
A Note On Side-Channels Resulting From

Dynamic Compilation

D. Page

University of Bristol,
Merchant Venturers Building,

Woodland Road,
Bristol, BS8 1UB, UK.
page@cs.bris.ac.uk

Abstract. Dynamic compilation systems are of fundamental impor-
tance to high performance execution of interpreted languages such as
Java. These systems analyse the performance of an application at run-
time and aggressively re-compile and optimise code which is deemed
critical to performance. However, the premise that the code executed
is not the same code as written by the programmer raises a number of
important security concerns. In this paper we examine the specific prob-
lem that dynamic compilation, through transformation of the code, may
introduce side-channel vulnerabilities where before there were none.

1 Introduction

Dynamic compilation techniques have been a major factor in allowing interpreted
languages, such as Java, to satisfy the demands of high-performance application
areas. The basic idea is that the interpreter, from here on termed the virtual
machine, monitors execution of a program at run-time. By profiling aspects of
execution such as frequency of calls to a given method, the virtual machine
can identify so called hotspots: regions of the program which are critical to
performance. Once these regions are identified, the virtual machine invokes an
aggressive re-compilation phase on them that results in either more efficient
interpretable code or native code that can be executed directly by the host plat-
form. By using the re-compiled code, execution can proceed more efficiently and
without sacrificing portability of the original program. Java has benefited hugely
from these sorts of techniques; earlier work on languages such as Self [10] and
Smalltalk [12] has been harnessed to produce a number of high performance
virtual machines such as the Sun Hotspot [24] and Jikes Research Virtual Ma-
chine [2] systems.

For all the positive aspects of this highly active research area, the basic
premise that code written by the programmer might not be the same code ex-
ecuted by the host platform has some serious implications in terms of security.
For example, one typically demands that the implementation of a cryptographic
primitive exactly matches the specification so that security proofs can be valid.

Even when such proofs do hold, the security of cryptographic primitives is in-
creasingly being attacked from a physical rather than mathematical point of
view. For example, information leaked through so called side-channels can be col-
lected by passive monitoring of execution features such as timing variation [17],
power consumption [18] or electromagnetic emission [1]. Typically attacks con-
sist of a collection phase which provides the attacker with profiles of execution,
and an analysis phase which recovers the secret information from the profiles.
Considering power consumption as the collection medium from here on, attack
methods can be split into two main classes. Simple power analysis (SPA) is where
the attacker is given only one profile and is required to recover the secret informa-
tion by focusing mainly on the operation being executed. In contrast, differential
power analysis (DPA) uses statistical methods to form a correlation between a
number of profiles and the secret information by focusing mainly on the data
items being processed. These passive attacks can be extended by considering
active, fault injection methods whereby the attacker can physically manipulate
the host platform to make it perform erroneous operations. A relevant example
in terms of Java is the attack of Govindavajhala and Appel [15] who describe
a method to subvert the Java type system by introducing transient errors into
memory.

Both side-channel and fault injection attacks are commonly set in the context
of devices such as smart-cards and embedded processors since they generally re-
quire that the attacker has physical access to the processing running the code
under attack. The security risks here are exacerbated by the use of both types of
device as conduits for sensitive financial or identity related information. However,
Boneh and Brumley [8] and Bernstein [9] recently showed that timing attacks
against remove servers are even possible without physical access to the target.
The use of Java in both these areas hints at the problems one might expect. In
particular, we motivate our work by noting the link between the fields of dynamic
compilation and physical security that occurs as a result of the potential use of
Just In Time (JIT) compilers on JavaCard based multi-application smart-cards.
Examples include Jazelle enabled ARM processors which accelerate execution of
Java in embedded contexts and include support for JIT compilation [3]. These
types of JavaCard are widely used as a platform for rapid development of smart-
card based applications; dynamic compilation allows the physical devices to re-
main simply and inexpensive while delivering acceptable levels of performance.
As such, the security of these devices when used in combination with dynamic
compilation is an important topic given the application areas they typically fill.

In this paper we investigate the specific question of whether dynamic compi-
lation of Java programs can introduce side-channel vulnerabilities into the exe-
cuted code where there were none in the original code. That is, in attempting to
extract high levels of performance by transforming the program being executed,
a dynamic compiler acting without knowledge of the domain could transform a
secure program into an insecure one. We organise our work as follows. In Sec-
tion 2 we present a concrete experiment on a some side-channel secured Java
code that performs operations core to elliptic curve cryptography (ECC). Our

Algorithm 1: The double-and-add method for point multiplication.
Input : A point P = (xP , yP) and an integer d
Output: A point Q = (xQ, yQ) = d · P
Q← P
for i = |d]− 2 downto 0 do

Q← 2 ·Q
if di = 1 then

Q← Q + P
end

end
return Q

Algorithm 2: The double-and-add-always method for point multiplication.
Input : A point P = (xP , yP) and an integer d
Output: A point Q = (xQ, yQ) = d · P
Q[0]← P
for i = |d]− 2 downto 0 do

Q[0]← 2 ·Q[0]
Q[1]← Q[0] + P
Q[0]← Q[di]

end
return Q

experiments show that dynamic compilation acts to weaken the security of the
implementation and as a result, may leak secret information to an attacker. As an
attempt to resolve this highlighted problem, we investigate language and virtual
machine based solutions in Sections 3 and 4. Finally, we offer some concluding
remarks and highlight a number of interesting areas for future work in Section 5.

2 A Case Study: Elliptic Curve Cryptography

Restricting ourselves to working over the finite field K = F2n for some suitable
n, an elliptic curve is defined by

E(K) : y2 + xy = x3 + Ax + B

for some parameters A and B. The set of rational points P = (x, y) with x, y ∈ K
on this curve, together with the identity element O, form an additive group
under the so called chord-tangent group law. ECC based public key cryptography
typically derives security by presenting an intractable discrete logarithm problem
over this group. That is, one constructs a secret integer d and performs the
operation Q = d · P for some public point P . Since reversing this operation is
believed to be hard, one can then transmit Q without revealing the value of d.

Multiplication of a point by an integer is therefore a core operation in most
ECC based systems; as detailed in Algorithm 1 it can be performed using the

double-and-add method, an additive version of binary exponentiation. Note that
we use di to denote the i-th bit of an integer d. Also note that for a random
d, the point doubling operation will be used about twice as often as the point
addition operation.

The actual point addition and doubling operations are often distinguishable
from each other in a profile of execution because one is composed from a different
sequence of finite field operations than the other. Using A and D to denote
point addition and doubling respectively, the collection phase of an SPA attack
presents the attacker with a profile detailing the operations performed during
execution of the algorithm. For example, by monitoring execution of using the
multiplier d = 10012 = 910, one obtains the profile

DDDA

Given this single profile, the analysis phase can recover the secret value of d
simply by spotting where the point additions occur. If the sequence DA occurs
during iteration i we have that di = 1 whereas if the sequence D occurs then
di = 0.

One way to avoid this problem is to employ the double-and-add-always
method due to Coron [11] and detailed in Algorithm 2. In this case, a dummy
addition is executed if the real one is not. Although the cases where di = 0 and
di = 1 are now indistinguishable, this method imposes a significantly perfor-
mance penalty since many more additions are performed than is necessary. A
more considered approach involves using the flexibility of the curve group law
in terms of how the point addition and doubling operations can be implemented
through different curve parameterisations, point representations and so on. For
example, one can manipulate the formula for point addition and doubling so
that they are no longer different. This is generally achieved by splitting the
more expensive point addition into two parts, each of which is identical in terms
of the operations it performs to a point doubling. Put more simply, instead of
recovering the profile above from the SPA collection phase, an attacker gets:

XXXXX

where X represents an atomic, indestinguishable operation which could be a dou-
ble or one step in an addition; from this the attacker gets no useful information
other than about the Hamming weight and size of d.

Trichina and Bellezza [25] analyse the overhead and effectiveness of this
approach using Jacobian projective coordinates on NIST standard curve over
K = F2163 . Table 1 details their manipulated formula for point doubling and
addition; note that C is a pre-computed constant equal to 4

√
B. The doubling

operation take a point P = (xP , yP) and produces R = (xR, yR) = 2 · P , the
addition operation take points P = (xP , yP) and Q = (xQ, yQ) and produces
R = (xR, yR) = P + Q. Note that the each of the two addition steps has been
made to use the same sequence of operations as the doubling formula by the
inserting a total of eight dummy operations, these are denoted by use of register
λ⊥.

Doubling Addition Step 1 Addition Step 2

λ1 ← z2
P λ1 ← z2

P λ11 ← z2
R

λ3 ← yP · zP λ2 ← λ1 · xQ λ12 ← zR · yQ

zR ← xP · λ1 λ3 ← λ1 · zP λ13 ← λ8 · λ10

λ4 ← x2
P λ⊥ ← λ2

⊥ λ14 ← λ2
7

λ5 ← zR + λ4 λ⊥ ← λ⊥ + λ⊥ λ15 ← λ11 + λ13

λ6 ← C · λ1 λ6 ← yQ · λ3 λ16 ← λ7 · λ14

λ7 ← xP + λ6 λ7 ← xP + λ2 xR ← λ15 + λ16

λ8 ← λ2
4 λ⊥ ← λ2

⊥ λ⊥ ← λ2
⊥

λ9 ← λ8 · zR zR ← zP · λ7 λ17 ← xR · λ10

λ10 ← λ5 + λ3 λ8 ← yP + λ6 λ18 ← λ9 + λ12

λ11 ← λ2
7 λ⊥ ← λ2

⊥ λ⊥ ← λ2
⊥

xR ← λ2
11 λ⊥ ← λ2

⊥ λ⊥ ← λ2
⊥

λ12 ← λ10 · xR λ9 ← λ8 · xQ λ19 ← λ18 · λ11

yR ← λ9 + λ12 λ10 ← zR + λ8 yR ← λ17 + λ19

Table 1. Indistinguishable formula for elliptic curve point doubling and addition.

Method With AOS Without AOS

Doubling 0.03159 ms 0.80985 ms
Addition Step 1 0.02527 ms 0.81016 ms
Addition Step 2 0.03776 ms 0.80993 ms

Table 2. Timings for elliptic curve point doubling and addition with and without
dynamic compilation.

Using these indistinguishable formula, we implemented an SPA resistant
double-and-add based point multiplication program in Java and ran it on the
Jikes Research Virtual Machine (RVM) [2]; our host platform incorporated a 2.8
GHz Pentium 4 processor. Using default options for the adaptive optimisation
system (AOS) [4], RVM made an attempt to dynamically re-compile both the
point doubling and addition methods as well as constituent methods for finite
field arithmetic. As a product of aggressive inlining and subsequent optimisa-
tion, the timings in Table 2 show significant improvement, and slight skewing,
of the unoptimised code.

The main point of note is that an execution profile of the optimised doubling
method will differ radically from unoptimised version of the addition method.
Even though we have gone to some lengths to make them indistinguishable
from each other, the optimised versus unoptimised code will be distinguishable
by virtue of their significantly different composition. Further, the time that re-
compilation of these methods takes place is of interest. From the RVM log, we
found that the doubling method was re-compiled at least 6 ms and as much as
20 ms before the addition methods depending on the value of d. Intuitively this
makes sense: if the doubling method is called more often it is more likely to be
quickly identified as a hotspot by either counter or sampling based monitors.

double is re-compiled addition is re-compiled

| |

unoptimised double and | optimised double and | optimised double and

addition methods used | unoptimised addition | addition methods used

| methods used |

v v

|-----------------------|-----------------------|-----------------------|

t0 t1 t2 t3

----- time ---->

indestinguishable destinguishable due destinguishable due

to difference in to skew introduced by

versions optimisation

Fig. 1. A timeline of execution within three specific periods.

Given that the RVM carries out re-compilation in the background, one could
expect a window whereby the optimised double method is in use at the same
time as the unoptimised addition method.

Figure 1 details the general timeline of execution more simply. The point
multiplication begins at time t0 with both the double and addition methods
in an unoptimised form. Then, at time t1 the double method is identified as
a hotspot and re-compiled; this leads to the double and addition methods now
being distinguishable from each other due to their differing composition. At time
t2 the addition methods are re-compiled but are still distinguishable from the
double due to differing results from optimisation; this is highlighted by their
differing timings after optimisation in Table 2. Execution concludes at time t3.

In short, the RVM adaptive optimisation system has introduced a side-
channel vulnerability where there was none in the original code. Although the
window of vulnerability may be small and may require some effort to mount a re-
alistic attack against, information about bits of the secret value d can clearly be
leaked during this period: one simply mounts a SPA type power analysis attack
as described above and reads the bits of d directly from the operation trace dur-
ing the vulnerable period. The seminal cryptanalytic work of Howgrave-Graham
and Smart [16] shows that one can use this partial information, leaked for ex-
ample from the execution of an ECDSA signing operation, to recover the whole
secret. As such, one should view the execution of our test program as insecure.

3 Language Based Solutions

The natural and most simple way to address the highlighted problem is to em-
power the virtual machine with knowledge of side-channel properties relating to
the program. That is, allow code fragments to be annotated with information
that allows the virtual machine to avoid introducing vulnerabilities. There has
already been extensive research into annotating Java class files with information

class point

{

@nojit

public void dbl(point p)

{

...

}

}

class point

{

nojit public void dbl(point p)

{

...

}

}

class point

{

public void dbl(point p)

{

nojit

{

...

}

}

}

class point

{

@ensurejitmatches("add_step2")

public void add_step1(point p,

point q)

{

...

}

@ensurejitmatches("add_step1")

public void add_step2(point p,

point q)

{

...

}

}

(a) Basic annotation via mark-up and key-
words to prevent dynamic compilation.

(b) Semantically richer mark-up
based annotation to guide dynamic
compilation.

Fig. 2. A sketch of two methods for annotating Java source code to inform the JVM
of side-channel related properties.

to improve performance; for example [19, 5]. This sort of work typically pack-
ages information into attributes within the class data structure as prescribed
by the Java language specification [14]. By providing hints about statically col-
lectible information, for example control flow or register allocation, the workload
of dynamic compilation can be significantly reduced. Clearly it is trivial to im-
plement a similar system to allow annotation of classes with side-channel related
attributes that can be passed to the virtual machine. At the language level, infor-
mation relating to side-channel security is easily accommodated by the existing
Java annotation mechanism [14][Chapter 9.7]. Figure 2 demonstrates two meth-
ods by which this information could be harvested by the compiler for injection
into the class file.

Figure 2a uses basic annotation that instructs the dynamic compiler to leave
the associated method alone. This could be a severe trade-off in the sense that by

prohibiting dynamic compilation of these methods, performance is sure to suffer.
However, there are areas other than security in which it may also be desirable
to turn off dynamic compilation for a particular code fragment; predictable and
real-time computing for example. One could achieve this via either a mark-up
based annotation or by using a new or existing keyword. The former approach has
the advantage of not interfering with existing language and compiler definitions;
the latter has the advantage of being able to associate with more fine grained
regions of code, much like the synchronized keyword, rather than just the class
declarations.

Figure 2b uses a richer, more relaxed approach, specifying that dynamic
compilation is permitted as long as the compiler can satisfy that the named
methods still match each other. This offers some hope of a compromise between
performance and security yet opens an interesting question as to how such a joint-
compilation phase might proceed. The task of detecting any mismatch between
the results of re-compilation, and subsequent removal of said mismatches [7], has
been formalised by Molnar et al. [21]. Their program counter model provides
an ideal framework for the dynamic compiler to verify the act of optimisation
satisfies the security constraints passed via annotation by the programmer.

4 Virtual Machine Based Solutions

Micali and Reyzin present a theoretical model for reasoning about side-channel
attacks [20]; essentially this requires a processing device with well defined, if
slightly impractical, properties. Even so, it offers a context in which one can
prove a primitive secure against attack and as such, one could imagine trying to
augment the virtual machine to match their requirements. The major sticking
point in doing this is axiom four in which Micali and Reyzin state

The information that may be leaked by a physical observable device is the
same in any execution with the same input, independent of the compu-
tation that takes place before the device is invoked or after it halts.

This seems to preclude any form of adaptive approach for dynamic compilation
outright; the axioms of Micali and Reyzin do not seem to cover the case where
code is altered at run-time so the case for dynamic compilation is equally un-
clear. In short, even if the proposed device were realistic the resulting security
proofs would be invalid when considered in the context of a virtual machine with
dynamic compilation.

However, as a general virtual machine based solution, one could clearly side-
step the problem by demanding that the virtual machine re-compile all code
before execution begins, perhaps using performance oriented annotation hints
mentioned previously [19, 5]. However, this seems a perverse approach since it
removes any benefit that could be achieved by a dynamic system over a static
alternative.

5 Conclusions

The premise that under systems using dynamic compilation code executed might
not match the code written should be of concern to practitioners of security
conscious, side-channel aware implementation of cryptography. Although for-
mal models of physical security are difficult to construct, most standard defence
methods assume a conventional, native model of execution to ensure their suc-
cess. We have shown that dynamic compilation, and dynamic execution in gen-
eral, breaks this assumption and can therefore present vulnerabilities even when
said defences are implemented.

To some extent, resolution of the highlighted problem is related to the concept
of certified compilation [23] in the sense that to solve it we demand the compiler
satisfy some formal requirements of the transformations it uses. Our results are,
in a sense, a simple re-phrasing of an existing problem in this area. That is, it
has long been known that static compilation might yield code after optimisation
which doesn’t give the same security properties as one might expect. Indeed,
after some thought it is hard to come up with realistic examples which are
specific to dynamic compilation. With this in mind, it seems vital for both static
and dynamic compilers to be aware of security and cryptography in all aspects
of their operation [6].

Our work represents a preliminary investigation into this area; at least two
strands of further work seem interesting and important.

Proof Carrying Code Approaches It seems interesting to investigate how
one might embed a proof of the side-channel properties of a program within
itself; this essentially extends the idea of a proof carrying code (PCC) [22] to
the context of side-channel security. The problem of constructing such a proof
and a compiler capable of certifying it has met the requirements seems difficult
if only because formal models of physical security are not as mature as in other
areas [13, 20].

Other Dynamic Execution Features The cryptographic community has al-
ready explored the problems associated with data-dependant behaviour of the
memory and cache subsystem; see for example [26, 9]. Dynamic execution and
memory management as used in Java could offer similar data-dependant be-
haviour. For example, it seems possible that code which seems secure leaks in-
formation which executed on this sort of platform; management of heap objects
and their garbage collection offers a similarly observable feature as cache be-
haviour for example. With this in mind, it seems interesting to examine other
aspects of interpreted execution whose operational semantics might differ from
those expected by programmers implementing standard side-channel defences.

6 Acknowledgements

The author would like to thank Nigel Smart and Andrew Moss for their input
throughout the duration of this work.

References

1. D. Agrawal, B. Archambeault, J.R. Rao and P. Rohatgi. The EM Side-Channel(s).
In Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS
2523, 29–45, 2002.

2. B. Alpern, C.R. Attanasio, J.J. Barton, M.G. Burke, P Cheng, J-D. Choi, A.
Cocchi, S.J. Fink, D. Grove, M. Hind, S.F. Hummel, D. Lieber, V. Litvinov, M.F.
Mergen, T. Ngo, J.R. Russell, V. Sarkar, M.J. Serrano, J.C. Shepherd, S.E. Smith,
V.C. Sreedhar, H. Srinivasan and J. Whaley. The Jalapeño Virtual Machine. In
IBM System Journal, 39(1), 2000.

3. ARM. Jazelle White Paper. Available at http://www.arm.com/pdfs/

JazelleWhitePaper.pdf.

4. M. Arnold, S.J. Fink, D. Grove, M. Hind and P.F. Sweeney. Adaptive Optimization
in the Jalapeño JVM. In Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), 2000.

5. A. Azevedo, A. Nicolau and J. Hummel Java Annotation-aware Just-In-Time
(AJIT) Compilation System. In Java Grande Conference, 142–151, 1999.

6. M. Barbosa, R. Noad, D. Page and N.P. Smart. First Steps Toward a
Cryptography-Aware Language and Compiler. In Cryptology ePrint Archive, Re-
port 2005/160, 2005.

7. M. Barbosa and D. Page. On the Automatic Construction of Indistinguishable
Operations. In Cryptography And Coding, Springer-Verlag LNCS 3796, 233–247,
2005.

8. D. Boneh and D. Brumley. Remote Timing Attacks Are Practical. Available at
http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf.

9. D.J. Bernstein. Cache-timing Attacks on AES. Available at http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf.

10. C. Chambers and D. Ungar. Making Pure Object-orietned Languages Practical. In
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
1–15, 1991.

11. J-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In Cryptographic Hardware and Embedded Systems (CHES), Springer-
Verlag LNCS 1717, 292–302, 1999.

12. L.P. Deutsch and A.M. Schiffman. Efficient Implementation of the Smalltalk-80
System. In Principles of Programming Languages (POPL), 297–302, 1984.

13. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali and T. Rabin. Algorithmic
Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hard-
ware Tampering. In Theory of Cryptography, Springer-Verlag LNCS 2951, 258–277,
2004.

14. J. Gosling, B. Joy, G. Steele and G. Bracha. The Java Language Specification,
Third Edition. Addison-Wesley, 2005.

15. S. Govindavajhala and A.W. Appel. Using Memory Errors to Attack a Virtual
Machine. IEEE Symposium on Security and Privacy, 154–165, 2003.

16. N. Howgrave-Graham and N.P. Smart. Lattice Attacks on Digital Signature
Schemes. Designs, Codes and Cryptography, 23, 283–290, 2001.

17. P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Advances in Cryptology (CRYPTO), Springer-Verlag LNCS
1109, 104–113, 1996.

18. P.C. Kocher, J. Jaffe and B. Jun. Differential Power Analysis. In Advances in
Cryptology (CRYPTO), Springer-Verlag LNCS 1666, 388–397, 1999.

19. C. Krintz and B. Calder Using Annotation to Reduce Dynamic Optimization
Time. In Programming Language Design and Implementation (PLDI), 156–167,
2000.

20. S. Micali and L. Reyzin. Physically Observable Cryptography (Extended Ab-
stract). In Theory of Cryptography, Springer-Verlag LNCS 2951, 278–296, 2004.

21. D. Molnar, M. Piotrowski, D. Schultz and D. Wagner. The Program Counter
Security Model: Automatic Detection and Removal of Control-Flow Side Channel
Attacks. In Cryptology ePrint Archive, Report 2005/368, 2005.

22. G.C. Necula. Proof-Carrying Code. In Principles of Programming Languages
(POPL), 106–119, 1997.

23. G.C. Necula and P. Lee. The Design and Implementation of a Certifying Compiler.
In Programming Language Design and Implementation (PLDI), 333–344, 1998.

24. Sun Microsystems. Java Hotspot Whitepaper. Available at http://java.sun.

com/products/hotspot/.
25. E. Trichina and A. Bellezza. Implementation of Elliptic Curve Cryptography with

Built-In Counter Measures against Side Channel Attacks. In Cryptographic Hard-
ware and Embedded Systems (CHES), Springer-Verlag LNCS 2523, 98–113, 2002.

26. Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri and H. Miyauchi. Cryptanalysis of
DES Implemented on Computers with Cache. In Cryptographic Hardware and
Embedded Systems (CHES), Springer-Verlag LNCS 2779, 62–76, 2003.

