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Introduction  
 
Binary d-sequences were investigated for their cryptographic properties by Subhash Kak in [1,2], who 
also examined their application to watermarking [3], and made a proposal for their use as random number 
generators (RNGs) [4] in a manner analogous to the iterative squaring done in the BBS method [5,6].  
 
In this paper we propose a new recursive technique for the use of d-sequences to generate random 
numbers.  
 
Decimal Sequences 
 
A decimal sequence is obtained when a number is represented in a decimal form in a base r  and it may 
terminate, repeat or be aperiodic. For a certain class of decimal sequences of q1 ,  prime, the digits 
spaced half a period apart add up to 

q
1−r , where r  is the base in which the sequence is expressed. 

Decimal sequences are known to have good cross- and auto-correlation properties and they can be used in 
applications involving pseudorandom sequences. The following section describes the properties of 
decimal sequences [1,2]: 
 
Theorem 1: Any positive number x may be expressed as a decimal in the base r 
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where , not all rarA ii <≤<≤ 0,0 A  and a  are zero, and an infinity of the  are less then ia )1( −r . 
There exists a one-to-one correspondence between the numbers and the decimals and  
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That the decimal sequences of rational and irrational numbers may possibly be used to generate pseudo-
random sequences is suggested by the following theorems of decimals of real numbers. 
 
Theorem 2: Almost all decimals, in any base, contain all possible digits. The expression almost all 
implies that the property applies everywhere except to a set of measure zero. 
 
Theorem 3: Almost all decimals, in any base, contain all possible sequences of any number of digits.  
 
Theorems 2 and 3 guarantee that a decimal sequence missing any digit is exceptional. 
 
The binary d-sequence is generated by means of the algorithm: 
 

2modmod2)( pia i=                  (3) 
 
where p is a prime number and is a simple d-sequence. The maximum length pia i mod2)( = )1( −p  
sequences are generated when 2 is a primitive root of p . When the binary d-sequence is of maximum 
length, then bits in the second half of the period are the complements of those in the first half. 
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It is easy to generate d-sequences, which makes them attractive for many engineering applications. 
 
It was shown in [2] that it is easy to find i given bits of , therefore, d-sequences cannot be 
directly used in random number generator applications.  

p2log )(ia

 
Kak RNG [4] 
 
By adding together two or more different binary d-sequences (obtained using primes ), one is 
able to introduce non-linearity in the generation process and the resulting sequence becomes a good 
candidate for use as random sequence. 

1 2, , ....p p

 
...2modmod22modmod22modmod2)( 321 ⊕⊕⊕= pppia iii            (4) 

 
where   is the modular 2 addition and ⊕ p denotes a (ideally very large) prime number. 
 
If the individual sequence is maximum length, then the period of the sum will be 
 

...}),1(),1(),1({ 321 −−− ppplcm  
 
where means the Least Common Multiple of a and b . Since we are dealing with only positive 
integers, we say c  is a least common multiple of and b if 

),( balcm
a

 
1. is a multiple of and ; c a b
2. any multiple of and is a multiple of . a b c

 
For randomly chosen primes we do not know if the starting number is a primitive root, therefore, the 
actual period would be a divisor of ...}),1(),1(),1({ 321 −−− ppplcm . 
 
If we choose a seed S, which is relatively prime to each , and the order of does not divide ip S )1( −ip for 
all i , then the power-exponent random number generates bits according to the following algorithm: 
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One may replace and  by and that are products of primes. For better security, the primes 
should each be congruent to as in the BBS generator [5]. 

1p 2p 1n 2n
)4(mod3

 
Recursive Random Number Generator  
 
Here, we propose a recursive RNG based on Kak RNG which is motivated by the following goals: 
 

1. Increasing the period of sum of d-sequence not only by a factor of  but 
by a multiple of it. 

).......}1(),1{( 21 −− pplcm
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2. Smoothening of auto-correlation function. 
 
The recursive formula proposed is as follows: 
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where is the seed and is a prime number and and are relatively prime to each other. The first 
subscript distinguishes the loops and and second subscript is number of that element in its respective 
loop. 

S fgp S fgp
i k

 
It can be clearly seen from (6) that there are two loops to be traversed during the generation of random 
binary numbers. The outer loop is with respect to  and the inner loop is with respect to , i.e. loop i  is 
nested within the loop . 

k i
k

 
Algorithm: 

1. Seed is chosen to be a primitive element of all , , …, . S 11p 12p np1

2. Let  be one period of . )max(it = )mod...modmod( 11211 n
iii pSpSpS ++

3. Choose , , … . 21p 22p mp2

4. Choose an integer and letu uk =)(max . (Note: length of sequence utl ×= .) 
5. Execution of loop: 

a) Set . 1=k
b) Generate random numbers by running from 1 to t . i
c) If , increment to  and return to a). uk ≤ k 1+k
d) Else quit. 

 
Before we derive the expression for the period of RNG, we define SeedSet. 
 
SeedSet:  It represents one period (or a subset of one period) of random numbers generated by addition of 
d-sequences . It is denoted as the setn

iii pSpSpS 11211 mod...modmod ++ }...,,,{ 321 wSSSSS = , 
where is a number the choice of which is a part of the design of the RNG. w
 
The length of the period 
 
If  is a primitive element of , then the period of  
is . 

S nppp 11211 ...,, n
iii pSpSpS 11211 mod...modmod ++

})1(...),1(),1({ 11211 −−− nppplcm
 
If  is a not a primitive element of , then, as mentioned earlier, the period of 

 is a divisor of 
S nppp 11211 ...,,

n
iii pSpSpS 11211 mod...modmod ++ })1(...),1(),1({ 11211 −−− nppplcm . 

 
Let denotes the period of and let the generated SeedSet 
be . We can write, 

sP )mod...modmod( 11211 n
iii pSpSpS ++

}...,,,{ 321 wSSSSS =
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where , denotes the period of d-sequence generated by seed with respect to  and  

varies from 1 to  and 
),( 2rq pSPeriod qS rp2

q w r varies from 1 to . m
 
Thus, the period of outer loop is, 
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The period of the output sequence is, 
 

)(
22221 ... SSeedSettheinelementsofnumberPP

mppp ×=                               (7) 
 
If the inner loop is restricted to just one term, i.e. , and 11p 112112311221121 ...,,, pppppppp m <<<< , 
then the choice of seed as a primitive root of  with a SeedSet consisting of one complete period will 
guarantee a maximum length sequence. This happens because the SeedSet generated will contain all the 
numbers less than . At least one of the seeds from the SeedSet will be a primitive element of 

, yielding a maximum period for all the primes. 
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We now consider a simple subset of (6) consisting only of two terms each in inner and outer loop and 
verify the expression for period (7). The subset that we consider is 
 
    (8) 2modmod)modmod(2modmod)modmod( 221211211211 ppSpSppSpS kiikii +⊕+
 
Example 1. Let .11,7,5,3,2 22211211 ===== ppppS  Since, 2 is a primitive element of and , 

. SeedSet , and therefore, 
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Thus, 30)10,6(])10,5,5,5(),3,6,6,3([

2221
=== lcmlcmlcmlcmP pp . 

 
The final period of the output sequence is 
 

120430)}({
2221

=×=−×= SsetseedtheinelementsofnumberPP pp . 
 

Example 2. Let .11,7,29,23,2 22211211 ===== ppppS It so turns out that 2 is a not a primitive 
element of either 23 or 29, and the period for the sum of the individual d-sequences is 308. The final 
period becomes 924030830 =×=P . 
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Results 
 
We present results for the simple case (8). Since the auto-correlation function of a random sequence is 
two-valued, we wish to confirm that our sequences are close to this ideal. (Note:  1. Circular and linear 
auto-correlations are calculated by setting the 0s (zeros) in the binary output to -1, and the functions are 
not normalized.  2. The notation in the graphs: .4,3,2,1 22211211 pppppppp ==== ) 
 
Circular Auto-correlation 
 
The graphs in Figure (1) show the effect of multiplication of periods. The seed and primes2=S 2321 =p  
and are kept constant. In the left graph,  and are 3 and 7, respectively, and from (8) the 
period is . In the right graph,  and are 5 and 7, respectively, and from (8) the period is 

. 

2922 =p 11p 12p
1848=P 11p 12p

3639=P
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The graphs in figure (2), illustrate the smoothening effect that Recursive RNG has on the auto-correlation 
functions of the output random numbers.  
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    Figure 2. 
 
It is thus observed that the choice of  and are the factors that control the smoothening. Larger 
values of  and give even better auto-correlation. 

11p 12p

11p 12p
 
Linear Autocorrelation 
 
The linear auto-correlation of two experimental sequences is shown in figure (3). The comparison to be 
made in these graphs is that for sufficiently large prime numbers not only the period is very large but its 
linear autocorrelation approaches ideal approximation for RNG applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 3. 
 
Note that for small prime numbers one complete period has been taken into consideration. However, for 
large prime numbers, since the period is very large, only first 40,000 binary random numbers are taken 
into consideration. 
 
Conclusions 
 
From the graphs above, it is clear that our goals of an RNG with a very large period and a good 
approximation to the ideal two-valued auto-correlation function were met. The period of the recursive 
RNG is in agreement to the theory. 
 
The choice of  and  provides the user of the RNG flexibility to control the auto-correlation 
function to desired characteristics. The results above are for small prime numbers, but they hold good for 
large prime numbers as well. We have only presented results for a subset (6), and this can be extended to 
more than two d-sequences in order to obtain larger periods. 

11p 12p

 
Recursive versions of other d-sequence based RNGs described in [4] may also be developed. Another 
extension would be to base a recursive generator on the cubic transformation [7]. 
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