the
honest server acquires either evidence of goods delivery or evidence of failed goods delivery.
Notice that the predicate definition is quite similar to previous Definition 15.

Definition 16 (Server gets evidence LSE2

ORDER predicate) Predicate LSE2
ORDER(X) is true

for execution X ∈ X, if for every protocol machine processor s ∈ P, s.t., for every event
ζ =<s, ‘VendRequestResult’, (OrderAgr, goods)>∈ X, where OrderAgr ∈ AGRORDER, that
was preceded by a matching ξ =<s, ‘VendRequest’, (OrderAgr, order)>∈ X event, there was
an <s, ‘OrderResult’, (OrderAgr, e)>∈ X[t(ζ), t(ζ) + ∆order] event, s.t.,

1. e.goods = goods, and

2. e.type = EOGD ∨ EOFGD, and

whenever,

1. OrderAgr.V alidateTrade(order, t(ξ),⊥,⊥) = OrderOk, and

2. Order.ValidOpen(X, OrderAgr, s, ‘S’) = true, and

3. ∃n ∈ P,Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and
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4. SLinkOk
ATT (X, AttAgr{S,C}, t(ξ), t(ξ) + ∆order,∆att, ‘C’) = true,

where AttAgr{S,C} = OrderAgr.((S.addr, S.vkatt), (C.addr, C.vkatt), (N.addr,N.vkatt)).

In next predicate we assert, that a honest client, making an order, and having sustained
communication with a honest notary, will always provide evidence for the order, to the upper
layer.

Definition 17 (Client gets evidence LCE
ORDER predicate) Predicate LCE

ORDER(X) is true
for execution X ∈ X, if for every ξ =<c, ‘Order’, (OrderAgr, order)>∈ X, c ∈ P event, where
OrderAgr ∈ AGRORDER, the protocol ensures
ζ =<c, ‘OrderResult’, (OrderAgr, e)>∈ X[t(ξ), t(ξ) + ∆order], s.t.,

1. e.order = order, and

2. e.type = EOGR ∨ EOFO, and

3. Order.Validate(OrderAgr, e) = true,

whenever:

1. ∃n ∈ P,Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

2. ∃c ∈ P,Order.ValidOpen(X, OrderAgr, c, ‘C’) = true, and

3. SLinkOk
ATT (X, AttAgr{C,S}, t(ξ), t(ξ) + ∆order,∆att, ‘C’) = true,

where AttAgr{C,S} = OrderAgr.((C.addr, C.vkatt), (S.addr, S.vkatt), (N.addr,N.vkatt)),
and

4. SLinkOk
COMM(X, c, n, t(ξ) + ∆order, t(ξ), t(ξ) + ∆order,∆comm) = true

Remark 2 Since our implementation supports recovery over the regular communication chan-
nel, we have stated dependency on the communication channel link, in the above Definition 17.
It is conceivable, however, that order layer notary would be a different notary from the attesta-
tion layer notary (the case that we do not discuss, for brevity), and each order layer participant
would maintain pairwise attestation links with parties specified by the order layer agreement,
e.g., a client would maintain bi-directional attestation link with the server, and additional
bi-directional attestation link with the notary. In that case, the former predicate should be
rewritten to reflect aforementioned attestation links, and would contain no dependency on the
communication layer.

Our last requirement for sustained link and honest parties, is to assert that an order trans-
action successfully proceeds, goods are issued, and evidences are received for both parties,

Definition 18 (Connected client and server complete transaction LCS
ORDER predicate)

Predicate LCS
ORDER(X) is true for execution X ∈ X, if for every event

ξ =<c, ‘Order’, (OrderAgr, order)>∈ X, where c ∈ P, OrderAgr ∈ AGRORDER, AttAgr{C,S} =
OrderAgr.((C.addr, C.vkatt), (S.addr, S.vkatt), (N.addr,N.vkatt)), and
AttAgr{S,C} = OrderAgr.((S.addr, S.vkatt), (C.addr, C.vkatt), (N.addr,N.vkatt)), s.t.,

1. Order.ValidOpen(X, OrderAgr, c, ‘C’) = true, and

2. ∃s ∈ P,Order.ValidOpen(X, OrderAgr, s, ‘S’) = true, and

3. ∃n ∈ P,Order.ValidOpen(X, OrderAgr, n, ‘N’) = true, and

4. SLinkOk
ATT (X, AttAgr{C,S}, t(ξ), t(ξ) + ∆order,∆att, ‘C’) = true, and
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5. SLinkOk
ATT (X, AttAgr{C,S}, t(ξ), t(ξ) + ∆order,∆att, ‘S’) = true, and

6. SLinkOk
ATT (X, AttAgr{S,C}, t(ξ), t(ξ) + ∆order,∆att, ‘C’) = true, and

7. SLinkOk
ATT (X, AttAgr{S,C}, t(ξ), t(ξ) + ∆order,∆att, ‘S’) = true,

there are subsequent,

1. ζc =<c, ‘OrderResult’, (OrderAgr, ec)>∈ X[t(ξ), t(ξ) + ∆order], and

2. ζs =<s, ‘OrderResult’, (OrderAgr, es)>∈ X[t(ξ), t(ξ) + ∆order],

s.t.,

1. ec.type = EOGR, and ec.order = order, and

2. es.type = EOGD, and es.order = order, and es.goods = ec.goods.

5 Analysis

In the first theorem we show that our protocol preserves bounded initialization and role validity
predicates, if such preserved by lower layers.

Theorem 1 (Initialization) Let X ∈ X be an execution with an OL-protocol machine, then,

SINIT
COMM(X) ∧ SINIT

ATT (X) ⇒ SINIT
ORDER(X)

Proof 1 Straightforward from initialization code in Figure 4. The calculated ∆order value
deterministically depends on ∆comm and ∆att (lines 2–5), and success in opening a channel
directly depends on opening lower layer channels (lines 12, 22–26). �

Next, we are to show, for a layered configuration presented in Figure 13, that order layer
specifications are sustained if specifications on lower layers are upheld. We consider order layer
OL-protocol machine, as in Section 3.3, interacting with attestation and communication layers
via the respective interfaces. We consider an execution as won by the adversary, if the lower
layer specifications were upheld, however, the order layer specifications were not.

Theorem 2 (Correctness) An OL-protocol machine securely-prevents SORDER.AW (Defini-
tion 14) against poly-time adversaries, if implemented with signature scheme DS upholding
soundness and security specifications (Definitions 29–30) and on top of an attestation layer
which securely-prevents SATT.AW (Definition 45), against poly-time adversaries.

Discussion. In our protocol we rely on validity and security of the attestation layer evidences
and security of the signature scheme. So each time an order layer evidence (which is typically
a pair of attestation layer evidences) is shown to be incorrect, we are to show, that in that
execution either some attestation evidence was forged, or that the signature scheme used to
sign EOFO evidences is not secure, or as the last option, goods supplied by adversarial upper
layer do not match the order.

Proof 2 From Lemmas 1–7. �

Lemma 1 Let X = X(OL,A, R), be an execution where SATT.AW (X) = false, SINIT
ATT (X) =

true, then SI-OR
ORDER(X) = false.
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Lemma Proof 1 We will show a contradiction. Assume SI-OR
ORDER(X) = true which means

∃ p ∈ P, where <p, ‘OrderResult’, (OrderAgr, e)>∈ X, such that,
Order.ValidOpen(X, OrderAgr, p, ρ) = true for some role ρ ∈ {‘S’, ‘C’, ‘N’}, however
Order.Validate(OrderAgr, e) = false (Figure 12). The following are the only evidence types
which are output by the protocol and which could fail Order.Validate:

EOGR The only place where EOGR evidence is output is Figure 7 line 18. Beforehand
ValidateTrade is checked on line 17, therefore with invalid EOGR it must be the case, by
validation Figure 12, lines 20–24, that the attestation evidences are invalid, SI-Recv

ATT (X) ∨
SI-Send

ATT (X), which is a contradiction.

EOCO The only place where EOCO evidence is output is Figure 5 line 10. However, in
Figure 5, ValidateTrade is checked on line 2, therefore with invalid EOCO it must be the
case, by validation code, Figure 12, lines 35–37, that the corresponding EOO evidence
(received in Figure 5, line 1) is invalid, therefore SI-Recv

ATT (X), which is a contradiction.

EOGD,EOFGD Similarly, in Figure 7, ValidateTrade is checked on line 17, and in Figure 5,
on line 2, therefore goods (line 3) are valid, by Definition 6. Hence, as previously, with
invalid EOGD or EOFGD, it must be the case that the EOO/EOD/EOFS evidences are
invalid, SI-Recv

ATT (X) ∨ SI-Send
ATT (X), which is a contradiction.

EOFO There are three ways an EOFO is output and checked by validation code, Figure 12,
line 1, lines 12–15 and lines 16–19. In the first respective case, the EOFO is a notary
signed EOFO, however, in Figure 7, line 11, this notary signed EOFO is explicitly vali-
dated before being passed to upper layer, therefore it must be the later EOFO case, where
EOFO consists of lower layer evidences, where contradiction SI-Recv

ATT (X) ∨ SI-Send
ATT (X) fol-

lows similarly to previous considerations.

�

Lemma 2 Let X = X(OL,A, R), be an execution where SATT.AW (X) = false, SINIT
ATT (X) =

true, SLINK
ATT (X) = true, SDS .AW (X) = false and SSound

DS (X) = true, then SF−EOFO
ORDER (X) =

false.

Lemma Proof 2 We will show a contradiction. Let (OrderAgr, e) be an order agreement and
EOFO evidence output by A. EOFO could by obtained in three cases - when order message
fails with EOFS (Figure 7, line 4), when server does not provide goods (Figure 6, line 13),
or when notary signed EOFO is obtained (Figure 7 line 11). By Definition 9 of SF−EOFO

ORDER

both server and notary are validly open and no attestation failure indications took place; by
SLINK

ATT (X) = true, server had obtained an EOD for goods sent on line 4–6 of Figure 5, and client
could not obtain EOFS on line 4 of Figure 7. Thus, for the first two cases it must be the case
that SF−EOD

ATT (X) ∨ SF−EOFS
ATT (X) = true which is a contradiction. For the latter case of invalid

goods delivered, since server is validly open - the goods obtained on line 3 pass ValidateTrade by
Definition 3. Therefore it must be the case of SF−EOO

ATT (X) = true (on line 15 of Figure 7) which
is again a contradiction. For the (last) case of notary signed EOFO, SDS .AW (X) = true, is a
contradiction, since as previously discussed, server had obtained an EOD and notary is valid.
�

Lemma 3 Let X = X(OL,A, R), be an execution where SATT.AW (X) = false, SINIT
ATT (X) =

true, SLINK
ATT (X) = true, SDS .AW (X) = false and SSound

DS (X) = true, then SF−EOGR
ORDER (X) =

false.

Lemma Proof 3 We will show a contradiction. Let (OrderAgr, e) be the tuple output by A.
Since there was no <s, ‘VendRequestResult’, (OrderAgr, e.goods)>∈ X[e.ctime], and ∃s ∈ P,
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s.t., Order.ValidOpen(X, OrderAgr, s, ‘S’) = true, the code on line 4, Figure 5, was never
executed at time e.ctime. Since validity of e itself is assured by Lemma 1, it must be the case
of forged e.σ, SF−EOO

ATT (X) ∨ SF−EOFS
ATT (X), which is a contradiction. �

For the following Lemmas, we omit the proofs which follow along almost identical consid-
erations.

Lemma 4 Let X = X(OL,A, R), be an execution where SATT.AW (X) = false, SINIT
ATT (X) =

true, SLINK
ATT (X) = true, SDS .AW (X) = false and SSound

DS (X) = true, then SF−EOGD
ORDER (X) =

false.

Lemma 5 Let X = X(OL,A, R), be an execution where SATT.AW (X) = false, SINIT
ATT (X) =

true, SLINK
ATT (X) = true, SDS .AW (X) = false and SSound

DS (X) = true, then SF−EOCO
ORDER (X) =

false.

Lemma 6 Let X = X(OL,A, R), be an execution where SATT.AW (X) = false, SINIT
ATT (X) =

true, SLINK
ATT (X) = true, SDS .AW (X) = false and SSound

DS (X) = true, then SN-SEfCE
ORDER (X) =

false.

Lemma 7 Let X = X(OL,A, R), be an execution where SATT.AW (X) = false, SINIT
ATT (X) =

true, SLINK
ATT (X) = true, SDS .AW (X) = false and SSound

DS (X) = true, then SN-CEfSE
ORDER (X) =

false.

Theorem 3 (Liveness 1) Let X ∈ X be an execution with an OL-protocol machine, where
SATT.AW (X) = false, SDS .AW (X) = false and SSound

DS (X) = true then,

SINIT
COMM(X) ∧ SLINK

ATT (X) ∧ SINIT
ATT (X) ⇒ SSE1

ORDER(X) ∧ LSE2
ORDER(X) ∧ LCS

ORDER(X)

Discussion. In a given execution, when a honest server gets an order, it is always able to
provide evidence to upper layer, at least the EOCO type evidence, as EOCO just contains the
order EOO. Moreover, while the server is always able to provide at least EOCO for a placed
order, a sustained link to a honest notary is a promise that at least EOFS for sent goods
would be obtained (in the case EOD was not). Therefore, the server would be able to assemble
EOGD or EOFGD, from the order EOO and the goods evidence, as shown in the protocol
(Figure 5). And in the case when all links are sustained, honest client and server would be able
to exchange order and goods, and provide relevant evidences for upper layer, as attestation
layer is to provide evidences for all messages sent.

Proof 3 For each of the following predicates,

SSE1
ORDER(X) Assume that in execution X ∈ X, there was an order agreement OrderAgr ∈

AGRORDER, s.t., ∃s ∈ P, Order.ValidOpen(X, OrderAgr, s, ‘S’) = true and there was an
event <s, ‘VendRequestResult’, (OrderAgr, goods)>∈ X, that was preceded by a match-
ing ξ =<s, ‘VendRequest’, (OrderAgr, order)>∈ X event, with a valid order, i.e.,
OrderAgr.V alidateTrade(order, t(ξ),⊥,⊥) = OrderOk. By Order.ValidOpen(X, OrderAgr, s, ‘S’) =
true all server issued goods are valid, and by Figure 5, lines 4–10, all path lead to ‘Or-
derResult’, with an evidence e where e.type = EOGD ∨ EOFGD ∨ EOCO. From
Theorem 2, SI-OR

ORDER(X) = false, therefore Order.Validate(OrderAgr, e) = true.

LSE2
ORDER(X) Same as previous SSE1

ORDER(X), with the restriction of a sustained link between a
notary and a server. Therefore, by SLINK

ATT (X) = true, in Figure 5, server code, ‘Order-
Result’ could only be output on line 6 or line 8.
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LCS
ORDER(X) Assume that in execution X ∈ X, there was an order agreement OrderAgr ∈

AGRORDER, s.t., client, server and notary are validly open, and there were no attestation
failures, for the respective bi-directional attestation agreements, as specified in Defini-
tion 18. Since no attestation failures were indicated, in follows from SLINK

ATT (X) = true,
that EOD evidences were obtained for all messages, within ∆att, from the moment of
sending the message. Therefore, for client, Figure 7, after an ‘Order’ event, line 3 was
executed, followed by line 5, and as the result, for server, Figure 5, line 1 event was
handled, within ∆att, followed by line 4, and consequently followed by line 6, within ad-
ditional ∆att. The execution of former line 4, at Figure 5, triggers line 13 event at the
client, Figure 7, where the check on line 17 must succeed, since server is honest and validly
open. Therefore, for the client, ‘OrderResult’ with an evidence ec, was executed, with
ec.type = EOGR, and for the server, ‘OrderResult’ with an evidence es was executed,
with es.type = EOGD.

�

Theorem 4 (Liveness 2) Let X ∈ X be an execution with an OL-protocol machine, where
SATT.AW (X) = false, SDS .AW (X) = false and SSound

DS (X) = true, then,

SINIT
COMM(X) ∧ SLINK

COMM ∧ SLINK
ATT (X) ∧ SINIT

ATT (X) ⇒ LCE
ORDER(X)

Discussion. In a given execution, a honest client which did maintain attestation and communi-
cation link to honest notary would either receive EOFS for submitting an order, receive notary
signed EOFO if goods were not supplied, or just receive the goods from the server (while having
EOD for the order). In each case, it would be able to assemble an evidence for upper layer, as
shown in the protocol (Figure 7).

Proof 4 Assume that in execution X ∈ X, there was an order agreement OrderAgr ∈
AGRORDER, s.t., ∃c ∈ P,
Order.ValidOpen(X, OrderAgr, c, ‘C’) = true and ∃n ∈ P, Order.ValidOpen(X, OrderAgr, n, ‘N’) =
true with no attestation and communication failures between the two, as specified in Defini-
tion 17. Since the placed order is valid, by definition, and SLINK

ATT (X) = true - from Figure 7,
lines 4–5 would be executed. In the case line 4 was executed, ‘OrderResult’ did take place,
with an evidence e where e.type = EOFO. From Theorem 2, SI-OR

ORDER(X) = false, therefore
Order.Validate(OrderAgr, e) = true. Otherwise, line 5 was executed and timerserver was set.
Since the former timer was set, either line 13 or line 7 was executed. In the case line 13 was
executed, either ‘OrderResult’ happened with an evidence e where e.type = EOGR ∨ EOFO
or SI-Recv

ATT (X) = false (which is a contradiction), and from Theorem 2, SI-OR
ORDER(X) = false,

therefore Order.Validate(OrderAgr, e) = true. In the other case, line 7 was executed and since
SLINK

COMM(X) = true - Figure 6 line 9 was executed within ∆comm, for the notary. Similarly,
within 2 ·∆comm either line 1,5 or line 13 would be executed for the notary. The case of line 1 is
ruled out by SF−EOD

ATT (X), Theorem 2 (EOD forgery), therefore within additional ∆comm, Fig-
ure 7 line 14 or line 10 would be executed, where again all code path lead to ‘OrderResult’ with
an evidence e where e.type = EOGR ∨ EOFO; and since SI-OR

ORDER(X) = false, by Theorem 2,
Order.Validate(OrderAgr, e) = true. �

6 Related Work

We distinguish between two basic approaches to the problem of disputes and cheating in e-
commerce: prevention of disputes, typically by fair exchange, vs. dispute resolution, typically
by evidences (‘non-repudiation’). In many cases dispute prevention (fair exchange) is not a
viable or sufficient solution. In particular, failure (refusal) to participate by the server, can
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result in severe damages to the client. For example, consider a customer ordering payment by
her bank, e.g. ordering of Certified Payment Order. If the bank simply ignores such requests,
it effectively takes over the customer’s deposited funds. Similarly, consider a broker that fails
to execute an order, or a supplier failing to provide goods as per agreed-upon schedule.

In the field of fair exchange we should mention works of Nenadic and Zhang [26], Asokan,
Shoup and Waidner [3] for fair exchange of digital signatures (over digital items) with possible
adaption for confidentiality of exchanged signatures; and Garay and Pomerance [13] for timed,
gradual exchange. For an overview of various levels of trusted third party involvement see
Zhou,Deng and Bao [33], and for a survey of non-repudiation protocols, see Kremer, Markowitch
and Zhou [23, 32].

Unlike fair exchange, with non-repudiation, parties receive evidences regarding exchange
properties, such as exchange parties identities, keys involved in the transactions, the time of
the exchanged messages, et cetera. The evidences could be validated by third parties, at later
time. Non-repudiation was also standardized by ISO [20, 21, 22]. However, existing works on
non-repudiation, including the standards, do not provide well-defined specifications, interfaces
or proofs of security. Furthermore, these works do not allow the application to define the
required properties of orders and goods (as with our ‘trade validation function’). Finally, the
works do not define an (automated) dispute resolution process.

To our knowledge, much less attention was given to automated, provably-secure dispute
resolution, compared to just having a collection of evidences without a precise process for using
them. There are several, widely deployed systems for “orders”, such as IFX [11], FIX [9],
OFX [8], SWIFT [30], ebXML [10]. In such systems, dispute resolution is manual, and depends
on participant records and goodwill, or on a trusted arbiter.

Asokan, Herreweghen and Steiner [2] have initiated the discussion of precise dispute res-
olution with an architecture to support formalization, via a dispute language, and resolution
of claims. Tang, Fu and Veijalainen [31] have presented arbitrable e-commerce transaction,
via a benefit sets which are for disputing parties to prove in case of a dispute, and Ray,Ray
and Narasimhamurthy [29] have presented a payment protocol with a promise of automatic
dispute resolution, which involves a trusted party as goods advertising proxy between payer
and payee; however dispute resolution in [29] actually involves the trusted party completing
the transaction (e.g., sending the product to customer). Similarly, the protocol by Markowitch
and Saeednia [25] requires participation of both disputing parties to resolve the dispute, by ex-
ecuting abort protocol at the notary, and involves the trusted party in the process of signature
recovery.

Herreweghen [15] discussed collecting SET3 signatures towards proving SET transaction
properties to an external verifier. In the protocol by Nenadic et. al. [27] disputes are resolved
by notary recovering the digital signature over e-goods (either online or offline), where the
goods are assumed to be pre-certified for correctness and there is no notion of bad order by a
client.

Finally, all mentioned works [2, 31, 29, 27, 25] do not handle failed or invalid submission
of orders or communication failures. In addition, in these works there is no notion of incorrect
order or goods, and agreements which govern the bound of goods delivery or issual time and
matching goods to orders. Thus we believe this makes the former protocols less suitable as
underlying infrastructure for secure e-commerce services. Furthermore, to the best of our
knowledge, in past works, protocol-independent specifications for e-commerce layers have never
appeared.

We should also mention SEMPER [24], a layered security platform, supports both customer-
to-business and business-to-business trade and relies on the accountability of digital signatures.
Dispute resolution is supported in SEMPER by means of exporting transaction record to an

3SET is a standard adopted by MasterCard and Visa, based on iKP Bellare et al. [4], family of protocols for
secure credit-card payments. The SET standard seems to have been abandoned.
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arbiter running its own instance of SEMPER and examining digital records of the disputing
parties, along with parties evidences, in the form of digital signature. Notable feature of
SEMPER’s legal framework is the notion of electronic commerce agreements, according to
which (manual) dispute resolution takes place.

Cox, Tygar and Sirbu’s NetBill [6] is an online distributed transactional customer-to-
merchant system, which facilitates trade by acting as a trusted intermediate. NetBill does
not feature order-to-goods correspondence automatic resolution, and dispute resolution in Net-
Bill is a manual process where the customer presents his signed order and a signed agreement
by the merchant for the usage of the security context (e.g., cryptographic checksums and de-
cryption keys), to a NetBill arbiter. Additional types of disputes involve transaction status
disputes (e.g., claim that transaction was aborted, but customer was charged anyway) where
the parties must present NetBill signed transaction receipts to an arbiter.

7 Conclusions

We have introduced a simple yet versatile trade protocol, with arbitrable transactions and con-
crete, well-defined specifications, which allow provable security and resolution of disputes with
arbitrary validation of goods to order fitness in presence of malicious faults or communication
failures. An interested reader may refer to [18] regarding how to use the protocol for further
construction of final and conditional final payments between principals, or how to conduct trade
when a PSP is a trusted party. Our design is practical, layered, and attains automatic dis-
pute resolution, based on precise agreements and relatively simple cryptographic constructions
assumed.
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A Execution model; Attestation and Communication spec-
ifications

A.1 Protocol machines , interfaces and executions

We begin by defining protocol machines. Protocol machines are state machines that accepts input on
one of few interface, and produces output on one or more interfaces. The transition function maps the
input, current state and random bits, to a new state and outputs on the different interfaces.

Definition 19 (Protocol machine) A protocol machine π is a tuple <π.S, π.init, π.IIN , π.IOUT , π.δ>
where:

1. π.S is a set of states,

2. π.init ∈ π.S is an initial state,

3. π.IIN is a set of input interface identifiers,

4. π.IOUT is a set of output interface identifiers,

5. π.δ : π.IN → π.OUT is a transition function, with:

• Input domain π.IN = π.S × π.IIN × {0, 1}∗ × {0, 1}∗ (current state, input interface, input
value, random bits).

• Output domain π.OUT = π.S ×
Q

i∈π.IOUT
{0, 1}∗. The outputs consist of a new state,

denoted π.δ.S ∈ π.S, and output values π.δ.ov(ι) ∈ {0, 1}∗ for each interface ι ∈ π.IOUT .

We consider the case of analysis of single protocol executions. Single protocol executions result
from the interaction of individual protocol machines , possibly spanning multiple processors, with an
adversary representing the rest of the world. A single protocol execution is defined by a sequence of
rounds, where each round consists of one invocation of the adversary A, and then one invocation of the
protocol π. We model the adversary A as a function from the sequence of all outputs of the protocol
so far, to the next input to the protocol.

We consider multiple instances of the protocol, each running with its own state, to represent
multiple processors running the protocol. At each round i, the adversary A invokes a specific instance
(processor) pi of the protocol.

Definition 20 (Single protocol execution) Let P be a set of protocol machine processors iden-
tities. An event of protocol π is a tuple ξ =<p, ι, iv, ov[ι′ ∈ π.IOUT ]>, where p ∈ P is processor
identity, ι ∈ π.IIN is input interface, iv ∈ {0, 1}∗ is input value, and ov[ι′] ∈ {0, 1}∗, for each interface
ι′ ∈ π.IOUT , are output values.

Let an adversary A for π be a function from finite sequences of events of π, denoted {ξi}i=1,...,t, to
triples <A.p,A.ι,A.iv>, where A.p ∈ P∪⊥ (adversary selected processor/instance), A.ι ∈ Γ(A.p).IIN

(adversary selected input interface) and A.iv ∈ {0, 1}∗ (adversary selected input value).
Given protocol machine π, adversary A for π and sequence (of random bits) R = {Ri∈N ∈ {0, 1}∗},

the single protocol execution of π,A and R, denoted X(π,A, R), is the view {ξi} of π resulting from
the following process:

For all p ∈ P, let s[p] = π.init;

For i = 0, 1, 2, . . . do:

1. <p, ι, iv>:= A({ξj}0<j<i);

2. If p = ⊥ then: ξi =<⊥,⊥,⊥,⊥> and break loop;

3. <s[p], ov[ι ∈ π.IOUT ]>:= π.δ(s[p], ι, iv, Ri);

4. ξi =<p, ι, iv, ov[ι ∈ π.IOUT ]>;

Remark 3 With single protocol executions all protocol machine instances have all their interfaces
connected to the adversary, and thus interact with each other only through the adversary. This simple
case is of importance when analyzing multiple interacting instances of a single protocol (e.g., TCP [28],
SSL/TLS [12, 7, 5]). When analyzing such protocol we typically “plug” it with an adversarial upper
layer and adversarial lower (typically, communication) layer.
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We use X to denote the set of single protocol executions (of any π,A and R).

Definition 21 (Finite execution) A single protocol execution X is finite if ∃ k ∈ N such that,
X = {ξi}i=0,...,k and ξk =<⊥,⊥,⊥,⊥>.

A.2 Correctness specifications

We now proceed to define adversarial win (correctness) specifications S for protocol machines . First
we define deterministic correctness specification, for executions of a single protocol.

Definition 22 (Deterministic adversarial win S.AW predicate) Let S.AW : X → {true, false}
be a predicate over executions. Protocol π securely-prevents S.AW against set of adversaries A, if for
A ∈ A and every sequence R of random inputs, S.AW (X(π,A, R)) = false.

Deterministic specifications are useful in benign settings, e.g. for proving tolerance to (non-
malicious) failures. However, deterministic correctness specifications are hard to satisfy, against ar-
bitrary (byzantine, malicious) adversaries. Byzantine adversaries usually have some probability of
winning, which depends on the security parameter. We now extend our definition of specifications to
allow for (limited) probability of winning by the adversary.

We now generalize the concept of specification, and allow the adversary to ‘win’ with some limited
probability, which we denote S.ε. The adversary’s winning probability may depend on the resources
available to the implementation, identified by the security parameter k. For example, the security
parameter k for a message authentication code scheme may define the length of the output tag; the
adversary may ‘win’ by simply guessing a correct code, with probability 2−k. To simplify notations,
we assume that the security parameter is an additional input parameter to the execution (and to both
adversary and protocol). Namely, we denote execution of protocol π with adversary A, randomness R
and security parameters k, by X(π,A, R, k).

Definition 23 (Probabilistic adversarial win S.AW predicate) Let S.AW : X → {true, false}
be a predicate over executions. Protocol π securely-prevents S.AW against poly-time adversaries if for
every probabilistic polynomial time function A and every polynomial ε : N → (0, 1], there is a security
parameter k0 ∈ 1∗, such that for every k ≥ k0 holds:

ProbR={Ri∈R{0,1}∗}[S.AW (X(π,A, R, k))] ≤ ε(k). (1)

We also generalize the definition, to support ‘concrete security’, where the adversary’s winning
probability may depend on the resources available to the adversary, e.g. computing time. The speci-
fications include a partially-ordered set of resources S.R, as well as a function S.AR : X → S.R, such
that S.AR(X) represent the resources used by the adversary in execution X ∈ X.

Definition 24 (Concrete security correctness) A single protocol correctness specification S is a
tuple
< S.AW,S.R,S.K,S.AR,S.ε,S.A > where:

S.AW : X → {true,false} is a predicate (‘Adversary Wins’) over executions,

S.R is a partially-ordered set (of resources),

S.AR : X → S.R maps executions to ‘adversary resources’,

S.K is a partially-ordered set (of security parameters),

S.ε : S.R× S.K → (0, 1] is the ‘maximal error probability’ function,

S.A ⊆ A is a set of adversary functions.

Protocol machine π satisfies S, if for every A ∈ S.A and every rmax ∈ S.R, there is a security
parameter k0 ∈ S.K, such that for every k ≥ k0 holds:

ProbR={Ri∈R{0,1}∗}[S.AW (x) ∧ S.AR(x) ≤ rmax|x = X(π,A, R, k)] ≤ S.ε(rmax, k). (2)
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A.3 Modeling time and synchronization

Our definitions so far were oblivious to issues of time and synchronization. Since these issues are critical
aspects of distributed systems and models, we now explain how to deal with these issues. Specifically,
we focus on modeling (partially) synchronous systems.

In a synchronous system, the protocol has access to (perfectly or partially) synchronized clocks.
We model this by assuming that the input from the adversary includes a designated ‘time’ field, e.g.
iv.time, containing the (perfectly or partially) synchronized time. We use the shorthand notation t(ξ)
to refer to the time of event ξ in an execution, i.e. t(ξ) = ξ.iv.time.

We can also use ‘time’ values on specific output interfaces, e.g. to request ‘wake-up’ clock service
as required to implement time-out mechanisms.

Then, we use these values of ‘time’ fields as part of the specifications, specifically as part of the
S.AW predicates. In particular, when using perfectly synchronized clocks, we require the ‘time’ values
to be monotonously increasing, and ‘wake-up’ calls to occur in precisely the requested time.

To model specific or bounded communication delays, we can add appropriate restrictions on the
S.AW predicate. Namely, ‘adversary wins’ only if it causes a ‘bad execution’, while conforming to the
delay bounds.

We use additional notation of ξ ∈ X[t0, t1], to denote that event’s occurrence time, t(ξ), was in the
interval [t0, t1] ⊂ R, or just ξ ∈ X[t0] to denote specific, t(ξ) = t0, event time.

A.4 Layered Specifications

For simplicity, we provide specifications and perform analysis of a single protocol at a time. How-
ever, clearly, real systems involve many protocols, often interacting to provide a complete service -
most typically, in a layered architecture, where lower-layer protocols provide services to higher-layer
protocols.

Consider a simple, and typical, case of modular design of a system using layered protocol architec-
ture. In this case, we can often take advantage of the interfaces defined for each protocol, to analyze
the operation of each protocol separately and draw conclusions on the use of them in a layered manner.

Specifically, consider two protocols πL and πU , interacting (only) via a shared interface ι ∈ πL.I ∩
πH .I. Suppose the adversary win predicates of πL, πH are of the following ‘layered’ form: SH(X) =
Sι(X) ⇒ S ′H(X), SL(X) = S ′L(X) ⇒ Sι(X), where S ′L(X),S ′H(X) do not depend on events on
interface ι. In a separate paper [17] we plan to prove that in a composite execution, where πL and πH

are connected (only) via ι, it holds S ′L(X) ⇒ S ′H(X). Though in this manuscript, we consider single
layer only (and thus do not consider composite executions), former considerations motivate defining
specifications of each layer in this manner, i.e. in the form SL.AW (X) = S ′L(X) 6⇒ Sι, where S ′L(X)
does not depend on events on the ‘higher layer‘ interface ι.

A.5 Communication layer specifications

First we define weak reliability specification for the communication (transport) layer. We require
protocol machine processors to be connected, with respect to a given communication interval, where
by connected we mean no communication failures are reported in the given interval and sent messages
are acknowledged.

Definition 25 (No communication failures indication SLinkOk
COMM predicate) Predicate

SLinkOk
COMM(X, p0, p1, t0, t1, ∆) is true for execution X ∈ X, protocol machine processors p0, p1 ∈ P and time

interval and delay bound t0, t1, ∆ ∈ R, if for every event <p0, ‘Comm.Send’, (p1, msg)>∈ X[t0, t1 −
∆] the result <p0, ‘Comm.SendResult’, (p1, msg, res)>∈ X[t1 − ∆, t1] is with output value res 6=
CommFail.

We now make our only requirement (specification) from the communication layer. We require that
if link is sustained, between protocol machine processors, see previous Definition 25, then sent messages
are received (but not vice versa).

Definition 26 (Communication layer delivery takes place SLINK
COMM predicate) Predicate SLINK

COMM(X)
is true for execution X ∈ X, if ∀ p0, p1 ∈ P, t0, t1, ∆ ∈ R :
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SLinkOk
COMM(X, p0, p1, t0, t1, ∆) = true⇒ for every ζ =<p0, ‘Comm.Send’, (p1, m)>∈ X[t0, t1−∆], there ex-

ists ξ =<p1, ‘Comm.Receive’, (p0, m)>∈ X[t(ζ), t(ζ)+∆], and (in the other direction) SLinkOk
COMM(X, p0, p1, t0, t1, ∆) =

true⇒ for every ζ′ =<p1, ‘Comm.Send’, (p0, m)>∈ X[t0, t1 −∆], there exists
ξ′ =<p0, ‘Comm.Receive’, (p1, m)>∈ X[t(ζ′), t(ζ′) + ∆].

For simplicity we, next define a global, uniform ∆comm bound on delays shared by all initialized
machines.

Definition 27 (Uniform and bounded initialization SINIT
COMM(X) predicate) Predicate SINIT

COMM(X)
is true for execution X ∈ X, if ∃∆comm ∈ R s.t., for every event
<p0, ‘Comm.Init’,⊥, (addr, ∆)>∈ X : ∆ = ∆comm, where p0 ∈ P, addr ∈ {0, 1}∗. <p0, ‘Comm.Init’, addr>∈
X there is a following output event <p0, ‘Comm.InitResult’, ∆>∈ X : ∆ = ∆comm, where p0 ∈ P,
addr ∈ {0, 1}∗.

A.6 Signature Scheme

We adapt standard signature scheme definition [14], and specify signature scheme’s interface.

Definition 28 (Signature scheme) A digital signature scheme DS=(DS.π,DS.Verify) over a mes-
sage space {0, 1}∗, is a protocol DS.π, which consists of four interfaces DS.π.IIN = (DS.Gen,DS.Sign),
DS.π.IOUT = (DS.GenResult,DS.SignResult), and DS.Verify poly-time algorithm, such that,

1. The (randomized) key generation protocol interface Gen takes an unary security parameter k as
an input, at returns a public validation key vk.

2. The signing protocol interface Sign takes as an input a message m ∈ {0, 1}∗ and returns a pair
(m, σ) where σ is the signature.

3. The verification algorithm Verify takes as an input (vk, m, σ) tuple, where m is a message, σ is
a signature and vk is a validation key, and returns a value from {true,false}.

The following predicate is signature scheme’s basic soundness requirement, that specifies that every
signed message should pass verification.

Definition 29 (Sound signature scheme) Predicate SSound
DS (X) is true for execution X ∈ X of pro-

tocolDS.π if for any processor v ∈ P, message and signature m, σ ∈ {0, 1}∗, and event ζ =<v, ‘Gen’, (1k, r), vk>,
k ∈ N, r ∈ R, for subsequent ξ =<v, ‘Sign’, m, σ>∈ X, where t(ξ) > t(ζ), Verify(vk, m, σ) = true.

Next, we present an existential-forgery specification of signature scheme security. Intuitively, there
is an existential forgery with respect to signature scheme’s interface, if there exists a validation key
output by a party and a valid signature on a message that party was never requested to sign.

Definition 30 (Signature scheme’s security) Predicate SDS .AW (X(DS.π,A, R, k)) is true for
execution X ∈ X of protocol DS.π with adversary A, randomness R and security parameters k if
for any message and signature m, σ ∈ {0, 1}∗, adversary A outputs validation key, message and signa-
ture tuple (vk, m, σ), such that,

1. Verify(vk, m, σ) = true (respective signature passes verification with validation key), and

2. Let <v, ‘Gen’, (1k, r), vk> 6∈ X, (no key generation event which had output respective vk valida-
tion key, for v party),

3. <v, ‘Sign’, m, σ>/∈ X (party never signed the respective message m),

where length of r, vk, m and σ is bounded by kc for some constant c > 0.

A.7 Attestation layer specifications

A.7.1 Initialization specifications

Initialized attestation protocol machines are protocol machines where the interface identifier ‘Att.Init’
(see Table 3) was invoked. Furthermore, protocol machines which has valid specified role in the
execution are protocol machines where the attestation channel was opened using aforementioned role
with an attestation agreement that includes machine’s correct identity. However, we first assume, for
simplicity, that all protocol machines, use the same uniform bound ∆att on delays.
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Definition 31 (Uniform Initialization SINIT−U
ATT predicate) Predicate SINIT−U

ATT (X) is true for ex-
ecution X ∈ X, if ∃∆att ∈ R, s.t., for all p ∈ P, <p, ‘Att.InitResult’, (vk, ∆)>∈ X : ∆ = ∆att, where
vk ∈ {0, 1}∗.

Next we define properly initialized protocol machine processor, as a processor for which an execution
contains initialization events, and successful initialization result, after a bounded time, where the
bound, is for simplicity, the previous ∆att delay bound.

Definition 32 (Bounded initialization SINIT−B
ATT predicate) Predicate SINIT−B

ATT (X) is true for ex-
ecution X ∈ X, if for every event

ξ =< p, ‘Att.Init’, (1k, r, addr) >∈ X,

there is an event
< p, ‘Att.InitResult’, (vk, ∆) >∈ X[t(ξ), t(ξ) + ∆att],

where p ∈ P and vk, addr, r ∈ {0, 1}∗ and ∆ ∈ R. In that case we also say that in execution X, protocol
machine p is properly initialized for attestation with address addr and validation key vk.

Next, denote by AGRATT the domain of possible attestation agreements. We define that protocol
machine processor has opened a valid attestation channel if it was properly initialized, and had returned
successful channel open indication when was supplied an attestation agreement which includes correct
processor’s identity (generated at the initialization).

Definition 33 (Valid attestation role Att.ValidOpen predicate) Let X ∈ X be an execution,
AttAgr ∈ AGRATT be an attestation agreement, p ∈ P a protocol machine processor and ρ ∈
{‘S’, ‘C’, ‘N’} processor’s role. Predicate Att.ValidOpen(X, AttAgr, p, ρ) is true if p is properly ini-
tialized for attestation with address addr ∈ {0, 1}∗, validation key vk ∈ {0, 1}∗, and for every event

ξ =< p, ‘Att.OpenChannel’, (AttAgr, ρ) >∈ X,

where AttAgr.ρ = (vk, addr) (correct identity was used), there was an event

< p, ‘Att.OpenChannelResult’, true >∈ X[t(ξ), t(ξ) + ∆att]

Remark 4 For simplicity, we do not allow adversarial ‘break-in’ in the middle of an execution. Thus
protocol machine processors which had opened a valid attestation channel (Definition 33) are not
adversarial with respect to that channel.

We next define an additional liveness predicate, to bound the time of opening an attestation channel,

Definition 34 (Bounded open channel SBOC
ATT predicate) Predicate SBOC

ATT (X) is true for execu-
tion X ∈ X, if for every event

ξ =< p, ‘Att.OpenChannel’, (AttAgr, ρ) >∈ X,

there was an event

< p, ‘Att.OpenChannelResult’, res >∈ X[t(ξ), t(ξ) + ∆att],

where p ∈ P, AttAgr ∈ AGRATT, res ∈ {0, 1}∗, ρ ∈ {‘S’, ‘C’, ‘N’}.

The next predicate combines previous initialization predicates.

Definition 35 (Initialization SINIT
ATT predicate) For execution X ∈ X,

SINIT
ATT (X) ≡ SINIT−B

ATT (X) ∧ SINIT−U
ATT (X) ∧ SBOC

ATT (X)
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A.7.2 Liveness specifications

Similarly to communication layer, we define indication for non-failing channels,

Definition 36 (No attestation failures indication SLinkOk
ATT predicate) Predicate

SLinkOk
ATT (X, AttAgr, t0, t1, ∆, ‘C’) is true (‘no attestation failures for client role’) for execution X ∈ X,

attestation agreement AttAgr ∈ AGRATT, interval t0, t1 ∈ R, and delay bound ∆ ∈ R if there were
no events <c, ‘Att.SendResult’, (AttAgr, e)>∈ X[t0, t1 + ∆] for c ∈ P : c = AttAgr.C, with failure
indication, i.e., e = CommFail.

Similarly, predicate SLinkOk
ATT (X, AttAgr, t0, t1, ‘S’) is true (‘no attestation failures for server role’)

if there were no events <s, ‘Att.Receive’, (AttAgr, e)>∈ X[t0, t1 + ∆] for s ∈ P : s = AttAgr.S, with
failure indication, i.e., e = CommFail.

Having defined indication for connected link we now define a specification regarding the meaning of
a connected link. Since attestation channel involves three parties, we define pairwise specifications. The
first predicate asserts, if honest client and notary are connected then client always receives evidences
(EOD or EOFS) for messages it sends.

Definition 37 (No attestation failures between notary and client SLINK:C,N
ATT predicate) Predicate

SLINK:C,N
ATT (X, AttAgr, t0, t1, ∆) is true for execution X ∈ X, attestation agreement AttAgr ∈ AGRATT,

time interval t0, t1 ∈ R and delay bound ∆ ∈ R, if for c = AttAgr.C, and every msg ∈ {0, 1}∗ and
ζ =<c, ‘Att.Send’, (AttAgr, msg)>∈ X[t0, t1] there is a corresponding event <c, ‘Att.SendResult’, (AttAgr, e)>∈
X[t(ζ), t(ζ) + ∆] with non-failing result, i.e., e.type ∈ {EOD, EOFS} and Att.Validate(AttAgr, e) =
true.

Next predicate asserts that for a connected attestation link for a server an EOFS could not be
obtained4 (for messages sent to that server).

Definition 38 (No attestation failures between notary and server SLINK:S,N
ATT predicate) Predicate

SLINK:S,N
ATT (X, AttAgr, t0, t1, ∆) is true for execution X ∈ X, attestation agreement AttAgr ∈ AGRATT,

time interval t0, t1 ∈ R and delay bound ∆ ∈ R, if there does not exists evidence e output by adversary
A, where

1. Att.Validate(AttAgr, e) is true, and

2. e.type = EOFS, and

3. e.ctime ∈ [t0, t1 + ∆]

The following predicate combines the previous two predicates, with attestation failure indication,
and asserts that if no failure was indicated (by an adversary) then there are evidence for sent messages,
and if pairwise links are sustained, sent messages are delivered.

Definition 39 (Attestation layer link liveness SLINK
ATT predicate) Predicate SLINK

ATT is true for ex-
ecution X ∈ X, if ∀AttAgr ∈ AGRATT, t0, t1, ∆ ∈ R :

Case I 1. c ∈ P, Att.ValidOpen(X, AttAgr, c, ‘C’) is true, and

2. n ∈ P, Att.ValidOpen(X, AttAgr, n, ‘N’) is true, and

3. SLinkOk
ATT (X, AttAgr, t0, t1, ∆, ‘C’) = true⇒ SLINK:C,N

ATT (X, AttAgr, t0, t1, ∆)

Case II 1. s ∈ P, Att.ValidOpen(X, AttAgr, s, ‘S’) is true, and

2. n ∈ P, Att.ValidOpen(X, AttAgr, n, ‘N’) is true, and

3. SLinkOk
ATT (X, AttAgr, t0, t1, ∆, ‘S’) = true⇒ SLINK:S,N

ATT (X, AttAgr, t0, t1, ∆)

Case III 1. c ∈ P, Att.ValidOpen(X, AttAgr, c, ‘C’) is true, and

2. s ∈ P, Att.ValidOpen(X, AttAgr, s, ‘S’) is true, and

3. n ∈ P, Att.ValidOpen(X, AttAgr, n, ‘N’) is true, and

4. SLinkOk
ATT (X, AttAgr, t0, t1, ∆, ‘C’) ∧ SLinkOk

ATT (X, AttAgr, t0, t1, ∆, ‘S’) ⇒
4Also, see Definition 44.
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(a) SLINK:S,N
ATT (X, AttAgr, t0, t1, ∆) = true, and

(b) SLINK:C,N
ATT (X, AttAgr, t0, t1, ∆) = true, and

(c) for every ζ =<c, ‘Att.Send’, (AttAgr, msg)>∈ X[t0, t1] there is
<s, ‘Att.Receive’, (AttAgr, e)>∈ X[t(ζ), t(ζ) + ∆], where e.type = EOO and e.msg =
msg.

Remark 5 We are not to consider cases when the notary was not in a valid role. For example, previous
Definition 39 Case III, could be redefined considering honest client and server only, having a sustained
link. In that case, we could expect the (honest) parties to fairly exchange EOO for EOD, however, such
requirement would limit and force an optimistic implementation of attestation layer, where parties first
try to obtain evidences for messages directly from one another.

Remark 6 Notice that from joining properties 4a–4b, it follows, by previous Definitions 37–38, that
not only a sent message is delivered with an EOO, but that the client would obtain an EOD for the
message: <c, ‘Att.SendResult’, (AttAgr, e)>∈ X[t(ζ), t(ζ) + ∆], where e.msg = msg and e.type =
EOD.

A.7.3 Correctness specifications

We begin by defining two predicates to identify delivery of invalid evidences to upper layer.

Definition 40 (Invalid receive SI-Recv
ATT predicate) Predicate SI-Recv

ATT (X) is true for execution X ∈
X, if there exists processor p ∈ P, attestation agreement AttAgr ∈ AGRATT, and event <p, ‘Att.Receive’, (AttAgr, e)>∈
X, s.t.,

Att.ValidOpen(X, AttAgr, p, ‘S’) = true ∧ Att.Validate(AttAgr, e) = false

Definition 41 (Invalid send result SI-Send
ATT predicate) Predicate SI-Send

ATT (X) is true for execution
X ∈ X, if there exists processor p ∈ P, attestation agreement AttAgr ∈ AGRATT and event
<p, ‘Att.SendResult’, (AttAgr, e)>∈ X, where e 6= CommFail, s.t.,

Att.ValidOpen(X, AttAgr, p, ‘C’) = true ∧ Att.Validate(AttAgr, e) = false

We now define adversarial win predicates on the attestation layer interfaces. The predicates would
define whether the attestation interfaces exhibited incorrect behavior with respect to an execution.
The first predicate describes a fake EOO evidence, where we require a valid evidence, and valid client,
but the message described by the EOO was not sent.

Definition 42 (Forging evidence of origin SF−EOO
ATT predicate) Predicate SF−EOO

ATT (X) is true for
execution X ∈ X , if an adversary A outputs an attestation agreement and evidence, (AttAgr, e), s.t.,

1. Att.Validate(AttAgr, e) is true, and

2. e.type = EOO, and

3. ∃c ∈ P, Att.ValidOpen(X, AttAgr, c, ‘C’) is true, and

4. <c, ‘Send’, (AttAgr, e.msg)>/∈ X[e.ctime].

The next definition would define when EOD evidence, is considered fake. The evidence is fake if no
message described by the EOD was received, by a valid server.

Definition 43 (Forging evidence of delivery SF−EOD
ATT predicate) Predicate SF−EOD

ATT (X) is true

for execution X ∈ X, if an adversary A outputs an attestation agreement and evidence (AttAgr, e),
s.t.,

1. Att.Validate(AttAgr, e) is true, and

2. e.type = EOD, and

3. ∃s ∈ P, Att.ValidOpen(X, AttAgr, s, ‘S’), and

4. <s, ‘Receive’, (AttAgr, e′)>/∈ X[e.ctime], where e′.msg = e.msg, and e′.type = EOO.
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Next we define when invalid EOFS conditions are attained. The evidence is invalid when both server
and notary are valid and communication link is sustained between the server and the notary, however,
adversary is able to show valid, notary signed, evidence of failed message delivery to the server.

Definition 44 (Forging evidence of failure and submission SF−EOFS
ATT predicate) Predicate SF−EOFS

ATT (X)
is true for execution X ∈ X, if an adversary A outputs an attestation agreement and evidence
(AttAgr, e), s.t.,

1. Att.Validate(AttAgr, e) is true, and

2. e.type = EOFS, and

3. ∃s ∈ P, Att.ValidOpen(X, AttAgr, s, ‘S’) is true, and

4. ∃n ∈ P, Att.ValidOpen(X, AttAgr, n, ‘N’) is true, and

5. SLinkOk
COMM(X, s, n, e.ctime−∆att, e.ctime, ∆comm) is true.

We now combine the above predicates to define adversarial win specification for attestation layer
(informally, as SCOMM 6⇒ SATT).

Definition 45 (Adversarial win SATT.AW predicate) Let SATT.AW (X) be attestation layer ad-
versarial win specification for execution X ∈ X,

SATT.AW (X) ≡ SLINK
COMM(X) ∧ SINIT

COMM(X) ∧ (SI-Recv
ATT (X)∨

∨ SI-Send
ATT (X) ∨ SF−EOO

ATT (X) ∨ SF−EOD
ATT (X) ∨ SF−EOFS

ATT (X))
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