
ElGamal type signature schemes for n-dimensional
vector spaces

Iwan M. Duursma† and Seung Kook Park†

Abstract

We generalize the ElGamal signature scheme for cyclic groups to a signature
scheme for n-dimensional vector spaces. The higher dimensional version is based
on the untractability of the vector decomposition problem (VDP). Yoshida has
shown that under certain conditions, the VDP on a two-dimensional vector space
is at least as hard as the computational Diffie-Hellman problem (CDHP) on a
one-dimensional subspace.

1 Introduction

Intractable mathematical problems such as the integer factorization problem, the dis-
crete logarithm problem (DLP), and the computational Diffie-Hellman problem (CDHP)
are being used to provide secure protocols for cryptosystems. A new hard problem
which is called the vector decomposition problem (VDP) was proposed in [8]. Yoshida
[7] states the conditions that are required for the VDP on a two-dimensional vector
space to be at least as hard as the CDHP on a one-dimensional subspace. The VDP
on a two-dimensional vector space can serve as the underlying intractable problem for
cryptographic protocols but the only protocol presented so far that uses the VDP is
watermarking [7]. In this paper we present a signature scheme based on VDP and we
generalize the ElGamal signature scheme for cyclic groups to a signature scheme for n-
dimensional vector spaces.

Algorithms of the generalized ElGamal signature scheme, DSA and ECDSA are given in
Section 2. In Section 3 we state the definitions of CDHP and VDP. Yoshida’s conditions
for the VDP on a two-dimensional vector space to be at least as hard as the CDHP on a
one-dimensional subspace are stated without proof. Examples of the VDP are given. In
Section 4 we present a signature scheme based on the VDP using hyperelliptic curves. In
Section 5 we present an ElGamal type signature scheme for n-dimensional vector spaces
and compare it with the signature schemes of Section 2 and Section 4.

†Department of Mathematics, University of Illinois at Urbana-Champaign (duursma@math.uiuc.edu,
skpark@uiuc.edu)

1

2 The ElGamal signature scheme

In this paper, we construct a signature scheme which generalizes the ElGamal signature
scheme to higher dimensional vector spaces. To do this, we need to characterize the
ElGamal signature scheme and the two variations DSA and ECDSA. In this section, we
state the generalized ElGamal signature scheme [5], [6] and describe how it generalizes
the classical ElGamal signature scheme [4], [6]. We also state the two variations of the
classical ElGamal signature scheme DSA [1], [6] and ECDSA [2]. Then, we compare and
analyze the signature schemes in detail.

The ElGamal signature scheme is based on the difficulty of the discrete logarithm
problem (DLP). That is, given group elements g and h = ga it is hard to compute a.
Although there are various protocols of the ElGamal signature scheme, they all share a
common idea:

Let m be a message. Then the signature of m is a pair (r, s) such that ks + dr = m
or s = k−1(m − dr), where r = αk, y = αd for a random k and d that are chosen and
kept secret by the signer. To verify the signature we compute rsyr and αm then check
if rsyr = αm. This works since for a valid signature rsyr = (αk)s(αd)r = αks+dr = αm.
Now, we give the algorithm of the generalized ElGamal signature scheme [5], [6]:

Algorithm of the generalized ElGamal signature scheme

(a) Each entity A does the following:

1. Select an appropriate cyclic group G of order n, with generator α. (Assume that
G is written multiplicatively.)

2. Select a random secret integer d, 1 ≤ d ≤ n − 1. Compute the group element
y = αd.

3. A’s public key is (α, y), together with a description of how to multiply elements in
G; A’s private key is d.

Let h : {0, 1}∗ −→ Zn be a hash function where n is the number of elements in G. In
general h : {0, 1}∗ −→ Zn will be the composition of an iterated hash function from
{0, 1}∗ to {0, 1}N followed by an encoding from {0, 1}N to Zn.

(b) To sign a message m, A does the following;

1. Select a random secret integer k, 1 ≤ k ≤ n− 1 with gcd(k, n) = 1.

2. Compute the group element r = αk.

3. Compute k−1 mod n.

4. Define a function φ : G −→ {0, 1}∗. For ease of notation write h̃(r) instead of
h(φ(r)) for r ∈ G.

5. Compute h(m) and h̃(r).

2

6. Compute s = k−1{h(m)− dh̃(r)} mod n.

7. A’s signature for m is the pair (r, s).

(c) To verify A’s signature (r, s) on m, B should do the following:

1. Obtain A’s authentic public key (α, y).

2. Compute h(m) and h̃(r).

3. Compute v1 = yh̃(r)rs.

4. Compute v2 = αh(m).

5. Accept the signature if and only if v1 = v2.

The classical ElGamal signature scheme is a special case of the generalized ElGamal
signature scheme with G being the multiplicative group Z∗p and h̃ : Z∗p −→ Z/(p − 1)Z
being defined as r (mod p) 7−→ r (mod p−1). One point to mention is that in the clas-
sical ElGamal signature scheme there is an extra process of checking that 1 ≤ r ≤ p−1 in
the verification step. Note that, in both of the algorithms, the verification is done in the
group. That is, we verify if v1 = v2 as group elements. Algorithms of the two variations
of the classical ElGamal signature scheme DSA [1], [6] and ECDSA [2]are given below:

Algorithm of the DSA

(a) Each entity A does the following :

1. Select a prime number q such that 2159 < q < 2160.

2. Choose t so that 0 ≤ t ≤ 8, and select a prime number p where 2511+64t < p <
2512+64t, with the property that q divides (p− 1).

3. Select a generator α of the unique cyclic group of order q in Z∗p by choosing an

element g ∈ Z∗p and then computing α = g(p−1)/q mod p until α 6= 1.

4. Select a random integer d such that 1 ≤ d ≤ q − 1.

5. Compute y = αd mod p.

6. A’s public key is (p, q, α, y); A’s private key is d.

(b) To sign a message m, A does the following :

1. Select a random secret integer k, 0 < k < q.

2. Compute r = (αk mod p) mod q .

3. Compute k−1 mod q.

4. Compute s = k−1{h(m) + dr} mod q, where h is the Secure Hash Algorithm.

3

5. A’s signature for m is the pair (r, s).

(c) To verify A’s signature (r, s) on m, B should do the following :

1. Obtain A’s authentic public key (p, q, α, y).

2. Verify that 0 < r < q and 0 < s < q; if not, then reject the signature.

3. Compute w = s−1 mod q and h(m).

4. Compute u1 = w · h(m) mod q and u2 = rw mod q.

5. Compute v = (αu1yu2 mod p) mod q.

6. Accept the signature if and only if v = r.

The significant difference between the classical ElGamal signature scheme and the
DSA is in the verification process. In the generalized or classical ElGamal scheme, we
compute r ∈ G as a group element and send r as a part of the signature. Thus we reveal
the group element r. To verify the signature, we compute yh̃(r)rs and αh(m) in the group
G and check if they are same as group elements. But in the DSA, we take the group
element αk mod p ∈ Z∗p and take the remainder modulo q. That is, r = (αk mod p) mod q.
Therefore, r is not an element of the group Z∗p. In the verification process, we compute

αu1yu2 (mod p) (= αs−1h(m)+s−1dr (mod p) = αk (mod p)) and take the remainder
modulo q. Then we check if the outcome equals r. We compare the two elements
(αu1yu2 mod p) mod q and r in Z/qZ not in the group Z∗p. To summarize, in the classical

case, we need to compute v1 = yrrs (mod p) and v2 = αh(m) (mod p) to verify
the signature, which requires three modular exponentiations. But in the DSA we just
need to compute v = (αu1yu2 mod p) mod q for verification, using only two modular
exponentiations. Since DSA has a computational advantage in the verification process,
we will use this feature with a modification in our construction for higher dimensional
ElGamal signature schemes. One other difference is the signs in the signature s. In the
classical case s = k−1{h(m) − dh̃(r)} (mod p − 1) and in the DSA s = k−1{h(m) +
dr} (mod q). The sign appears as “+” in the DSA because of the modification in the
verification process, but it is not essential.

The ECDSA is the elliptic curve version of DSA. That is, instead of working in a
group of order q in Z∗p, we work in a group of order n in E(Zp).

Algorithm of the ECDSA

(a) Each entity A does the following:

1. Select an elliptic curve E defined over Zp. The number of points in E(Zp) should
be divisible by a large prime n.

2. Select a point P ∈ E(Zp) of order n.

3. Select a random integer d, 2 ≤ d ≤ n− 2.

4

4. Compute Q = dP .

5. A’s public key is (E, P, n, Q); A’s private key is d.

(b) To sign a message m, A does the following :

1. Select a random integer k, 2 ≤ k ≤ n− 2.

2. Compute kP = (x1, y1) and r = x1 mod n. If r = 0, then go to step 1.

3. Compute k−1 mod n.

4. Compute s = k−1{h(m) + dr} mod n, where h is the Secure Hash Algorithm. If
s = 0, then go to step 1.

5. The signature for the message m is the pair of integers (r, s).

(c) To verify A’s signature (r, s) on m, B should do the following :

1. Obtain an authentic copy of A’s public key (E, P, n, Q). Verify that r and s are
integers in the interval [1, n− 1].

2. Compute w = s−1 mod n and h(m).

3. Compute u1 = h(m)w mod n and u2 = rw mod n.

4. Compute u1P + u2Q = (x0, y0) and v = x0 mod n.

5. Accept the signature if and only if v = r.

The main difference between DSA and ECDSA is in the computation of r. In DSA,
r is computed by selecting a random k and computing αk (mod p) and then reducing it
modulo q. In ECDSA, we select a random k and compute the point kP . Then take the
x-coordinate of the point kP and reduce it modulo n. As it was with DSA, the element
(or point) kP = (x1, y1) of the group E(Zp) is not revealed. Here, r = x1 mod n is given
as a part of the signature. Since we do not know kP , the final verification is not done in
E(Zp) but in Z/nZ.

3 The vector decomposition problem

The ElGamal signature scheme is based on the difficulty of the discrete logarithm problem
(DLP). We will discuss a different problem called the vector decomposition problem
(VDP). We state the definition of the VDP and the conditions for the VDP to be a hard
problem. Examples of the VDP using elliptic curves by Yoshida [7] and hyperelliptic
curves by Duursma and Kiyavash [3] are presented.

Definition 3.1. The Vector Decomposition Problem on V (a two-dimensional vector
space over F) is “ Given e1, e2, v ∈ V such that e1, e2 is an F-basis for V, find the
vector u ∈ V such that u ∈ 〈e1〉 and v − u ∈ 〈e2〉”.

5

Definition 3.2. The computational Diffie-Hellman problem on V ′ (a one-dimensional
vector space over F) is “ Given e ∈ V ′ \ {0} and ae, be ∈ 〈e〉, find abe ∈ 〈e〉”.
Theorem 3.3. (Yoshida [7]) The Vector Decomposition Problem on V is at least as
hard as the computational Diffie-Hellman problem on V ′ ⊂ V if for any e ∈ V ′ there are
linear isomorphisms φe, Fe : V → V which satisfy the following three conditions:

(1) For any v ∈ V , φe(v) and Fe(v) are effectively defined and can be computed in
polynomial time.

(2) e, φe(e) is an F-basis for V.

(3) There are α1, α2, α3 ∈ F with

Fe(e) = α1e,

Fe(φe(e)) = α2e + α3φe(e),

and α1, α2, α3 6= 0. The elements α1, α2, α3 and their inverses can be computed
in polynomial time.

Proof. The proof is in [7] and is also included in [3]

Example 3.4. (Example of Yoshida [7]) We choose V = E[n], the full group of n-torsion
points on an elliptic curve, and V ′ = E(Fp)∩E[n], the subgroup of Fp-rational n-torsion
points, where

p : a prime with p ≡ 2 (mod 3),

E : y2 = x3 + 1, an elliptic curve over Fp,

n : a prime such that 6n = p + 1,

E[n] = {P ∈ E | nP = 0} ⊂ E(Fp2).

Let F : (x, y) 7−→ (xp, yp) be the Frobenius map and let φ : (x, y) 7−→ (ωx, y), where
ω2 + ω + 1 = 0. Then Theorem 3.3 applies with α1 = 1, α2 = −1, α3 = −1.

By Theorem 3.3, the VDP is hard if the CDHP on a one-dimensional subspace is
hard. The curve E : y2 = x3 + 1 in Example 3.4 is supersingular. Thus the ECDLP
and hence the CDHP on the one-dimensional subspace is vulnerable to the MOV attack.
Duursma and Kiyavash [3] showed that any elliptic curve that satisfies the conditions of
Theorem 3.3 is supersingular. Thus, using the VDP with the full n-torsion points on an
elliptic curve introduces a vulnerability that needs to be compensated by choosing larger
parameters. To avoid this, the VDP may be used with higher genus curves.

Example 3.5. (Example of Duursma and Kiyavash [3]) The Jacobian of the hyperelliptic
curve

C : y2 = x6 − ax3 + 1, where a ∈ Fp for an odd prime p

is isogenous to a product of elliptic curves E1 × E2, where

E1 : y2 = x3 + (3x + 2 + a)2,

E2 : y2 = x3 + (3x + 2− a)2.

6

The curves E1 and E2 are 3-isogenous over Fp2 with j-invariants

j1 = 4 · 1728
(5 + 2a)3

(2 + a)(2− a)3
,

j2 = 4 · 1728
(5− 2a)3

(2− a)(2 + a)3
.

We choose C : y2 = x6 − ax3 + 1 such that E1 has a large cyclic subgroup Z/nZ of
rational points over Fp, for p ≡ 2(mod 3). Then we choose as two-dimensional vector
space V the n-torsion Z/nZ×Z/nZ in the Jacobian of the hyperelliptic curve C over the
extension field Fp2 and choose as one-dimensional subspace V ′ the subspace Z/nZ of V
that is rational over Fp.

p : an odd prime with p ≡ 2 (mod 3),

C : y2 = x6 − ax3 + 1, a curve with a ∈ Fp,

Jac(C) : Jacobian of the curve C,

n : a prime greater than 3,

V = Z/nZ× Z/nZ ⊂ Jac(C)(Fp2),

V ′ = Z/nZ ⊂ Jac(C)(Fp).

Let F : (x, y) 7−→ (xp, yp) be the Frobenius map and let φ : (x, y) 7−→ (ωx, y), where
ω2 + ω + 1 = 0. Then Theorem 3.3 applies with α1 = 1, α2 = −1, α3 = −1.

4 An ElGamal type signature scheme for two- di-

mensional vector spaces

The VDP on a hyperelliptic curve can serve as the underlying intractable problem for
cryptographic protocols. Other problems such as integer factorization and the discrete
logarithm problem have been studied for cryptography for many years. Many protocols
have been formulated for each of those problems. The only protocol presented so far that
uses the VDP is for watermarking [7]. In this section we introduce a signature scheme
based on VDP. The infinite family of genus 2 hyperelliptic curves of Example 3.5 is used
in the signature scheme. The signature scheme consists of three parts: key generation,
signature generation, and verification. The ingredients of the algorithm are the following:
Let V be a vector space with basis {e1, e2}. The signer chooses randomly a new basis
(Q1, Q2)

T = D(e1, e2)
T , where

D =

(
d11 d12

d21 d22

)
: private key matrix

.
For the signature scheme to be secure it is necessary that the transformation matrix D
is not easily obtained from the given basis {e1, e2} and {Q1, Q2}. Let M = (m1, m2) be
a message divided into two parts m1 and m2. A signature for M is a pair (R,S) such
that

S(H(M) +RD) = K,

7

where

H(M) =

(
h(m1) h(m2)
h(m1) h(m2)

)
: hashed message matrix

K = (k1 k2) : random matrix

R =

(
r1 0
0 r2

)
: signature matrix such that (r1, r2) = Ψ(k1e1 + k2e2)

S = (s1 s2) : signature matrix.

Clearly, provided that H(M)+RD is nonsingular, the signature (R,S) can be generated
efficiently by the signer. In order to verify the signature, we compute

Ψ ((s1 + s2)(h(m1)e1 + h(m2)e2) + s1r1Q1 + s2r2Q2)

(= Ψ (S(H(M) +RD)(e1, e2)
T))

and check that it is equal to (r1, r2) (= Ψ (K(e1, e2)
T)). Now, we introduce the

algorithm of the VDP signature scheme.

Algorithm of the VDP signature scheme (Algorithm A)

(a) Each entity A does the following :

1. Select a hyperelliptic curve C from Example 3.5 and choose as two-dimensional
vector space V the n-torsion Z/nZ × Z/nZ in the Jacobian of the hyperelliptic
curve C over the extension field Fp2 of Fp for a large enough prime n.

2. Select a basis {e1, e2} for V , where e1 ∈ Fp.

3. Select d11, d12, d21, d22 ∈ Z/nZ such that

det

(
d11 d12

d21 d22

)
6= 0 (mod n).

4. Compute Q1 = d11e1 + d12e2, Q2 = d21e1 + d22e2.

5. A’s public key is C, n, (e1, e2), (Q1, Q2).
A’s private key is (d11, d12), (d21, d22).

(b) To sign a message M = (m1,m2), A does the following :
Let h : {0, 1}∗ −→ Z/nZ be a hash function and for notational convenience let h(M) =
h(m1)e1 + h(m2)e2.

1. Select k1, k2 ∈ Z/nZ.

2. Compute K = k1e1 + k2e2.

8

3. Express K in Mumford representation, K = (x2 +u1x+u2, · · ·), u1, u2 ∈ F2
p. Since

p ≡ 2(mod 3), we have Fp2
∼= Fp[x]/ 〈x2 + x + 1〉. Thus, for ui ∈ Fp2 , there exist

ui1, ui2 ∈ Fp such that ui 7−→ ui1 + ui2x, i = 1, 2. Let ri = ui1 + ui2p (mod n
). Hence, for each K ∈ V , we can assign an ordered pair (r1, r2). We will call this
function Ψ. If K = (x + u1, · · ·) or K = (1, 0) then return to step 1.

4. Compute s1, s2 ∈ Z/nZ that satisfy the following :

(s1 + s2)h(M) + s1r1Q1 + s2r2Q2 = K, where Ψ(K) = (r1, r2),

that is

{
s1h(m1) + s2h(m1) + s1r1d11 + s2r2d21 = k1 (mod n),
s1h(m2) + s2h(m2) + s1r1d12 + s2r2d22 = k2 (mod n),

or (s1 s2)

[(
h(m1) h(m2)
h(m1) h(m2)

)
+

(
r1 0
0 r2

)(
d11 d12

d21 d22

)]
= (k1 k2) (mod n).

If

(
h(m1) h(m2)
h(m1) h(m2)

)
+

(
r1 0
0 r2

)(
d11 d12

d21 d22

)
is singular, then go to step 1.

5. The signature for the message M is (s1, s2), (r1, r2).

(c) To verify A’s signature, B should do the following .

1. Obtain A’s public key C, n, (e1, e2), (Q1, Q2).

2. Compute (s1 + s2)h(M) + s1r1Q1 + s2r2Q2.

3. Accept the signature if and only if

Ψ((s1 + s2)h(M) + s1r1Q1 + s2r2Q2) = (r1, r2).

(Security aspects of Algorithm A)

1. A necessary condition for the security of the signature scheme is that given Q1 =
d11e1+d12e2 and Q2 = d21e1+d22e2 it is hard to compute the coefficientsd11, d12, d21,
and d22. This is certainly the case when the VDP, which asks to compute ae1 and
be2 for a given ae1 + be2, is hard. Even if the VDP is solved, it remains to solve
four instances of the DLP: given d11e1, find d11, etc. Thus, a direct attack on the
private key is at least as hard as solving both the VDP and the DLP. It is not clear
how solving one of the two problems could be used to solve the other one.

2. It is also necessary that given K = k1e1 +k2e2 it is hard to compute the coefficients
k1 and k2. An attacker with knowledge of k1 or k2 can use the equations under
(b, item 4) to reduce the key space for the private key. In fact, an attacker that
intercepts two messages and knows k1 and k2 for each of the two messages will be
able to recover the private key completely.

3. An attacker trying to sign a message may start with choosing t, t1, t2 and computing
K = th(M) + t1Q1 + t2Q2. However, after computing r1, r2 from K, the attacker
then faces three equations t = s1 + s2, t1 = s1r1, t2 = s2r2 for the two unknowns
s1, s2.

9

5 An ElGamal type signature scheme for n-dimensional

vector spaces

We present an ElGamal type signature scheme for n-dimensional vector spaces and ex-
plain that it contains the signature schemes of Section 2 and Section 4 as special cases.
The main idea is the following:
Let V be an n-dimensional vector space with basis {e1, · · · , en}. The signer chooses
randomly a new basis (Q1, · · · , Q2)

T = D(e1, · · · , e2)
T , where

D =

d11 · · · d1n
...

. . .
...

dn1 · · · dnn

 : n× n private key matrix.

Let M = (m1, · · · ,mn) be a message divided into n parts. A signature for M is a pair
(R,S) such that

S(H(M) +RD) = K,

where

H(M) =

h(m1) · · · h(mn)
...

. . .
...

h(m1) · · · h(mn)

 : n× n hashed message matrix

K = (k1 · · · kn) : 1× n random matrix

R =

r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rn

 : n× n diagonal signature matrix

S = (s1 · · · sn) : 1× n signature matrix.

In order to verify the signature, we compute

f ((s1 + · · ·+ sn)(h(m1)e1 + · · ·+ h(m2)e2) + r1s1Q1 + · · ·+ rnsnQn)

(= f (S(H(M) +RD)(e1, · · · , e2)
T))

and check that it is equal to (r1, · · · , rn) (= f (K(e1, · · · , e2)
T)), for

a specified f .

Algorithm of the n-dimensional ElGamal signature scheme (Algorithm B)

Let V be a vector space over F, where F is a field.
Let f be a function

f : V −→ Fn

K 7−→ (r1, · · · , rn)

10

which is easy to compute and, for each (r1, · · · , rn), f−1 ((r1, · · · , rn)) is small.

(a) Each entity A does the following :

1. Select a basis {e1, · · · , en} for V .

2. Select (d11, · · · , d1n), · · · , (dn1, · · · , dnn) ∈ Fn such that

det

d11 · · · d1n
...

...
dn1 · · · dnn

 6= 0.

3. Compute

Q1 = d11e1 + · · ·+ d1nen

...

Qn = dn1e1 + · · ·+ dnnen

4. A’s public key is V, F, (e1, · · · , en), (Q1, · · · , Qn).
A’s private key is (d11, · · · , d1n), · · · , (dn1, · · · , dnn).

(b) To sign a message M = (m1, · · · ,mn), A does the following :

1. Select (k1, · · · , kn) ∈ Fn.

2. Compute K = k1e1 + · · ·+ knen ∈ V .

3. Compute f(K) = (r1, · · · , rn)

4. Compute the matrix equation for (s1, · · · , sn) ∈ Fn

(s1, · · · , sn)

h(m1) h(m2) · · · h(mn)
h(m1) h(m2) · · · h(mn)

...
...

...
h(m1) h(m2) · · · h(mn)

+

r1 0 · · · 0

0 r2
. . .

...
...

. 0
0 · · · 0 rn

d11 d12 · · · d1n

d21 d22 · · · d2n
...

...
...

dn1 dn2 · · · dnn

= (k1, · · · , kn), where h is a hash function.

5. The signature for the message M is (s1, · · · , sn), (r1, · · · , rn).

(c) To verify A’s signature, B does the following :

1. Obtain A’s public key.

2. Compute v = (s1 + · · ·+ sn)h(M) + r1s1Q1 + · · ·+ rnsnQn ∈ V .

3. Compute f(v) = (t1, · · · , tn) ∈ Fn.

11

4. Accept the signature if and only if (t1, · · · , tn) = (r1, · · · , rn).

We compare Algorithm B with the three versions of the ElGamal signature scheme
in Section 2, and with the VDP signature scheme in Section 4.

(ECDSA)

We consider the n-dimensional ElGamal signature scheme with n = 1 and apply it
to the signature schemes of Section 2. Let E be an elliptic curve defined over Zp such
that the number of points in E(Zp) is divisible by a large prime n. We take V to be the
cyclic group of order n generated by P ∈ E(Zp) and define

f : V −→ Zn by

K 7−→ r ≡ x1 (mod n) for K = kP = (x1, y1).

Then V is a one-dimensional vector space over the field Zn with basis {P}. We apply the
above V and f to ECDSA. In the ECDSA, the signature s is s = k−1{h(m) + dr}
mod n. In Algorithm B, the signature s is such that sh(M) + srQ = K that is
s = k{h(m) + dr}−1 mod n which is the inverse of the signature in ECDSA. They
both require one modular inverse, two modular multiplications, and one addition. In the
ECDSA, we compute s−1h(m)P + s−1rQ to verify the signature and in Algorithm B,
we compute sh(M) + srQ = sh(m)P + srQ for verification. Thus in ECDSA, we need
to compute s−1 but in Algorithm B, we do not require the computation of the inverse.
Therefore, Algorithm B is more efficient than ECDSA.

(DSA)

We let V be the cyclic group of order q generated by α in Z∗p and define

f : V −→ Zq by

αk 7−→ (αk mod p) mod q .

(0 < k < q)

Then V is a one-dimensional vector space over the field Zq with basis {α}. The rest of
the argument is similar to the ECDSA.

(Generalized ElGamal signature scheme)

Let V be the cyclic group G of order n, with generator α. To apply Algorithm B
we restrict n to be a prime number. Then V is a one-dimensional vector space over Zn

with basis {α}. Define f : V −→ Zn by f = h ◦ φ. The generalized ElGamal signature
scheme uses s = k−1{h(m) − dh(φ(r))} mod n as the signature and Algorithm B uses
s = k{h(m)+ dh(φ(r))}−1 mod n. Thus in the signature generation process, the amount
of computation needed are the same for both signature schemes. The main difference
is in the verification process. In the former case we need to compute yh(φ(r)) · rs and
αh(m) but in the latter case we only need to compute αsh(m)ysh(φ(r)) for verification. Thus

12

the former case requires three exponentiations whereas the latter case requires only two.
Hence Algorithm B is more efficient.

(VDP signature scheme)

We consider Algorithm B with n = 2. If we let V be the n-torsion Z/nZ × Z/nZ of
Example 3.5 and define f : V −→ Z/nZ× Z/nZ by f = Ψ, then we have Algorithm A
of Section 4.

References

[1] ANSI X9.30. Public Key Cryptography for the Financial Services Industry: Part I:
The Digital Signature Algorithm (DSA). 1997.

[2] ANSI X9.62. Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA). 1999.

[3] Iwan Duursma and Negar Kiyavash. The vector decomposition problem for elliptic
and hyperelliptic curves. J. Ramanujan Math. Soc., 20(1):59–76, 2005.

[4] Taher Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory, 31(4):469–472, 1985.

[5] P. Horster and H. Petersen. Verallgemeinerte elgamal signaturen. Sicherheit in In-
formationssystemen, Proceedings der Fachtagung SIS’94, pages 89–106, 1994. Verlag
der Fachvereine Zürich.

[6] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of applied
cryptography. CRC Press Series on Discrete Mathematics and its Applications. CRC
Press, Boca Raton, FL, 1997. With a foreword by Ronald L. Rivest.

[7] M. Yoshida. Inseparable multiplex transmission using the pairing on elliptic curves
and its application to watermarking. In Proceedings of Fifth Conference on Algebraic
Geometry, Number Theory, Coding Theory and Cryptography, Graduate School of
Mathematical Sciences, University of Tokyo, 2003.

[8] M. Yoshida, S. Mitsunari, and T. Fujiwara. Vector decomposition problem and the
trapdoor inseparable multiplex transmission scheme based problem. In Proceedings
of Symposium on Cryptography and Information Security, SCIS’03, 2003.

13

