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Abstract

We introduce a simple primitive called Augmented Broadcast Encryption (ABE) that is
sufficient for constructing broadcast encryption, traitor-tracing, and trace-and-revoke systems.
These ABE-based constructions are resistant to an arbitrary number of colluders and are secure
against adaptive adversaries. Furthermore, traitor tracing requires no secrets and can be done
by anyone. These broadcast systems are designed for broadcasting to arbitrary sets of users. We
then construct a secure ABE system for which the resulting concrete trace-and-revoke system
has ciphertexts and private keys of size

√
N where N is the total number of users in the system.

In particular, this is the first example of a fully collusion resistant broadcast system with sub-
linear size ciphertexts and private keys that is secure against adaptive adversaries. The system
is publicly traceable.

1 Introduction

A broadcast encryption system [16] enables a broadcaster to encrypt a message for an arbitrary
subset S ⊆ {1, . . . , N} of users who are listening on a broadcast channel. Any user in S can decrypt
the broadcast using his private key. Moreover, even if all users outside of S collude they obtain no
information about the contents of the broadcast. Such systems are said to be collusion resistant.
Traitor tracing [11] is an orthogonal problem. Here a broadcaster encrypts messages so that all
N users can decrypt the resulting ciphertexts. Suppose a coalition of users T ⊆ {1, . . . , N} get
together and build a pirate decoder D. Then there is a tracing algorithm Trace that takes the
public key PK as input and interacts with D as a black-box oracle. The algorithm outputs the
identity of at least one of the users who created D. That is, ∅ 6= TraceD(PK) ⊆ T . Note, however,
that there is no way to revoke the traitor — broadcasts can always be decrypted by all users. The
tracing algorithm, as described above, needs no secrets and can be run by anyone. Such systems
are said to be publicly traceable.

Trace and Revoke [26, 25] systems provide both broadcast encryption and traitor tracing.
They are motivated by content protection on various platforms such as PCs, DVD players, and
general content viewers. When the system is first rolled out, broadcasts are encrypted for some
subset of users S ⊆ {1, . . . , N} authorized to receive them. The goal is to then revoke users when
their keys are compromised. Suppose a pirate builds a pirate decoder D using the private keys of
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users T ⊆ {1, . . . , N}. The tracing algorithm then interacts with D and identifies one of the active
keys in the pirate’s possession, namely a key of user t ∈ T ∩S. We write ∅ 6= TraceD(PK, S) ⊆ T ∩S.
The broadcaster revokes user t by encrypting future broadcasts to the set S′ ← S r {t}. If the
pirate decoder D can still decrypt these broadcasts, we run the tracing algorithm TraceD(PK, S′)
again and obtain another pirate key t′ ∈ T ∩S′. Again, t′ is revoked by setting S′′ ← S′ r {t′} and
so on. Roughly speaking, the trace and revoke system is secure if this process eventually disables
D without revoking any innocent party. We give precise definitions later in the paper. Note that
the broadcaster can add or remove recipients from S at will.

Our Contribution. In this paper we focus on constructing public-key trace and revoke systems
that are fully collusion resistant and have short ciphertexts and private keys. The system is publicly
traceable in the sense that anyone can run the tracing algorithm — no additional secrets are needed.
Since a party performing the tracing needs no secrets, the overall system remains secure even if
this party is compromised. For message privacy we only consider chosen plaintext attacks. Rather
than directly build a trace and revoke system, we instead construct a simpler primitive we call
Augmented Broadcast Encryption or ABE for short. We then show that ABE implies a trace
and revoke system.

An ABE contains the same algorithms as a public-key broadcast encryption system, namely

(SetupABE, EncryptABE, DecryptABE)

The encryption algorithm EncryptABE(S, PK, i,M), however, takes one additional parameter i. Here
PK is the public key, M is a message, S is a subset of {1, . . . , N}, and i is an additional special
input 1 ≤ i ≤ N + 1. The encryption algorithm outputs a ciphertext that can be decrypted by any
user in S ∩ {i, . . . , N}. We require that

• The output of EncryptABE(S, PK, N + 1,M) contains no information about M , and

• For i ∈ S the distribution generated by algorithm EncryptABE(S, PK, i,M) is indistinguishable
from the distribution generated by EncryptABE(S, PK, i+1,M) for any attacker that does not
possess the secret key of user i. When i 6∈ S the two distributions are indistinguishable to
anyone.

We give precise definitions in the next section. We show that an ABE system directly gives a secure
and fully collusion resistant broadcast encryption system. To encrypt message M to set S we run
EncryptABE(S, PK, 1,M), namely setting i = 1. Values of i greater than 1 are only used in the proof
of security and for tracing. The resulting broadcast encryption system is secure against adaptive
adversaries — adversaries that choose adaptively the subset of users to attack. We then show that
this broadcast system is publicly traceable (and hence is a trace and revoke system). The tracing
algorithm is based on a standard tracing technique that was previously used in [3, 25, 22] and was
recently made explicit in [6]. The tracing system of [6], however, requires a secret tracing key held
by a trusted party. Here, tracing requires no secrets so that there is no need for a trusted party.

In summary, the two simple ABE security properties are sufficient for obtaining a trace and
revoke system that is fully collusion resistant, is secure against adaptive adversaries, and is publicly
traceable. We view this as the preamble leading to our main results. The main part of the
paper builds a secure ABE system where the size of private keys and ciphertexts is

√
N . We

thus obtain a trace and revoke system with
√

N size ciphertext and private keys that is fully
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ciphertext private key public key
system type size size size comment

[4] Broadcast Encryption O(1) O(1) O(N) Static attacker

[6] Traitor Tracing O(
√

N) O(1) O(
√

N) Private tracing

This
paper Trace and Revoke O(

√
N) O(

√
N) O(

√
N)

adaptive attacker
and public tracing

Table 1: Sub-linear size fully collusion resistant systems

collusion resistant and is secure against adaptive adversaries. Some previous fully collusion resistant
broadcast systems [4, 7] for arbitrary sets were only secure against static adversaries and were not
traceable. Building a broadcast system secure against adaptive adversaries was left as an open
problem in [4].

1.1 Related work

Broadcast encryption systems are often designed for the case when the pirate has fewer than
some t private keys [16, 36, 37, 1, 38, 26, 14, 19]. Several elegant constructions [25, 13, 21, 20],
primarily designed for broadcasting to sets where a small number of users are revoked, resist
arbitrary collusion, but the size of the ciphertext grows linearly with the number of revoked users.
A recent system based on pairings [4] resists arbitrary collusion and has constant size ciphertext
and private keys, but does not support traitor tracing. The system is only proven secure for static
adversaries, namely adversaries that commit to the set they wish to attack before seeing the public
key. Broadcast encryption secure against adaptive attacks was defined in [14], but the resulting
system had linear size ciphertexts when broadcasting to an arbitrary set S. The system in this
paper provides adaptive security with sub-linear ciphertexts and private keys.

Similarly, traitor tracing systems are often designed for the case when the pirate has fewer than t
private keys [11, 35, 33, 34, 24, 27, 3, 17, 12, 30, 2, 32, 31, 38, 22, 23]. A recent system based on
pairings [6] resists arbitrary collusion and has constant size private keys and

√
N size ciphertexts.

That system is the basis of our tracing mechanism. Many tracing traitors systems, including [6],
assume the tracer is a trusted party and require a secret tracing key. The system in this paper is
publicly traceable meaning that tracing requires no secrets. Other publicly traceable systems are
provided in [28, 29, 39, 23, 10].

Several trace and revoke systems are available [26, 18, 25, 38, 14, 15, 21, 20] that are designed
for broadcasting to large sets.

Table 1 summarizes the existing sub-linear size fully collusion resistant systems currently avail-
able. Here N is the total number of users in the system. As usual, all the expressions in the table
should be multiplied by the security parameter.

2 Augmented Broadcast Encryption

Our goal is to build a fully collusion resistant trace and revoke system secure against adaptive
adversaries. In particular, this gives a broadcast encryption system secure against adaptive adver-
saries. However, instead of directly building a trace and revoke system we build a simpler primitive
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we call Augmented Broadcast Encryption or ABE for short. We begin by defining what ABE is and
then explain how it gives a trace and revoke system. Then in the next section we build an efficient
ABE.

2.1 Augmented Broadcast Encryption: Definitions

An ABE is a public-key broadcast system comprising of the following algorithms:

SetupABE(N,λ) A probabilistic algorithm that takes as input N , the number of users in the system,
and a security parameter λ. The algorithm runs in polynomial time in λ and outputs a public
key PK and private keys SK1, . . . ,SKN , where SKu is given to user u.

EncryptABE(S,PK, i,M) Takes as input a subset of users S ⊆ {1, . . . , N}, a public key PK, an
integer i satisfying 1 ≤ i ≤ N + 1, and a message M . It outputs a ciphertext C. This
algorithm encrypts a message to a set S ∩ {i, . . . , N}.

DecryptABE(S, j,SKj , C,PK) Takes as input a subset S ⊆ {1, . . . , N}, the private key SKj for
user j, a ciphertext C, and the public key PK. The algorithm outputs a message M or ⊥.

Correctness property. The system must satisfy the following correctness property:

for all subsets S ⊆ {1, . . . , N}, all i, j ∈ {1, . . . , N + 1} (where j ≤ N), and all messages M :

Let (PK, (SK1, . . . ,SKN )) R← SetupABE(N,λ) and C
R← EncryptABE(S, PK, i,M).

If j ∈ S and j ≥ i then DecryptABE(S, j, SKj , C, PK) = M .

Security. We define security of an ABE system using two games. The first game is a message
hiding game and says that a ciphertext created using index i = N + 1 is unreadable by anyone.
The second game is an index hiding game and captures the intuition that a broadcast ciphertext
created using index i reveals no non-trivial information about i. We will consider all these games
for a fixed number of users, N .

For simplicity, we define our games for security against an adversary that mounts a chosen-
plaintext attack (CPA). We can easily extend them to handle chosen-ciphertext attacks (CCA) by
giving the adversary access to a decryption oracle for each user in the system.

Game 1. The first game, called Message Hiding, says that an adversary cannot break semantic
security when encrypting using index i = N + 1. The game proceeds as follows:

• Setup The challenger runs SetupABE(N,λ) and gives the adversary PK and all secret keys
{SK1, . . . ,SKN}.

• Challenge The adversary outputs a set S ⊆ {1, . . . , N} and two equal length messages
M0,M1. The challenger flips a coin β ∈ {0, 1} and sends

C
R← EncryptABE(S, PK, N + 1,Mβ)

to the adversary.

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A in winning the game as MH AdvA = |Pr[β′ = β]− 1/2|.
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Game 2. The second game, called Index Hiding, says that an adversary cannot distinguish
between an encryption to index i and one to index i + 1 without the key SKi. Additionally, it
says that an adversary cannot distinguish between an encryption to index i and one to index i + 1
when i is not in the target set S even with the key SKi. The game takes as input a parameter
i ∈ {1, . . . , N} which is given to both the challenger and the adversary. The game proceeds as
follows:

• Setup The challenger runs SetupABE(N,λ) and gives the adversary PK and the set of private
keys {

SKj s.t. j 6= i
}

• Query The adversary outputs a bit s̃ ∈ {0, 1}. If s̃ = 1 the challenger sends SKi to the
adversary. Otherwise the challenger does nothing.

• Challenge The adversary gives the challenger a set S ⊆ {1, . . . , N} and a message M . The
only restriction is that if s̃ = 1 then i 6∈ S. The challenger flips a coin β ∈ {0, 1} and sends
C

R← EncryptABE(S, PK, i + β, M) to the adversary.

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as the quantity IH AdvA[i] = |Pr[β′ = β]− 1/2|. In words,
the game captures two properties. The case s̃ = 0 captures the fact that even if all users other
than i collude they cannot distinguish whether i or i + 1 was used to create a ciphertext C. The
case s̃ = 1 captures the fact that when i 6∈ S then even if everyone colludes they cannot distinguish
whether i or i + 1 was used to create C. Indeed, when i 6∈ S the key SKi gives little additional
information.

Now that the games are established we are ready to define secure ABE.

Definition 2.1. We say that an N -user Augmented Broadcast System (ABE) is secure if for all
polynomial time adversaries A we have that MH AdvA and IH AdvA[i] for i = 1, . . . , N , are negligible
functions of λ.

2.2 Using Augmented Broadcast Encryption

We first show that a secure ABE is a broadcast encryption system secure against adaptive attackers.
We then show that this system is traceable, thus obtaining a trace and revoke system. From here
on, whenever we refer to an adversary we mean an adversary whose running time is polynomial in
the security parameter λ.

2.2.1 Broadcast encryption secure against adaptive attacks

Let E = (SetupABE,EncryptABE,DecryptABE) be a secure ABE system. Define

Encrypt(S, PK,M) = EncryptABE(S, PK, 1,M)

We show that EBE = (SetupABE,Encrypt,DecryptABE) is a fully collusion resistant broadcast en-
cryption system secure against adaptive attackers.

First we need a slightly more elaborate message hiding game. In addition to N,λ, the extended
message hiding game takes as input a parameter i ∈ {1, . . . , N + 1} which is only given to the
challenger. The game proceeds as follows:
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• Setup The challenger runs SetupABE(N,λ) and gives the adversary PK.

• Query The adversary issues adaptive private key queries: it repeatedly sends values j ∈
{1, . . . , N} to the challenger and the challenger responds with SKj . Let S0 ⊆ {1, . . . , N}
denote the entire set of private keys requested by the adversary during the query phase. Let
S0 = {1, . . . , N}r S0.

• Challenge The adversary outputs a set S ⊆ S0 and two equal length messages M0,M1. The
challenger flips a coin β ∈ {0, 1} and sends

C
R← EncryptABE(S, PK, i,Mβ)

to the adversary. This is the only place where i is used in this game.

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A in winning the game as MH AdvA[i] =
∣∣ Pr[β′ = β]− 1/2

∣∣.
The main point is that MH AdvA[1] is the same quantity used to define broadcast encryption

security against adaptive attackers [14, 4] for EBE . Hence, if we prove that MH AdvA[1] is negli-
gible then EBE is a broadcast system that is fully collusion resistant and secure against adaptive
adversaries.

Theorem 2.2. If E is a secure ABE then MH AdvA[1] is a negligible function of λ for any polyno-
mial time adversary A.

Proof sketch. Suppose MH AdvA[1] > ε for some adversary A and non-negligible ε. Since E is a
secure ABE we know that MH AdvA (defined in Game 1) is negligible. It follows that MH AdvA[N+1]
is negligible. For simplicity, say MH AdvA[N + 1] = 0. Then, by the standard hybrid argument
there exists a j ∈ {1, . . . , N} such that∣∣MH AdvA[j]−MH AdvA[j + 1]

∣∣ > ε/N

In other words, this A is somehow able to distinguish

EncryptABE(S, PK, j,M) from EncryptABE(S, PK, j + 1,M)

for some M and S. But then A can be directly used to win the ABE index hiding game.
More precisely, we show in Appendix B that for all adversaries A there exists an adversary B

such that for all i = 1, . . . , N we have∣∣MH AdvA[i]−MH AdvA[i + 1]
∣∣ ≤ 2 · IH AdvB[i] (1)

Then ∣∣MH AdvA[1]−MH AdvA[N + 1]
∣∣ ≤

n∑
i=1

∣∣∣∣MH AdvA[i]−MH AdvA[i + 1]
∣∣∣∣ ≤

2
n∑

i=1

IH AdvB[i]

But since E is a secure ABE we know that MH AdvA[N + 1] and IH AdvB[i] for i = 1, . . . , N are
negligible for any polynomial time A. Therefore, MH AdvA[1] is negligible, as required.
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2.2.2 Trace and Revoke

A trace and revoke system is a broadcast system with a tracing algorithm. We formally define trace
and revoke systems in Appendix A along with the games used to define security. We show here that
a secure ABE directly gives a trace and revoke system. In particular, we show a tracing algorithm for
the broadcast system EBE above. The tracing algorithm uses a general tracing method, previously
used in [3, 25, 22, 6]. We use the notation from Appendix A. For a given ε > 0 and a set SD the
tracing algorithm TraceD(SD,PK, ε) works as follows.

1. Initialize set T to the empty set.

2. For i = 1 to N , do the following:

(a) The algorithm repeats the following steps 8λ(N/ε)2 times:

i. Sample M from the finite message space at random.
ii. Let C

R← EncryptABE(SD,PK, i,M).
iii. Call oracle D on input C, and compare the output of D to M .

(b) Let p̂i be the fraction of times that D decrypted the ciphertexts correctly.

(c) If p̂i − p̂i+1 ≥ ε/(4N), then add i to set T .

3. Output the set T .

Note that the running time of Trace is cubic in N . It can be made (almost) quadratic using binary
search instead of a linear scan.

Let ETR = (SetupABE,Encrypt,DecryptABE,Trace) be the resulting trace and revoke system.
Note ETR is just the broadcast system EBE with the tracing algorithm Trace. We show that ETR is
secure in the sense of Definition A.1, namely fully collusion resistant against an adaptive adversary.

Theorem 2.3. If E is a secure ABE then for ETR the quantity TRAdvA defined in Appendix A.1
is negligible.

Proof sketch. Let (D, SD) be the pirate decoder and the recipient set output by the adversary.
Define

pi = Pr[D(EncryptABE(SD,PK, i,M)) = M ]

We know that p1 ≥ ε and pN+1 is negligible. The former follows from the fact that D is a useful
decoder. The later follows directly from the ABE message hiding game. Then there must exist
some j ∈ {1, . . . , N} such that pj − pj+1 ≥ ε/(2N). By the Chernoff bound it follows that with
overwhelming probability, p̂j − p̂j+1 ≥ ε/(4N). Hence, the set T output by TraceD(SD,PK, ε) is
non-empty.

It remains to show that whenever p̂j − p̂j+1 > ε/(4N) we have that j ∈ SD ∩ U . For such j
we know, by Chernoff, that with overwhelming probability pj − pj+1 ≥ ε/(8N). We can now show
that the ABE index hiding game implies j ∈ U and j ∈ SD. Clearly j ∈ SD since otherwise, even
given all the secret keys, there is no hope of distinguishing pj from pj+1. But if j ∈ SD and j 6∈ U
then D must distinguish pj from pj+1 without the key SKj . Again, such a D can be directly used
to win the ABE index hiding game. Hence, j ∈ SD ∩ U .
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3 Background and complexity assumptions

Our traitor tracing system uses bilinear groups of composite order. We review the definition of
such groups and then state our complexity assumptions. We follow [5] in which composite order
bilinear groups were first introduced.

The assumptions we make are a little stronger than the ones in [6]. These stronger assump-
tions are needed to make the system publicly traceable, namely not requiring a secret tracing key.
Without public traceability a direct variant of the system in this paper can be proven secure under
the exact same assumptions used in [6].

Bilinear groups of composite order. Let G be an algorithm called a group generator that
takes as input a security parameter λ ∈ Z>0 and outputs a tuple (p, q, G, GT , e) where p, q are two
distinct primes, G and GT are two cyclic groups of order n = pq, and e is a function e : G2 → GT

satisfying the following properties:

• (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• (Non-degenerate) exists g ∈ G such that e(g, g) has order n in GT .

We assume that the group action in G and GT as well as the bilinear map e are all computable
in polynomial time in λ. Furthermore, we assume that the description of G and GT includes a
generator of G and GT respectively.

To summarize, G outputs the description of a group G of order n = pq with an efficiently
computable bilinear map. We will use the notation Gp, Gq to denote the respective subgroups of
order p and order q of G.

3.1 Complexity assumptions

Next we review three complexity assumptions needed for proving security of our system. The first
assumption is in a prime order subgroup Gp and the last two are over the composite order group G.

Decision (Modified) 3-party Diffie-Hellman Assumption. For a given group generator G
define the following distribution P (λ):

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp

a, b, c
R← Zp

Z̄ ←
(
(n, G, GT , e), gp, ga

p , gb
p, gc

p, g
(b2)
p

)
T ← gabc

p

Output (Z̄, T )

For an algorithm A, define A’s advantage in solving the decision 3-party Diffie-Hellman problem
for G as:

D3DH AdvG,A(λ) :=
∣∣∣∣ Pr[A(Z̄, T ) = 1]− Pr[A(Z̄, R) = 1]

∣∣∣∣
where (Z̄, T ) R← P (λ) and R

R← Gp.
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Definition 3.1. We say that G satisfies the decision (modified) 3-party Diffie-Hellman assump-
tion (D3DH) if for any polynomial time algorithm A we have that D3DH AdvG,A(λ) is a negligible
function of λ.

The assumption is a little stronger than the corresponding assumption in [6] since we give g
(b2)
p

to the adversary.

Diffie-Hellman Subgroup Decision Assumption. The Diffie-Hellman subgroup decision as-
sumption states that a random element in Gq is indistinguishable from a random element in G,
even when an ElGamal encryption of a Gp element is provided. More precisely, for a given group
generator G define the following distribution P (λ):

(p, q, G, GT , e) R← G(λ), n← pq

g, h
R← G, vp

R← Gp

a
R← Zq, b

R← Zn,

Z̄ ←
(
(n, G, GT , e), g, h, gbvp, hb, gpa, hpa

)
Output Z̄

For an algorithm A, define A’s advantage in solving the Diffie-Hellman Subgroup Decision
problem for G as:

DHSD AdvG,A(λ) :=
∣∣∣∣ Pr[A(Z̄, T ) = 1]− Pr[A(Z̄, R) = 1]

∣∣∣∣
where Z̄

R← P (λ), T
R← Gq, and R

R← G.

Definition 3.2. We say that G satisfies the Diffie-Hellman subgroup decision assumption (DHSD)
if for any polynomial time algorithm A we have that DHSD AdvG,A(λ) is a negligible function of λ.

The Diffie-Hellman subgroup decision assumption is a little stronger than the subgroup decision
assumption introduced in [5] and also used in [6]. In our definition the adversary is also given an
ElGamal encryption of an element vp that is known to be in Gp. Furthermore, the adversary is
given gpa, hpa ∈ Gq.

Bilinear Subgroup Decision Assumption. The Bilinear Subgroup Decision (BSD) assump-
tion states that a random order p element in GT is indistinguishable from a random element in
GT when gp, gq ∈ G are given. More precisely, for a given group generator G define the following
distribution P (λ):

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp, gq

R← Gq,

Z̄ ←
(
(n, G, GT , e), gp, gq

)
Output Z̄

Define A’s advantage in solving the bilinear subgroup decision problem for G as:

BSD AdvG,A(λ) :=
∣∣∣∣ Pr[A(Z̄, e(T, g)) = 1]− Pr[A(Z̄, e(R, g)) = 1]

∣∣∣∣
9



where Z̄
R← P (λ), T

R← Gp, and R
R← G. Here g is an arbitrary generator of G.

Definition 3.3. We say that G satisfies the bilinear subgroup decision assumption (BSD) if for
any polynomial time algorithm A we have that BSD AdvG,A(λ) is a negligible function of λ.

4 An Efficient Augmented Broadcast Encryption System

We construct an Augmented Broadcast Encryption (ABE) system that has ciphertexts and private
keys of size O(

√
N). We begin by offering some intuition into the design and technical novelty of

our scheme. An Augmented Broadcast Encryption system must have both broadcast and tracing
properties. To achieve this we will use some techniques from the broadcast encryption system of [4]
and the traitor tracing system of [6].

4.1 Difficulty of Achieving Trace and Revoke

A trace and revoke system cannot be constructed by naively combining a broadcast encryption
system and a tracing system. Consider the following (misguided) approach. Suppose we created
both a broadcast encryption and traitor tracing system each for N users, where each user has the
same index in both systems. To encrypt a message M , an algorithm splits the message randomly
into two pieces Mb,Mt such that Mb ·Mt = M and then encrypts Mb under the broadcast system
and Mt under the tracing system. In order to decrypt a message a single user will need to be able to
decrypt under both systems. However, if two users, Alice and Bob collude to make a pirate decoder
they can break this construction. They will simply use Alice’s key to decrypt the ciphertext from
the broadcast system and Bob’s key to decrypt the ciphertext from the tracing system. The tracing
algorithm will identify Bob as a traitor. However, after Bob is revoked (from the broadcast system)
the decoder will still be functional and moreover will continue to identify Bob as the traitor even
though he was already revoked!

4.2 Our Approach

The principle behind resisting this type of attack is construct user’s private keys in such a way
that they must be simultaneously used for both the broadcast and tracing portions of a trace
and revoke system. We are able to construct a secure ABE system by preventing colluding users
from decomposing the two systems — the two sub-systems are essentially intertwined. In order to
achieve this we multiply keys of the two portions together. Additionally, unlike [4] and [6] private
keys in our system are randomized for each user to prevent such attacks. The more straightforward
combination of [4] and [6] results in a scheme that is insecure since a revoked user can still break
the “privacy” property and prevent other colluders from being traced, although we do not show
this here. A consequence of using randomized keys is that each user must have O(

√
N) size private

key storage.
The other primary contribution of our scheme is that it allows for public traceability. This

comes from the fact that there exists a public key algorithm for encrypting to arbitrary index.
In [6] the public encryption algorithm could only be used to broadcast a message to everyone and
a secret tracing key was required for encrypting to arbitrary indices. The reason behind this was
that “column” ciphertexts needed to be randomized in the Gp subgroup, while kept well-formed
in the Gq subgroup. The most natural way to do this is to give an element of Gp as part of the
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public parameters. However, giving out such an element allows an attacker to break the scheme.
In our construction we construct the parameters in such a way that allows for this type of public
encryption without giving out an element of Gp.

4.3 Notation

We will express our ABE system using the same two index notation as the tracing traitors system
of [6]. We assume that the number of users, N in the system equals m2 for some m. If the number
of users is not a square we can add “dummy” users to pad out to the next square. We arrange the
users in an m × m matrix. Each user is assigned and identified by an unique tuple (x, y) where
1 ≤ x, y ≤ m.

We must have a linear ordering of the users that we can traverse. The first user in the system
will be the user at matrix position (1, 1) and from there we will order the users by traversing one
row at a time. More precisely, the user at matrix position (x, y) will have the index u = (x−1)m+y
in our ordering. Additionally, an encryption to position (i, j) means that a user at position (x, y)
will be able to decrypt the message if either x > i or both x = i and y ≥ j. With this notation,
the Index Hiding property states that:

• For j < m it is difficult to distinguish between an encryption of a message to (i, j) from
(i, j + 1) without the key of user (x = i, y = j).

• For j = m it is difficult to distinguish an encryption of a message to position (i, j = m) to
that of one to (i + 1, j = 1) without the key of user (i, j = m).

We emphasize that the use of pairwise notation (i, j) is purely a notational convenience for describ-
ing our system.

4.4 ABE Construction

We will assume there are N = m2 users in the system and we will address each user will be assigned
a unique pair of indexes (x, y) where 1 ≤ x, y ≤ m. A detailed description of the algorithms follows:

SetupABE(N = m2, λ).
The setup algorithm takes as input the number of users N and a security parameter λ. It first
generates an integer n = pq where p, q are random primes (whose size is determined by the security
parameter). The algorithm creates a bilinear group G of composite order n. It next creates random
generators gp, hp ∈ Gp and gq, hq ∈ Gq and sets g = gpgq, h = hphq ∈ G. Additionally it chooses
random elements up,1, . . . , up,m ∈ Gp ,uq,1, . . . , uq,m ∈ Gq, and defines ui = up,iuq,i for i = 1, . . . ,m.
Next it chooses random exponents

δ, r1, . . . , rm, c1, . . . , cm, α1, . . . , αm ∈ Zn

β ∈ Zq, γ ∈ Zp
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The public key PK includes the description of the group and the following elements:

g, h, Ṽ = gδgγ
p , V = hδ

Eq = gβ
q , E1 = gβr1 , . . . , Em = grm ,

Eq,1 = gβr1
q , . . . , Eq,m = gβrm

q ,

F1 = hr1 , . . . , Fm = hrm ,

Fq,1 = hβr1
q , . . . , Fq,m = hβrm

q

G1 = e(g, g)α1 , . . . , Gm = e(g, g)αm ,

Gq,1 = e(gq, gq)βα1 , . . . , Gq,m = e(gq, gq)βαm

H1 = gc1 , . . . , Hm = gcm

U1 = u1, . . . , Um = um,

Uq,1 = uβ
q,1, . . . , Uq,m = uβ

q,m


The authority creates the private key for user (x, y) by first choosing a random exponent σx,y ∈

Zn then generates it as:

SKx,y =
(
d′x,y, d′′x,y, d1, . . . , dy−1, , dy+1, . . . , dm

)
=

=
(

gαxgrxcy · uσx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m

)
The public parameters uβ

q,1, . . . , u
β
q,m are related to the broadcast portion of the system, while

the other parameters are related to the traitor tracing portion of the system. The secret key
component d′x,y contains the secret key gαx blinded by grxcy , which is related to traitor tracing and
u

σx,y
y , which is related the broadcast encryption system. An important technical point is that since

d′x,y contains both pieces multiplied together, an attacker will be unable to separate these pieces
out and decrypt the tracing and broadcast portions of the system separately. Thus, for a key to be
useful for decrypting a ciphertext it must be both in the broadcast set of the ciphertext and have
an index greater than or equal to the encrypted index.

EncryptABE(S, PK, (i, j),M).
The EncryptABE algorithm is primarily used for tracing. It encrypts a message M to the subset of
receivers that are in S and that have row values greater than i or both row value equal to i and
column values greater than j. The algorithm encrypts messages M ∈ GT . It first chooses random

t, κ, w1, . . . , wm, s1, . . . , sm ∈ Zn

b1, . . . , bj−1 ∈ Zn

(ν1,1, ν1,2, ν1,3), . . . , (νi−1,1, νi−1,2, νi−1,3) ∈ Z(3)
n

Let Sx denote the set of all values y such that the user (x, y) is in the set S. For each row x we
create five ciphertext components (Rx, R̃x, Tx, Ax, Bx) as follows:
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if x > i: Rx = Esx
q,x R̃x = F κsx

q,x Ax = Esxt
q

Tx = (
∏

k∈Sx
Uq,k)sxt Bx = MGsxt

q,x

if x = i: Rx = Esx
x R̃x = F κsx

x Ax = gsxt

Tx = (
∏

k∈Sx
Uk)sxt Bx = MGsxt

x

if x < i: Rx = gνx,1 R̃x = hκνx,1 Ax = gνx,2

Tx = (
∏

k∈Sx
Uk)νx,2 Bx = e(g, g)νx,3

For each column y the algorithm creates values (Cy, C̃y) as:

if y ≥ j: Cy = Ht
yh

κwy C̃y = gwy

if y < j: Cy = Ht
yh

κwyV κby C̃y = gwy Ṽ by

We note that for y < j the Gp subgroup will be completely random in Cy. The final ciphertext,
containing O(

√
N = m) group elements, consists of(

(Rx, R̃x, Tx, Ax, Bx)m
x=1, (Cy, C̃y)m

y=1

)
The Tx values can be viewed as a broadcast encryption to all members of the row x that are

in the sub-target set Sx. We can also see how the parameters allow for public encryption (which
in turn gives public traceability) to an arbitrary index (i, j). The public parameters that are from
the Gq subgroup are used for the encryption to rows greater than i. The public parameters values
V, Ṽ are used to make column components that are well formed in the Gq subgroup and random
in the Gp subgroup. By forming the parameters in this way we can accomplish this without giving
out a group element from Gp, which would break the difficulty of subgroup hiding.

DecryptABE(S, (x, y),SKx,y, C, PK).
If user (x, y) ∈ S it can attempt to decrypt by first computing a temporary key

K ′
x,y = d′x,y

∏
k∈Sx
k 6=y

dx,y,k

Then it computes:
Bx/

(
e(K ′

x,y, Ax)e(R̃x, C̃y)/
(
e(Rx, Cy)e(Tx, d′′x,y)

))
.

Suppose that the ciphertext was encrypted to index (i, j) and that x > i then in decryption,
the pairing e(K ′

x,y, Ax) gives the value

e(g, gq)αxsxte(g,
∏

k∈Sx

uq,k)sxtθx,ye(g, gq)sxtrxcy

The other pairings are used to divide out

e(g,
∏

k∈Sx

uq,k)sxtθx,ye(g, gq)sxtrxcy

and get the blinding factor e(g, gq)αxsxt. If x = i and y ≥ j then decryption can be explained in a
similar way except the target groups are in GT instead of the subgroup GT,q,
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5 Security

We prove security of our Augmented Broadcast Encryption system by showing that it is secure
under both games defined in Section 2. The proof structure is similar to that of [6]. There are two
cases where there are important differences between what we prove here and what was given in [6].
The first is to show that it is difficult to distinguish between an encryption to indices (i, j) and
indices (i, j + 1) even when the attacker has key Ki,j if user (i, j) is revoked. This is shown in the
proof of Lemma 5.2.

Secondly, we need to prove that the public parameters given out to allow for public encryption
to arbitrary indices do not break the security of our scheme. This is reflected in our proof of
Claim 5.7, which shows that deciding subgroups is still hard even if the adversary has access to
our public parameters. The other portions of the proofs are conceptually similar to [6], however,
we include them for completeness.

5.1 Proof of Security for Game 1 (Message Hiding)

The argument for security of the Message Hiding game is very straightforward since an encryption
to index (m + 1, 1) contains no information about the ciphertext. The simulator simply runs the
actual Setup algorithm and encrypts message Mβ to set S and index N + 1. Since, all Bx values
contain no information about the ciphertext the bit β is perfectly hidden and the adversary’s
advantage is 0.

5.2 Proof of Security for Game 2 (Index-Hiding)

For clarity we present our Index-Hiding proofs in a structure similar to that of [6]. The main
security theorem is as follows.

Theorem 5.1. Suppose that the (Modified) 3-party Diffie-Hellman, Bilinear Subgroup Decision,
and Diffie-Hellman Subgroup Decision assumptions hold. Then no polynomial time adversary A
can win the Index-Hiding game with non-negligible advantage.

We prove the theorem with a sequence of lemmas and claims. First we consider the case where
the adversary A chooses to distinguish between an encryption to indices (i, j) and (i, j + 1) where
j < m. We state the following lemma whose proof is given in Appendix C.1.

Lemma 5.2. Suppose that the Decision (Modified) 3-party Diffie-Hellman, assumption holds. Then
no polynomial time adversary can distinguish between an encryption to (i, j) and an encryption to
(i, j + 1) in the Index Hiding game with non-negligible advantage.

In this game we build a simulator that will guess the bit s̃. If s̃ = 0 and (i, j) ∈ S then the proof
is very similar to that from the traitor tracing system of [6]. However, if s̃ = 1 and (i, j) /∈ S then
our simulator will need to generate the key Ki,j for the adversary and still simulate the challenge
ciphertext. The proof of this case captures the security that is gained by our particular method of
composing a broadcast and traitor tracing system to make an Augmented Broadcast Encryption
system.

Next we consider the case when the adversary A attempts to distinguish between an encryption
to (i, m) and one to (i + 1, 1) for some 1 ≤ i < m. We refer to the rows with ciphertexts in the Gq

subgroup as “greater than” rows and the the row with well formed ciphertexts in G as a “target”
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row. Additionally, when we say we “encrypt to column j” this means that we create ciphertexts
for which Cy is well formed in the Gp subgroup for all y ≥ j. We state our lemma and then discuss
its proof.

Lemma 5.3. Suppose that the Decision (Modified) 3-party Diffie-Hellman, Bilinear Subgroup Deci-
sion, and Diffie Hellman Subgroup Decision assumptions hold. Then no polynomial time adversary
A can distinguish between an encryption to (i, m) and an encryption to (i+1, 1) in the Index Hiding
game with non-negligible advantage.

To prove the lemma we define a sequence of hybrid experiments:

• H1: Encrypt to column m, row i is target row, i+1 is a “greater than” row.

• H2: Encrypt to column m + 1, row i is target row, i+1 is a “greater than” row.

• H3: Encrypt to column m + 1, row i is less than row, i+1 is a “greater than” row (no target
row exists).

• H4: Encrypt to column 1, row i is less than row, i+1 is “greater than” row (no target row
exists).

• H5: Encrypt to column 1, row i is less than row, i+1 is target row.

The following claims, whose proofs are given in Appendix C.2 through Appendix C.4, show that
all these hybrid games are indistinguishable. The proof of the first claim, Claim 5.4, is identical to
the proof of Lemma 5.2.

Claim 5.4. Suppose that the Decision (Modified) 3-party Diffie-Hellman assumption holds. Then
no polynomial time adversary can distinguish between experiments H1 and H2 with non-negligible
advantage.

Claim 5.5. Suppose that the Decision (Modified) 3-party Diffie-Hellman and the Bilinear Subgroup
Decision assumptions hold. Then no polynomial time adversary can distinguish between experiments
H2 and H3 with non-negligible advantage.

Claim 5.6. Suppose that the Decision (Modified) 3-party Diffie Hellman assumption holds. Then
no polynomial time adversary can distinguish between experiments H3 and H4 with non-negligible
advantage.

Claim 5.7. Suppose that the Diffie-Hellman Subgroup Decision assumption holds. Then no polyno-
mial time adversary can distinguish between experiments H4 and H5 with non-negligible advantage.

Lemma 5.3 follows by summing the maximum adversarial advantages across the hybrid experi-
ments. Theorem 5.1 follows from Lemma 5.2 and Lemma 5.3.

6 Conclusion

We constructed a fully collusion resistant trace and revoke system for arbitrary sets S where the
size of ciphertexts and private keys is O(

√
N). The system is publicly traceable and secure against

adaptive adversaries which is unusual for algebraic constructions. Instead of directly building a
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trace and revoke system we constructed a simpler primitive called Augmented Broadcast Encryption
(ABE) with O(

√
N)-size ciphertexts and private keys. We showed that ABE is sufficient for both

broadcast encryption and tracing traitors. While we proved our broadcast secure under plaintext
attacks, it is not difficult to modify it slightly and apply the methods of Canetti, Halevi, and
Katz [9] for security against CCA attacks. We hope that future research will lead to ABEs with
even shorter ciphertexts and private keys.
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A Trace and revoke systems

A Trace and Revoke (TR) system is a broadcast encryption system with an additional tracing
algorithm. We describe TR systems where encryption is public-key and tracing requires no secrets.
We refer to [6] for more information on the definition of traitor tracing systems. A TR system
consists of four algorithms:

Setup(N,λ) A probabilistic algorithm that takes as input N , the number of users in the system,
and a security parameter λ. The algorithm runs in polynomial time in λ and outputs a public
key PK and private keys SK1, . . . ,SKN , where SKu is for user u.

Encrypt(S,PK,M) Takes as input a subset S ⊆ {1, . . . , N}, a public key PK, and a message M .
It outputs a ciphertext C intended for a specific recipient set S.
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Decrypt(S, j,SKj , C,PK) Takes as input a subset S ⊆ {1, . . . , N}, the private key SKj for user
j, a ciphertext C, and the public key PK. The algorithm outputs a message M or ⊥.

TraceD(S,PK, ε) The tracing algorithm is an oracle algorithm that interacts with a pirate decoder
D. The algorithm is given as input a set S ⊆ {1, . . . , N}, the public key PK and a parameter
ε, and runs in time polynomial in the security parameter λ and 1/ε. Only values of ε that
are polynomially related to λ are considered valid inputs to Trace. The tracing algorithm
outputs a set T ⊆ {1, . . . , N}.

Correctness. The system must satisfy the same correctness property as for broadcast encryp-
tion, namely: for all subsets S ⊆ {1, . . . , N}, all j ∈ {1, . . . , N}, and all messages M :

Let (PK, (SK1, . . . ,SKN )) R← SetupABE(N,Λ) and c
R← Encrypt(S, PK,M).

If j ∈ S then Decrypt(S, j, SKj , c, PK) = M .

A.1 Security

We define security of a trace and revoke system using two natural games. The Message Hiding
Game is the same as for a broadcast encryption system secure against an adaptive attacker [14, 4].
We described the game in Section 2.2.1. We let MH AdvA[1] denote the advantage of A in winning
the game.

The Tracing Game ensures that the tracing algorithm successfully traces any pirate decoder,
no matter how many secret keys were used to create the decoder. The adversary’s goal is to build
a pirate decoder D that will decrypt all ciphertexts encrypted for a certain set SD. The tracing
algorithm’s goal is extract from D at least one of the keys u ∈ SD that were used to construct D.
The broadcaster will encrypt all future messages to the set S′ = SD r {u}. If the decoder D can
decode ciphertexts encrypted for S′ then we run the tracing algorithm again, this time giving it the
set S′, to extract another of the pirate’s keys in SD. This process continues, iteratively shrinking
S′, until D stops functioning.

The following game ensures that this process will eventually disable D without disabling any
innocent parties. The game is defined between a challenger and an adversary A (both are given
N,λ and ε as input):

1. The challenger runs Setup(N,λ) to obtain PK and private keys SK1, . . . ,SKN . It provides
PK to A.

2. The adversary issues adaptive private key queries. It repeatedly sends values j ∈ {1, . . . , N}
to the challenger and the challenger responds with SKj . Let U ⊆ {1, . . . , N} be the total set
of keys obtained by the adversary.

3. Finally, the adversary A outputs a set SD ⊆ {1, . . . , N} and a pirate decoder D which is a
probabilistic circuit that takes as input ciphertexts in C and outputs some message M .

4. The challenger now runs TraceD(SD,PK, ε) to obtain a set T ⊆ {1, . . . , N}.

We say that the adversary A wins the game if the following two conditions hold:

19



• For a randomly chosen M in the finite message space, we have that

Pr[D(Encrypt(SD,PK,M)) = M ] ≥ ε

A pirate decoder satisfying this condition is said to be a useful decoder.
• The set T is either empty, or is not a subset of U ∩ SD.

We denote by TRAdvA the probability that adversary A wins this game.
The game above places no limit on the size of the coalition under the control of the adversary.

Furthermore, the pirate decoder need not be perfect. It need only decrypt valid content with
probability ε. Finally, note that we are modeling a stateless (resettable) pirate decoder — the
decoder is just an oracle and maintains no state between activations. Non stateless decoders were
studied in [22].

Definition A.1. We say that an N -user Trace and Revoke system is secure if for all polynomial
time adversaries A we have that MH AdvA[1] and TRAdvA are negligible functions of λ.

B ABE implies Broadcast Encryption

To prove that the broadcast encryption system in Section 2.2.1 is secure it remains to prove that
Equation (1) holds for all i = 1, . . . , N . Consider a specific i ∈ {1, . . . , N}. Adversary B plays the
index hiding game with input i and works as follows:

• Setup B receives PK and the set of private keys
{
SKj s.t. j 6= i

}
from its challenger. B runs

adversary A and gives it PK.

• Query A issues adaptive private key queries. To respond to a query for SKj adversary B
does:

– If j 6= i then B simply gives SKj to B.
– Otherwise, j = i. Then B sends the bit s̃ = 1 to its challenger and receives SKi in

return. It gives SKi to A.

Let S0 ⊆ {1, . . . , N} denote the set of private keys requested by A. Define the complement
as S0 = {1, . . . , N}r S0.

• Challenge Finally, A outputs a set S ⊆ S0 and two equal length messages M0,M1. Then B
flips a coin γ ∈ {0, 1} and gives S and Mγ to its challenger. Note that if B sent s̃ = 1 to its
challenger then i 6∈ S, as required.

B receives back C
R← EncryptABE(S, PK, i + β, Mγ) for some random β ∈ {0, 1}. It gives C to

A.

• Guess Finally, A outputs a guess γ′ for γ. If γ′ = γ then B outputs 0. Otherwise, B
outputs 1.

Now, observe that when β = 0 then B is emulating perfectly an MH AdvA[i] challenger. When
β = 1 then B is emulating perfectly an MH AdvA[i+1] challenger. A standard argument now shows
that |MH AdvA[i]−MH AdvA[i + 1]| ≤ 2 · IH AdvB[i] as required.
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C Proofs

C.1 Proof of Lemma 5.2

For this distinguishing experiment we will show that distinguishing between whether an encryption
is to position (i, j) or (i, j +1) is as hard as the Decision (Modified) 3-party Diffie-Hellman assump-
tion. Since the assumption is in a prime order group, the simulator can know the factorization of
n, the order of the group. The simulator runs the core part of the simulation in the Gp subgroup
and chooses all values outside the subgroup for itself. Our formal proof follows.

Suppose there exists a polynomial time adversary A that breaks the Index Hiding game with
advantage ε. We build a simulator as follows. The simulator receives the (Modified) 3-party Diffie-
Hellman challenge from the simulator as:

gp, A = ga
p , B = gb

p, C = gc
p, D = gb2 , T.

The challenge will be given in the subgroup of prime order p of a composite order group n = pq.
The simulator is given the factors p, q.

The simulator receives the target indices (i, j) from the adversary. The adversary will eventually
behave in one of two different ways.

Case I The adversary will give a bit s̃ = 0 specify a set S where (i, j) ∈ S and the simulator
needs to generate all keys, except key Ki,j .

Case II The adversary will specify a bit s̃ = 1 and a target set S such that (i, j) /∈ S and the
simulator needs to generate all keys.

At this point the simulator does not know how the adversary will behave so it will need to guess
which case it will be in. Since the simulator’s output will be independent of which case it guesses
the simulator will be able to continue the simulation with probability 1/2.

We describe how the simulator will behave in each case:

Case I Since the game is played in the subgroup Gp, the simulator chooses for itself every-
thing in the Gq subgroup. It chooses random generators gq, hq ∈ Gq and random exponents
β, rq,1, . . . , rq,m, cq,1, . . . , cq,m ∈ Zq. Additionally, it chooses the exponents α1, . . . , αm ∈ Zn. It
then sets hp = B and picks blinding factors r′p,1, . . . , r

′
p,m, c′p,1, . . . , c

′
p,m ∈ Zp.

Finally, it chooses δ ∈ Zn, γ, µp,1, . . . , µp,m ∈ Zp at random and chooses random uq,1, . . . , uq,m ∈
Gq. It then sets up,1 = g

µp,1
p , . . . , up,m = g

µp,m
p and it assigns ui = uq,iup,i for i = 1, . . . ,m.

The simulator is now able to create the public and secret keys as follows. It first sets g =
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gqgp,h = hqB, and publishes

g = gqgp, h = hqB, V = gδgγ
p , Ṽ = hδ

Eq = gβ
q , Ex = g

rq,x
q g

r′p,x
p : x 6= i, Ei = g

rq,i
q Br′p,i

Eq,1 = g
βrq,1
q , . . . , Eq,m = g

βrq,m
q

Fx = g
rq,x
q Br′p,x : x 6= i, Fi = g

rq,i
q Dr′p,i

Fq,1 = h
βrq,1
q , . . . , Fq,m = h

βrq,m
q

G1 = e(g, g)α1 , . . . , Gm = e(g, g)αm , Gq,1 = e(gq, gq)βα1 , . . . , Gq,m = e(gq, gq)βαm

Hy = g
cq,y
q g

c′p,y
p : y 6= j, Hj = g

cq,j
q Cc′p,j

U1 = u1, . . . , Um = um, Uq,1 = uβ
q,1, . . . , Uq,m = uβ

q,m


Next, it chooses random σx,y ∈ Zn for all (x, y) 6= (i, j) and creates private keys for all users

except (i, j) as:

Kx,y =
(
d′x,y, d

′′
x,y, d1, . . . , dy−1, , dy+1, . . . , dm

)
=


(gαxg

rq,xcq,y
q g

r′p,xc′p,y
p u

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m ) : x 6= i, y 6= j

(gαxg
rq,xcq,y
q Br′p,xc′p,yu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m ) : x = i, y 6= j

(gαxg
rq,xcq,y
q Cr′p,xc′p,yu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m ) : x 6= i, y = j

We note that all the simulator creates public and private with the same distribution as the real
scheme.

The simulator gives a bit s̃ as the query. If s̃ = 1 the simulation aborts. In the challenge phase
the adversary first gives the simulator a target set S and a message M ∈ GT . The simulator then
chooses exponents (v1,1, v1,2, v1,3), . . . , (vi−1,1, vi−1,2, vi−1,3) ∈ Z(3)

n , and exponents sq,i, . . . sq,m ∈ Zq,
tq ∈ Zq, and κ ∈ Zn. Additionally, it chooses random s′p ∈ Zp, z1, . . . , zj−1 ∈ Zp, w′

1, . . . , w
′
m ∈ Zn.

We again let Sx denote the set of all values y such that the user (x, y) is in the set S. The simulator
then creates the ciphertext as:
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if x > i Rx = g
sq,xrq,x
q R̃x = h

κsq,xrq,x
q Ax = g

sq,xtq
q

Tx = (
∏

k∈Sx
uq,k)sq,xtq Bx = Me(gq, gq)αxsq,xtq

if x = i Rx = g
sq,xrq,x
q g

s′pr′p,x
p R̃x = h

κsq,xrq,x
q Bκs′pr′p,x Ax = gsq,xtqAs′p

Tx = (
∏

k∈Sx
uq,k)sq,xtqAs′p

P
k∈Sx

µp,k

Bx = Me(gq, gq)αxsq,xtq,xe(gp, A)αxs′p

if x < i Rx = gvx,1 R̃x = hκvx,1 Ax = gvx,2

Tx = (
∏

k∈Sx
uk)vx,2 Bx = e(g, g)vx,3

if y > j Cy = g
cq,ytq
q hκw′

y C̃y = A−c′p,y/κgw′
y

if y = j Cy = g
cq,ytq
q Thκw′

y C̃y = gw′
y

if y < j Cy = g
cq,ytq
q g

zy
p hκw′

y C̃y = gw′
y

If T forms a 3-party Diffie-Hellman tuple then the ciphertext is a well-formed encryption to the
indices (i, j), otherwise if T is randomly chosen it is a encryption to (i, j + 1). The simulator will
receive a guess γ from A and it will simply repeat this guess as its answer to the (Modified) 3-party
Diffie-Hellman game. The simulator’s advantage in the Index Hiding game will be exactly equal to
A’s advantage.

Case II The simulator chooses random generators gq, hq ∈ Gq and random exponents β,
rq,1,. . . , rq,m, cq,1, . . . , cq,m ∈ Zq. Additionally, it chooses the exponents δ, α1, . . . , αm ∈ Zn. It then
sets hp = B and picks blinding factors r′p,1, . . . , r

′
p,m, c′p,1, . . . , c

′
p,m ∈ Zp.

Finally, it chooses γ, µp,1, . . . , µp,m ∈ Zp at random and chooses random uq,1, . . . , uq,m ∈ Gq.
It then sets up,1 = g

µp,1
p , up,j−1 = g

µp,j−1
p , , up,j+1 = g

µp,j+1
p , . . . , up,m = g

µp,m
p . It then sets up,j =

Br′p,ig
µp,j
p . It finally assigns ui = uq,iup,i for i = 1, . . . ,m.

The simulator is now able to create the public and secret keys as follows. It first sets g =
gqgp,h = hqB, and publishes



g = gqgp, h = hqB, V = gδgγ
p , Ṽ = hδ

Eq = gβ
q , Ex = g

rq,x
q g

r′p,x
p : x 6= i, Ei = g

rq,i
q Br′p,i

Eq,1 = g
βrq,1
q , . . . , Eq,m = g

βrq,m
q

Fx = g
rq,x
q Br′p,x : x 6= i, Fi = g

rq,i
q Dr′p,i

Fq,1 = h
βrq,1
q , . . . , Fq,m = h

βrq,m
q

G1 = e(g, g)α1 , . . . , Gm = e(g, g)αm , Gq,1 = e(gq, gq)βα1 , . . . , Gq,m = e(gq, gq)βαm

Hy = g
cq,y
q g

c′p,y
p : y 6= j, Hj = g

cq,j
q Cc′p,j

U1 = u1, . . . , Um = um, Uq,1 = uβ
q,1, . . . , Uq,m = uβ

q,m
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Next, it chooses random σx,y ∈ Zn for all (x, y) 6= (i, j), values σ′q,i,j ∈ Zq and σ′p,i,j ∈ Zp. It
creates private keys for all users as:

Kx,y =
(
d′x,y, d

′′
x,y, d1, . . . , dy−1, , dy+1, . . . , dm

)

=



(gαxg
rq,xcq,y
q g

r′p,xc′p,y
p u

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m ) : x 6= i, y 6= j

(gαxg
rq,xcq,y
q Br′p,xc′p,yu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m ) : x = i, y 6= j

(gαxg
rq,xcq,y
q Cr′p,xc′p,yu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m ) : x 6= i, y = j

(gαxg
rq,xcq,y
q u

σ′q,x,y
q,y C−c′p,jµp,y(Br′p,xg

µp,y
p )σp,x,y ,

g
σ′q,x,y
q C−c′p,jg

σ′p,x,y
p , u

σ′p,x,y

1 , . . . , u
σ′p,x,y

y−1 , , u
σp,x,y′
y+1 , . . . , u

σp,x,y′
m ) : x = i, y = j

For the computation of key Ki,j the simulator implicitly uses a value of σp,i,j = −cc′p,i,j + σ′p,i,j .
This assignment allows for the cancellation of the hard to compute part of key i, j.

The adversary gets all the keys generated except key Ki,j We note that all the simulator creates
public and private with the same distribution as the real scheme.

The adversary specifies the query bit s̃, if s̃ = 0 the simulator aborts, otherwise it gives the
key Ki,j to the adversary. Then, in the challenge phase the adversary gives the simulator the
target set S such that (i, j) /∈ S and a message M ∈ GT . The simulator then chooses exponents
(v1,1, v1,2, v1,3), . . . , (vi−1,1, vi−1,2, vi−1,3) ∈ Z(3)

n , and exponents sq,i, . . . sq,m ∈ Zq, tq ∈ Zq, and
κ ∈ Zn. Additionally, it chooses random s′p ∈ Zp, z1, . . . , zj−1 ∈ Zp, w′

1, . . . , w
′
m ∈ Zn. We again

let Sx denote the set of all values y such that the user (x, y) is in the set S. The simulator then
creates the ciphertext as:

if x > i Rx = g
sq,xrq,x
q R̃x = h

κsq,xrq,x
q Ax = g

sq,xtq
q

Tx = (
∏

k∈Sx
uq,k)sq,xtq Bx = Me(gq, gq)αxsq,xtq

if x = i Rx = g
sq,xrq,x
q g

s′pr′p,x
p R̃x = h

κsq,xrq,x
q Bκs′pr′p,x Ax = gsq,xtqAs′p

Tx = (
∏

k∈Sx
uq,k)sq,xtqAs′p

P
k∈Sx

µp,k

Bx = Me(gq, gq)αxsq,xtq,xe(gp, A)αxs′p

if x < i Rx = gvx,1 R̃x = hκvx,1 Ax = gvx,2

Tx = (
∏

k∈Sx
uk)vx,2 Bx = e(g, g)vx,3

if y > j Cy = g
cq,ytq
q hκw′

y C̃y = A−c′p,y/κgw′
y

if y = j Cy = g
cq,ytq
q Thκw′

y C̃y = gw′
y

if y < j Cy = g
cq,ytq
q g

zy
p hκw′

y C̃y = gw′
y

We point out that since j /∈ Si that the formulation Ti is correct. In the Case II simulation the
simulator is able to choose uj in a special way such that it can compute the private key Ki,j and
it is still able to simulate the ciphertext since it knows user (i, j) is not in the target set S.

If T forms a 3-party Diffie-Hellman tuple then the ciphertext is a well-formed encryption to
the indices (i, j), otherwise if T is randomly chosen it is a encryption to (i, j + 1). The simulator
will receive a guess γ from A and it will simply repeat this guess as its answer to the Decision
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(Modified) 3-party Diffie-Hellman game. The simulator’s advantage in the Index Hiding game will
be exactly equal to A’s advantage, which by our assumption must be negligible.

C.2 Proof of Claim 5.5

In order to prove this claim we further refine our hybrid experiments by defining two more hybrid
experiments.

• H2a: Same as H2 except Bi is multiplied by a random element e(gp, g)z.

• H2b: Same as H2 except Bi is multiplied by a random element e(g, g)z.

Distinguishing between H2 and H2a We first show that if the Decision (Modified) 3-party
Diffie-Hellman assumption holds then no polynomial time adversary can distinguish between ex-
periments H2 and H2a. We note that if no polynomial time adversary can break the Decision 3-party
Diffie-Hellman with non-negligible advantage then no polynomial time adversary has non-negligible
advantage in the Decisional Bilinear-Diffie Hellman (DBDH) assumption where the target, T is in
GT .

Consider an adversary A that distinguishes between the two experiments with probability ε.
We construct a simulator that plays the Decisional DBDH game with advantage ε.

The simulator first takes in a DBHD challenge gp, A = ga
p , B = gb

p, C = gc
p, T . Again, the

assumption is in a subgroup of order p and the simulator is given the factors p, q of n. The main
idea of the simulation is that it will let gri

p = B, gαi
p = gab

p , g
tp
p = C, and g

cp,i
p = A−1gc′p,i where

c′p,1, . . . , c
′
p,m are chosen by the simulation. The simulator will then be able to generate all keys,

but still uses T as a challenge since gc
p only appears in the term Ai.

The simulator chooses gq ∈ Gq, d ∈ Zn and sets hq = gd
q , hp = gd

p and lets g = gpgq, h = gphq.
Additionally, it chooses β, cq,1, . . . , cq,mrq,i ∈ Zq,r1, . . . , ri−1, , ri+1, . . . , rm ∈ Zn, αq,i ∈ Zq, and
α1, . . . αi−1, , αi+1, . . . , αm ∈ Zn. Finally, it chooses µp,1, . . . , µp,m ∈ Zp at random and chooses
random uq,1, . . . , uq,m ∈ Gq. It then sets up,1 = g

µp,1
p , . . . , up,m = g

µp,m
p . It finally assigns ui =

uq,iup,i for i = 1, . . . ,m and chooses random δ ∈ Zn and γ ∈ Zp.
The public parameters are published as:

g, h, V = gδgγ , Ṽ = hδ

Eq = gβ
q , Ex = grx : x 6= i, Ei = g

rq,i
q B

Eq,x = gβrx
q : x 6= i, Eq,i = g

βrq,i
q

Fx = gdrx : x 6= i, Fi = g
drq,i
q B

Fq,x = gdβrx
q : x 6= i, Fq,i = g

dβrq,i
q

Gx = e(g, g)αx : x 6= i, Gi = e(gq, gq)αq,ie(A,B)

Gq,x = e(gq, gq)βαx : x 6= i. Gq,i = e(gq, gq)βαq,i

H1 = gcqA−1gc′p,1 , . . . ,Hm = gcqA−1gc′p,m

U1 = u1, . . . , Um = um, Uq,1 = uβ
q,1, . . . , Uq,m = uβ

q,m
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The simulator chooses random σx,y ∈ Zn for all (x, y) and the private keys are created as:

Kx,y =
(
d′x,y, d

′′
x,y, d1, . . . , dy−1, , dy+1, . . . , dm

)
=

{
gαx(gcq,y

q A−1g
c′p,y
p )rxu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m : x 6= i

(gαq,ig
rq,icq,y
q )Bc′p,yu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m : x = i

The simulator gives out all keys except Ki,j . Then it receives the query bit s̃ and gives out
Ki,j if s̃ = 1. Next, the adversary specifies a target set S and a challenge message,M ∈ GT .
The simulator chooses tq ∈ Zq, κ, si, . . . , sm, w1,. . ., wm, (vx,1,vx,2, vx,3),. . ., (vx,1, vx,2, vx,3) ∈ Zn for
itself. The simulator can now create all Cy, C̃y values in a straightforward manner since the Gp

subgroup components are random. Similarly, all Rx, R̃x, Ax, Tx, Bx values for x < i are just created
randomly and all Rx, R̃x, Ax, Tx, Bx values for x > i can be created by the simulators knowledge
since they only draw from the Gq subgroup components which it knows.

Finally, it creates the target row ciphertext as:

Rx = (grq,iB)si R̃x = (grq,iB)κdsi Ax = (gtqC)si ,

Tx =
∏

k∈Sx
(utq

q,kC
µp,k)si Bx = M

(
e(gq, g)αq,itqT

)si

If T is a tuple e(g, g)abc then we are in experiment H2, otherwise if it is random we are in
experiment H2,a. The simulator can then repeat the adversary’s guess and play the DBDH game
with advantage ε. It follows from our assumption ε must be negligible.

Distinguishing between H2a and H2b We now show that if there is an adversary that can
distinguish between experiments H2a and H2b with advantage ε then we can build a simulator that
can play the Bilinear Subgroup Decision game with advantage ε.

The simulator will first receive a Bilinear Subgroup Decision challenge gp, gq, T from the chal-
lenger. Using gp, gq it is able to set up all the system parameters just as the real setup algorithm
does. It gives out all keys except Ki,j and then gives out Ki,j if the adversary gives bit s̃ = 1.

Next, it receives a target set S and a challenge message, M ∈ GT from the adversary. It
then chooses all encryption variables and creates an encryption as in the H2 experiment with one
exception. For the Bi component it multiplies in the value T . If T ∈ GT,p then the we are in hybrid
experiment H2a. Otherwise if T ∈ GT then we are in hybrid experiment H2b.

Therefore the simulator can use the adversary’s guess to play the Bilinear Subgroup Decision
game with advantage ε. It follows from our assumption that the adversary’s advantage must be
negligible.

Distinguishing between H2b and H3 We now show that if there is an adversary that can
distinguish between experiments H2b and H3 with advantage ε then we can build a simulator that
can play the Decision 3-Party Diffie-Hellman game with advantage ε.

The simulator first receives a 3-Party Diffie-Hellman challenge, kq, A = ka
q , B = kb

q, C = kc
q, T ∈

Gq (we rename the generator in the challenge to k for ease of exposition).
The simulator first chooses d,∈ Zn,β ∈ Gq, and gp ∈ Gp. It then sets g = gpA,h = (gpA)d.

Next, it chooses the secrets for the Gp subgroup: rp,1, . . . , rp,m, cp,1, . . . , cp,m, αp,1, αp,m ∈ Zp. Then,
it chooses r′q,1, . . . , r

′
q,m, c′q,1, . . . , c

′
q,m, α′q,1, α

′
q,m ∈ Zq. Finally, it chooses µq,1, . . . , µq,m ∈ Zp at

random and chooses random up,1, . . . , up,m ∈ Gp. It then sets uq,1 = Aµp,1 , . . . , uq,m = Aµq,m . It
finally assigns ui = uq,iup,i for i = 1, . . . ,m and chooses random δ ∈ Zn and γ ∈ Zp.
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The simulator can now publish the parameters as:

g, h, V = gδgγ
p , Ṽ = hδ

Eq = kβ
q , Ex = Ar′q,mg

rp,x
p : x 6= i, Ei = k

r′q,i
q g

rp,i
p

Eq,x = Aβr′q,m : x 6= i, Eq,i = k
βr′q,i
q

Fx = Adr′q,mg
drp,x
p : x 6= i, Fi = k

dr′q,i
q g

drp,i
p

Fq,x = Adβr′q,m : x 6= i, Fq,i = k
dβr′q,i
q

G1 = e(gp, gp)α1e(A,A)α1 , . . . , Gm = e(gp, gp)αme(A,A)αm ,

Gq,1 = e(A,A)βα1 , . . . , Gq,m = e(A,A)βαm

H1 = k
c′q,1
q g

cp,1
p , . . . ,Hm = k

c′q,x
q g

cp,m
p

U1 = u1, . . . , Um = um, Uq,1 = uβ
q,1, . . . , Uq,muβ

q,m


The simulator chooses random σx,y ∈ Zn for all (x, y) and keys are generated as:

Kx,y =
(
d′x,y, d

′′
x,y, d1, . . . , dy−1, , dy+1, . . . , dm

)
=

{
(Agp)αxg

rp,xcp,y
p kr′q,xc′p,yu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m : x = i

(Agp)αxg
rp,xcp,y
p Ar′q,xc′p,yu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m : x 6= i

The simulator gives the adversary all keys except Ki,j . The adversary gives the query bit s̃ and
if s̃ = 1 the simulator gives key Ki,j The simulator next receives a target set S and a challenge
message M ∈ GT from the adversary. It then chooses random δ ∈ Zp, (v1,1, v1,2, v1,3),. . .,(vi−1,1,
vi−1,2, vi−1,3) ∈ Zn, w1, . . . , wm ∈ Zn,z′1, . . . , z

′
m ∈ Zn, s′q,i+1, . . . , s

′
q,m ∈ Zq, and κ ∈ Zn.

It creates the challenge ciphertext as:
if x > i Rx = k

s′q,xrq,x
q R̃x = k

κds′q,xrq,x
q Ax = Bs′q,x

Tx = Bs′q,x

P
k∈Sx

µq,k Bx = Me(A,B)αxs′q,x

if x = i Rx = Cs′q,xg
sprq,x
p R̃x = Cκds′q,xg

κdsprq,x
p Ax = Tgδ

p

Tx = T
P

k∈Sx
µq,k(

∏
k∈Sx

up,k)δ Bx = e(g, g)γ

if x < i Rx = gvx,1 R̃x = hκvx,1 Ax = gvx,2

Tx = (
∏

k∈Sx
uk)vx,2 Bx = e(g, g)vx,3

∀y Cy = Bc′q,yg
z′y
p hκw′

y C̃y = gw′
y

If T = kabc then we are in experiment H2b, otherwise if T is a random element of Gq then we are
in experiment H3. Therefore, our simulator can use the adversary’s response to get an ε advantage
in the 3-party Diffie-Hellman game.

Putting it together By the assumptions above we can now bound the Adversary’s advantage
in distinguishing between experiments H2 and H3 by 2εDM3DH + εBSD, proving our claim.
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C.3 Proof of Claim 5.6

To prove the claim we consider a sequence of hybrid experiments H3,m+1, . . . ,H3,1, where in exper-
iment H3,j all ciphertext Cy values are well formed in the Gp subgroup for y ≥ j and random in the
subgroup for y < j, and the rest of the experiment is built as the ciphertext from experiment H3.
We observe that experiments H3 and H3,m+1 are equivalent and that experiments H4 and H3,1 are
equivalent. Therefore we can bound an adversary’s advantage in distinguishing between H3 and
H4 as m times his advantage in distinguishing between any two sub-experiments.

Suppose there exits an adversary A that for some j distinguishes between H3,j and H3,j+1 that
succeeds with advantage ε. We can bound its advantage with a proof similar to that of Lemma 5.2,
however, this will be even simpler since there is no target row in the hybrid experiment.

We construct a simulator that play the 3-party Diffie-Hellman game. The simulator first receives
the 3-party Diffie-Hellman challenge from the simulator as:

gp, A = ga
p , B = gb

p, C = gc
p, T.

Since the game will be played in the subgroup Gp, the simulator can choose for itself ev-
erything in the Gq subgroup. It chooses random generators gq, hq ∈ Gq and random exponents
β, rq,1, . . . , rq,m, cq,1, . . . , cq,m ∈ Zq. Additionally, it chooses the exponents α1, . . . , αm ∈ Zn. It then
sets hp = B and picks blinding factors r′p,1, . . . , r

′
p,m, c′p,1, . . . , c

′
p,m ∈ Zp. Finally, uq,1, . . . , uq,m ∈ Gq

and up,1, . . . , up,m ∈ Gp are chosen at random, then it sets u1 = uq,1up,1, . . . , um = uq,mup,m.
Additionally, random δ ∈ Zn and γ ∈ Zp are chosen.

The simulator is now able to create the public and secret keys as follows. It first sets g = gqgp

and h = hqB. It creates the public keys:

g, h, V = gδgγ , Ṽ = hδ

E = gβ
q , E1 = g

rq,1
q g

r′p,1
p , . . . , Em = g

rq,m
q g

r′p,m
p , Eq,1 = g

βrq,1
q , . . . , Eq,m = g

βrq,m
q

F1 = h
rq,1
q h

r′p,1
p , . . . , Fm = h

rq,m
q h

r′p,m
p , Fq,1 = h

βrq,1
q , . . . , Fq,m = h

βrq,m
q

G1 = e(g, g)α1 , . . . , Gm = e(g, g)αm , Gq,1 = e(gq, gq)βα1 , . . . , Gq,m = e(gq, gq)βαm

Hy = g
cq,y
q g

c′p,y
p : y 6= j, Hj = g

cq,j
q Cc′p,j

U1 = u1, . . . , Um = um, Uq,1 = uβ
q,1, . . . , Uq,m = uβ

q,m


The simulator chooses random σx,y ∈ Zn for all (x, y) and keys are generated as:

Kx,y =
(
d′x,y, d

′′
x,y, d1, . . . , dy−1, , dy+1, . . . , dm

)
=

{
gαxg

rq,xcq,y
q g

r′p,xc′q,y
q u

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m : y 6= j

gαxg
rq,xcq,y
q Cr′p,xc′q,yu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m : y = j

The simulator gives the adversary all keys except Ki,j . The adversary gives the query bit s̃ and if
s̃ = 1 the simulator gives key Ki,j The simulator next receives a target set S and a challenge message
M ∈ GT from the adversary. The simulator then chooses exponents (v1,1, v1,2, v1,3),. . . , (vi,1, vi,2, vi,3) ∈
Zn, and exponents sq,i+1, . . . , sq,m ∈ Zq, tq ∈ Zq, and κ ∈ Zn. Next, it chooses random z1, . . . , zj−1 ∈
Zp, w′

1, . . . , w
′
m ∈ Zn. It then creates the ciphertext as:
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if x ≥ i + 1 Rx = g
sq,xrq,x
q R̃x = h

κsq,xrq,x
q Ax = g

sq,xtq
q

Tx = (
∏

k∈Sx
)sq,xtq Bx = Me(gq, gq)αxsq,xtq

if x ≤ i Rx = gvx,1 R̃x = hκvx,1 Ax = gvx,2

Tx = (
∏

k∈Sx
)vx,2 Bx = e(g, g)vx,3

if y > j Cy = g
cq,ytq
q hκw′

y C̃y = A−c′p,y/κgw′
y

if y = j Cy = g
cq,ytq
q Thκw′

y C̃y = gw′
y

if y < j Cy = g
cq,ytq
q g

zy
p hκw′

y C̃y = gw′
y

If T forms a 3-party Diffie-Hellman tuple then we simulated H3,j , otherwise if T is randomly
chosen we simulated H3,j+1. The simulator will receive a guess from A and it will simply repeat
this guess as its answer to the 3-party Diffie-Hellman game. The simulator’s advantage will be
exactly equal to A’s advantage.

Therefore, we can bound an adversary’s advantage of distinguishing between H3 and H4 as
m · εDM3DH . By our assumption the adversary’s advantage is negligible.

C.4 Proof of Claim 5.7

Suppose there exists an adversary A that distinguishes between H4 and H5 with advantage ε.
Then we build a simulator that plays the Diffie-Hellman Subgroup Decision game. In this game
the simulator does not know the factors of n.

The simulator first takes in the challenge g, h, A = ga
q , B = ha

q , C = gbgc
p, D = hb, T . For the

simulation a = β. The simulator then chooses random exponents r1, . . . , rm, c1, . . . , cm,α1,. . .,αm, µ1

, . . . , µm ∈ Zn.
The public key includes the description of the group and the following elements:

g, h, V = C̃, V = D

E1 = gr1 , . . . , Em = grm , Eq,1 = Ar1 , . . . , Eq,m = Arm

F1 = hr1 , . . . , Fm = hrm , Fq,1 = Br1 , . . . , Fq,m = Brm

G1 = e(g, g)α1 , . . . , Gm = e(g, g)αm , Gq,1 = e(A, g)α1 , . . . , Gq,m = e(A, g)αm

H1 = gc1 , . . . ,Hm = gcm

U1 = gµ1 , . . . , Um = gµm , Uq,1 = Aµ1 , . . . , Uq,m = Aµm


The simulator chooses random σx,y ∈ Zn for all (x, y) and keys are generated as:

Kx,y =
(
d′x,y, d

′′
x,y, d1, . . . , dy−1, , dy+1, . . . , dm

)
= gαxgrxcyu

σx,y
y , gσx,y , u

σx,y

1 , . . . , u
σx,y

y−1 , , u
σx,y

y+1 , . . . , u
σx,y
m

The simulator gives the adversary all keys except Ki,j . The adversary gives the query bit s̃ and if
s̃ = 1 the simulator gives key Ki,j The simulator next receives a target set S and a challenge message
M ∈ GT from the adversary. It then chooses a random κ̃, t ∈ Zn, w1, . . . , wm, s1, . . . , sm ∈ Zn, and
(v1,1, v1,2, v1,3),. . . , (vi−1,1, vi−1,2, vi−1,3) ∈ Zn.
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We note that gκ̃ = hκ′ for some unknown κ′. By simulating the encryption in this manner it is
possible to simulate all encryption values, except Cy for y < j. However, in this experiment there
are no such values since j = 1.

For each row x we create five ciphertext components (Rx, R̃x, Tx, Ax, Bx) for rows other than
i + 1 as follows:

if x > i + 1: Rx = Esx
q,x R̃x = Eκ̃sx

q,x Ax = Esxt
q

Tx = (
∏

k∈Sx
Uq,k)sxt Bx = MGsxt

q,x

if x < i + 1: Rx = gνx,1 R̃x = gκ̃νx,1 Ax = gνx,2

Tx = (
∏

k∈Sx
Uk)νx,2 Bx = e(g, g)νx,3

For each column y the algorithm creates values (Cy, C̃y) as:

∀y: Cy = Ht
yg

κ̃wy C̃y = gwy

Finally, the encryption values for row i + 1 are created as:

Ri+1 = T si+1ri+1 R̃i+1 = T κ̃si+1ri+1 Ai+1 = T si+1t

Ti+1 = T si+1t
P

k∈Sx
µk Bi+1 = Me(T, g)αi+1si+1t

If T is a random element of Gq then we simulated experiment H4, otherwise we simulated
experiment H5.
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