
Non-Trivial Black-Box Combiners for
Collision-Resistant Hash-Functions don’t Exist

Krzysztof Pietrzak?

Département d’Informatique, École Normale Supérieure, Paris
pietrzak@di.ens.fr

Abstract. A (k, `)-robust combiner for collision-resistant hash-functions
is a construction which from ` hash-functions constructs a hash-function
which is collision-resistant if at least k of the components are collision-
resistant. One trivially gets a (k, `)-robust combiner by concatenating
the output of any `− k + 1 of the components, unfortunately this is not
very practical as the length of the output of the combiner is quite large.
We show that this is unavoidable as no black-box (k, `)-robust com-
biner whose output is significantly shorter than what can be achieved
by concatenation exists. This answers a question of Boneh and Boyen
(Crypto’06).

1 Introduction

A function H : {0, 1}∗ → {0, 1}v is a collision-resistant hash-function (CRHF),
if no efficient algorithm can find two inputs M 6= M ′ where H(M) = H(M ′),
such a pair (M,M ′) is called a collision for H.1

In the last few years we saw several attacks on popular CRHFs previously
believed to be secure [17, 18]. Although provably secure2 hash-functions exist
(see e.g. [3] and references therein), they are rather inefficient and rarely used in
practice. As we do not know which of the CRHFs used today will stay secure, it
is natural to investigate combiners for CRHFs. In its simplest form the problem
is the following: given to hash-functions

H1,H2 : {0, 1}∗ → {0, 1}v,

can we construct a new hash-function which is collision-resistant if either H1 or
H2 is? The answer is that of course we can, just concatenate the outputs:

H(X) = H1(X)‖H2(X). (1)
? Part of this work is supported by the Commission of the European Communities

through the IST program under contract IST-2002-507932 ECRYPT.
1 This definition is very informal as there are some issues which make it hard to have a

definition for collision-resistant hash-functions which is theoretically and practically
satisfying, see [14] for recent discussion on that topic.

2 Provably secure means that finding a collision can be shown to be at least as hard
as solving some concrete (usually number theoretic) problem.

As any collision M,M ′ for H is also a collision for H1 and H2, if either H1 or
H2 is collision-resistant, so is H. Unfortunately the length of the output of H
is the sum of the output lengths of H1 and H2, this makes the combiner quite
unattractive for practical purposes.

1.1 The Boneh-Boyen and Our Result

Boneh and Boyen [2] ask whether one can combine CRHFs such that the output
length is (significantly) less than what can be achieved by concatenation. They
prove a first negative result in this direction, namely that there is no black-box
construction for combining CRHFs in such a way that the output is shorter
than what can be achieved by concatenation under the additional assumption
that this combiner queries each of the components exactly once. They ask as
whether a similar impossibility result can be obtained in the general case where
the combiner is allowed to query the components several times. We answer this
question in the affirmative: any combiner for ` functions with range {0, 1}v must
have output length at least (v − O(log(q)))` bits3, where q is the number of
oracle calls mabe by the combiner. Stated in asymptotic terms, if q ∈ 2o(v) is
subexponential, then the output length is in (1 − o(1))v`, and if q is constant
the output length is in v`−O(1), this must be compared to v` which is trivially
achieved by concatenation.
(k, `)-Robust Combiner. We actually consider the more general question whether
secure and non-trivial (k, `)-robust combiners for collision-resistant hash-functions
exist. A (k, `)-robust combiner is collision-resistant, if at least k (and not just
one) of the components used are secure. We trivially get a (k, `)-robust combiner
by concatenating any `−k+1 of the components,4 which gives an output length
of v(`−k +1). We show that this cannot be significantly improved as any (k, `)-
robust combiner must have output length at least (v−O(log(q)))(`− k + 1)− `.

The main technical contribution of this paper is Lemma 2, which generalizes
(and as a special case contains the statement of) Theorem 3 from [2]. Roughly,
this lemma states that there exist hash-functions and a collision for any combiner
with sufficiently short output, such that this collision does not trivially lead to
collisions for all5 of the hash-functions. The proof of this lemma follows from a
simple application of the probabilistic method, and in particular is much simpler
than the proof of Theorem 3 in [2].

1.2 Related Work

Combiners. The idea of combining two or more cryptographic components in
order to get a system which is secure whenever at least one of the underlying

3 In this paper all logarithms are to base 2.
4 We’ll look at this construction in more detail in the next section.
5 Or for `− k + 1 of the hash-functions if we consider (k, `)-robust combiners.

primitives is secure is quite old.6 The early results are on symmetric encryp-
tion schemes [1, 6, 11]. Combiners for asymmetric primitives were constructed
by Dodis and Katz [5] (for CCA secure encryption schemes) and Harnik et al.
[7] (for key-agreement). The general notion of a combiner was put forward by
Herzberg [8] who calls them “tolerant combiners”. In recent works one often
calls them “robust combiners”, a term introduced in [7]. Combiners have been
generalized in several ways:

(k, `)-Robust Combiners: [7] put forward the notion of (k, `)-robust combin-
ers as discussed in the last section. Such combiners are only guaranteed to
be secure if at least k (and not just one) of the ` components used is secure.
Interestingly, for natural primitives as statistically hiding commitments [8]
and oblivious transfer [7] only 2-3 but no 1-2 combiners are known.

Cross-Primitive Combiners: In a cross-primitive combiner the combined prim-
itive is different from the components used, one can think of this as simul-
taneously being a reduction and a combiner. This notion was introduced by
Meier and Przydatek [12] who construct a 1-2 private information retrieval
to oblivious transfer cross-primitive combiner, which is interesting as normal
1-2 combiners for oblivious transfer might not exist [7].

Efficiency and Other Parameters: In practice the mere existence of a
combiner is not enough, as the parameters of a combiner are important. Effi-
ciency is always of concern, although for some primitives like bit-commitments
only very inefficient combiners are known [8], for most primitives where com-
biners are known to exist, also efficient realizations are known [7, 8]. Besides
efficiency, for different primitives also other parameters are important, in
particular this paper is about the output-length of combiners for CRHFs.

Collision Resistance. collision-resistant hash-functions are very important
and subtle [14] cryptographic primitives which have attracted a lot of research,
even more in the recent years as widely used (presumably) collision-resistant
hash-functions as MD5 or SHA-1 have been broken [17, 18]. Here we only mention
some of the generic results on CRHFs.

Simon [16] shows that collision-resistant hash-functions cannot be constructed
form one-way functions via a black-box reduction. On the positive side, Naor and
Yung [13] show that for some applications (in particular for signature schemes)
collision resistance is not necessary, as universal one-way hash-functions are
enough. Those can be constructed from one-way functions [10, 15].

Merkle and Damg̊ard show that by iterating a CRHF with fixed input length,
one gets a CRHF for inputs of arbitrary length. Most CRHFs used today follow
this approach. Coron et al. [4] show that the Merkle-Damg̊ard construction does
not give a random function if instantiated with a random function (which was
not the design goal of this construction), but that this can be achieved with

6 We also see many combiners in the physical world, for example one often has several
different locks on a door. This does not to simply increase the time a burglar needs
to break the k locks by a factor of k, but there’s hope that some particular lock
might turn out to be much harder to come by than the others.

some small modifications. Joux [9] shows that for iterated hash-functions (like
the Merkle-Damg̊ard construction) finding many values which hash to the same
value is not much harder than finding an ordinary collision. As a consequence
concatenating the output of such hash-functions does not increase the security:
let H1,H2 be iterated hash-functions with v bits output, then one can find a
collision for H(X) = H1(X)‖H2(X) in time O(v2v/2).

2 Combiners For CRHFs

Informally, a (k, `)-robust combiner for CRHFs is a construction (modeled as an
oracle circuit C) which, if instantiated with any ` hash-functions H1, . . . ,H` :
{0, 1}∗ → {0, 1}v, is collision-resistant if at least k of the Hi’s are. In order
to show that a construction is a (k, `)-robust combiner, one must provide an
efficient procedure P which given two colliding inputs for the combiner, finds
collisions for at least ` − k + 1 of the underlying Hi’s. In this paper we only
consider black-box combiners as defined in [7], this means that C and P are
only given oracle access to the Hi’s.

The following definition of a (k, `)-robust combiner is a generalization of the
definition given in [2], where only the case k = 1 was considered.

Definition 1 A combiner for ` collision-resistant hash-functions {0, 1}∗ → {0, 1}v

is a pair (C,P) where C is an oracle circuit and P is an oracle probabilistic
polynomial-time Turing machine (PPTM)7

C : {0, 1}m → {0, 1}n P : {0, 1}2m → {0, 1}∗.

There are ` types of oracle gates (tapes) in C (P). With BH1,...,H`(X) (where B
is C or P) we denote the output of B on input X when the ` types of oracle gates
are instantiated with functions H1, . . . ,H` : {0, 1}∗ → {0, 1}v respectively.8

We say that P k-succeeds on M,M ′ ∈ {0, 1}∗ and oracles H1, . . . ,H` if its
output contains collisions for all but at most k − 1 of the Hi’s, i.e. for

PH1,...,H`(M,M ′) → (U1, . . . , U`, U
′
1, . . . , U

′
`)

we have

∃J ⊆ {1, . . . , `}, |J | ≥ `− k + 1 : (Ui, U
′
i) is a collision for Hi.

Let Advk
P [(H1, . . . ,H`), (M,M ′)] denote the probability (over P ’s coin tosses)

that PH1,...,H`(M,M ′) k-succeeds. Then (C,P) is an ε-secure (k, `)-combiner,
if for all (compatible) H1, . . . ,H` and all collisions (M,M ′) on CH1,...,H` we have

Advk
P [(H1, . . . ,H`), (M,M ′)] > 1− ε.

We say that (C,P) is an (k, `)-robust combiner if it is ε-secure for a small ε.9

7 The only reason P is defined as a Turing machine and not as a circuit is that we
don’t want to put an a priori bound on the output length of P .

8 In [2] the ranges of the Hi’s were allowed be different, for the sake of exposition we
drop this generalization.

9 Here “small” usually means negligible in some security parameter.

For example consider the following (k, `)-robust combiner (C,P)

CH1,...,H`(M) → H1(M)‖ . . . ‖H`−k+1(M)

PH1,...,H`(M,M ′) → (M, . . . , M), (M ′, . . . ,M ′)

As any collision M,M ′ for CH1,...,H` is a collision for Hi for i = 1, . . . , `− k + 1,

Advk
P [(H1, . . . ,H`), (M,M ′)] = 1.

So (C,P) can be considered a secure (k, `)-robust combiner, as from any collision
on CH1,...,H` we get from P collisions for all but k − 1 of the Hi’s, thus if k of
the Hi’s are secure, also CH1,...,H` must be secure. The output length of C is
n = v(`− t+1), by the following theorem this cannot be significantly improved.

Theorem 1 Let (C,P) be a (k, `)-robust combiner, where C : {0, 1}m → {0, 1}n

has qC oracle gates and P makes at most qP oracle calls. Suppose that

n < (v − 2 log(2qC))(`− k + 1)− `− 1 and m > n.

Then there exist M,M ′ ∈ {0, 1}m and functions Ĥi : {0, 1}∗ → {0, 1}v for
i = 1, . . . , ` relative to which

Advk
P [(Ĥ1, . . . , Ĥ`), (M,M ′)] ≤ (qP + qC)2 + k

2v
.

For the special case where k = 1 and C queries each Ĥi exactly once (which are
the constructions considered in [2]) the bound on n can be improved to

n < v`− 1 and m > n

or
n < v` and m− 1 > n.

The last statement slightly improves on the main result from [2] where a stronger
n < m − log ` bound was needed in order to get n < v`. Following [2], to
prove Theorem 1 it is sufficient to prove that hash-functions H1, . . . ,H` and a
collision M,M ′ exists where during the computation of CH1,...,H` on inputs M
and M ′ at least k of the Hi’s are not queried on two distinct inputs X, X ′ where
Hi(X) = Hi(X ′). Note that this means that one does not trivially get a collision
for those Hi’s when learning M,M ′. Let J ⊆ {1, . . . , `}, |J | = k be the indices of
these k Hi’s. We prove the existence of such Hi’s and M,M ′ in Lemma 2 below.
Then, from such H1, . . . ,H` and M,M ′ we can get the Ĥ1, . . . , Ĥ` as required
by Theorem 1, by setting Ĥi(X) = Hi(X) for all inputs X which appear as
input to Hi in the computation of CH1,...,H`(M) or CH1,...,H`(M ′), and Ĥi(X) is
assigned a random value otherwise. Clearly M,M ′ is also a collision for CĤ1,...,Ĥ` ,
moreover all Ĥi where i ∈ J are “very” collision-resistant, as we just randomly
defined their outputs, except on a subset of inputs which itself does not contain
a collision, Lemma 1 below is a formal statement of this intuitive argument.

Proof (of Theorem 1). The theorem follows from Lemmata 1 and 2.
In the lemmata below10 let
– Wi(X) be the set of oracle queries to Hi made while evaluating CH1,...,H`(X).
– Vi(X) = {Hi(W) : W ∈ Wi(X)} be the set of corresponding outputs (taken

without repetition).

Lemma 1 Let (C,P) be a (k, `)-robust combiner, where C has qC oracle gates
and P makes at most qP oracle calls. Assume there exist oracles Hi : {0, 1}∗ →
{0, 1}v, i = 1, . . . , ` and messages M,M ′ such that
– M 6= M ′ and CH1,...,H`(M) = CH1,...,H`(M ′).
– |Vj(M)∪Vj(M ′)| = |Wj(M)∪Wj(M ′)| for at least k different j ∈ {1, . . . , `}.

Then there exist deterministic Ĥi : {0, 1}∗ → {0, 1}v, i = 1, . . . , ` relative to
which

Advk
P [(Ĥ1, . . . , Ĥ`), (M,M ′)] ≤ (qP + qC)2 + k

2v
.

Proof. Let J ⊆ {1, . . . , `}, |J | = k be the indices of the k hash-functions for
which no collision occurs during the computation of CH1,...,H` on input M and
M ′, i.e.

∀j ∈ J : |Vj(M) ∪Vj(M ′)| = |Wj(M) ∪Wj(M ′).

For i 6∈ J we let Ĥi := Hi, and for each i ∈ J let Ri : {0, 1}∗ → {0, 1}v be
uniformly random and

Ĥi(W) :=
{

Hi(W) if W ∈ Wi(M) ∪Wi(M ′)
Ri(W) otherwise

Note that CĤ1,...,Ĥ`(M) = CĤ1,...,Ĥ`(M ′) as for each i, Hi(W) = Ĥi(W) for
inputs W ∈ Wi(M)∪Wi(M ′) which come up on the computation of CH1,...,H`

on inputs M,M ′, let Q denote all those inputs together with the corresponding
outputs.

Q =
⋃̀
i=1

{Vi(M),Wi(M),Vi(M ′),Wi(M ′)}

Let P ′ be the oracle PPTM which makes at most qP oracle calls and maximizes
the probability α defined below.

α = Pr
P ′Ĥ1,...,Ĥ` (Q)→{U1,...,U`,U ′

1,...,U ′
`}]

[∃i ∈ J : Ui 6= U ′
i ∧ Ĥi(Ui) = Ĥi(U ′

i)] (2)

α is an upper bound on Advk
P [(Ĥ1, . . . , Ĥ`), (M,M ′)], as one possibly strategy

for P ′ is to first compute M,M ′, which given Q can be done without access
to the Ĥi oracles, and then simulate P Ĥ1,...,Ĥ`(M,M ′) and output the output
of this simulation.11 To save on notation let P ∗ denote P ′Ĥ1,...,Ĥ`(Q). We say
10 Our Lemma 1 is basically Theorem 2 from [2], the only difference is that we consider

(k, `)-robust combiners whereas [2] were only interested in the case k = 1.
11 The reason we give away the full Q is that that M, M ′ will usually leak some in-

formation on Q, and the simplest way to deal with this leakage is to simply assume
that P ′ knows all those values.

that P ∗ found a collision if for some12 Ĥi, i ∈ J it makes an oracle query Ĥi(X)
where either for a previous query X ′ 6= X to Ĥi we have Ĥi(X) = Ĥi(X ′) or
Ĥi(X) ∈ Vi(M) ∪Vi(M ′) and X 6∈ Wi(M) ∪Wi(M ′). For i = 1, . . . , qP let Ci

denote the event that P ∗ found a collision after the i’th oracle query is made. If
the i’th oracle query is to a Ĥj where j 6∈ J or a query which has already been
made we cannot get a collision, so

Pr[Ci|¬Ci−1] = 0.

So assume that the i’th oracle query is a new query X to a Ĥj where j ∈ J . Then
Ĥi(X) = Ri(X) is uniformly random and independent of any previous outputs,
thus the probability that it will collide with any of the ≤ i previous queries to
Ĥi or with one the ≤ 2qC values in Vi(M) ∪Vi(M ′) is at most (2qC + i)/2v,
we get

Pr[CqP
] =

qP∑
i=1

Pr[Ci|Ci−1] ≤
qP∑
i=1

2qC + i

2v
≤ qP (2qC + qP)

2v
≤ (qP + qC)2

2v
.

Even if ¬CqP
, i.e. P ∗ does not find a collision for some Ĥi, i ∈ J , there still is a

tiny chance that P ∗ guesses Ui, U
′
i where Ĥi(Ui) = Ĥi(U ′

i) for some of the i ∈ J .
The probability of this is at most |J |/2v ≤ k/2v. Taking everything together:

Advk
P [(Ĥ1, . . . , Ĥ`), (M,M ′)] ≤ α ≤ Pr[CqP

] + k/2v ≤ (qP + qC)2 + k

2v
. (3)

We’re almost done, except that in the above inequality, the Ĥi’s are not deter-
ministic as required by the lemma, but randomized (as the Ri’s were chosen at
random). We can get fixed Ĥi’s for which (3) holds by choosing the Ri’s so they
minimize the left hand side of (3). ut

Lemma 2 Let C : {0, 1}m → {0, 1}n be as in the previous lemma. Then when-
ever

n < (v − 2 log(2qC))(`− k + 1)− `− 1 and m > n

there exist functions H1, . . . ,H` and messages M,M ′ such that

– M 6= M ′ and CH1,...,H`(M) = CH1,...,H`(M ′).
– |Vj(M)∪Vj(M ′)| = |Wj(M)∪Wj(M ′)| for at least k different j ∈ {1, . . . , `}.

For the special case where k = 1 and C queries each Hi exactly once (which are
the constructions considered in [2]) the bounds on n can be improved to

n < v`− 1 and m > n

or
n < v` and m− 1 > n.

12 Note that we don’t care about collision for Ĥi, i 6∈ J as Q contains collisions for
those Ĥi’s.

Proof. Consider the following random experiment. First ` functions Hi : {0, 1}∗ →
{0, 1}v are sampled uniformly at random.13 Then M,M ′ ∈ {0, 1}m are sampled
uniformly at random. We define the events E1 and E2 as

E1 ⇐⇒ M 6= M ′ and CH1,...,H`(M) = CH1,...,H`(M ′)
E2 ⇐⇒ ∃J ⊆ {1, . . . , `}, |J | > `− k

where ∀j ∈ J : |Vj(M) ∪Vj(M ′)| 6= |Wj(M) ∪Wj(M ′)|

We will show that Pr[E1] > Pr[E2], which then implies Pr[E1 ∧ ¬E2] > 0. This
will prove the lemma as it shows that random H1, . . . ,H` and M,M ′ have the
property as claimed by the lemma with non-zero probability, and thus H1, . . . ,H`

and M,M ′ with this property exist.
As Pr[M = M ′] = 2−m, Pr[CH1,...,H`(M) = CH1,...,H`(M ′)] ≥ 2−n and

m > n we get
Pr[E1] ≥ 2−n − 2−m ≥ 2−n−1. (4)

Let qi denote the number of Hi oracle gates in C, note that
∑`

i=1 qi = qC . We can
upper bound Pr[E2] by the probability that the best oracle algorithm AH1,...,H`

which can query the i’th oracle Hi at most 2qi times finds a collision for at least
` − k + 1 of the Hi’s.14 As the Hi’s are all independent random functions, the
best A can do is to query it i’th oracle on 2qi distinct inputs (which ones is
irrelevant), by the birthday bound15 the probability of finding a collision for any
Hi is at most 2qi(2qi − 1)/2v+1, now

Pr[E2] ≤ Pr[AH1,...,H` finds `− k + 1 collisions]

≤
∑

J⊆{1,...,`}
|J|=`−k+1

Pr[∀i ∈ J : AH1,...,H` finds a collision for Hi]

≤
∑

J⊆{1,...,`}
|J|=`−k+1

∏
i∈J

2qi(2qi − 1)
2v+1

<
∑

J⊆{1,...,`}
|J|=`−k+1

(2q2
C)`−k+1

2v(`−k+1)
≤

(
`− k + 1

`

)
(2q2

C)`−k+1

2v(`−k+1)
<

2`(2q2
C)`−k+1

2v(`−k+1)
.

13 One can’t simply sample a Hi as this would need infinite randomness, but one can
use lazy sampling here, this means that Hi(X) is only assigned a (random) value
when Hi is actually invoked on input X.

14 This is an upper bound as one possible strategy for AH1,...,H` is to simply evaluate
CH1,...,H` on two random inputs M, M ′ to get success probability exactly Pr[E2].

15 This bound states that when randomly throwing q balls into N buckets, some bucket
will contain more than one element with probability at most q(q − 1)/2N .

From the above equation, (4) and n < (v− 2 log(2qC))(`− k +1)− `− 1 we now
get log(Pr[E1]) > log(Pr[E2]), and thus Pr[E1] > Pr[E2], as

log(Pr[E1]) ≥ log(2−n−1) = −n− 1 > −(v − 2 log(2qC))(`− k + 1) + `

and

log(Pr[E2]) < log
(

2`(2q2
C)`−k+1

2v(`−k+1)

)
= −(v − 2 log(2qC))(`− k + 1) + `

Our estimate on Pr[E2] has some slack as to keep the expression simple. For
the special case k = 1 and qi = 1, i = 1, . . . , ` which covers the constructions
considered in [2] we get

Pr[E2] ≤
∏

i∈{1,...,`}

2qi(2qi − 1)
2v+1

= 2−v`

which satisfies Pr[E1] > Pr[E2] already for n < v`− 1. If we additionally assume
that n < m− 1 (not just n < m) then we can strengthen (4) to Pr[E1] > 2−n−1

and Pr[E1] > Pr[E2] holds for the optimal n < v`. ut

References

1. C. A. Asmuth and G. R. Blakley. An efficient algorithm for constructing a cryp-
tosystem which is harder to break than two other cryptosystems. Computers and
Mathematics with Applications, pages 447–450, 1981.

2. Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining colli-
sion resistant hash functions. In CRYPTO, 2006.

3. Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. Vsh, an efficient and provable
collision-resistant hash function. In EUROCRYPT, pages 165–182, 2006.

4. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-damg̊ard revisited : How to construct a hash function. In Advances in
Cryptology — CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science,
pages 430–448, 2005.

5. Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext security of multiple en-
cryption. In TCC, pages 188–209, 2005.

6. Shimon Even and Oded Goldreich. On the power of cascade ciphers. ACM Trans.
Comput. Syst., 3(2):108–116, 1985.

7. Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In EUROCRYPT, pages 96–
113, 2005.

8. Amir Herzberg. On tolerant cryptographic constructions. In CT-RSA, pages 172–
190, 2005.

9. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In CRYPTO, pages 306–316, 2004.

10. Jonathan Katz and Chiu-Yuen Koo. On constructing universal one-way hash func-
tions from arbitrary one-way functions, 2005. Cryptology ePrint Archive: Report
2005/328.

11. Ueli M. Maurer and James L. Massey. Cascade ciphers: The importance of being
first. J. Cryptology, 6(1):55–61, 1993.

12. Remo Meier and Bartosz Przydatek. On robust combiners for private information
retrieval and other primitives. In Cynthia Dwork, editor, Advances in Cryptology
— CRYPTO ’06, volume 4117 of Lecture Notes in Computer Science, pages 555–
569. Springer-Verlag, August 2006.

13. Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In STOC, pages 33–43, 1989.

14. Phillip Rogaway. Formalizing human ignorance: Collision-resistant hashing without
the keys, 2006. Cryptology ePrint Archive: Report 2006/281.

15. John Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, pages 387–394, 1990.

16. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In EUROCRYPT, pages 334–345, 1998.

17. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
sha-1. In CRYPTO, pages 17–36, 2005.

18. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In
EUROCRYPT, pages 19–35, 2005.

