
A New Mode of Encryption Providing A Tweakable Strong

Pseudo-Random Permutation

Debrup Chakraborty and Palash Sarkar∗

Computer Science Department,
CINVESTAV-IPN

Av. IPN No. 2508 Col. San Pedro Zacatenco
Mexico, D.F. 07360. Mexico

email: debrup@cs.cinvestav.mx

∗Applied Statistics Unit
Indian Statistical Institute

203 B.T. Road
Kolkata 700108, India

email: palash@isical.ac.in

Abstract

We present PEP, which is a new construction of a tweakable strong pseudo-random permuta-
tion. PEP uses a hash-encrypt-hash approach which has recently been used in the construction
of HCTR. This approach is different from the encrypt-mask-encrypt approach of constructions
such as CMC, EME and EME∗. The general hash-encrypt-hash approach was earlier used by
Naor-Reingold to provide a generic construction technique for an SPRP (but not a tweakable
SPRP). PEP can be seen as the development of the Naor-Reingold approach into a fully speci-
fied mode of operation with a concrete security reduction for a tweakable strong pseudo-random
permutation. The security bound of HCTR which is also based on the Naor-Reingold approach
is weaker than that of PEP. Compared to previous known constructions, PEP is the only con-
struction of tweakable SPRP which uses a single key, is efficiently parallelizable and can handle
an arbitrary number of blocks.
Keywords: mode of operation, tweakable encryption, strong pseudo-random per-
mutation.

1 Introduction

A block cipher is a fundamental primitive in cryptography. A block cipher by itself can encrypt
only fixed length strings. Applications in general require encryption of long and arbitrary length
strings. A mode of operation of a block cipher is used to extend the domain of applicability from
fixed length strings to long and variable length strings. The mode of operation must be secure in
the sense that if the underlying block cipher satisfies a certain notion of security, then the extended
domain mode of operation also satisfies an appropriate notion of security.

A formal model of security for a block cipher is a pseudo-random permutation [8] which is for-
malized as a keyed family of permutations. Pseudo-randomness of the permutation family requires

1

a computationally bounded adversary to be unable to distinguish between a random permuta-
tion and a permutation picked at random from the family. Strong pseudo-random permutations
(SPRPs) require computational indistinguishability even when the adversary has access to the
inverse permutations.

A mode of encryption usually provides two security assurances – privacy and authenticity. For
example, OCB [13] is a mode of operation (providing both privacy and autheticity) which extends
the domain of a block-cipher to arbitrary strings. An SPRP which can encrypt arbitrary length
strings, can be viewed as a mode of operation with a somewhat different goal. Such a mode of
operation is length preserving and no tag is produced. Hence, authentication is of limited nature.
A change in the ciphertext cannot be detected but the decryption of the tampered ciphertext will
result in a plaintext which is indistinguishable from a random string. Additional redundancy in the
message introduced by higher level applications might even allow the detection of the tampering.
This point is discussed in details by Bellare and Rogaway [1].

Tweakable encryption was introduced by Liskov, Rivest and Wagner [7] which added an extra
input called tweak to a block cipher. This allows simplification of several applications. The paper [7]
introduced both tweakable PRP and SPRP. In the adversarial model for tweakable SPRP, the
adversary queries the encryption (resp. decryption) oracle with a tweak and the plaintext (resp.
ciphertext). The adversary is allowed to repeat the tweaks in its queries to the encryption and the
decryption oracles. A tweakable SPRP provides a mode of operation having all the advantages of
an SPRP with the additional flexibility of having a tweak. The constructions CMC [3], EME [4],
EME∗ [2] and HCTR [16] are proved to be tweakable SPRPs under the assumption that the
underlying block cipher is an SPRP. As mentioned in [3], such a primitive is well suited for disk
encryption where the tweak can be considered to be the sector address.

Our Contributions: We present a new construction of a tweakable SPRP called PEP (for Poly-
nomial hash-Encrypt-Polynomial hash). PEP uses a block cipher which can encrypt an n-bit string
to construct an encryption algorithm which can encrypt mn-bit strings for any m ≥ 1. It uses two
Wegman-Carter [15] style polynomial hashes over the binary field GF (2n). (Similar hashes have
been earlier used in GCM [9] and HCTR.) The new construction is proved to be a tweakable SPRP
assuming that the underlying block cipher is an SPRP. Below we mention some interesting features
of PEP.

1. PEP is a fully specified mode of operation providing a tweakable SPRP. The security proof
for PEP provides a concrete security bound which is the usual quadratic birthday bound
earlier obtained for CMC, EME and EME∗. The security bound of HCTR is weaker and the
security degradation is cubic.

2. The total computation cost of PEP for encrypting an m-block message consists of m + 5
block cipher calls for m ≥ 2 (m + 3 for m = 1), and (4m − 6) multiplications in GF (2n).
In contrast, CMC requires 2m + 1 block cipher calls; EME∗ requires (2m + m/n + 1) block
cipher calls; and HCTR requires m block cipher calls and 2m many GF (2n) multiplications.
The exact comparison of the computation costs depends upon several factors such as the
implementation platform (hardware or software), availability of suitable co-processors (for
software implementation), availability of parallel encryption blocks (for hardware implemen-
tation) and most importantly on the actual block cipher being used and the efficiency of its
implementation.

3. Currently, PEP fulfills a gap in the known constructions. It is the only known construction of

2

tweakable SPRP which uses a single key, is efficiently parallelizable and can handle arbitrary
number of message blocks. Table 1 in Section 3 provides a detailed comparison of PEP with
the other tweakable SPRPs.

Related Constructions: To the best of our knowledge, the first suggestion for constructing an
SPRP was made by Naor and Reingold in [10]. They suggested the hash-encrypt-hash approach
used in PEP. However, as discussed in [3], the description in [10] is at a top level and also the later
work [11] does not fully specify a mode of operation. Perhaps more importantly, the work [11] does
not consider tweakable SPRP since it predates the introduction of tweakable primitives in [7].

The NR approach was rejected in [3] as not being capable of efficient instantiation. The work
in [3] and also the later constructions [4, 2] follow a encrypt-mask-encrypt strategy, i.e., there are
two layers of encryptions with a layer of masking in between. CMC [3] provides the first efficient,
fully specified construction of a tweakable SPRP. Parallel versions of the encrypt-mask-encrypt
strategy have been proposed as EME and EME∗.

Interestingly, the NR approach made a recent comeback in the HCTR construction. The HCTR
construction combines the NR type invertible hash functions with the counter mode of operation.
This results in an efficient tweakable SPRP which can handle any message having length ≥ n
bits. The drawback of HCTR is its weaker security bound and the requirement of having two
keys. Currently, PEP can be viewed as the development of the NR approach to the construction
of tweakable SPRP.

2 Specification of PEP

We construct the tweakable enciphering scheme PEP from a block cipher E : K×{0, 1}n → {0, 1}n

and call it PEP[E]. The key space of PEP[E] is same as that of the underlying block cipher E and
the tweak space is T = {0, 1}n. The message space consists of all binary strings of size mn where
m ≥ 1.

Finite Field Arithmetic: An n-bit string can also be viewed as an element in GF (2n). Thus,
we will consider each n-bit string in the specification of PEP as a polynomial over GF (2) modulo a
fixed primitive polynomial τ(x) of degree n. For each n-bit string Z that occur in the description of
PEP, we will use Z(x) to denote the corresponding polynomial in GF (2n). The expressions p(x)M1

(resp. xEN), represent the n-bit string obtained by multiplying the polynomials p(x) and M1

(resp. x and EN) modulo τ(x). Also for two n-bit strings Z1 and Z2, the expression Z1(x)Z2(x)
denotes the n-bit string obtained by multiplying Z1(x) and Z2(x) modulo τ(x). Finally, by R−1(x)
we will denote the multiplicative inverse of R(x) modulo τ(x) when R(x) 6= 0.

Definition 1 Let m ≥ 3 and pm,1(x), . . . , pm,m(x) be a sequence of polynomials over GF (2) each
having degree at most n−1. We call such a sequence an allowed sequence with respect to a primitive
polynomial τ(x) of degree n if the following two conditions hold.

1.
⊕m

i=1 pm,i(x) ≡ 0 mod τ(x).

2. For 1 ≤ i < j ≤ m, (pm,i(x)⊕ pm,j(x)) 6≡ 0 mod τ(x).

From the definition, it is clear that for an allowed sequence to exist, we must have m ≥ 3. The
parameter m in the specification of PEP will represent the number of blocks to be encrypted (or

3

decrypted). Later we show how to easily define such an allowed sequence. Since τ(x) is fixed, we
will simply write “allowed sequence” instead of “allowed sequence with respect to τ(x)”.

The notation bin(m) denotes the n-bit binary representation of the integer m. For example,
bin(1) = 0n−11 and bin(2) = 0n−210. The specification of PEP consists of three cases: m = 1;
m = 2; and m ≥ 3. The cases m = 1 and m = 2 are shown in Figure 2. Figure 3 shows the
encryption of a 4-block message. The complete encryption and decryption algorithms are shown in
Figure 1.

Remark: For decryption to be possible, we need R(x) to have a multiplicative inverse modulo
τ(x). Since R(x) is a polynomial of degree at most n− 1, the only value for which R(x) does not
have such an inverse is R(x) = 0. For such an R, the protocol is not defined. Note that R = EK(T).
Assuming EK() to be a random permutation, the probability R = 0 is 1/2n. Since n ≥ 128, the
probability of getting a T for which the protocol is not defined is negligible.

Basic intuition behind the construction: The basic idea of the construction is to compute a
polynomial hash (Wegman-Carter [15]) of the message. (Similar hashes are used in the GCM mode
of operation [9] and HCTR.) This hash is the element MPP whose expression is the following.

MPP = EN ⊕
m⊕

i=1

Pi(x)Ri−1(x). (1)

The mask M1 is obtained by encrypting MPP . Since we are aiming at an SPRP, we should ensure
that each ciphertext bit depends upon all the plaintext bits. To do this, the mask M1 is “mixed” to
the message blocks to obtain the PPPi’s. While doing this we must be careful. During decryption,
we will obtain the PPPi’s after the decryption layer. Thus, we should be able to compute MPP
from the PPPi’s. To ensure that this can be done, we do two things. First we convert the Pi’s to
PPi’s by multiplying with Ri−1. The second thing is to “distribute” M1 among the PPi’s while
obtaining the PPPi’s so as to ensure that

m⊕

i=1

PPPi =
m⊕

i=1

PPi =
m⊕

i=1

Pi(x)Ri−1(x) = MPP ⊕EN. (2)

This follows from the first property of allowed sequences, namely,
⊕m

i=1 pm,i(x) ≡ 0 mod τ(x) and
hence MPP can be computed either as

⊕m
i=1 PPi ⊕ EN or as

⊕m
i=1 PPPi ⊕ EN . Since allowed

sequences exist only for m ≥ 3, we need to tackle the cases m = 1 and m = 2 separately. In the
case m = 1, there is no requirement to “distribute” M1 among the message blocks while in the
case of m = 2, this is a bit tricky to do. In the last case, we distribute M1 as M1 ⊕ EN and
M1 ⊕ EEN . Note that the XOR of these two elements is EN ⊕ EEN (and not 0). However,
both EN and EEN can be computed from the tweak and the length of the message and hence
MPP = PP1⊕PP2⊕EN = PPP1⊕PPP2⊕EEN and can be computed both during encryption
and decryption.

The computation after the encryption layer is similar to the computation before the encryption
layer. This is because we are constructing an SPRP and the view from the decryption end will be
similar to the view from the encryption end. In the decryption query, we work with L(x) = R−1(x)
while computing the polynomial hash. This is required to ensure the consistency of decryption.
This leads to decryption requiring one extra inversion operation making it slightly more costlier
than encryption.

4

Figure 1: Encryption and Decryption using PEP

Algorithm ET
K(P1, P2, . . . , Pm)

R = EK(T);
EN = EK(R⊕ bin(m));
EEN = EK(xEN);
if m == 1, then

PPP1 = P1 ⊕ EN ;
CCC1 = EK(PPP1);
C1 = CCC1 ⊕ xEEN ;
return C1;

endif

if m == 2, then
PP1 = P1; PP2 = R(x)P2(x);
MPP = PP1 ⊕ PP2 ⊕ EN ;
M1 = EK(MPP);
PPP1 = PP1 ⊕M1 ⊕ EN ;
PPP2 = PP2 ⊕M1 ⊕ EEN ;
CCC1 = EK(PPP1); CCC2 = EK(PPP2);
MCC = CCC1 ⊕ CCC2 ⊕ EN ;
M2 = EK(MCC);
CC1 = CCC1 ⊕M2 ⊕ EN ;
CC2 = CCC2 ⊕M2 ⊕ EEN ;
C1 = CC1; C2 = R(x)CC2(x);
return C1, C2;

endif
if m ≥ 3, then

R1 = 1; PP1 = P1; MPP = PP1;
for i = 2 to m do

Ri(x) = R(x)Ri−1(x);
PPi(x) = Ri(x)Pi(x);
MPP = MPP ⊕ PPi;

end for
MPP = MPP ⊕ EN ;
M1 = EK(MPP); MCC = 0n;
for i = 1 to m do

PPPi = PPi ⊕ pm,i(x)M1(x);
CCCi = EK(PPPi);
MCC = MCC ⊕ CCCi;

end for
MCC = MCC ⊕ EEN ;
M2 = EK(MCC);
CC1 = CCC1 ⊕ pm,1(x)M2(x);
R1 = 1; C1 = CC1;
for i = 2 to m do

CCi = CCCi ⊕ pm,i(x)M2(x);
Ri(x) = R(x)Ri−1(x);
Ci(x) = Ri(x)CCi(x);

end for
return C1, C2, . . . , Cm;

endif

Algorithm DT
K(C1, C2, . . . , Cm)

R = EK(T);
EN = EK(R⊕ bin(m));
EEN = EK(xEN);
if m == 1, then

CCC1 = C1 ⊕ xEEN ;
PPP1 = DK(CCC1);
P1 = PPP1 ⊕ EN ;
return P1;

endif
L(x) = R(x)−1;
if m == 2, then

CC1 = C1; CC2 = L(x)C2(x);
MCC = CC1 ⊕ CC2 ⊕ EEN ;
M2 = EK(MCC);
CCC1 = CC1 ⊕M2 ⊕ EN ;
CCC2 = CC2 ⊕M2 ⊕ EEN ;
PPP1 = DK(CCC1); PPP2 = DK(CCC2);
MPP = PPP1 ⊕ PPP2 ⊕ EEN ;
M1 = EK(MPP);
PP1 = PPP1 ⊕M1 ⊕ EN ;
PP2 = PPP2 ⊕M1 ⊕ EEN ;
P1 = PP1; P2 = L(x)PP2(x);
return P1, P2;

endif
if m ≥ 3, then

L1 = 1; CC1 = C1; MCC = CC1;
for i = 2 to m do

Li(x) = L(x)Li−1(x);
CCi = Li(x)Ci(x);
MCC = MCC ⊕ CCi;

end for
MCC = MCC ⊕ EEN ;
M2 = EK(MCC); MPP = 0n;
for i = 1 to m do

CCCi = CCi ⊕ pm,i(x)M2(x);
PPPi = DK(CCCi);
MPP = MPP ⊕ PPPi;

end for
MPP = MPP ⊕EN ;
M1 = EK(MPP);
PP1 = PPP1 ⊕ pm,1(x)M1(x);
L1 = 1; P1 = PP1;
for i = 2 to m do

PPi = PPPi ⊕ pm,i(x)M1;
Li(x) = L(x)Li−1(x);
Pi(x) = Li(x)PPi(x);

end for
return P1, P2, . . . , Pm;

endif

5

P1

1C

EN

xEEN

PPP

CCC

M
1

EEN

P1 P2

M
2

EN M
2

M
1

1

EEN

EN

1

1C C2

R

PPP1 PPP2

CCC 1 CCC2

R

(a) (b)

Figure 2: (a) Enciphering one plaintext block with PEP, (b) Enciphering two plaintext blocks with
PEP.

1 1
p (x)M

1
p (x)M

2 1
p (x)M

3 1
p (x)M

4

1
p (x)M

2
p (x)M

22
p (x)M

23
p (x)M

24

PP1 PP2 PP3 PP4

P2 P3 P4

PP1P P 2P PP3 PP4

CC 2 CC3 CC 4CC 1

CC 2 CC3 CC 4CC 1

R2

P1

P P P

1C C2 C3 C4

C C C C

RR1 3

1 R R R32

Figure 3: Enciphering four plaintext blocks with PEP. R = EK(T), EN = EK(R ⊕ binn(4)),
EEN = EK(xEN), M1 = EK(

⊕4
i=1 Ri−1(x)PPi(x)⊕EN), M2 = EK(

⊕4
i=1 CCCi ⊕EEN).

6

2.1 Construction of Allowed Sequence of Polynomials

In this section, we provide one construction of allowed sequence. We do not claim this to be the
only possibility; there may be others.

Let τ(x) be a primitive polynomial of degree n. Let mmax be a positive integer such that τ(x)
does not divide any trinomial of degree less than mmax. Estimates of mmax have been studied in
the context of attacks on the nonlinear combiner model for stream ciphers [6]. (To use a primitive
polynomial τ(x) in such stream ciphers, it is necessary that τ(x) does not divide a low degree
trinomial.) This study indicates that mmax is around 2n/3. Given τ(x), there are algorithms for
computing sparse multiples of τ(x). See [14] for a discussion on this issue.

We will be constructing an allowed sequence of length mmax and hence we will not be able to
encrypt a message having more than mmax blocks. For n = 128, we have 2n/3 ≈ 242.6 and hence
mmax is also around 242.6. The ability to encrypt messages having at most 242.6 many blocks is
sufficient for all practical purposes.

Let m = 3t ≤ mmax, with t ≥ 1. We define a sequence of polynomials τ3t,1(x), . . . , τ3t,3t(x) in
the following manner.

τ3t,i(x) = xi for 1 ≤ i ≤ 2t;
τ3t,2t+i(x) = x2i−1 ⊕ x2i for 1 ≤ i ≤ t.

}
(3)

Let 3 ≤ m ≤ mmax. We define a sequence of polynomials pm,1(x), . . . , pm,m(x) in the following
manner.

m = 3t: Define pm,i(x) = τm,i(x).

m = 3t + 1: Define pm,1 = 1 ⊕ x, pm,2(x) = x ⊕ x2, pm,3(x) = x2 ⊕ x3, pm,4(x) = x3 ⊕ 1 and
pm,4+i(x) = x3τ3(t−1),i(x), for 1 ≤ i ≤ m.

m = 3t + 2: Define pm,1 = 1 ⊕ x, pm,2(x) = x ⊕ x2, pm,3(x) = x2 ⊕ x3, pm,4(x) = x3 ⊕ x4,
pm,5(x) = x4 ⊕ 1 and pm,5+i(x) = x4τ3(t−1),i(x), for 1 ≤ i ≤ m.

From the definition, note that for m1 6= m2, we may have pm1,i(x) 6= pm2,i(x). Later we show
that due to its simple form, multiplication by pm,i(x) is quite efficient.

Proposition 1 The sequence of polynomials pm,1(x), . . . , pm,m(x) is an allowed sequence.

Proof : From the definition of τ3t,i(x) it is easy to verify that
⊕3t

i=1 τ3t,i(x) = 0. From this again
it is easy to see that

⊕m
i=1 pm,i(x) = 0. This establishes the first condition for allowed sequences.

For the second condition, we must show that pm,i(x)⊕ pm,j(x) 6≡ 0 mod τ(x). There are three
cases to consider.

Both pm,i(x) and pm,j(x) are monomials: By construction the degrees of both pm,i(x) and
pm,j(x) are at most mmax < 2n − 1. Hence, by the primitivity of τ(x) we have the required
condition.

Both pm,i(x) and pm,j(x) are 2-nomials: By construction pm,i(x) = xi1 ⊕ xi1+1 and pm,j(x) =
xj1 ⊕ xj1+1. Assume without loss of generality that i1 < j1. Then, pm,i(x) ⊕ pm,j(x) = xi1(1 ⊕
x)(1⊕ xj1−i1). Again, the primitivity of τ(x) ensures the required condition.

7

One of pm,i(x) and pm,j(x) is a monomial and the other is a 2-nomial: In this case,
pm,i(x) ⊕ pm,j(x) is a trinomial of degree at most mmax. The definition of mmax ensures the
required condition.

This completes the proof.

2.2 Computation of pm,i(x)M1(x)

In the encryption and decryption algorithms, we need to compute pm,i(x)M1(x) and pm,i(x)M2(x).
We show how these may be efficiently computed. For this it is sufficient to show how to efficiently
compute τ3t,i(x)M1 and τ3t,i(x)M2.

The polynomials τ3t,i(x) satisfy the following recurrences:

τ3t,i(x) = xτ3t,i−1(x) for 2 ≤ i ≤ 2t;
τ3t,2t+1 = τ3t,1(x)⊕ τ3t,2(x);
τ3t,i(x) = x2τ3t,i−1(x) for 2t + 2 ≤ i ≤ 3t.

Define M1,3t,i = τ3t,i(x)M1. Then using the above recurrences, we have

M1,3t,i(x) = xM1,3t,i−1for 2 ≤ i ≤ 2t;
M1,3t,2t+1 = M1,3t,1(x)⊕M1,3t,2;
M1,3t,i(x) = x2M1,3t,i−1for 2t + 2 ≤ i ≤ 3t.

Using these recurrences, it is easy to compute all the τ3t,i(x)M1’s; the requirement is to multiply
by either x or x2 and perform a bitwise XOR. Multiplying by x and x2 is much more efficient than
a general multiplication modulo τ(x). A similar computation will yield the products τ3t,i(x)M2.

3 Features of PEP

Here we discuss some of the important features and limitations of PEP.

Message Length: PEP does not produce any ciphertext expansion as it does not produce any
tag. The tweak is not considered to be a part of the ciphertext. This is similar to CMC, EME,
EME∗ and HCTR. The current version of PEP can only handle messages whose length is a multiple
of n. This is similar to CMC. EME can handle messages of lengths mn, with 1 ≤ m ≤ n, while
EME∗ and HCTR can handle messages of lengths ≥ n. Modification of PEP to handle messages
of lengths ≥ n is a future task.

There is a (theoretical) restriction on the number of blocks in a particular message to be
encrypted by PEP. The number of blocks in any one message to be encrypted by PEP is at most
mmax. For n = 128, this implies that a single message can contain at most around 242.6 blocks,
which is sufficient for all practical purposes (see Section 2.1).

Single Block Cipher Key: PEP uses the same key for all the block cipher calls. CMC and
EME require a single key. On the other hand, EME∗ requires three keys and HCTR requires two
keys. A single block cipher key saves key storage space and key setup costs.

8

Tweak: Encryption under PEP requires an n-bit tweak. The tweak need not be random, un-
predictable or secret. The adversary is allowed to repeat a tweak in queries to the encryption and
decryption oracles. The tweak is required for decryption and hence has to be available at both the
receiver and the sender ends. This may be achieved by maintaining a shared counter between the
two parties or it may be such that it can be understood from the context. An example of the later
is the sector address in disk encryption applications.

Online/Offline: An encryption scheme is called online if it can output a stream of ciphertext
bits as a stream of plaintext bits arrive. PEP is not online. PEP incorporates the effect of the
whole plaintext on each ciphertext bit. Hence, construction of PEP does not allow it to output a
single block of ciphertext unless it has seen the total message. We note that no construction of
SPRP (tweakable or otherwise) can be online for the same reason as PEP.

Consider the encryption algorithm of PEP for m ≥ 3. The algorithm consists of three separate
for loops. The first loop computes the PPi’s and the quantity

⊕m
i=1 Ri(x)Pi(x). The values of the

PPi’s need to be stored for use by the second loop. The second loop computes the PPPi’s and the
CCCi’s and also the quantity

⊕m
i=1 CCCi. The PPPi’s do not need to be stored but the value of

the CCCi’s need to be stored for use by the third loop. The third loop produces the CCi’s and the
Ci’s which completes the encryption. (Decryption also has a similar structure).

To summarize, the algorithm makes a pass over the Pi’s to produce the PPi’s which are stored;
makes a pass over the PPi’s to produce the CCCi’s which are also stored; and finally makes a pass
over the CCCi’s to produce the Ci’s. This makes it a three pass algorithm. Note that the PPi’s
can be written over the Pi’s and the CCCi’s can be written over the PPi’s. Thus, the intermediate
quantities PPi’s and the CCCi’s do not require any extra storage.

HCTR is also a hash-encrypt-hash type construction and requires three passes for reasons
similar to that of PEP. The algorithmic descriptions of CMC, EME and EME∗ as given in the
respective papers suggest these algorithms to be three-pass algorithms. On the other hand, a
careful consideration of the algorithms show that all of these algorithms can be implemented using
two passes over the data. Basically, these algorithms are of the form encrypt-mask-encrypt. The
first encryption layer needs to be completed in one pass over the data. Then the mask is computed.
The actual masking of the intermediate values and the second encryption layer can be combined
in a single pass.

Note that any algorithm requiring more than one pass cannot be online and also at least one set
of intermediate variables need to be stored. If we overwrite the Pi’s then no extra storage is required
for either two or three pass algorithms. On the other hand, if we wish to preserve the Pi’s, then
the same amount of extra space is required by both two and three pass algorithms. Further, a two
pass algorithm is not necessarily more efficient than a three pass algorithm. We have to compare
the total amount of computation done by the two algorithms to determine relative efficiency. We
consider this issue next.

Computation Cost: PEP performs two polynomial hashes and one layer of block cipher encryp-
tion. The total number of block cipher encryptions for an m-block message is 4 if m = 1; and is
m + 5 if m ≥ 2. The polynomial hashes are used to compute MPP and MCC for m ≥ 2, the two
computations being similar.

To compute MPP we have to compute
⊕m

i=1 Pi(x)Ri−1(x). Using Horner’s rule this can be
computed using (m − 1) multiplications over GF (2n). But Horner’s rule does not compute the
values PPi = Pi(x)Ri−1(x). Since PPi’s are also required, using Horner’s rule does not help. We

9

have to compute R2(x), . . . , Rm−1(x) and P2(x)R(x), . . . , PmRm−1(x). These require a total of
2m − 3 multiplications in GF (2n). Similarly, a total of 2m − 3 multiplications are required for
computing MCC and the CCi’s. Hence, for m ≥ 2, PEP requires a total of 4m − 6 finite field
multiplications. In addition, there are the multiplications of the type pm,i(x)M1 and pm,i(x)M2.
But as discussed in Section 2.2, these can be computed very efficiently.

If sufficient memory is available, then the values R2(x), . . . , Rm−1(x) computed during the
computation of MPP and the PPi’s can be stored and used during the computation of MCC and
the CCi’s. (This can also be combined with the parallel computation strategy discussed below.)
This brings down the total number of multiplications to 3m− 4.

We note that decryption requires the computation of one finite field inverse. The cost of this
is amortized over the entire computation and will not reflect on the overall cost if m is moderately
large. The main cost will be that for hardware implementation since we will have to implement a
finite field inverter requiring more chip area.

Parallelism: The encryption layer is fully parallelizable though the computations of R, EN ,
EEN , M1 and M2 has to be sequential. Thus, for m ≥ 2, we require at least six parallel encryption
rounds irrespective of the number of available block cipher units – five for computing the above
quantities and at least one for encrypting the PPPi’s.

The computation of the PPi’s and MPP can be parallelized in the following manner. We
illustrate by an example. Suppose there are 4 finite field multipliers available. In the first step, the
quantity R2 is computed. Now consider the following parallel schedule for the four multipliers.

multiplier 1 multiplier 2 multiplier 3 multiplier 4
Round 1 (P2(x) ∗R(x)) (P3(x) ∗R2(x)) (R(x) ∗R2(x)) (R2(x) ∗R2(x))
Round 2 (P4(x) ∗R3(x)) (P5(x) ∗R4(x)) (R3(x) ∗R2(x)) (R4(x) ∗R2(x))
Round 3 (P6(x) ∗R5(x)) (P7(x) ∗R6(x)) (R5(x) ∗R2(x)) (R6(x) ∗R2(x))
.

Using this schedule, all the four multipliers can be kept busy in all the rounds (except for the last
round and the initial computation of R2). A similar schedule can be built for computing MCC
and the CCi’s. In general using κ many multipliers, all the multiplications can be completed in
approximately d(4m− 6)/κe many parallel rounds which is optimal for κ many multipliers.

HCTR uses a polynomial hash which can be evaluated by Horner’s rule. On the other hand,
there is no straightforward way of parallelizing the polynomial computation without increasing the
total number of multiplications. The approach described above can be used to obtain parallel
implementation of polynomial evaluation and this would double the number of multiplications
required in evaluating using Horner’s rule.

Provable Security: PEP is provably secure. We state a theorem related to the security of PEP
in Section 4 and provide the proof in Section A. The concrete security bound that we obtain
for PEP is similar to that obtained for CMC, EME and EME∗ and is as expected for a mode of
operation. Loosely speaking, the theorem shows that the advantage of an adversary in attacking
PEP[E] as a tweakable SPRP is bounded above by the advantage of an adversary in attacking E as
an SPRP plus an additive factor which is approximately equal to cσ2

n/2n, where c is a constant and
σn is the total number of blocks (plaintext or ciphertext) provided by the adversary in its queries
to the encryption and the decryption oracles. The security bound of HCTR is considerably weaker
than the other modes of operations including PEP. For HCTR, the quantity cσ2

n/2n is replaced

10

by cσ3
n/2n, i.e., there is a cubic security degradation rather than the usual quadratic degradation.

One consequence of a weaker security bound is that the secret keys need to changed much earlier
compared to the other modes.

Comparison: Table 1 provides a comparison of the various features of PEP and other modes of
operations which are SPRPs. We make the following points based on Table 1.

HCTR is the only previously known fully specified tweakable SPRP which is of the hash-encrypt-
hash type. The NR construction is too incomplete (and also not tweakable) to permit a proper
comparison to other constructions. The main drawback of HCTR is its weaker security bound and
the requirement of two keys. It has other good features such as ability to handle all message lengths
≥ n, and lower computation cost. The encryption layer of HCTR is fully parallel. The two hash
layers can be implemented in parallel with computation cost similar to that of PEP.

PEP is currently the only known single key, efficiently parallelizable algorithm which can handle
arbitrary number of n-bit blocks. CMC, EME∗ and HCTR can handle such messages, but CMC is
strictly sequential; EME∗ requires one key from K plus two other n-bit keys; and HCTR requires
one key from K and one n-bit key. On the other hand, EME uses a single key and is fully parallel
but can handle at most n many n-bit blocks.

A general comparison of the computation cost of PEP and HCTR with the other modes (CMC,
EME and EME∗) is difficult. This is because in one case we have less block cipher invocations but
GF (2n) multiplications whereas in the other case we have more block cipher invocations and no
GF (2n) multiplications. Consequently, the comparison depends upon several factors such as:

1. The implementation platform – hardware or software. For software implementation, we need
to consider the target architecture and its support for GF (2n) multiplication. Availability of
cryptographic co-processors may provide substantial support for such operation. For hardware
implementation, the number of available parallel encryption units and GF (2n) multiplication
units need to be considered.

2. The most important consideration is the design of the actual block cipher being used with
the mode of operation and its efficient implementation.

Note that PEP approximately trades one block cipher call for four multiplications (HCTR trades
one [BC] for two [M]). Implementation results from [9] suggest that using a look-up table it is
possible to complete a few GF (2n) multiplications in the time required for one AES-128 invocation.
A more detailed software speed comparison requires efficient implementation of the various modes
of operation and can be a topic of future study.

A mode of operation is not designed for use with any particular block cipher. As a side remark,
we would like to note that the FIPS 197 specifies AES for protecting “sensitive (unclassified)
information”. So each government might be having its own block cipher for protecting classified
information. The computation cost of PEP vis-a-vis the other modes with respect to such ciphers
has to be determined on a case-to-case basis.

The number of passes made by PEP and HCTR is one more than the other modes (though the
number of encryption layers is one less). We do not consider this to be a serious problem since all
the modes require at least two passes and cannot perform online encryption and decryption. The
additional pass of PEP and HCTR by itself does not by itself lead to any efficiency degradation.

11

Table 1: Comparison of SPRPs using an n-bit block cipher, an n-bit tweak and for m message
blocks. (We assume m ≥ 3.) [BC]: one block cipher invocation; [M]: one GF (2n) multiplication.

Mode sec. bnd. computation keys msg. len. passes enc. parallel?
cost layers

CMC σ2
n/2n (2m + 1)[BC] 1 mn, m ≥ 1 2 2 No

EME σ2
n/2n (2m + 2)[BC] 1 mn, 1 ≤ m ≤ n 2 2 Yes

EME∗ σ2
n/2n (2m + m

n + 1)[BC] 3 ≥ n 2 2 Yes
HCTR σ3

n/2n m[BC] 2 ≥ n 3 1 partial
+2(m + 1)[M]

PEP σ2
n/2n (m + 5)[BC] 1 mn, m ≥ 1 3 1 Yes

+(4m− 6)[M]

4 Security of PEP

4.1 Definitions and Notation

As mentioned earlier, an n-bit block cipher is a function E : K × {0, 1}n → {0, 1}n, where K 6= ∅
is called the key space and for any K ∈ K, E(K, .) is a permutation. We will usually write EK()
instead of E(K, .).

An adversary A is a probabilistic algorithm which has access to some oracles and which outputs
either 0 or 1. Oracles are written as superscripts. The notation AO1,O2 ⇒ 1 denotes the event that
the adversary A, interacting with the oracles O1,O2, finally outputs the bit 1.

Let Perm(n) denote the set of all permutations on {0, 1}n. We require E(,) to be a strong pseu-
dorandom permutation. The advantage of an adversary in breaking the strong pseudorandomness
of E(,) is defined in the following manner.

Adv±prp
E (A) = Pr

[
K

$← K : AEK(),E−1
K () ⇒ 1

]
− Pr

[
π

$← Perm(n) : Aπ(),π−1() ⇒ 1
]
.

Formally, a tweakable enciphering scheme is a function E : K × T ×M → M, where K 6= ∅
and T 6= ∅ are the key space and the tweak space respectively and M = ∪i≥1{0, 1}ni, where n is
the length of a message block. We shall often write ET

K(.) instead of E(K,T, .). The inverse of an
enciphering scheme is D = E−1 where X = DT

K(Y) if and only if ET
K(X) = Y .

Let PermT (M) denote the set of all functions πππ : T × M → M where πππ(T , .) is a length
preserving permutation. Such a πππ ∈ PermT (M) is called a tweak indexed permutation. For a
tweakable enciphering scheme E : K × T ×M→M, we define the advantage an adversary A has
in distinguishing E and its inverse from a random tweak indexed permutation and its inverse in
the following manner.

Adv±p̃rp
E (A) = Pr

[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]
.

Pointless queries: An adversary never queries its deciphering oracle with (T,C) if it got C
in response to an encipher query (T, M) for some M . Similarly, the adversary never queries its
enciphering oracle with (T, M) if it got M as a response to a decipher query of (T, C) for some C.

12

These queries are called pointless as the adversary knows what it would get as response for such
queries.

Following [4], we define the query complexity σn of an adversary as follows. A string X con-
tributes max(|X|/n, 1) to the query complexity. A tuple of strings (X1, X2, . . .) contributes the
sum of the contributions from all oracle queries plus the contribution from the adversary’s output.
Suppose an adversary makes q queries where the number of n-bit blocks in the ith query is `i.
Then, σn = 1+

∑q
i=1(1+ `i) ≥ 2q. Let ρ be a list of resources used by the adversary A and suppose

Adv±xxx
π (A) has been defined where π is either a block cipher or a tweakable encipering scheme.

Adv±xxx
π (ρ) denotes the maximal value of Adv±xxx

π (A) over all adversaries A using resources at
most ρ. Usual resources of interest are the running time t of the adversary, the number of oracle
queries q made by the adversary and the query complexity σn (n ≥ 1).

The notation PEP[E] denotes a tweakable enciphering scheme, where the n-bit block cipher
E is used in the manner specified by PEP. Our purpose is to show that PEP[E] is secure if E is
secure. The notation PEP[Perm(n)] denotes a tweakable enciphering scheme obtained by plugging
in a random permutation from Perm(n) into the structure of PEP. For an adversary attacking
PEP[Perm(n)], we do not put any bound on the running time of the adversary, though we still put
a bound on the query complexity σn. We show the information theoretic security of PEP[Perm(n)]

by obtaining an upper bound on Adv±p̃rp
PEP[Perm(n)]

(q, σn). The upper bound is obtained in terms of

n and σn. For a fixed block cipher E, we bound Adv±p̃rp
PEP[E]

(q, σn, t) in terms of Adv±prp
E (q, σn, t′),

where t′ = t + O(σn). We will use the notation Eπ as a shorthand for PEP[Perm(n)] and Dπ will
denote the inverse of Eπ. Thus, the notation AEπ,Dπ will denote an adversary interacting with the
oracles Eπ and Dπ.

4.2 Statement of Result

The following theorem specifies the security of PEP.

Theorem 2 Fix n, q and σn ≥ q to be positive integers and an n-bit block cipher E : K×{0, 1}n →
{0, 1}n. Then

Adv±p̃rp
PEP[Perm(n)]

(q, σn) ≤ 1
2n+1

×
(
q2 + 6(5q + σn)2

)
(4)

Adv±p̃rp
PEP[E]

(q, σn, t) ≤ 1
2n+1

×
(
q2 + 6(5q + σn)2

)
+ Adv±prp

E (q, σn, t′) (5)

where t′ = t + O(σn).

Since each query consists of at least one n-bit block, we have q ≤ σn and hence we could write
(q2 + 6(5q + σn)2) ≤ cσ2

n for some constant c. Upper bounding q by σn is proper when σn and q
are comparable, i.e., when each query consists of a few blocks. On the other hand, if each query
consists of a large number of blocks, the bound q ≤ σn is very loose and replacing q by σn makes
the bound appear worse than what it really is. Hence, we choose to present the bound in terms of
both q and σn.

The above result and its proof is similar to previous work (see for example [3, 4, 13]). As
mentioned in [3], Equation (5) embodies a standard way to pass from the information theoretic
setting to the complexity theoretic setting. Let E(., ., .) denote PEP[E]. For any adversary A, we
have the following.

Adv±p̃rp
PEP[E]

(A) = Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]

13

=
(

Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
])

+
(

Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]

− Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
])

= X + Adv±p̃rp
PEP[Perm(n)]

(A)

where X =
(

Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
])

. The quantity

X represents an adversary’s advantage in distinguishing PEP[E] from PEP[π], where π is a ran-
domly chosen permutation from Perm(n). Clearly, such an adversary A can also distinguish E from
a random permutation and hence X ≤ Adv±prp

E (A). This argument shows how (4) is obtained
from (5).

We need to consider an adversary’s advantage in distinguishing a tweakable enciphering scheme
E from an oracle which simply returns random bit strings. This advantage is defined in the following
manner.

Adv±rnd
MEM[Perm(n)](A) = Pr[π $← Perm[n] : AEπ ,Dπ ⇒ 1]− Pr[A$(.,.),$(.,.) ⇒ 1]

where $(., .) returns random bits of length |M |. The basic idea of proving (4) is as follows.

Adv±p̃rp
PEP[Perm(n)]

(A) =
(

Pr
[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
]

− Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
])

=
(

Pr
[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
]
− Pr

[
A$(.,.),$(.,.) ⇒ 1

])

+
(

Pr
[
A$(.,.),$(.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
])

≤ Adv±rnd
PEP[Perm(n)]

(A) +

(
q

2

)
1
2n

(6)

where q is the number of queries made by the adversary. For a proof of the last inequality see [4].
The main task of the proof now reduces to obtaining an upper bound on Adv±rnd

PEP[Perm(n)]
(σn).

This proof is provided in Section A. The proof uses the standard technique of sequence of games
between an adversary and the mode of operation PEP. The proof is similar to the corresponding
proofs of CMC [3] and EME [4]. By a sequence of games we show that if in response to any
valid query of the adversary, random strings of appropriate lengths are returned then the internal
computations of PEP can be performed consistently under the assumption that the block cipher
and its inverse are random permutations. The crux of the proof lies in showing that there would
seldom be any collisions in the range and domain sets of the block cipher if the adversary queries
PEP with valid queries and PEP responds to them by producing random strings. In a later part
we remove the randomness associated with the adversary and the game runs on a fixed transcript
consisting of the queries and their responses. We show that in such a situation also the internal
computations of PEP can be performed consistently.

14

We later prove (see (18)) that for any adversary making q queries and having query complexity
σn

Adv±rnd
PEP[Perm(n)]

(q, σn) ≤ 3(5q + σn)2

2n
.

Using this and (6), we obtain

Adv±p̃rp
PEP[Perm(n)]

(q, σn) ≤ 1
2n+1

×
(
q2 + 6(5q + σn)2

)
.

5 Conclusion

We have presented a new construction for a tweakable SPRP called PEP. Our approach is to use
polynomial hash, followed by an encryption layer and again followed by a polynomial hash. This is
different from the other constructions of tweakable SPRPs, namely CMC, EME and EME∗ and is
similar to the approach for constructing SPRP (not tweakable SPRP) given in [10]; this approach
has also been used in constructing HCTR. PEP offers certain advantages over the known tweakable
SPRPs – it is the only know construction which uses a single key, is efficiently parallelizable and
can handle an arbitrary number of blocks. We make a detailed comparison between the known
constructions of tweakable SPRPs which show that PEP compares quite favourably

References

[1] M. Bellare and P. Rogaway, Encode-then-encipher encryption: How to exploit nonces or re-
dundancy in plaintexts for efficient cryptography, Advances in Cryptology - Asiacrypt 2000,
LNCS 1976, pp. 317-330, Springer, 2000.

[2] S. Halevi, EME∗. Extending EME to handle arbitrary-length messages with associated data.
INDOCRYPT 2004, pp. 315-327, Springer 2004

[3] S. Halevi and P. Rogaway. A tweakable enciphering mode, Advances in Cryptology - CRYPTO
2003, LNCS, vol. 2729, pp. 482-499, Springer, 2003.

[4] S. Halevi and P. Rogaway. A parallelizable enciphering mode, Topics in Cryptology, CT-RSA
2004, LNCS, vol. 2964, pp. 292-304, Springer, 2004

[5] C. S. Jutla: Encryption modes with almost free message integrity. EUROCRYPT 2001: 529-
544.

[6] S. Maitra, K. C. Gupta and A. Venkateswarlu. Results on multiples of primitive polynomials
and their products over GF (2). Theoretical Computer Science 341(1-3): 311-343 (2005).

[7] M. Liskov, R. L. Rivest and D. Wagner. Tweakable block ciphers. CRYPTO 2002: 31-46.

[8] M. Luby and C. Rackoff, How to construct pseudo-random permutations and pseudo-random
functions, SIAM Journal of Computing, vol. 17, pp. 373-386, 1988.

[9] D. A. McGrew and J. Viega. The Security and Performance of the Galois/Counter Mode
(GCM) of Operation. Proceedings of Indocrypt 2004, 343-355.

15

[10] M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-Rackoff
revisited, J. of Cryptology, vol 12, pp. 29-66, 1999.

[11] M. Naor and O. Reingold. A pseudo-random encryption mode. Manuscript available from
www.wisdom.weizmann.ac.il/̃naor.

[12] P. Rogaway. Nonce-based symmetric encryption, Fast Software Encryption (FSE) 2004, LNCS
3017, pp. 348-359, Springer, 2004.

[13] P. Rogaway, M. Bellare and J. Black. OCB: A block-cipher mode of operation for efficient
authenticated encryption. ACM Conference on Computer and Communication Security 2001:
196-205.

[14] D. Wagner. A generalized birthday problem. CRYPTO 2002, LNCS 2442, pp. 288–303,
Springer 2002.

[15] M. Wegman and L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, vol. 22, 1981, pp. 265–279.

[16] P. Wang, D. Feng and W. Wu. HCTR: A variable-input-length enciphering mode. CISC 2005,
LNCS 3822, pp. 175–188, 2005.

A Upper Bound on Adv±rnd
PEP[Perm(n)](q, σn)

We model the adversary’s interaction with the oracles Eπ and Dπ as a game. In the usual game,
which we call PEP1, the adversary submits queries to Eπ and Dπ and gets appropriate answers.
Starting from this game, we modify it in successive steps to obtain games where the adversary is
provided random bit strings of appropriate lengths. This results in a sequence of games: PEP1,
RAND1, RAND2, RAND3 and NON.

By an abuse of notation, we will use APEP1 to denote an adversary A’s interaction with the
oracles while playing game PEP1. We will use similar notations for the other games. In what
follows, by X

$← {0, 1}n, we will denote the act of choosing a random n-bit string and assigning it
to the variable X.

A.1 The Game Sequence

Game PEP1: We describe the attack scenario of the adversary A through a probabilistic game
which we call PEP1. In PEP1, the adversary interacts with Eπ and Dπ where π is a randomly
chosen permutation from Perm(n). Instead of initially choosing π, we build up π in the following
manner.

Initially π is assumed to be undefined everywhere. When π(X) is needed, but the value of π is
not yet defined at X, then a random value is chosen among the available range values. Similarly
when π−1(Y) is required and there is no X yet defined for which π(X) = Y , we choose a random
value for π−1(Y) from the available domain values.

The domain and range of π are maintained in two sets Domain and Range, and Domain and
Range are the complements of Domain and Range relative to {0, 1}n. The game PEP1 is shown in
Figure 4. The figure shows the subroutines Ch-π, Ch-π−1, the initialization steps and how the game
responds to a encipher/decipher query of the adversary. The ith query of the adversary depends
on its previous queries, the responses to those queries and on some coins of the adversary.

16

The game PEP1 accurately represents the attack scenario, and by our choice of notation, we
can write

Pr[AEπ ,Dπ ⇒ 1] = Pr[APEP1 ⇒ 1]. (7)

Game RAND1: We modify PEP1 by deleting the boxed entries in PEP1 and call the modified
game as RAND1. By deleting the boxed entries it cannot be guaranteed that π would be a
permutation as though we do the consistency checks but we do not reset the values of Y (in Ch-π)
and X (in Ch-π−1). Thus, the games PEP1 and RAND1 are identical apart from what happens
when the bad flag is set. So,

Pr[APEP1 ⇒ 1]− Pr[ARAND1 ⇒ 1] ≤ Pr[ARAND1 sets bad] (8)

Game RAND2: We make certain changes to the game RAND1 which are invisible to the adver-
sary. In RAND1 as the permutation π is not maintained, thus the subroutine Ch-π and Ch-π−1

are no more needed. Instead we add a new subroutine called Check-Domain-Range(X,Y). In
Check-Domain-Range(X, Y), X is inserted into Domain and Y is inserted into Range; also, if
X ∈ Domain or Y ∈ Range then the bad flag is set.

In this game, for an encryption query, we choose the ciphertext blocks to be random n-bit
strings and return to the adversary. Then we adjust the internal variables so as to ensure that the
particular choice of ciphertext blocks is consistent as per the protocol. Similarly, for a decryption
query, we choose the plaintext blocks to be random n-bit strings and return to the adversary and
then adjust the internal variables. This does not alter the adversary’s view of the game since for
each such change the adversary obtains a random n-bit string both before and after the change.
Thus,

Pr[ARAND1 ⇒ 1] = Pr[ARAND2 ⇒ 1] (9)

also,
Pr[ARAND1 sets bad] = Pr[ARAND2 sets bad] (10)

In RAND2 the adversary is supplied with random bits as response to queries to both the encrypt
and the decrypt oracles. Hence,

Pr[ARAND2 ⇒ 1] = Pr[A$(.,.),$(.,.) ⇒ 1] (11)

Now, from Equation (7), (8), (9), (10) and (11) we get

Adv±rnd
PEP[Perm(n)]

(A) = Pr[AEπ,Dπ ⇒ 1]− Pr[A$(.,.),$(.,.) ⇒ 1] (12)

= Pr[APEP1 ⇒ 1]− Pr[ARAND2 ⇒ 1]
= Pr[APEP1 ⇒ 1]− Pr[ARAND1 ⇒ 1]
≤ Pr[ARAND1 sets bad]
= Pr[ARAND2 sets bad] (13)

Our task is thus to bound Pr[ARAND2 sets bad].

17

Game RAND3: Here we make two subtle changes to the game RAND2. Here instead of the
Domain and Range sets we use multisets D and R respectively. In the game RAND3 on either
an encryption or a decryption query by the adversary a random string is given as output. Next,
the internal variables are adjusted in the first phase of the finalization step. The bad flag is set
at the second phase of the finalization step by checking whether a value occurs in either R or D
more than once. The game RAND3 is shown in Figure 6. RAND3 sets bad in exactly the same
conditions in which RAND2 sets bad, hence

Pr[ARAND2 sets bad] = Pr[ARAND3 sets bad]. (14)

Game NON: In this game we get rid of the adversary and its interactions. We want to bound
Pr[ARAND3 sets bad], we assume that the adversary is deterministic and so the probability is over

the random choices of P
$← {0, 1}nms and C

$← {0, 1}nms and the other random choices made
during the finalization steps but not on the private coins of the adversary.

In the previous games, for an encipher query, the adversary specified the tweak and the plaintext;
and for a decipher query, he specified the tweak and the ciphertext. We now consider the stronger
condition, whereby the adversary specifies the tweak, the plaintext and the ciphertext in both the
encryption and the decryption queries. Even under this condition, we would like to show that the
flag is rarely set to bad. We do this by modifying the game RAND3 into a new game NON (non-
interactive). NON depends on a fixed transcript tr = (ty,T,P,C) with ty = (ty1, ty2, . . . , tyq),
T = (T1,T2, . . .Tq), and P = (P1, P2, . . . Pq), and C = (C1, C2, . . .Cq) where tys = {Enc,Dec},
Ts ∈ {0, 1}n and Ps = Ps

1, P
s
2, . . . ,P

s
ms

, and Cs = Cs
1, C

s
2, . . . , C

s
ms

. If this fixed transcript does not
contain any pointless query, then the transcript is called allowed.

Now fix a transcript tr which maximizes the probability of bad being set. This transcript tr is
hardwired into the game NON. The syntax of NON is the same as the syntax of RAND3, except
that the part before the finalization step is not present in NON. The main difference between NON
and RAND3 is in the interpretation of the variables. The tweaks, plaintext and ciphertext blocks
in RAND3 are given by the adversary while in NON they are part of the transcript tr which is
hardwired into the game. We denote this difference by using the symbols Ts,Ps

i and Cs
i to denote

the tweaks, plaintext and ciphertext blocks respectively in game NON. We have

Pr[ARAND3 sets bad] ≤ Pr[ANON sets bad]. (15)

A.2 Analysis of Game NON

In the analysis we consider the sets D and R to consist of the formal variables instead of their
values. For example, whenever we set D ← D ∪ {X} for some variable X we think of it as setting
D ← D∪{“X”} where “X” is the name of that formal variable. Thus, our goal would be to bound
the probability that two formal variables in sets D and R take the same value. The formal variables
in both D and R do not depend on the random choices made in the game NON.

The formal variables which enter D and R depend on the length ms of the sth query. We
identify three cases.

ms = 1:
Domain elements : T s, Rs ⊕ bin(ms), xEN s and Ps

1 ⊕ EN s;
Range elements : Rs, EN s, EEN s and Cs

1 ⊕ xEEN s;

18

ms = 2:
Domain elements : T s, Rs ⊕ bin(ms), xEN s,

Ps
1 ⊕Rs(x)Ps

2(x)⊕EN s, Cs
1 ⊕ Ls(x)Cs

2(x)⊕ EEN s,
Ps

1 ⊕M s
1 ⊕ EN s and Rs(x)Ps

2(x)⊕M s
1 ⊕EEN s.

Range elements : Rs, EN s, EEN s, M s
1 , M s

2 ,
Cs

1 ⊕M s
2 ⊕ EN s and Ls(x)Cs

2(x)⊕M s
2 ⊕ EEN s.

ms ≥ 3:
Domain elements : T s, Rs ⊕ bin(ms), xEN s,

MPP s =
⊕ms

i=1(R
s)i−1Ps

i ⊕ EN s,
MCCs =

⊕ms
i=1(L

s)i−1Cs
i ⊕EEN s and

PP s
i = (Rs)i−1Ps

i ⊕ pms,i(x)M s
1 for 1 ≤ i ≤ ms.

Range elements : Rs, EN s, EEN s, M s
1 , M s

2 , and
CCs

i = (Ls)i−1Cs
i ⊕ pms,i(x)M s

2 for 1 ≤ i ≤ ms.

Notes:

1. From the games, it is clear that the domain contains only distinct values of T s. Also, if the
tweak T s has been used previously, then the previous value of Rs is used.

2. If (T s,ms) = (T r,mr) for some r < s, then EN r and EEN r are used as values of EN s and
EEN s respectively.

Let Xs
1 , Xr

2 be distinct elements of D and Y s
1 , Y r

2 be distinct elements of R. We use the superscripts
s and r to denote that the quantities are obtained from the sth and the rth adversarial queries.
We would like to upper bound the probabilities of Xs

1 = Xr
2 and Y s

1 = Y r
2 . We first consider Xs

1

and Xr
2 . There are two main cases to consider.

Intra query collision: This case arises, when s = r and the quantities Xs
1 and Xs

2 are obtained
from the same query. We consider Zs = Xs

1 ⊕ Xs
2 where Xs

1 and Xs
2 vary over the quantities

obtained from a single query. In each case, Zs can be written as Zs = Zs
1 ⊕ Zs

2 , where Zs
2 is a

random n-bit string and Zs
2 does not occur in the expression for Zs

1 . Consequently, we have

Pr[Xs
1 = Xs

2] = 1/2n.

A detailed verification is tedious and has been done by us. We do not describe all the details but
only some of the more non-trivial cases.

1. ms = 1, Xs
1 = xENs and Xs

2 = P1 ⊕ EN s: This gives Zs = P1 ⊕ (x⊕ 1)EN s. Here Zs
1 = P1

and Zs
2 = (x⊕ 1)EN s. Since EN s is a random n-bit string (considered to be a polynomial of

degree at most n−1) and (x⊕1) is a non-zero polynomial, the product (x⊕1)EN s mod τ(x)
is also a random polynomial of degree at most n− 1, i.e., a random n-bit string.

2. ms ≥ 3, Xs
1 = PP s

i = (Rs)i−1Ps
i⊕pms,i(x)M s

1 and Xs
1 = PP s

j = (Rs)j−1Ps
j⊕pms,j(x)M s

1 . Now
Zs = (Rs)i−1Ps

i ⊕ (Rs)j−1Ps
j ⊕ (pms,i(x)⊕ pms,j(x))M s

1 where Zs
2 = (pms,i(x)⊕ pms,j(x))M s

1 .
Recall that by the second property of allowed sequences, we have (pms,i(x) ⊕ pms,j(x)) 6≡
0 mod τ(x). Consequently, Zs

2 is a random n-bit string.

3. Reasonings similar to the above two points occur for other cases.

19

Inter query collision: For this case we have s 6= r, i.e., the elements Xs
1 and Xr

2 correspond to
quantities obtained from separate queries. We divide this into two subcases.

(T s,ms) 6= (T r,mr): Again a detailed and tedious case analysis shows that Pr[Xs
1 = Xr

2] = 1/2n.

(T s,ms) = (T r,mr): This implies that two same length queries have been submitted with the
same tweak. In this case, we have Rs = Rr, EN s = EN r and EEN s = EEN r. We divide this
into three cases.

1. (Xs
1 , Xr

2) = (MPP s,MPP r): In this case, we necessarily have ms ≥ 3. We write

Z = Xs
1 ⊕Xr

2 =
ms⊕

i=1

(
(Rs(x))i−1Pi(x)

)

where Pi(x) = (Ps
i (x) ⊕ Pr

i (x)). Consider Z(X) =
⊕ms

i=1 αiX
i−1, with αi = Pi(x) to be a

polynomial over GF (2n). The coefficients of this polynomial are determined by the transcript
which supplies the quantities Ps

i (x) and Pr
i (x). However, since (T s,ms) = (T r,mr) and the

condition that the transcript does not contain pointless queries, we cannot have Ps
i (x) = Pr

i (x)
for all i = 1, . . . ,ms. Thus, Z(X) is a non-zero polynomial of degree at most ms − 1 and
hence has at most ms − 1 distinct roots. We have Xs

1 = Xr
2 if and only if Z = Z(R) = 0.

Since R is randomly chosen, the probability that it equals one of the roots of Z(X) is at most
(ms − 1)/2n and hence Pr[Xs

1 = Xr
2] ≤ (ms − 1)/2n.

2. (Xs
1 , Xr

2) = (MCCs,MCCr): This is similar to the previous case and hence Pr[Xs
1 = Xr

2] ≤
(ms − 1)/2n.

3. (Xs
1 , Xr

2) 6= (MPP s,MPP r) and (Xs
1 , Xr

2) 6= (MCCs,MCCr): In this case, again a detailed
and tedious case analysis shows that Pr[Xs

1 = Xr
2] = 1/2n.

We are now in a position to upper bound the probability Pr[Xs
1 = Xr

2]. Suppose the adversary
makes a total of tj queries of length lj for j = 1, . . . , p for some p. Then q = t1 + · · · + tp and
σn =

∑q
s=1 ms =

∑p
i=1 tili. Note that

∑q
s=1 ms is the total number of n-bit ciphertext blocks

provided by the adversary. Also, we have

3q +
q∑

s=1

ms ≤ |D| ≤ 5q +
q∑

s=1

ms.

The probability of Xs
1 = Xr

2 under the condition (T s,ms) = (T r, mr) and (Xs
1 , Xr

2) = (MPP s,
MPP r) is at most

A =

(
t1
2

)
l1 − 1

2n
+ · · ·+

(
tp
2

)
lp − 1

2n
.

Then the probability of Xs
1 = Xr

2 under the condition (T s, ms) = (T r, mr) and (Xs
1 , Xr

2) =
(MCCs,MCCr) is also at most A. There are

(|D|
2

)
many two element subsets of D. Out of

these there are at most

B = 2×
((

t1
2

)
+ . . . +

(
tp
2

))

20

pairs of the type (Xs
1 , Xr

2) = (MPP s,MPP r) or (Xs
1 , Xr

2) = (MCCs, MCCr). For each of the(|D|
2

)− B two element subsets of D, we have Pr[Xs
1 = Xr

2] = 1/2n. Thus, the probability that two
elements of D take the same value is at most

C =

((
|D|
2

)
−B

)
× 1

2n
+ 2×

((
t1
2

)
l1 − 1

2n
+ · · ·+

(
tp
2

)
lp − 1

2n

)
.

Then we have,

2nC ≤ |D|2 +
p∑

i=1

t2i li.

Using the loose approximation

p∑

i=1

t2i li ≤
p∑

i=1

t2i l
2
i ≤

(p∑

i=1

tili

)2

=

(q∑

s=1

ms

)2

≤ |D|2

we have 2nC ≤ 2|D|2. Thus, the probability of a domain collision is at most

2× (5q + σn)2

2n
. (16)

The probability that two elements Y s
1 and Y r

1 in R are equal can be analysed in a similar but
simpler manner. The analysis is simpler, since in this case we do not have to consider the collision
of the type MPP s = MPP r and MCCs = MCCr. Hence, the probability of collision in R is

(|R|
2

)

2n
≤ (5q + σn)2

2n
. (17)

Thus, combining (12), (14), (15), (16) and (17) we have,

Adv±rnd
PEP[Perm(n)]

(A) ≤ 3× (5q + σn)2

2n
. (18)

21

Figure 4: Game PEP1

Subroutine Ch-π(X)

Y
$← {0, 1}n; if Y ∈ Range then bad = true; Y

$← Range ; endif;

if X ∈ Domain then bad = true; Y = π(X) ; endif

π(X) = Y ; Domain = Domain ∪ {X}; Range = Range ∪ {Y }; return(Y);

Subroutine Ch-π−1(Y)

X
$← {0, 1}n; if X ∈ Domain, bad = true; X

$← Domain ; endif;

if Y ∈ Range then bad = true; X = π−1(Y) ; endif;

π(X) = Y ; Domain = Domain ∪ {X}; Range = Range ∪ {Y }; return(X);
Initialization:

for all X ∈ {0, 1}n π(X) = undef endfor
bad = false

Respond to the sth adversarial query as follows:

Encipher query: Enc(T s; P s
1 , . . . , P s

ms
)

if T s == T r for some r < s then
Rs = Rr ;
if ms == mr then

ENs = ENr ; EENs = EENr ;
else

ENs = Ch-π(Rs ⊕ bin(ms)); EENs = Ch-π(xENs);
endif

else
Rs = Ch-π(T s);
ENs = Ch-π(Rs ⊕ bin(ms)); EENs = Ch-π(xENs);

endif
if ms == 1, then

PPP s
1 = P s

1 ⊕ ENs; CCCs
1 = Ch-π(PPP1);

Cs
1 = CCCs

1 ⊕ xEENs; return Cs
1 ;

endif
if ms == 2, then

PP s
1 = P s

1 ; PP s
2 = Rs(x)P s

2 (x);
MPP s = PP s

1 ⊕ PP s
2 ⊕ ENs; Ms

1 = Ch-π(MPP s);
PPP s

1 = PP s
1 ⊕Ms

1 ⊕ ENs;
PPP s

2 = PP s
2 ⊕Ms

1 ⊕ EENs;
CCCs

1 = Ch-π(PPP s
1); CCCs

2 = Ch-(PPP s
2);

MCCs = CCCs
1 ⊕ CCCs

2 ⊕ ENs; Ms
2 = Ch-π(MCCs);

CCs
1 = CCCs

1 ⊕Ms
2 ⊕ ENs;

CCs
2 = CCCs

2 ⊕Ms
2 ⊕ EENs;

Cs
1 = CCs

1 ; Cs
2 = Rs(x)CCs

2(x); return Cs
1 , Cs

2 ;
endif
if ms ≥ 3, then

Rs
1 = 1; PP s

1 = P1; MPP s = PP s
1 ;

for i = 2 to ms do
Rs

i = Rs(x)Rs
i−1(x); PP s

i (x) = Rs
i (x)P s

i (x);

MPP s = MPP s ⊕ PP s
i ;

end for
MPP s = MPP s ⊕ ENs;
Ms

1 = Ch-π(MPP s); MCCs = 0n;
for i = 1 to ms do

PPP s
i = PP s

i ⊕ pms,i(x)Ms
1 (x);

CCCs
i = Ch-π(PPP s

i); MCCs = MCCs ⊕ CCCs
i ;

end for
MCCs = MCCs ⊕ EENs; Ms

2 = Ch-π(MCCs);
CCs

1 = CCCs
1 ⊕ pms,1(x)Ms

2 (x); Rs
1 = 1; Cs

1 = CCs
1 ;

for i = 2 to ms do
CCs

i = CCCs
i ⊕ pms,i(x)Ms

2 (x);
Rs

i (x) = Rs(x)Rs
i−1(x); Cs

i = Rs
i (x)CCs

i (x);

end for
return Cs

1 , Cs
2 , . . . , Cs

ms
;

endif

Decipher query: Dec(T s; Cs
1 , . . . , Cs

ms
)

if T s == T r for some r < s then

Rs = Rr ; Ls(x) = (Rs)−1(x);
if ms == mr then

ENs = ENr ; EENs = EENr

else
ENs = Ch-π(Rs ⊕ bin(ms)); EENs = Ch-π(xENs);

endif
else

Rs = Ch-π(T s); Ls(x) = (Rs)−1(x);
ENs = Ch-π(Rs ⊕ bin(ms)); EENs = Ch-π(xENs);

endif
if ms == 1, then

CCCs
1 = Cs

1 ⊕ xEENs; PPP s
1 = Ch-π−1(CCCs

1);
P s
1 = PPP s

1 ⊕ ENs; return P s
1 ;

endif
if ms == 2, then

CCs
1 = Cs

1 ; CCs
2 = Ls(x)Cs

2(x);
MCCs = CCs

1 ⊕ CCs
2 ⊕ EENs; Ms

2 = Ch-π(MCCs);
CCCs

1 = CCs
1 ⊕Ms

2 ⊕ ENs;
CCCs

2 = CCs
2 ⊕Ms

2 ⊕ EENs;

PPP s
1 = Ch-π−1(CCCs

1); PPP s
2 = Ch-π−1(CCCs

2);
MPP s = PPP s

1 ⊕ PPP s
2 ⊕ EENs; Ms

1 = Ch-π(MPP s);
PP s

1 = PPP s
1 ⊕Ms

1 ⊕ ENs;
PP s

2 = PPP s
2 ⊕Ms

1 ⊕ EENs;
P s
1 = PP s

1 ; P s
2 = Ls(x)PP s

2 (x); return P s
1 , P s

2 ;
endif
if ms ≥ 3, then

Ls
1 = 1; CCs

1 = Cs
1 ; MCCs = CCs

1 ;
for i = 2 to ms do

Ls
i = Ls(x)Ls

i−1(x); CCs
i = Ls

i (x)Cs
i (x);

MCCs = MCCs ⊕ CCs
i ;

end for
MCCs = MCCs ⊕ EENs;
Ms

2 = Ch-π(MCCs); MPP s = 0n;
for i = 1 to ms do

CCCs
i = CCs

i ⊕ pms,i(x)Ms
2 (x);

PPP s
i = Ch-π−1(CCCs

i); MPP s = MPP s ⊕ PPP s
i ;

end for
MPP s = MPP s ⊕ ENs; Ms

1 = Ch-π(MPP s);
PP s

1 = PPP s
1 ⊕ pms,1(x)Ms

1 (x); Ls
1 = 1; P s

1 = PP s
1 ;

for i = 2 to ms do
PP s

i = PPP s
i ⊕ pms,i(x)Ms

1 ;
Ls

i (x) = Ls(x)Ls
i−1(x); P s

i = Ls
i (x)PP s

i (x);

end for
return P s

1 , P s
2 , . . . , P s

ms
;

endif

22

Figure 5: Game RAND2

Subroutine Check-Domain-Range(X, Y)
if X ∈ Domain then bad = true; endif
if Y ∈ Range then bad = true; endif
Domain = Domain ∪ {X}; Range = Range ∪ {Y };

Initialization
Domain = Range = ∅; bad = false;

Encipher query: Enc(T s; P s
1 , . . . , P s

ms
)

if T s == T r for some r < s then

Rs = Rr ; Ls(x) = (Rs)−1(x);
if ms == mr then

ENs = ENr ; EENs = EENr ;
else

ENs $← {0, 1}n; Check-Domain-Range(Rs ⊕ bin(ms), ENs);

EENs $← {0, 1}n; Check-Domain-Range(xENs, EENs);
endif

else

Rs $← {0, 1}n; Ls(x) = (Rs)−1(x); Check-Domain-Range(T s, Rs);

ENs $← {0, 1}n; Check-Domain-Range(Rs ⊕ bin(ms), ENs);

EENs $← {0, 1}n; Check-Domain-Range(xENs, EENs);
endif
if ms == 1, then

PPP s
1 = P s

1 ⊕ ENs; Cs
1

$← {0, 1}n; CCCs
1 = Cs

1 ⊕ xEENs;
Check-Domain-Range(PPP s

1 , CCCs
1); return Cs

1 ;
endif
if ms == 2, then

PP s
1 = P s

1 ; PP s
2 = Rs(x)P s

2 (x);
MPP s = PP s

1 ⊕ PP s
2 ⊕ ENs;

Ms
1

$← {0, 1}n; Check-Domain-Range(MPP s, Ms
1);

PPP s
1 = PP s

1 ⊕Ms
1 ⊕ ENs;

PPP s
2 = PP s

2 ⊕Ms
1 ⊕ EENs;

Cs
1

$← {0, 1}n; Cs
2

$← {0, 1}n;
CCs

1 = Cs
1 ; CCs

2 = Ls(x)Cs
2(x);

MCCs = CCs
1 ⊕ CCs

2 ⊕ EENs;

Ms
2

$← {0, 1}n; Check-Domain-Range(MCCs, Ms
2);

CCCs
1 = CCs

1 ⊕Ms
2 ⊕ ENs;

CCCs
2 = CCs

2 ⊕Ms
2 ⊕ EENs;

Check-Domain-Range(PPP s
1 , CCCs

1);
Check-Domain-Range(PPP s

2 , CCCs
2);

return Cs
1 , Cs

2 ;
endif
if ms ≥ 3, then

Rs
1 = 1; PP s

1 = P1; MPP s = PP s
1 ;

for i = 2 to ms do
Rs

i = Rs(x)Rs
i−1(x); PP s

i (x) = Rs
i (x)P s

i (x);

MPP s = MPP s ⊕ PP s
i ;

end for
MPP s = MPP s ⊕ ENs;

Ms
1

$← {0, 1}n; Check-Domain-Range(MPP s, Ms
1);

Cs
1

$← {0, 1}n; CCs
1 = Cs

1 ; MCCs = CCs
1 ; Ls

1 = 1;
for i = 2 to ms do

Cs
i

$← {0, 1}n; Ls
i (x) = Ls(x)Ls

i−1(x);

CCs
i = Ls

i (x)Cs
i (x); MCCs = MCCs ⊕ CCs

i ;
end for
MCCs = MCCs ⊕ EENs;

Ms
2

$← {0, 1}n; Check-Domain-Range(MCCs, Ms
2);

for i = 1 to ms do
PPP s

i = PP s
i ⊕ pms,i(x)Ms

1 (x);
CCCs

i = CCs
i ⊕ pms,i(x)Ms

2 (x);
Check-Domain-Range(PPPi, CCCi);

end for
return Cs

1 , Cs
2 , . . . , Cs

ms
;

endif

Decipher query Dec(T s; Cs
1 , . . . , Cs

ms
)

if T s == T r for some r < s then

Rs = Rr ; Ls(x) = (Rs)−1(x);
if ms == mr then

ENs = ENr ; EENs = EENr ;
else

ENs $← {0, 1}n; Check-Domain-Range(Rs ⊕ bin(ms), ENs);

EENs $← {0, 1}n; Check-Domain-Range(xENs, EENs);
endif

else

Rs $← {0, 1}n; Ls(x) = (Rs)−1(x); Check-Domain-Range(T s, Rs);

ENs $← {0, 1}n; Check-Domain-Range(Rs ⊕ bin(ms), ENs);

EENs $← {0, 1}n; Check-Domain-Range(xENs, EENs);
endif
if ms == 1, then

CCCs
1 = Cs

1 ⊕ xEENs; P s
1

$← {0, 1}n; PPP s
1 = P s

1 ⊕ ENs;
Check-Domain-Range(PPP s

1 , CCCs
1); return P s

1 ;
endif
if ms == 2, then

CCs
1 = Cs

1 ; CCs
2 = Ls(x)Cs

2(x);
MCCs = CCs

1 ⊕ CCs
2 ⊕ EENs;

Ms
2

$← {0, 1}n; Check-Domain-Range(MCCs, Ms
2);

CCCs
1 = CCs

1 ⊕Ms
2 ⊕ ENs;

CCCs
2 = CCs

2 ⊕Ms
2 ⊕ EENs;

P s
1

$← {0, 1}n; P s
2

$← {0, 1}n;
PP s

1 = P s
1 ; PP s

2 = Rs(x)P s
2 (x);

MPP s = PP s
1 ⊕ PP s

2 ⊕ ENs;

Ms
1

$← {0, 1}n; Check-Domain-Range(MPP s, Ms
1);

PPP s
1 = PP s

1 ⊕Ms
1 ⊕ ENs;

PPP s
2 = PP s

2 ⊕Ms
1 ⊕ EENs;

Check-Domain-Range(PPP s
1 , CCCs

1);
Check-Domain-Range(PPP s

2 , CCCs
2);

return P s
1 , P s

2 ;
endif
if ms ≥ 3, then

Ls
1 = 1; CCs

1 = Cs
1 ; MCCs = CCs

1 ;
for i = 2 to ms do

Ls
i = Ls(x)Ls

i−1(x); CCs
i = Ls

i (x)Cs
i (x);

MCCs = MCCs ⊕ CCs
i ;

end for
MCCs = MCCs ⊕ EENs;

Ms
2

$← {0, 1}n; Check-Domain-Range(MCCs, Ms
2);

P s
1

$← {0, 1}n; PP s
1 = P s

1 ; MPP s = PP s
1 ; Rs

1 = 1;
for i = 2 to ms do

P s
i

$← {0, 1}n; Ls
i (x) = Ls(x)Ls

i−1(x);

P s
i = Ls

i (x)PP s
i (x); MPP s = MPP s ⊕ PP s

i ;
end for
MPP s = MPP s ⊕ ENs;

Ms
1

$← {0, 1}n; Check-Domain-Range(MPP s, Ms
1);

for i = 1 to ms do
CCCs

i = CCs
i ⊕ pms,i(x)Ms

2 (x);
PPP s

i = PP s
i ⊕ pms,i(x)Ms

1 ;
Check-Domain-Range(PPPi, CCCi);

end for
return P s

1 , P s
2 , . . . , P s

ms
;

endif

23

Figure 6: Game RAND3

Respond to the sth adversary query as follows:
Encipher query Enc(Ns; P s

1 , . . . , P s
ms

)

tys = Enc; Cs = Cs
1 , Cs

2 , . . . , Cs
ms

$← {0, 1}nms ; return Cs;

Decipher query Dec(Ns; Cs
1 , . . . , Cs

ms
)

tys = Dec; P s = P s
1 , P s

2 , . . . , P s
ms

$← {0, 1}nms ; return P s;

Finalization:
First phase
D = ∅;R = ∅;
for s = 1 to q,
if T s == T r for some r < s then

Rs = Rr ; Ls(x) = (Rs)−1(x);
if ms == mr then

ENs = ENr ; EENs = EENr ;
else

ENs $← {0, 1}n; D = D ∪ {Rs ⊕ bin(ms)}; R = R∪ {ENs};
EENs $← {0, 1}n; D = D ∪ {xENs}; R = R∪ {EENs};

endif
else

Rs $← {0, 1}n; Ls(x) = (Rs)−1(x); D = D ∪ {T s}; R = R∪ {Rs};
ENs $← {0, 1}n; D = D ∪ {Rs ⊕ bin(ms)}; R = R∪ {ENs};
EENs $← {0, 1}n; D = D ∪ {xENs}; R = R∪ {EENs};

endif
Case tys = Enc:

if ms == 1, then

PPP s
1 = P s

1 ⊕ ENs; Cs
1

$← {0, 1}n; CCCs
1 = Cs

1 ⊕ xEENs;
D = D ∪ {PPP s

1 }; R = R∪ {CCCs
1};

endif
if ms == 2, then

PP s
1 = P s

1 ; PP s
2 = Rs(x)P s

2 (x);
MPP s = PP s

1 ⊕ PP s
2 ⊕ ENs;

Ms
1

$← {0, 1}n; D = D ∪ {MPP s}; R = R∪ {Ms
1};

PPP s
1 = PP s

1 ⊕Ms
1 ⊕ ENs;

PPP s
2 = PP s

2 ⊕Ms
1 ⊕ EENs;

Cs
1

$← {0, 1}n; Cs
2

$← {0, 1}n;
CCs

1 = Cs
1 ; CCs

2 = Ls(x)Cs
2(x);

MCCs = CCs
1 ⊕ CCs

2 ⊕ EENs;

Ms
2

$← {0, 1}n; D = D ∪ {MCCs}; R = R∪ {Ms
2};

CCCs
1 = CCs

1 ⊕Ms
2 ⊕ ENs;

CCCs
2 = CCs

2 ⊕Ms
2 ⊕ EENs;

D = D ∪ {PPP s
1 , PPP s

2 }; R = R∪ {CCCs
1 , CCCs

2};
endif
if ms ≥ 3, then

Rs
1 = 1; PP s

1 = P1; MPP s = PP s
1 ;

for i = 2 to ms do
Rs

i = Rs(x)Rs
i−1(x); PP s

i (x) = Rs
i (x)P s

i (x);

MPP s = MPP s ⊕ PP s
i ;

end for
MPP s = MPP s ⊕ ENs;

Ms
1

$← {0, 1}n; D = D ∪ {MPP s}; R = R∪ {Ms
1};

Cs
1

$← {0, 1}n; CCs
1 = Cs

1 ; MCCs = CCs
1 ; Ls

1 = 1;
for i = 2 to ms do

Cs
i

$← {0, 1}n; Ls
i (x) = Ls(x)Ls

i−1(x);

CCs
i = Ls

i (x)Cs
i (x); MCCs = MCCs ⊕ CCs

i ;
end for
MCCs = MCCs ⊕ EENs;

Ms
2

$← {0, 1}n; D = D ∪ {MCCs}; R = R∪ {Ms
2};

for i = 1 to ms do
PPP s

i = PP s
i ⊕ pms,i(x)Ms

1 (x);
CCCs

i = CCs
i ⊕ pms,i(x)Ms

2 (x);
D = D ∪ {PPP s

i }; R = R∪ {CCCs
i };

end for
endif

Case tys = Dec:

if ms == 1, then

CCCs
1 = Cs

1 ⊕ xEENs; P s
1

$← {0, 1}n; PPP s
1 = P s

1 ⊕ ENs;
D = D ∪ {PPP s

1 }; R = R∪ {CCCs
1};

endif
if ms == 2, then

CCs
1 = Cs

1 ; CCs
2 = Ls(x)Cs

2(x);
MCCs = CCs

1 ⊕ CCs
2 ⊕ EENs;

Ms
2

$← {0, 1}n; D = D ∪ {MCCs}; R = R∪ {Ms
2};

CCCs
1 = CCs

1 ⊕Ms
2 ⊕ ENs;

CCCs
2 = CCs

2 ⊕Ms
2 ⊕ EENs;

P s
1

$← {0, 1}n; P s
2

$← {0, 1}n;
PP s

1 = P s
1 ; PP s

2 = Rs(x)P s
2 (x);

MPP s = PP s
1 ⊕ PP s

2 ⊕ ENs;

Ms
1

$← {0, 1}n; D = D ∪ {MPP s}; R = R∪ {Ms
1};

PPP s
1 = PP s

1 ⊕Ms
1 ⊕ ENs;

PPP s
2 = PP s

2 ⊕Ms
1 ⊕ EENs;

D = D ∪ {PPP s
1 , PPP s

2 }; R = R∪ {CCCs
1 , CCCs

2};
endif
if ms ≥ 3, then

Ls
1 = 1; CCs

1 = Cs
1 ; MCCs = CCs

1 ;
for i = 2 to ms do

Ls
i = Ls(x)Ls

i−1(x); CCs
i = Ls

i (x)Cs
i (x);

MCCs = MCCs ⊕ CCs
i ;

end for
MCCs = MCCs ⊕ EENs;

Ms
2

$← {0, 1}n; D = D ∪ {MCCs}; R = R∪ {Ms
2};

P s
1

$← {0, 1}n; PP s
1 = P s

1 ; MPP s = PP s
1 ; Rs

1 = 1;
for i = 2 to ms do

P s
i

$← {0, 1}n; Ls
i (x) = Ls(x)Ls

i−1(x);

P s
i = Ls

i (x)PP s
i (x); MPP s = MPP s ⊕ PP s

i ;
end for
MPP s = MPP s ⊕ ENs;

Ms
1

$← {0, 1}n; D = D ∪ {MPP s}; R = R∪ {Ms
1};

for i = 1 to ms do
CCCs

i = CCs
i ⊕ pms,i(x)Ms

2 (x);
PPP s

i = PP s
i ⊕ pms,i(x)Ms

1 ;
D = D ∪ {PPP s

i }; R = R∪ {CCCs
i };

end for
endif

Second phase
if (some value occurs more than once in D) then bad = true endif;
if (some value occurs more than once in R) then bad = true endif.

24

