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Abstract. The focus of this paper is to design an efficient and secure so-
lution addressing the key escrow problem in ID-based signature schemes,
i.e., the Private Key Generator (PKG) knows the user’s private key,
which damages the essential requirement–“non-repudiation” property of
signature schemes. In this paper, we proposed two ID-based threshold
signature schemes, which both reach Girault’s trusted level 3, and in
which there exists only one PKG in our ID-based threshold signature
schemes. In particular, the second scheme has another good property: it
does not require trusting any particular party at any time.
Compared with the previous schemes, our schemes do not need to com-
pute pairings, which make them be more efficient than those schemes.
Furthermore, our ID-based signature schemes increase the availability
of the signing agency and the difficulty for the adversary to learn the
private key.

1 Introduction

Certificate-based cryptography allows the user to use an arbitrary string, un-
related to his identity, as his public key. When another user wants to use this
public key, she must obtain an authorized certificate that contains this public
key. This creates the certificate management problem. For reasons of efficiency
and convenience, it is desirable to design a signature scheme without certificate
management.

To address this problem, Shamir introduced the concept of ID-based pub-
lic key cryptography [Sha84], in 1984. In this kind of public key cryptography,
the user’s public key is the user’s identity information, e.g., the email address,
while the private key is computed from the public key by a Private Key Gen-
erator (PKG) who has knowledge of a master secret. As a result, the certificate
management problem can be eliminated.

Shamir, in his breakthrough work [Sha84], proposed the first ID-based signa-
ture scheme. Since then, many ID-based signature schemes [SOK00,Hes02,Pat02,CC03]
and ID-based encryption schemes [BF01,Coc01,BF03] were proposed. However,
there are some drawbacks in these schemes. The most criticism against these
schemes, called key escrow problem, is that the PKG knows the private key of



all users, so he is able to impersonate any user. In particular, in ID-based signa-
ture schemes, it removes the essential requirement, “non-repudiation”, of digital
signature schemes.

To address this key escrow problem, many researchers [BF03,BZ04a,BZ04b,CZKK04]
suggested extending ID-based cryptography to be ID-based threshold cryptog-
raphy. Using an ID-based threshold signature scheme, digital signatures can be
produced by a group of players rather than by one party. Compared with the
regular ID-based signature schemes where the signer is single entity which holds
the private key, in ID-based threshold signature schemes the private key is shared
by a group of n players. In order to produce a valid signature on a given message
m, the number of the participant players must attain the given threshold value,
the signature can be created. More precisely, a typical (t, n) ID-based threshold
signature scheme follows the three basic properties:

– Any t or more players in the group can cooperate with each other to generate
a valid group signature, while they don’t reveal any information about their
sub-secret keys or the private key.

– Any t−1 or fewer players in the group cannot create a valid group signature,
even after producing many signatures on different messages.

– Any verifier can verify the group signature with only knowing the group
identity and the public key of the PKG. In other words, the signature is pro-
duced in an ID-based threshold signature scheme is the same as if produced
in a regular ID-based signature scheme. In particular, verification of the
signature is dependent of the way the signature generation is implemented.

Besides removing the key escrow problem, an (t, n) ID-based threshold sig-
nature scheme has another two advantages: (1) increasing the availability of the
signing agency, since if only t players perform the scheme honestly, the signature
can be generated successfully; (2) increasing the difficulty for the adversary to
learn the private key, since only the adversary corrupts t or more players, he can
learn the private key.

1.1 Previous Work

In [BF01,BF03], Boneh and Franklin proposed the first ID-based threshold cryp-
tosystem. In their scheme, the PKG’s master key is shared among a number of
PKGs. However, this method has the following disadvantages: (1) it requires
each PKG not to be closed after key generation, which is against Shamir’s orig-
inal proposal of ID-based cryptography; (2) it imposes heavy loads on users to
authenticate themselves to the multiple PKGs; (3) the value of threshold is not
flexible for users. To solve these problems, Baek and Zheng [BZ04a,BZ04b] pro-
posed another ID-based threshold cryptosystem. In their schemes, it shares a
private key associated with an identity rather than sharing a master key of the
PKG. However, their schemes still suffer from the key escrow problem, that is,
the PKG knows the private key. In [CZKK04], by combining the advantages of
both Certificate-based public key cryptography and ID-based public key cryptog-
raphy, Chen et al. proposed a new ID-based threshold signature scheme, which



not only solves the key escrow problem, but also removes the disadvantages of
Boneh and Franklin’s method. To our best knowledge, though there exists a
particular party knows the private key in Chen et al.’s scheme, it is considered
as the best solution among the existing schemes. In this paper, we get better
solutions: more efficient (in terms of computational complexity) and more secure
(no particular party knows the private key).

1.2 Our Contribution

We present two ID-based threshold signature schemes which enjoy the following
properties.

Provable security: Based on the Schnorr’s signature scheme [Sch91], we first
propose a new ID-based signature scheme without bilinear pairings, which is
provably secure in the random oracle model and achieves the Girault’s trusted
level 3 [Gir91] (i.e., the PKG does not know (or cannot easily compute) the users
private keys. Moreover, it can be proved that the PKG generated false public
keys of users if it does so.). Based on the proposed ID-based signature scheme,
we propose two provably secure ID-based threshold signature schemes.

Efficiency: Since there is no bilinear pairings in our schemes, our schemes are
more efficient than the existing schemes. We will give the performance evaluation
in Section 7.

Flexible thresholds: The value of threshold is up to the users.

Assumed trust: In our first ID-based threshold signature scheme, the group
manager should be trusted, since he knows the private key. While our second
ID-based threshold signature scheme does not require trusting any particular
party at any time, including during the generation of private key.

Limited power of the PKG: In our both ID-based threshold signature schemes,
the only thing the PKG can do is to cooperate with the user to generate the
user’s private key. However, the PKG cannot learn the user’s private. If the PKG
generates the user’s private key by himself, it can be detected.

1.3 Organization

Section 2 introduces the model and definitions for ID-based threshold signatures
and their security. Section 3 recalls the Schnorr’s signature scheme. Section 4
describes some of the existing tools in the literature that we use in our solutions.
Section 5 shows our provably secure ID-based signature scheme without pairings.
Section 6 presents our two provably secure ID-based threshold signature schemes.
Section 7 discusses the efficiency of our ID-based threshold signature schemes.
Finally, Section 8 gives the conclusion.



2 Model and Definitions

In this section we review the communication model and the definitions of secure
ID-based threshold signature scheme.

Communication model. The players in our schemes include a set of n players
who are connected by an authenticated broadcast channel. In addition, all players
are capable of private point-point communication over secure channels. Finally,
we work in a synchronous communication model. These assumptions allow us to
focus on high-level descriptions of the protocols. For the details, the reader can
refer to [GJKR96][Section 2].

The adversary. Our (t, n) ID-based threshold signature schemes assume a
non-adaptive adversary (static adversary) who may corrupt up to t− 1 players
in advance of protocol execution. The adversary has access to all information
available to the corrupted players, including their sub-secrets, messages they
receive, and messages broadcast to all players. Furthermore, the adversary can
cause player to deviate arbitrarily from the protocol.

ID-based signature scheme. Recall that ID-based signature scheme S is
consisted of four random protocols: Setup, Extract, Sign, Verify. The Setup
protocol takes as input the security parameter k, and generates params (system
parameters) and master-key. The Extract protocol takes as input a user’s ID
and the master key, and returns the user’s private key, denoted by dID. The Sign
protocol signs messages using the user’s private key and the Verify protocol
verifies signatures using the user’s ID and params. However, in order to achieve
Girault’s trusted level 3, we modify the Extract protocol slightly in this paper,
i.e., add the data chosen by the user to the input.

The notion of security for ID-based signature scheme was formally defined in
[CC03]. The following definition captures the notion: existential unforgeability
against adaptively chosen identity and message attack.

Definition 2.1. We say that an ID-based signature scheme S(Setup, Extract,
Sign, Verify) is unforgeable if no adversary who is given the public key of
the PKG generated by Setup, the private keys of k1 identities IDi1 , · · · , IDik1

adaptively chosen, and the signatures of k2 tuples (IDj1 ,mj1), · · · , (IDjk2
,mjk2

)
adaptively chosen, can produce the signature on a new message m under the iden-
tity ID (i.e., ID 6∈ {IDi1 , · · · , IDik1

}, (ID,m) 6∈ {(IDj1 ,mj1), · · · , (IDjk2
,mjk2

)})
with non-negligible probability.

ID-based threshold signature scheme. Like ID-based signature scheme, ID-
based threshold signature scheme T S is also consisted of four random protocols:
Setup, Thresh-Extract, Thresh-Sign, Verify. Furthermore, it should achieve
Girault’s trusted level 3.



Setup. Identical to that in ID-based signature scheme.
Thresh-Extract. According to whether there exists a particular party knowing

the private key, this protocol can be categorized as with or without a group
manager. In the former one, there are a PKG, a group manager, and n play-
ers. Firstly, the group manager gets the private key through an interactive
protocol with the PKG. Secondly, the group manager distributes the private
key to the n players through some verifiable secrete sharing scheme. In the
latter one, there are only a PKG and n players. The private key is jointly
generated by the PKG and these n players. In both of two, the public key is
always the identity ID of these n players.

Thresh-Sign. It is the distributed signature protocol. The private input of
player Pi is his share of the private key. The public key inputs consist of a
message m and the identity ID of these n players. The output of the protocol
is a signature for message m under the identity ID.

Verify. Identical to that in ID-based signature scheme.

From the verifier’s viewpoint, ID-based threshold signature scheme is the same
as ID-based signature scheme.

Secure ID-based threshold signature scheme. Following the idea in [GJKR96],
the definition of security for ID-based threshold signature scheme includes both
unforgeability and robustness.

Definition 2.2. We say that a (t, n) ID-based threshold signature scheme T S=(Setup,
Thresh-Extract, Thresh-Sign, Verify) is unforgeable, if no adversary who
corrupts at most t−1 players, and is given the view of Thresh−Extract on input
k1 identities IDi1 , · · · , IDik1

adaptively chosen, and of Thresh-Sign on input k2

tuples (IDj1 ,mj1), · · · , (IDjk2
,mjk2

) adaptively chosen, can produce the signa-
ture on a new message m under the identity ID (i.e., ID 6∈ {IDi1 , · · · , IDik1

},
(ID,m) 6∈ {(IDj1 ,mj1), · · · , (IDjk2

,mjk2
)}) with non-negligible probability.

Definition 2.3. An ID-based threshold signature scheme T S=(Setup, Thresh-Extract,
Thresh-Sign, Verify) is (t, n) robust if in a group of n players, even in the pres-
ence of an adversary who corrupts at most t− 1 players, both Thresh-Extract

and Thresh-Sign can complete successfully.

3 The Schnorr’s Signature Scheme.

The Schonrr’s signature scheme [Sch91] is a signature scheme based on the dis-
crete logarithm problem, which can be proved secure against the adaptively
chosen message attack in the random oracle model. It consists of the following
three protocols: Setup, Sign, Verify.

Setup. It takes as input a security parameter 1k and outputs a public key
(p, q, g,H(·), y) and a secret key x, where p and q are two large primes,
q|p − 1, g is a generator of order q in Zp, H(·) is a cryptographic hash
function: {0, 1}∗ → Z∗q , and y = gx mod p.



Sign. To sign a message m, the user does the following performances. (1) choose
a random r ∈ Z∗q , (2) compute R = gr mod p, and (3) set the signature to
be (R, σ), where σ = r + xH(m||R) mod q.

Verify. To verify a signature (R, σ) for message m, the verifier does: check
gσ ?= RyH(m||R) mod p. If it holds, the signature is valid; otherwise, the
signature is invalid.

4 Basic Tools

In this section we recall Feldman’s verifiable secret sharing protocol [Fel87], de-
noted here by Protocol VSS, and the secure distributed key generation protocol
[GJKR99], denoted here by Protocol DKG.1

We say an issue is a complaint if the share of a player cannot pass the verified
equation, and the player asks the dealer to reveal his share. We say a dealer is
disqualified if more than t players broadcast complaints against the dealer.

A high-level descriptions of the Protocol VSS and the Protocol DKG are
given in Figure 1 and Figure 2, respectively. p, q are two large primes, and they
satisfy q|p−1, and g , h are two random generators of Zp of order q. For details,
the reader can refer to [Fel87,GJKR99].

5 New ID-based Signature Scheme

In this section, we propose our ID-based signature scheme without pairings,
which is based on the Schnorr’s signature scheme. Follow the definition of ID-
based signature schemes, it consists of the following four protocols.

Setup. Given security parameter k1, k2 ∈ Z+, the protocol works as follows:
Step 1: Choose a k1-bit prime p and a k2-bit prime q, such that q|p− 1.
Step 2: Choose a generator g of order q in Zp.
Step 3: Choose a random x ∈ Z∗q , and compute y = gx mod p.
Step 4: Choose two cryptographic hash functions H1(·) and H2(·), such

that H1 : {0, 1}∗ → Z∗q , H2 : {0, 1}∗ → Z∗q .
The public key of PKG is (p, q, g, y, H1(·),H2(·)), and the corresponding
master key is x.

Extract. It is an interactive protocol between the user and the PKG.
1. The user first chooses a random rID ∈ Z∗q , and computes RID = grID mod

p. At last, the user sends (ID,RID) to the PKG.
2. Upon receiving (ID,RID), the PKG does: (1) choose a random rPKG ∈

Z∗q , (2) compute RPKG = grP KG mod p, and (3) set the private key
skID ← (RPKG, dID), where dID = rPKG + xH1(ID||RID||RPKG) mod
q. At last, the PKG sends the private key to the user.

1 The protocols in this paper are slightly different from the original ones, however,
they have the same properties as the original ones.



Protocol VSS
participants: a dealer, n players Pi(i = 1, · · · , n).
input: r, R, p, q, g, such that R = gr mod p.

1. The dealer performs as follows.
(a) Chooses a random polynomial f(x) over Zq of degree t− 1:

f(x) =

t−1∑
i=0

aix
i,

such that f(0) = a0 = r.
(b) Broadcast Ai = gf(i) mod p for i = 0, · · · , n. Notice that A0 = R mod p.
(c) Compute the shares ri = f(i) mod q for i = 1, · · · , n and sends ri to player

Pi by a secret channel.
2. Upon receiving ri from the dealer, each player Pi does the following performances.

(a) Choose randomly t Akj ’s from Ak(k = 0, · · · , i− 1, i + 1, · · · , n).
(b) Check

gri ?
= Ai

?
=

t−1∏
j=0

A
λi,kj

kj
mod p, (1)

where λi,kj ’s are the Lagrange interpolation coefficients. If it does not hold,
player Pi broadcasts a complaint against the dealer.

If more than t players complain then the dealer is clearly bad and he is disqualified.
Otherwise, the dealer distributes the value of r among these n players.

Fig. 1. Secure verifiable secret sharing.



Protocol DKG
participants: n players Pi(i = 1, · · · , n).
input: p, q, g, h.

1. Each player Pi does the following performances.
(a) Choose two random number ri and r′i over Zq.
(b) Choose two random polynomials fi(x), f ′i(x) over Zq of degree t− 1:

fi(x) =

t−1∑
j=0

aijx
j , f ′i(x) =

t−1∑
j=0

bijx
j ,

such that fi(0) = ai0 = ri, f ′i(0) = bi0.
(c) Broadcast Aij = gaij hbij mod p for j = 0, · · · , t− 1.
(d) Compute the shares xij = fij mod p and x′ij = f ′ij mod p for j = 0, · · · , t−1,

and send xij , x
′
ij to player Pj .

(e) On receiving xji, x
′
ji from player Pj , player Pi checks

gxjihx′ji
?
=

t−1∏
k=0

(Ajk)ik

mod p.

If it does not hold, player Pi broadcasts a complaint against player Pj .
(f) Build the set of non-disqualified players QUAL.
(g) If player Pi is in QUAL, he broadcasts Bij = gfi(j) mod p for j = 0, · · · , n.
(h) For each j ∈ QUAL, Pi first chooses t Bjkl ’s (kl 6= i, and l = 0, . . . , t− 1), and

then checks

gxji ?
= Bji

?
=

t−1∏
l=0

(Bjkl)
λi,kl mod p, (2)

and

Bj0
?
=

t−1∏
l=0

(Bjkl)
λ0,kl mod p, (3)

where λi,kl ’s are the Lagrange interpolation coefficients. If one of them does
not hold, player Pi broadcasts a complaint against player Pj .

(i) Rebuild the set of non-disqualified players QUAL.
2. The distributed secret value x is not explicitly computed by any party, but it

equals x =
∑

i∈QUAL ri mod q. Each player Pi sets his share of the secret as

xi =
∑

j∈QUAL xji mod q. The corresponding public key of this group is y =∏
i∈QUAL Bi0 mod p.

Fig. 2. Secure distributed key generation.



3. Upon receiving the private key, the user checks

gdID
?= RPKGyH1(ID||RID||RP KG) mod p. (4)

If it does not hold, the user broadcasts a complaint against the PKG.
4. The private key of the user is skID = rID + dID mod q, such that

gskID = RIDRPKGyH1(ID||RID||RP KG) mod p (5)

Sign. To sign a message m under the public key ID, the protocol does: (1)
choose a random r ∈ Z∗q , (2) compute R = gr mod p and β = H2(ID||RID||RPKG||R||m),
and (3) set the signature to be (RID, RPKG, R, σ), where σ = r + (rID +
dID)β mod q.

Verify. To verify a signature (RID, RPKG, R, σ) for message m, the protocol
does: check gσ ?= R(RIDRPKGyH1(ID||RID||RP KG))β mod p.

5.1 Security Analysis of Our ID-based Signature Scheme

To prove the security of our ID-based signature scheme, we make use of the tech-
niques in [PS00], especially the Forking Lemma, which is described as follows.
For details, the reader can refer to [PS00].

Lemma 5.1 (The Forking Lemma ([PS00], Theorem 13)). Let A be a
probabilistic polynomial time Turing machine whose input only consists of public
data. And A can ask to the signer with qs queries, and can ask to the random or-
acle with qh queries. Suppose that, A can produce a valid signature (m,σ1, h, σ2),
with probability ε ≥ 10(qs +1)(qs + qh)/2k, in time T . If the triple (σ1, h, σ2) can
be simulated without knowing the private key, with an indistinguishable distribu-
tion probability, then there is an another machine which has control over A and
produces two valid signatures (m,σ1, h, σ2) and (m,σ1, h

′, σ
′
2) such that h 6= h′,

within time T ′ ≤ 120686qhT/ε.

Theorem 5.1. The proposed ID-based signature scheme achieves Girault’s trusted
level 3.

Proof. We suppose the PKG wants to impersonate an honest user whose identity
information is ID. He can do the following performances:

1. choose a random r′ID ∈ Z∗q and compute R′ID = gr′ID mod p.
2. Perform the Extract protocol and Sign protocol of the proposed ID-based

signature scheme for the message m.
3. Output (R′ID, RPKG, R′, σ′)

The signature can be easily verified valid by the Verify protocol of the
proposed ID-based signature scheme. However, the user can provide a proof to
convince that the signature is forged by the PKG. The user first sends RID and
RPKG to the arbiter, and then provides a ”knowledge proof” that he knows



dID = rPKG + xH1(ID||RID||RPKG) mod q: the arbiter randomly chooses a
message m′ and sends it to the user; the user then perform the Schnorr’s sig-
nature scheme (i.e., the secret singing key is dID, and the corresponding public
key is RPKGyH1(ID||RID||RP KG)). If the result signature can be pass the Verify
protocol of the Schnorr’s signature scheme, the arbiter deduces that the PKG
is dishonest because the value dID is computed by the PKG only (the used sig-
nature is the Schnoor’s signature scheme, the secret signing key is the PKG’s
master key, the corresponding public key is the PKG’s public key, and the mes-
sage is (ID||RID).).

As a result, our ID-based signature scheme achieves Girault’s trusted level
3. ut

Theorem 5.2. In the random oracle model, our ID-based signature scheme is
existentially unforgeable against adaptively chosen message and ID attack un-
der the assumption that the Schnorr’s signature scheme is secure against the
adaptively chosen message attack in the random oracle model.

Proof. From the simulations of hash1 oracle (see Fig. 3), Extract oracle (see
Fig. 4), hash2 oracle (see Fig. 5), and Sign oracle (see Fig. 6), we can see
that the view of these simulations is indistinguishable from a view of an actual
random execution of the proposed signature scheme. In other words, the signer
can be simulated without knowing the master key x, with an indistinguishable
distribution.

Note that, in our scheme, since r is randomly chosen from Z∗q , hence R is
a random number. Furthermore, β is the hash value of ID||RID||RPKG||R||m,
and for the same (ID,RID, RPKG), σ only depends on ID||RID||RPKG||R||m,
and β.

Now, we can apply the Forking Lemma, and get two valid signatures (m, ID, RID, RPKG, R, σ)
with β and (m, ID, RID, RPKG, R, σ′) with β. Then we have

gσ(RIDRPKGyH1(ID||RID||RP KG))−β = gσ′(RIDRPKGyH1(ID||RID||RP KG))−β′ ⇒
gσ−σ′ = (RIDRPKGyH1(ID||RID||RP KG))β−β′ ⇒
g

σ−σ′
β−β′ = RIDRPKGyH1(ID||RID||RP KG)

That is, the user’s private key is σ−σ′
β−β′ . As a result, we get a valid forgery

on message m(= ID) for the Schnorr’s signature scheme, in which the secret
signing key and the public key are the master key and the public key of the
PKG, respectively. The valid forgery is (RIDRPKG, σ−σ′

β−β′ ). Though there is a
slight difference between this forgery and the regular signature of the Schnorr’s
signature scheme (H1(m||RID||RPKG) VS. H1(m||RIDRPKG)), it can be con-
sidered as a difference on the construction of hash function which is the same in
the random oracle model.

As a result, we finish our proof. ut



— For a hash1-query H1(IDi, R1, R2), such that a record (IDi, R1, R2, α, β) appears
in listH1, the answer is β. Otherwise the answer β is defined according to the following
rule:

1. Choose a random element β ∈ Z∗q .

The record (IDi, R1, R2,⊥, β) is added to H1.

Fig. 3. Simulation of hash1 oracle

— For an Extract-query with (IDi, RID), such that a record (IDi, RID, R2, α, β)
appears in list H1, the answer is (R2, α)a. Otherwise the answer (R2, α) is defined
according to the following rules:

1. Choose two random elements α, β ∈ Z∗q ,
2. Compute R2, such that gα = R2y

β mod p.

The record (IDi, RID, R2, α, β) is added to H1.

a There is a situation that α is ⊥, however, such a situation is very rare.

Fig. 4. Simulation of Extract oracle

— For a hash2-query with (IDi, R1, R2, R3, m), such that a record
(IDi, R1, R2, R3, m, α, β) appears in list H2, the answer is β. Otherwise the
answer β is defined according to the following rule:

1. Choose a random element β ∈ Z∗q .

The record (IDi, R1, R2, R3, m,⊥, β) is added to H2.

Fig. 5. Simulation of hash2 oracle

— For a Sign-query with (m, ID), we produce the answer (RID, RPKG, σ) is com-
puted as following rules:

Step 1 Choose a random number rID and compute RID = grID mod p.
Step 2 Issue the Extract-query with (IDi, RID) ourself, and get (R2, α).
Step 3 Compute σ by using (rID, α) in the Sign protocol.

Fig. 6. Simulation of the Sign oracle



6 ID-based threshold Signature Scheme

In this section, we extend our ID-based signature scheme to two ID-based thresh-
old signature scheme: Scheme 1 and Scheme 2. Furthermore, we give their secu-
rity proof in this section.

6.1 Scheme 1

In this subsection, we propose our first ID-based threshold signature scheme,
in which there exist a PKG, a group manager and n players, where the group
manager knows the private key of this group, and distributes the shares of the
private key to n players.

Setup. Identical to that in our ID-based signature scheme.
Thre-Extract. It is an interactive protocol.

1. The group manager first chooses a random rID ∈ Z∗q , and computes
RID = grID mod p. At last, the user sends (ID,RID) to the PKG.

2. Upon receiving (ID,RID), the PKG does:(1) choose a random rPKG ∈
Z∗q , (2) compute RPKG = grP KG mod p, and (3) set the private key
skID ← (RPKG, dID), where dID = rPKG + xH1(ID||RID||RPKG) mod
q. At last, the PKG sends the private key to the group manager.

3. Upon receiving the private key, the group manager checks

gdID
?= RPKGyH1(ID||RID||RP KG) mod p.

If it does hold, the user broadcasts a complaint against the PKG.
4. The group manager and n players perform the Protocol VSS, the group

manager is the dealer, and (rID+dID, RIDRPKGyH1(ID||RID||RP KG), p, q, g)
is the input of the Protocol VSS.

5. As a result, rID + dID is shared among n players. Let xi be the share of
Pi, and f(x) = rID + dID +

∑t−1
i=1 aix

i mod q be the used secret-sharing
polynomial, Ai = gf(i) mod p, (i = 0, · · · , n).

Thre-Sign. Let Φ be a subset of the non-disqualified players, and λΦ
i =

∏
k∈Φ,k 6=i

0−k
i−k ,

where |Φ| ≥ t. To sign a message m, player Pi in Φ does the following per-
formances.
1. Choose a random rPi

.
2. Compute and broadcast RPi

= grPi mod p.
3. Compute Rp =

∏
i∈Φ R

λΦ
i

Pi
mod p.

4. Compute and broadcast σPi
= rPi

+ xiH2(RID||RPKG||Rp||m) mod q.
5. Check

gσPi
?= RPi

(Ai)H2(RID||RP KG||Rp||m) mod p. (6)

If it does not hold, player Pi broadcasts a complaint against player Pj .
If all the players in Φ are honest, the signature is (RID, RPKG, Rp, σ), where
σ =

∑
i∈Φ λΦ

i σPi
mod q.

Verify. Identical to that in our ID-based signature scheme.



6.2 Analysis of Scheme 1

Unforgeability. Following the tradition of the security proof for threshold sig-
nature schemes, we use the concept of simulatable adversary view [GJKR96] to
prove unforgeability. The security of a simulatable ID-based threshold signature
scheme equals to the security of its underlying ID-based threshold signature
scheme.

Definition 6.1. An ID-based threshold signature scheme T S=(Setup, Thresh-Extract,
Thresh-Sign, Verify) is simulatable if the following properties hold:

1. The protocol Thresh-Extract is simulatable. That is, there exists a simula-
tor SIM1 that, on input the public input , the public output, and the shares
of t− 1 corrupted players of an execution of Thresh-Extract, can simulate
the view of the adversary on that execution.

2. The protocol Thresh-Sign is simulatable. That is , there exists a simulator
SIM2 that, the public input, the public output, and the shares of t − 1 cor-
rupted players of an execution of Thresh-Sign, can simulate the view of the
adversary on that execution.

Lemma 6.1. The scheme 1 is simulatable.

Proof. A high-level descriptions of the simulators of Thresh-Extract and Thresh-Sign
are given in Fig. 7 and Fig. 8, respectively.

For a polynomial f(x) of degree t − 1, f(i) can be computed from other t
or more f(j)’s (we denote this set as Φ), by using f(i) =

∑
j∈Φ λΦ

i,jf(j), where
λΦ

i,j ’s are the Lagrange interpolation coefficients (i.e., λΦ
i,j =

∏
k∈Φ,k 6=j

i−k
j−k ). On

the other hand, if we know t or more gf(j) mod p’s, we can compute gf(i) by
using gf(i) =

∏
j∈Φ(gf(j))λΦ

i,j mod p.
Following these above methods, we construct our simulators. In these two

simulators, we assume w.l.o.g. that the adversary corrupted the first t− 1 play-
ers P1, · · · , Pt−1. From the viewpoint of the adversary, the output of these two
simulators is indistinguishable from the real execution of Thresh-Extract and
Thresh-Sign. Then we finish this proof. ut

Combining Theorem 5.2 and Lemma 6.1, we have the following theorem.

Theorem 6.1. Our scheme 1 is unforgeable, if the Schnorr’s signature scheme
is unforgeable.

Robustness. The following theorem can be easily proven by inspection of the
scheme 1.

Theorem 6.2. Scheme 2 is (t, n) robust, if only n ≥ 2t− 1.



SIM1 for scheme 1
input: y, RID, RPKG, ID, t− 1 shares xi’s of the corrupted player

1. The SIM1 computes

Ai = (RIDRPKGyH1(ID||RID||RP KG))λi,0

t−1∏
j=1

(gxj )λi,j mod p,

for i = t, · · · , n. Notice that the t− 1 corrupted players can pass the Equation 1.
2. Follow the Step 2 of Protocol VSS.

Fig. 7. Simulator for Thresh-Extract of scheme 1.

SIM2 for scheme 1
input: y, RID, RPKG, ID, t− 1 shares xi’s of the corrupted player

1. After the t − 1 corrupted players broadcast RPi(i = 1, · · · , t − 1), the SIM2

computes and broadcasts

RPi = R
λi,0
p

t−1∏
j=1

R
λi,j

Pj
mod p,

for i = t, · · · , n.
2. The SIM2 set f(x) as a polynomial of degree t − 1, such that f(0) = σ, f(i) =

σi(i = 1, · · · , t − 1). And then SIM2 computes σi = f(i) mod q for i = t, · · · , n.
Notice that σi can pass the Equation 6.

Fig. 8. Simulator for Thresh-Sign of scheme 1.



6.3 Scheme 2

In this subsection, we propose our second ID-based threshold signature scheme.
In this scheme, there still exist a PKG, and n players. However, there is no one
knows the private key of these n players.

Setup. Identical to that in our ID-based signature scheme.
Thre-Extract. It is an interactive protocol.

1. The n players perform the Protocol DKG. (p, q, g, h) is the input of the
Protocol DKG, where h is a random number in Zp, and no one knows
the discrete logarithm of h.2 Let the final shares of player Pi be (xi, x

′
i),

and f1(x) =
∑t−1

i=0 aix
i mod q and f2(x) =

∑t−1
i=0 bix

i mod q are the
final secret-sharing polynomials, such that f1(i) = xi and f2(i) = x′i,
Ai = gf1(i) mod p, (i = 0, · · · , n). At last, set RID = A0.

2. Upon receiving the tuple (ID,RID), the PKG does:
(a) Choose a random rPKG ∈ Z∗q .
(b) Compute and broadcast RPKG = grP KG mod p.
(c) Set the private key skID ← (RPKG, dID), where dID = rPKG +

xH1(ID||RID||RPKG) mod q.
(d) The PKG and n players perform Protocol VSS. The input of Protocol

VSS is (p, q, g, dID, RPKGyH1(ID||RID||RP KG)). As a result, the PKG
distributes dID among n players. Let dPi be the share of player Pi,
f3(x) = dID +

∑t−1
i=1 cix

i mod q be the secret-sharing polynomial,
such that f3(i) = dPi

, Bi = gf3(i) mod p(i = 0, · · · , n). At last, set
RPKG = B0.

Thre-Sign. Let Φ be a subset of the non-disqualified players, and λΦ
i =

∏
k∈Φ,k 6=i

0−k
i−k ,

where |Φ| ≥ t. To sign a message m, player Pi in Φ does the following per-
formances.
1. Choose a random rPi .
2. Compute and broadcast RPi

= grPi mod p.

3. Compute Rp =
∏

i∈Φ R
λΦ

i

Pi
mod p.

4. Compute and broadcast σPi = rPi + (xi + dPi)H2(RID||RPKG||Rp||m).
5. Check

gσPi
?= RPi

(Aj ·Bj)H2(RID||RP KG||Rp||m) mod p. (7)

If it does not hold, player Pi broadcasts a complaint against player Pj .
If all the players in Φ are honest, the signature is (RID, RPKG, Rp, σ), where
σ =

∑
i∈Φ λΦ

i σPi
mod q.

Verify. Identical to that in our ID-based signature scheme.

6.4 Analysis of Scheme 2

Unforgeability. Like the security proof of scheme 1, we also use the simulator
to prove scheme 2 is unforgeable.
2 h can be computed by H(g), where H(·) is a cryptographic hash function, H(·) :

Zp → Zp.



Lemma 6.2. Scheme 2 is simulatable.

Proof. Due to the simulator for Thresh-Sign of scheme 2 is the same as that
in scheme 1, we only give the simulator of Thresh-Extract (see Fig. 9). As
mentioned in the proof of Lemma 6.1, the output of the simulator is indistin-
guishable from that in the real execution of Thresh-Sign of scheme 2, from the
adversary’s viewpoint.

As a result, we finish the proof of this lemma. ut

SIM1 for scheme 2
input: y, RID, RPKG, ID, t− 1 shares (xi, dPi)’s of the corrupted players.

1. The SIM1 runs Steps 1(a), 1(b), 1(c), 1(e), 1(f) of Protocol DKG on the behalf
of the uncorrupted players. Let fi(x) =

∑t−1

j=0
aijx

j(i = 1, · · · , n) be the secret-
sharing polynomial dealt by player Pi. Denote by xi the final share of player
Pi.

2. The SIM1 computes Bij = gfi(j) mod p for i = 1, · · · , n and j = 1, · · · , n. For
player Pn doe the following: Set Bn0 = RID · ∏n−1

i=1
(Bi0)

−1 mod p. Compute

Bni = B
λi,0
n0

∏t−1

i=j
(gxj )λi,j mod p, where λi,j ’s are known coefficients. For each

player Pi, (i = t, · · · , n) broadcasts Bij for j = 1, · · · , n.
3. The SIM1 runs Steps 1(h), 1(i), 2 of Protocol DKG.
4. The SIM1 runs the SIM1 for scheme 1 on the input: (y, RID, RPKG, ID, t −

1 shares dPi ’s of the corrupted players).

Fig. 9. Simulator for Thresh-Extract of scheme 2.

Combining Theorem 5.2 and Lemma 6.2, we have the following theorem.

Theorem 6.3. Our scheme 2 is unforgeable, if the Schnorr’s signature scheme
is unforgeable.

Robustness. The following theorem can be easily proven by inspection of the
scheme 2.

Theorem 6.4. Scheme 2 is (t, n) robust, if only n ≥ 2t− 1.

7 Performance Evaluation

In this section, in terms of computational complexity, we show that the efficiency
of our ID-based threshold signature schemes is high. The performance evaluation
notations are defined as follows:

Texp time for a modular exponetiation computation
Tmul time for a multiplication computation
Te time for a bilinear pairing



Like Chen et al.’s scheme, our scheme 1 also has a group manager, while our
scheme 2 does not require such a group manager. Furthermore, Chen et al.’s
scheme is considered as the best scheme among the existing schemes. Hence, we
only give the comparison between Chen et al.’s scheme and our scheme 1, which
is shown in Table 1.

From Table 1, our scheme 1 are more efficient than Chen et al.’s scheme,
especially in Thresh-Sign.

Table 1. The comparison of computational complexitya

Chen et al.’s scheme Our scheme 1

Setup the group manager 1Texp 1Texp

the PKG 1Texp 1Texp + 1Tmul

Thresh-Extract the group manager nTexp + nTe nTexp

Thresh-Sign Generating a partial signature (2 + 3t)Texp + (3t− 2)Tmul + 4Te (t + 1)Texp + tTmul

Combining partial signatures 2tTexp + 2(t− 1)Tmul tTexp + (t− 1)Tmul

Verify 2Texp + 2Tmul + 6Te 3Texp + 3Tmul

a We omit the computational complexity of the data’s verification.

8 Conclusion

In this paper, we propose a new ID-based signature scheme without pairings,
in which there is on trusted PKG. And then we extend it to be two ID-based
threshold signature schemes. In both of these two schemes, there is only one
PKG who is not assumed to be trusted. Furthermore, the second scheme does
not require trusting any particular party at any time. Our schemes are more
efficient than the existing schemes in terms of computation complexity.
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