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Abstract. The standard symbolic, deducibility-based notions of secrecy are in
general insufficient from a cryptographic point of view, especially in presence
of hash functions. In this paper we devise and motivate a more appropriate se-
crecy criterion which exactly captures a standard cryptographic notion of secrecy
for protocols involving public-key enryption and hash functions: protocols that
satisfy it are computationally secure while any violation of our criterion directly
leads to an attack. Furthermore, we prove that our criterion is decidable via an NP
decision procedure. Our results hold for standard security notions for encryption
and hash functions modeled as random oracles.

1 Introduction

Two distinct kinds of models have been developed for the rigorous design and analysis
of cryptographic protocols: the so-called Dolev-Yao, symbolic, or formal models on the
one hand and the cryptographic, computational, or concrete models on the other hand.
In symbolic models messages are considered as formal terms and the adversary can
manipulate these terms based on a fixed set of operations. The main advantage of the
symbolic approach is its relative simplicity which makes it amenable to automated anal-
ysis tools (see, e.g., [7, 14]). In cryptographic models, messages are actual bit strings
and the adversary is an arbitrary probabilistic polynomial-time (ppt) Turing machine.
While proofs in this kind of models yield strong security guarantees, the proofs are
often quite involved and only rarely suitable for automation (see, e.g., [11, 6]).

Starting with the seminal work of Abadi and Rogaway [2], a significant amount
of research has been directed at bridging the gap between the two approaches. The
goal is to obtain the best of both worlds: simple, automated security proofs that entail
strong security guarantees. The typical approach is to show that the executions of the
computational adversaries correspond to executions of the symbolic adversaries, and
then use this result to show how to translate security notions from the symbolic world
to the computational world.

For some security notions like integrity and authentication, the derivation of com-
putational guarantees out of symbolic ones can be done with relative simplicity [4, 13].
In contrast, analogous results for the basic notion of secrecy proved significantly more
elusive and have appeared only recently [5, 10,12, 8]. The apparent reason for this sit-
uation is the striking difference between the definitional ideas used in the two different



models. Symbolic secrecy typically states that the adversary cannot deduce the entire
secret from the messages it gathers in an execution. On the other hand, computational
secrecy requires that not only the secret, but also no partial information is leaked to
the adversary. A typical formulation that is used requires the adversary to distinguish
between the secret and a completely unrelated alternative.

OUR CONTRIBUTIONS In this paper we investigate soundness results for symbolic se-
crecy in the presence of hash functions. One of the main motivations for considering
hash functions, which have not been considered in the aforementioned%dsttist

they present a new challenge in linking symbolic and cryptographic secrecy: Unlike
ciphertexts, hashes have to be publicly verifiable, i.e., any third party can verify if a
valueh is the hash value corresponding to a given messagehis implies that a sim-

ple minded extension of previous results on symbolic and computational secrecy fails.
Assume, for example, that in some protocol the Wash h(s) of some secret is sent

in clear over the network. Then, while virtually all symbolic models would conclude
that s remains secret (and this is also a naive assumption often made in practice), a
trivial attack works in computational models: givens’ andh, compareh with A(s)
andh(s’), and therefore recoves. Similar verifiability properties also occur in other
settings, e.g. digital signatures which do not reveal the message signed.

In this paper we propose a new symbolic definition for nonce secrecy in protocols
that use party identities, nonces, hash functions, and public key encryption. The defini-
tion that we give is based on the intuitively appealing concept of patterns [2].

The central aspect of our criterion is that it captures precisely security in the compu-
tational world in the sense that it is both sound and complete. More specifically, nonces
that are secret according to asymboliccriterion are also secret according to a stan-
dard computationaldefinition. Furthermore, there exist successful attacks against the
secrecy of any nonce that does not satisfy our definition. Our theorems hold for pro-
tocols implemented with encryption schemes that satisfy standard notions of security,
and for hash functions modeled as random oracles. In the proofs we combine different
techniques from cryptography and make direct use of a (non-trivial) extension of the
mapping theorem of [13] to hash functions.

Our second important result is to prove the decidability of our symbolic secrecy
criterion (w.r.t. a bounded number of sessions). This is a crucial result that enables the
automatic verification of computational secrecy for nonces. We give an NP-decision
procedure based on constraint solving, a technique that is suitable for practical imple-
mentations [3]. While the constraint solving technique is standard in automatic pro-
tocol analysis, we had to adapt it for our symbolic secrecy criterion: For the standard
deducibility-based secrecy definition it suffices to transform constraint systems until
one obtains a so-called simple form. However, for our symbolic secrecy criterion further
transformations might be required in order for the procedure to be complete. Identify-
ing a sufficient set of such transformations and proving that they are sufficient turned
out to be non-trivial.

RELATED WORK. The papers that are immediately related to our work are those of
Cortier and Warinschi [10], Backes and Pfitzmann [5], and Canetti and Herzog [8],

4 One exception is [12] where hash functions are allowed, but only as randomness extractors.



who study computationally sound secrecy properties. In this context, our work is the
first to tackle computationally sound secrecy in the presence of hashes. We study the
translation of symbolic secrecy into a computational version in a setting closely related
to thatin [10]. However, the use of hashes requires, as explained above, new notions and
non-trivial extensions of the results proved there. The work in [5] and [8] is concerned
with secrecy properties of key-exchange protocols in the context of simulation-based
security, and hence, they study different computational settings. Interestingly, the sym-
bolic criterion used in [8] is also formalized using patterns, but their use is unrelated to
ours. None of the mentioned works considers decidability issues.

PAPER OUTLINE. In the following section, we introduce the symbolic and computa-
tional models. Our symbolic secrecy criterion is developed in Section 3. We state and
prove the soundness and completeness of this criterion w.r.t. computational secrecy in
Section 4, and prove its decidability in Section 5.

2 The Symbolic and Concrete Protocol and Intruder Models

In this section, we introduce the symbolic and the concrete protocol and intruder models
(see Appendix A to D for more details).

2.1 The Symbolic Model

We define (symbolic) messages and terms, how honest agents and the (Dolev-Yao-style)
intruder can derive messages from a set of messages, and how protocols are specified.

MESSAGES ANDTERMS. To define messages, we consider an infiniteAsef agent
identities, infinite setdNonce,4, Nonceqq,, Rand,y, andRandqq, (NOnces and ran-

dom coins generated by the agents and the adversary, respectively), and an infinite set
Garbage representing garbage messages. All of these sets are assumed to be pairwise
disjoint. We sefNonce = Nonce,, U Nonce,q, andRand = Rand,, U Randgy.

The set of messagdd (w.r.t. A, Nonce, and Rand) is defined by the following
grammarM ::= A | Nonce | ek(A) | dk(A) | (M,M) | {M}§X) | h(M) | Garbage
whereek(a) anddk(a) with a € A denote the public and private key @frespectively,
(m,m') denotes pairing of» andm’, {m}’e’k(a) denotes the messageencrypted with
ek(a) using the random coing andh(m) is the hash ofn. We define the following
subsets oM: EKey, DKey, Ciphertext, Hash, and Pair are the sets of all messages
starting withek(-), dk(-), {-}., h(-), and{(:, -), respectively. We sometimes refer to the
sets introduced above as types.

We assume an infinite set of typed variabfeshere the types are as above and for
a variable of a certain type only messages of this type may be substituted. In particular,
we assume variables;, i € {1,...,k}, for agent identities and variable§), , j € N,
for fresh nonces generated By. The set of term3 (X) overX is defined analogously
to the set of messages.

DERIVING MESSAGESLet ¢ denote a set of terms. The set of terms that can be derived
from ¢ is defined by the deduction rules given in Figure 1. We wite,.,.q t to say
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Fig. 1. Deduction rules

thatt can be derived fromp (using randomnessind C Rand). For example, we have
that{(dk(a), {c}q))} UA FRand,a. {¢}ep) Whereb € A andr’ € Randqay.

ProTOCOLS Roles are usually specified by a sequence of input/output actions. In order
to model branching protocols, th@leswe consider are ordered edge-labeled finite trees
where every edge is labeled byagent rule(l, r), wherel, » € T(X) are messages with
variables, and certain syntactic conditions are satisfied such that the actions can actually
be carried out (in a computational interpretation).kAparty protocolis a mapping

IT : [k] — Roles where[k] = {1, ..., k} andRoles denotes the set of roles.

SyMmBOLIC EXECUTION OF APROTOCOL The symbolic execution of &-party proto-
col is modeled as a finite sequence of global stategiohal stateis a triple(Sld, f, ¢)
wherey is a finite set of messages (tberrent intruder knowledgeSld is a finite set of
session ids, and maps every session id §id to the current state of the corresponding
session. This state is called tleeal stateand is of the form(i, o, p, (a1, a9, ..., ax))
wherei € [k] is the index of the role that is executed in this sessioig a substitu-
tion whose domain is a subset of the variables occurringf () (i.e., o determines
the messages assigned to variables so far in the current segsism),node oflI(7)
and determines at what node the agent currently standSaang, . .., a.) € A* is
the tuple of names of the agents that are involved in the session, whisréhe agent
carrying out the current session (supposedly with the mentioned aggrnjts- 7). The
initial state isg; = (0,0, AU EKey U Nonce,q, ), i-€., the intruder knows all names and
public keys of agents as well as the infinite set of intruder nonces.

We allow three kinds of transitions between global states.

— The adversary corrupts a set of parties and thereby learns the private keys of the

agentsyy; “2PH L) g A EKey U {dk(a;) | 1 < j < 1}). Note that
this transition can only be applied at the beginning (static corruption).

— The adversary can initiate new sessiof&d, f, ) new(har,ak), (SId’, f', )
whereSId" andf’ are defined as follows. Letd = |Sld|+1 be the session identifier
of the new session whet8ld| denotes the cardinality ¢fld. We defineSld’ =
Sld U {sid}. The functionf’ is defined as followsy’(sid’) = f(sid’) for every
sid" € Sld and f’(sid) = (i, 0,¢, (a1, ..., ax)) wheree denotes the root of the role
tree andr(A;) = a; for everyl < j <k ando (X', ) = n®7* for everyj € N.

— The adversary can send messagekt, f, © Sid, f/, ") wheresid €
Sld, m € M, andy’ andf’ are defined as follows. We defirfé(sid’) = f(sid’) for

send(sid,m)
) —— (



everysid’ # sid. Suppose thaf(sid) = (i,0,p, (a1, ..., ax)) and(ly, 1), ..., (In,
ry) are the labels of edges leavipdin this order). We distinguish two cases:
e there does not exist asuch thatn andi;o match. Then, we defing/(sid)
f(sid) andy’ = ¢ (the state remains unchanged);
o else, letj be minimal s. tin andl/;o match. Letd) be the matcher, i.em =
(I;0)8. We definef’(sid) = (4,006, pj, (a1, ..., ax)) andy’ = @U{(r;7,, sia)ob}.

A finite sequence of global states is calleslyabolic execution tradgor a protocol
1) if it starts with the initial global statg; and two consecutive global states in this
sequence are connected via one of the above transitions. We say that a trali@ is

send(sid,m)
%

if every send transitioriSld, f, ) (Sld, f', ") verifies that the adversary
could actually deducen, that isp = m. The set of valid symbolic execution traces (for
a protocollT) is denoted byExec®(IT). The set of valid set of messages is defined by
Msg®(II) = {p | (SId, f, ¢) is the last state of a valid execution trace

2.2 The Concrete Model

The concrete model is defined w.r.t. an encryption schd&e= (K., Enc, Dec), which
we now fix once and for all. Hashing is modeled by the random oracle.

CONCRETEMESSAGES Concrete messagese bit strings which carry type informa-
tionwhich can be efficiently computed. In bit strings of tysr, the two components

can be efficiently retrievedand strings of typmhertext carry the public key that sup-
posedly was used to encrypt the plaintext. The set of bit strings is denot@d bBis

set depends on the security parametas this parameter determines the length of agent
names, nonces, and keys. Substitutions now map variables (of some type) to concrete
messages (of the same type).

CONCRETEEXECUTION OF APROTOCOL A concrete global statis a 4-tuple(Sld, f,

v, H) wherey is a finite set of bit stringsS1d is a finite set of session ids, arfdnaps

every session id i5ld to the current state of the corresponding session (the concrete
local states). Aconcrete local statés defined just as a symbolic one, except that vari-
ables are now mapped to bit strings and agent names are also bit strings. The fourth
component carries the state of the random oraklés a set of coupleém, h) where

m is a bit string and: its corresponding hash value. A protocol is executed by running

a ppt Turing machine, the (concrete) adversary, which may make queries correspond-
ing to the transitions in the symbolic model. We allow four kinds of transitions between
global states, which we will refer to loorrupt, new send transitionsandhash queries

The semantics of the first three queries is defined by analogy with the formal execu-
tion model. In addition, the adversary may also make queries to the random oracle:

(Sld, f, 0, H) Jash(m), (Sld, f, ¢, H') whereH' is defined as follows. If there exists

n such thatim,n) € H, thenH’ = H and we definér = n. Else a hash valug is
generated at random fat andH’ = HU{(m, h)}. In any caseh is returned to the ad-
versary. A finite sequence of concrete global states is caltesherete execution trace

if it starts with the initial global state. Obviously, since the adversary is a ppt Turing
machine the length of the trace is bounded by a polynomial in the security parameter
Also, the sequence of random coiRg; used in the execution by the honest agents and



the random oracle as well as the sequence of random ébingsed by the adversary
can be bounded in length by polynomigls(n) andp 4 (), respectively. Clearly, iR
andR 4 are fixed, we obtain a uniquely determined concrete trace, which we denote by

Execir(rp),A(rA)(N)-

3 Symbolic and Computational Secrecy Properties

In this section we recall the computational definition of secrecy and introduce our new
symbolic definition for secrecy.

COMPUTATIONAL SECRECY. Computational secrecy requires that no partial informa-
tion is leaked to the adversary. The typical way to formalize this idea is to require that
the secret is indistinguishable from an unrelated random bitstihghosen (from an
appropriate distribution). The secrecy of nonce variable (the nonce generated by

A; in theith role of the protocol) in protocdll is defined as follows.

sec-b

Definition 1. Consider the experimerExpg.., , (i,j)(n) parametrized by a bib

and that involves an adversayy against protocolll. The experiment takes as input a
security parameter and starts by generating two random nonegsandn, in C".n.
Then the adversaryl starts interacting with the protocdll as in the execution de-
scribed byExecjz_4(n). At some point in the execution the adversary initiates a session
s in which the role ofA; is executed, and declares this session under attack. In this
session, the variabl& ﬁn is instantiated with,. The rest of the execution is exactly as
in Execr,4(n). At some point the adversary requires the two nongesndn; and has

to output a guess. The bitd is the result of the experiment. We define the advantage of
the adversary4 by:

AdVEs.,, (i,7)(n) = Pr [Expiel, (i )(n)=1] - Pr [ExpEed, | (i,5)(n)=1

We say that noncaff;‘i is computationally secret in protocdl, and we writell ¢
SecNonce(i, j) if for every p.p.t. adversaryl its advantage is negligible.

SYMBOLIC SECRECY. As explained in the introduction, weak secrecy is not sufficient

to capture the standard indistinguishability-based notion used in computational settings.
The new notion of secrecy we propose here relies on the intuitively appealing concept
of patterns [2]. Roughly, the pattern of an expression is obtained by replacingivith

all the subterms of the expression that are secret. In our case, a sUbtéffi is secret

if, even when giver’ the adversary cannot verify thathas been used to constrdct
Formally, we addl" to the knowledge set in the deduction relation. The ideas behind

our definition of patterns are related to offline guessing attacks, where the adversary
is given the weak secret and should be unable to test whether the given weak secret is
indeed the one used in the observed messages.

Definition 2 (Patterns). Given a set of closed terms = {M;, Ms,..., My} and a
termT, we defin@atr(¢) = {Pat$.(M,), Pat? (M), . . ., Pat%(M;,)}, wherePat? (M)
defined recursively by:



a if ¢7 T FRand
O otherwise

<Pat¢ A4i) Pat¢(A4§)>
{PatT ek(a) if »,T FRand,,, dk(a) orif r € Randqy
otherwise

adv

PatT a) =
Pat? ((My, Ms))

PatT {M}ek(a)

o0
@ Pat ( )) if ¢, T FRrand, ., M
Paty (R(M)) = { O otherwise
Pat}. is extended to set of messages as expe®ed:(S) = |J, g Pat}(t).

The messages of may contain some subterms of the fofm/ }7, ) wherer €
Rand,q,. Because of the random coins such messages must have been build by the
adversary and/ should be deducible. Thus we consideaugmented with such mes-
sagesp = ¢ U {M | {M}gk(a) subterm ofp}. For any valid message set(that is
¢ € Msg®(II) for some protocolT), we can show that - M for everyM ¢ ¢.

Definition 3 (Nonce secrecy)LetH be a protocol ande a nonce variable occur-
ring in some role4;. We say thak”, is secretin/ and we erteH E* SecNonce(%, ),

if for every valid set of messagése Msg®(IT) it holds that for every session number
s, the symbolic nonce®:>* does not occur ifPat,,a; .5« (¢).

To better appreciate these definitions, consider the following examples.

1. Letgy = {h({np,n'))} = ¢1. ThenPat,, (¢;) = {O0}. ¢; preserves the indistin-
guishability ofn,, since, intuitively,n, is hidden by the secret noneé

2. Let g3 = {h({(np, {n'}], a)>) n'} wherer ¢ Randgq,. Then¢g, = ¢, and
Pat,, (¢2) = {00, n’}. In this example, the encryption af does hidey,.

3. Letgs = {n({ny, {n'}5,)))} Wherer € Randgay. Thengs = ¢3 U {n'} and
Pat,, (¢3) = {h({ny, {n'}7, (a)))>7'}. We have thaty, occurs inPat,,, (#3). This
corresponds indeed to an attack.#®#sas been encrypted by the adversary himself
he knows the ciphertext. Giveny andn, he computes both((no, {r'},)) and
h((n1,{n'}¢(,))) and compares them te((n;,, {n'}, ) yielding the attack.

4. Letgy = {{(h(nb),h(n’)>}gk(a),dk(a)} wherer ¢ Rand,q,. Theng, = ¢4 and
Paty, (¢4) = {{(h(r), 1)}, dk(a)}. Again,n, does occur irPat,, (¢1). For
this attack an intruder may gétn;) by decrypting and projecting the message
{(h(np), h(n))}" ek(a) @Nd compare:(ns) with h(ng) andh(n,) that he may com-
pute fromngy andn; .

Our notion of secrecy has a useful equivalent formulation described in the follow-
ing lemma. Informally, the lemma states that all unencrypted occurrences of the secret
nonce in a set of messages are such that they occur in & thanhis hashed, and such
thatt itself can not be computed fromandn.

Lemma 1. Let ¢ be an arbitrary set of messages ané nonce symbol that occurs in
¢. n does not occur irPat, (¢) if and only if¢ I/ n and VM subterm ofp such that
¢ + M, V¥p such thatM |, = n, so that there is no encryption along 3p’ < p such
that 1) M|, = h(M') and 2)¢,n I/ M.



4 Symbolic Secrecy is Equivalent to Computational Secrecy

To prove the soundness and the completeness of our secrecy criterion, we proceed in two
steps: i) relate symbolic and concrete traces and ii) prove equivalence of the symbolic
and computational notions.

RELATING SymBoLIC AND CONCRETETRACES. The first step linking security prop-
erties in symbolic and concrete models is to exhibit a relation between individual exe-
cution traces. The relation is similar to that developed in previous works [13, 10], but
our definitions and results have to deal with the use of random oracles in computational
executions. In line with common practice in symbolic models, hash applications (ex-
plicitly captured as queries to the random oracle by concrete traces) are not reflected by
the symbolic traces. Therefore, we definelilash-query fre&raceclean_hash(t¢) asso-

ciated to the concrete trace = (SId{, 91,1, H1), - -, (SIS, gn, ©n, Hy). The trace
clean_hash(t¢) is the concrete tradsld; , g, , vi,, Hi, ), - - -, (SId5, , gi., 04y, Ha,,), Ob-

tained by removing from° the states that are the result of a hash request.

Definition 4. Lett® = (SId], f1, 1), ..., (SId}, fr, @) be a symbolic execution trace
and letclean_hash(t¢) = (SIdY, g1, ¥1, H1), - - ., (Sld,, gn, ¥n, H,) be the hash-query
free trace of concrete execution trate

— We say that tracé’ is aconcrete instantiation @f with (partial) mapping:: M —
C" and we writet® <© ¢¢ if for every? (1 < ¢ < n) it holds thatSld; = Sldj
and for everysid € SId; if fo(sid) = (059,35 psid (ay,...,a;)) and g,(sid) =
(,rsid’jsid7 qsid, (al’ o 7ak)) then59 = co O.Sid, 45 — jsid andpsid — qsid.

— Tracet® is aconcrete instantiation with Dolev-Yao hash quenés® and we write
t* < t¢ if there exists a partial, injective functian: M — C" such thatt® < ¢¢
and for everyl < k < n, for every message such that(m, h) € H,, for someh,
there exists a termi/ such thate(M) = m and ¢, Frand,,, M.

adv

Proposition 1. Let IT be an executable protocol. If the encryption scheA® is
IND-CCA secure, and the hash functions are random oracles, then for any p.p.t. al-
gorithm A

Pr | 3t° € Exec®(IT) | t* = ExecCir(p,,),ar.) () | =1 —va(n)

where the probability is over the choi¢®;;, R4) < {0,1}P4( x {0,1}94(") and
v 4(+) is some negligible function.

The proof shares many ideas with earlier work [13, 10] and is given in Appendix H.1.

SYMBOLIC SECRECY IS EQUIVALENT TO COMPUTATIONAL SECRECY The follow-
ing theorem states that the symbolic secrecy criterion is necessary and sufficient for
computational secrecy to hold.

Theorem 1. Let /7 be an executable protocol and Iﬁ”tﬁh be a nonce variable occur-
ring in some role4,. If the encryption schemdé& used in the implementation &f is
IND-CCA secure thedI =° SecNonce(3, j) if and only if II =¢ SecNonce(i, 7).



Proof. The “if” direction. First, we give an ideal execution of the protocols that re-
places real nonces with random strings. We show that no adversary can distinguish the
modified execution, which we call the “oracle execution” from the real execution.

Next, we argue that in the oracle execution, the nonces that are symbolically secret
are information theoretically hidden from the computational adversary. Indeed, if the
symbolic secrecy property is satisfied, by Lemma 1 the nonce occurs only in some
hashed terms, and the term themselves are secret (in the sense that it cannot be computed
efficiently). Since in the random oracle model the hash values are independent of the
hashed message, the view of the adversary is independent from the value of the secret
nonces.

STeEPI. We now describe the “oracle execution”. Whenever the protocol dictates that an
honest party encrypts some bitstring the party encrypts instead a randomly selected
bitstringr,,, of equal length. The execution keeps a table with all associétiom,,),

which we call the random associations table (RAT). The RAT is not made available to
the adversary, but only to honest parties. Specifically, whenever an honest party receives
encrypted messages, the party performs the appropriate decryption and recovers some
plaintext. If the plaintext is some’ such that'm,m’) occurs in RAT, the party treats

the encryption as an encryption.afand continues its execution as normal. Otherwise,

the underlying plaintext is set ta’.

Intuitively, if any adversary behaves differently in the two executions, it is because
he can see the difference between encryptions of true, and random ciphertexts. For-
mally, if we letExec 4,7 (n7) be the output of adversarg when executed with protocol
IT for security parametey, andExec’; (7)) the output of the adversary in the associ-
ated oracle execution, we have the following lemma (which we prove in Appendix H.2).

Lemma 2. Let IT be an executable protocol, andl an arbitrary ppt adversary. Then,
if the encryption schemd€ used in the implementation &f is IND-CCA secure, then
Pr[Execq,(n) = 1] — Pr[Execy ;;(n) = 1] is negligible.

Notice that we can apply the above lemma for the case when the execution that is
considered is used in the experim@wtpcl (i, 7)(n), for someb, 1, j. If we write

ExecA,n
sec_b

Expgc , (i,7)(n) for the corresponding oracle execution, we obtain that there exists
some negligible functiom; ; , such that

Pr [Expged, |, (0)0n) = 1] = Pr [Bxpgel,  (.0)0) = 1] = vige(n) @)

STEP II. In the next step, we associate symbolic traces to the computational traces
of the oracle execution. This enables us to reason about an adversary’s success in the
oracle execution (which is conceptually simpler). The association is in fact the one

in the proof of Proposition 1, with an additional parsing step necessary to take into
account the random association table that we detail below. In addition to access to the
keys and the randomness of the parties, the parsing procedure also uses access to the
random association table, and is as follows: the first step in processing some message
m’ is a search in the random association tablénlf m’) occurs in the RAT, then the
procedure proceeds as before, withreplaced byn, otherwise the procedure remains
unchanged.



Next, we argue that the symbolic traces obtained as above are valid execution traces,
and moreover, that they are included among the traces of the executiénTdfe for-
malization is given in the next lemma. Its proof is in Appendix H.3.

Lemma 3. The symbolic traces dixec®(11, .A) are valid with overwhelming probabil-
ity and Execf‘t,H C Execa, 1.

Steplll. Finally, we prove that itA¢ is IND-CCA secure thed! = SecNonce®(i,j) =
IT =° SecNonce(, j). For an arbitrary adversant against the secrecy of nonééjh

recall that we writeExpic? ( ) for the oracle version of the experiment defining

Exec%;
secrecy of nonce?, . Let Adv“EeX‘;;C _(n) be the corresponding advantage functions.
By definition we have that:

AdVEs,, (i) () = Pr [Expied, (i) (n)=1] ~Pr [Expes, | (i) (n)=1]
AdvEse, (i,7)n) = Pr [Expied,  (i.)(n)=1]~Pr [Expiesd,  (i.5)(n)=11]

By subtracting, using Equation 1, and rearranging terms we obtain that for some negli-
gible functionv

AdquiCecn A(Z .7)(77) = AdVISEiCec‘I’_LA (27])(77) + V(n) (2)

Finally, we show that in the oracle execution the advantade . (z 7)(n) of

Exec?;

any adversary4 is negligible since nonces that are symbolically secret are informa-
tional theoretically hidden from the adversary. This can be seen as follows.

Consider the symbolic tracgthat corresponds to the execution of the experiment
Expch ( ), up to the point when the adversary is given the nonces and he is asked

Exec%;
to determlne the bib. Let s be the id of the session under attack, anchfet:* be the
symbolic nonce that corresponds to the nonce under attack. By Lemma 3, the tsace
with overwhelming probability a Dolev-Yao trace of protoddl By the hypothesis of
the theoreml |=° SecNonce(i, j) and therefore by Lemma 1, all occurrencestf
in ¢ that are not under an honest encryption are in some ferthat appears under
a hash, and; is nondeductible fronp, n*7:. Let t; be the bitstrings that correspond
to the termsT;. We conclude by observing that in the real execution, the adversary
may observe the values = h(t1),ca = h(tz), ..., but provided that it does not query
t1,t2,...tothe random oracle, their values (and thus in particular the value of the secret
nonce) are independent from thg co, . ... Since all queries to the random oracle are
the images of deductible terms, we conclude thatoes not requesi(¢;), for all .

The “only if” direction. Itis important to observe that if a messalfeis deducible
from a set of messaged;, M-, ..., M, the associated deduction treean be trans-
lated into an (efficient) program which given the bit-string representationsrof for
M; (i =1,2,...,n) computes the bit-string representatiarof M.

We proceed as follows. Assume that for some symbolic tratiee symbolic nonce
n%-3$ occurs inPat,,., 5.+ (¢), starting from Lemma 1 we can show that there exist a
termM ¢ ¢ and a deduction treesuch that: 1) (¢, n%/»*) yields messagé/ and 2)
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for n # n%J, 7(¢,n) does not yield/. SinceM € ¢, we know that there also exists
a deduction tree such thatr(¢) yields M.
“Based on the above, we construct a two-stage adversary against secrecy of nonce
X fAi. In the first stage, the adversary produces a computational represenfatibtihe
trace¢ (by simply following the instructions of the Dolev-Yao adversary that defines
#). Onceg is created, it requests the two values of the namte-* and receives from
the experiment,, andn;_;. Then it computesn;, = 7(¢<,n;) forb = 0,1 andm =
7(¢°), and retrieve$ by comparingn with mq andm; .

5 Decidability of Symbolic Secrecy

In this section, we show that our notion of secrecy is decidable. We present an NP-
procedure that decides nonce non-secrecy for the case of a bounded number of sessions
(that is, adversaries are allowed only a fixed numbatef queries)

Without loss of generality, we assume that all of thew queries are performed at
the beginning of the execution. Our decision procedure starts by guessing the sequence
of these requests together with the identities of the agents involved. Then, the proce-
dure guesses an interleaving for the execution. Using standard techniques [14], such
executions can be translated to constraint systems. We recall their definition:

Definition 5. A constraint systend’ is a finite set of expressior§ I t# or T; I+ w;,
whereT; is a non empty set of term#,is a special symbol that represents an always
deducible term, and (far < ¢ < n) u; is a term such that:

- T, CTiyq,forall1 <i<n-—1;
- if z € var(T;) then3j < isuchthatl; = min{T |T IFu € C,z € var(u)} (for
the inclusion relation) and’; C T;.

Theleft-hand side(right-hand sidg of a constraintl’ I+ w is T' (respectivelyu). The
left-hand sideof a constraint syster@, (for which we writelhs(C)), is the maximal set
of messages,,. By L we denote the unsatisfiable system.

The left-hand side of a constraint represents the messages already sent on the network,
while the right-hand side represents the message expected by an agent in order to per-
form the next protocol step. golutionof a constraint systeifi is a ground substitution
o such thatl'o Frang,,, wo foranyT I« € C. We say thaC preserves nonce secrecy
of n if there does not exist a solutienof C' such that occurs inPat,, (1hs(C)o).

The transformation of protocols into constraint systems yields systems that are well-
formed. A constraint systeifi is well-formedif 1) any subterm of of the formdk(¢)
is such that’ is an agent identity and 2) any subtermiofof the form{t,};, is such
thatr € Rand andr ¢ Rand,q4,. The following theorem states that our notion of nonce
secrecy (Section 3) is decidable for a bounded number of sessions.

Theorem 2. The following problem is co-NP complete:
5 For the case of an unbounded number of sessions our secrecy notion is undecidable, just as the

standard deducibility-based notions.
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Given: a well-formed constraint syste@and a nonceu.
Decide: DoesC preserve the nonce secrecyrcf

The decision procedure for nonce secrecy preservation works as follows. First, given
an arbitrary constraint system we reduce it teodvedsystem using non-deterministic
transformation rules similar to those in [9] (see Appendix G). A constraint system is
solvedif itis different from L and each of its constraints are of the fafntt # or T I+ z

wherez is a variable. Second, we check whethavccurs inPat,, (Ihs(C)). If not, we

check whethelC' can further be simplified into a solved form that does not preserve
nonce secrecy, and so on. Note that although for standard deducibility-based notions
decision procedures can stop as soon as the constraint system has been transformed
into solved form, for our secrecy notion further transformations might be necessary.
NP-hardness is proved analogously to the case of standard deducibility-based notions
[15].
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A Protocol Roles

An agent ruleis a tuple of the forn(l,r) (also written ag — r) wherel,r € T(X).
Typically, the substitutiors of some of the variables ihand r is already fixed by
applications of preceding agent rules (sharing variables with the current agent rule). If,
now, the agent receives a messagethenm is matched againtr, say the matcher is

n, and the messagern is produced as output (as explained below, it will always be
the case thaton does not contain variables)..f andio do not match, then the agent
will not produce output. Ifn andls match, we say that the rul@, r) is applied to (is
applicable to)n.

A role an agent performs in a run of a protocol is specified by an ordered edge-
labeled finite tree where every edge is labeled by an agent rule. In a run of a protocol
an agent will stand at a certain node of the tree. Assume that the outgoing edges of that
node are of the forniy, 1), ..., (Is,rs) (Starting with the left-most edge). Now, if the
agent receives a message, saythen the agent will apply the first agent rule (from left)
applicable ton to produce its output.

Formally, we first define role trees and then roles, which are role tree satisfying
certain conditions.

A role tree R is a finite ordered edge-labeled tree where the domain is a finite prefix-
closed subset df* (theith successor of a nodeis pi) and every edge is labeled by
an agent rule. Given a nogein R, we denote byRules, the sequence of agent rules
the edges on the path from the root®fto p are labeled with. We writeRules; and
Rules), to denote the sequence of left- and right-hand sides of these rules, respectively.
(We sometimes consider these sequences as sejs7 I, we writerule, to denote
the agent rule the edge leadingjads labeled with. The left-hand side of this rule is
refered to by"ulefn and the right-hand side byule;,.

The ith role performed by agent; in a k-party protocolis a role treeR such
that certain conditions are satisfied. To define these conditions we need some notation.
Let p we a node inR. Then, we denote byC, = {ek(A1),...,ek(Ax),dk(4;)} U
Xn(A;) uRulesi, the set of terms agent; knows in node. (Note that this set includes
ruleé).) If p’ is the predecessor gf (we definep’ = p if p = &), then we define
Ki = {ek(A1), ... ek(Ar),dk(A;)} U Xn(A;) U Rulesi),. (This set coincides with
I@; except thatruleﬁ) is not added.) We can now formulate the mentioned conditions
required forR (see below for informal description): For every nogeZ ¢ in R we
require that:

1. rulelp andrule;, do not contain a subterm of tyfiey,

2. everyr € Rand,, occurs inRules, at most in the context of one term of type
Ciphertext, i.e., the set of subterms of the foftl }] in Rules, (for somet andt’)
is a singleton,

3. everyr € X.r occurs inRules!, at most once and does not occurimlesy; if it
occurs it occurs in a term of the forfd}, ) for somet.

4. K} FRrand,, rulel, and(KC5 N X) UKL Fx rURand,, Tuleb,

The first condition says that decryption keys are not explicity contained in agents rules.
This implies that these keys may be output by an agent. As for the second condition,
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a term of the form{¢'}} means thatd; computes the encryption for plain textising
keyt' and random coins. The agent4; might use the computed ciphertext at different
places in the role. Therefore, the tefi}} (and hencer) may occur also in different
places in the agent rules. However/f computes the encryption for a different plain
text and/or a different key, theA; will also use different random coins. The intuition
behind the third condition is as follows: Variables{tr are used in terms for decrypting
messages. More precisely, in the concrete execution model, a term of thétﬂq;mi)

will causeA; to perform the following action. It first checks whether the given message
is a ciphertext withek(A4;) as public key. Then it would decrypt the message and try to
parse this message according.tdherefore, message of the fon{n'}g'k(Ai) should only
occur on the left-hand side of agent rules and only in terms of the {0}y ,,,. Note

that if a term of the forn’{t}gk(Aj) with j # ¢ would occur on the left-hand side of an
agent rule for4;, then this would mean that; can decrypt a message encrypted with
the public key of4 ;. This should of course be forbidden. Also, when parsing a message
according to{t}g, 4, , we don't assume that the agent is able to extract the random
coinsz used to encrypt the message. Depending on the encryption scheme this might
not be possible, and more importantly, protocols typically do not use this information.
Thereforex should only occur at one position in the agent rulesiaf Together with

the previous conditions, the last condition implies thatcan actually carry out the
tests when receiving a message and can actually produce the output message.

B Transitions in the Formal Execution Model

To define transitions between global states, we use the following notation®-BY €
Nonce,, With a € A andj, s € N we denote distinct nonces. Analogously,/¥y»* €
Rand,y With @ € A, j € Rand,y, s € N we denote distinct random coins. By ,
we denote a mapping that maps every= Rand,, to »*™*. Givent € T(X), we
denote bytr, , the term obtained fromby simulataneous replacing everye Rand,,
occurring int by 7, s(r). We use this mapping to replace the randomness usebyin
fresh randomness. (Belotwill be the right-hand side of an agent rule).

We allow three kinds of transitions between global states, which we will refer to by
corrupt, new andsend transitionsrespectively.

— The adversary corrupts a set of parties by outputting a set of identities and thereby

learns the private keys of the agents:“>"""**2~“). () ¢ AUEKeyU{dk(a;) |
1 < j <'1). Note that this transition can only be applied at the beginning (static

corruption).

— The adversary can initiate new sessiof8d, f, ) o) (SId’, f', )
whereSId" andf’ are defined as follows. Leid = |SId|+1 be the session identifier
of the new session whet8ld| denotes the cardinality &fld. We defineSld’ =
Sld U {sid}. The functionf’ is defined as follows.

o f/(sid") = mf(sid’) for everysid’ € Sld.

o f'(sid) = (i,0,¢,(a1,...,a,)) Where the domain of is {A;,..., Ay} U
X.n(A;) with o(A;) = a; for everyl < j < kando(X} ) = n®7* for
everyj € N.

new(i,ai,...,
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send(sid,m)
—_—

— The adversary can send messa@gkt, f, ¢) (Sld, f’, ¢') wheresid €
Sld, m € M, andy’ and f’ are defined as follows. We definé(sid’) = f(sid")
for everysid’ # sid. Suppose thaf(sid) = (i, 0, p, (a1, ...,ax)) and((l1,71), . ..

, (In, 1)) are the labels of edges leavipgjin this order). We distinguish two cases:

o there does not exist asuch thatn andl;o match. Then, we defing (sid) =
f(sid) andy’ = ¢ (the state remains unchanged);

o otherwise, letj be minimal such that: andl;oc match. Let) be the matcher,
i.e., m = (l;o)0. Then, we defing’(sid) = (i,0 U 0,pj, (a1, ...,ax)) and
¢ =@ U{(rjTa, sia)o0}.

C Concrete Types

We will identify every element ida, n, e, d, ¢, h, p, g} with some bit string of length
three. ByC".a we denote the set of bit strings of the form m where - denotes
concatenation anéh € {0,1}" is interpreted as the name of the agent. (Recall that

a € {0,1}3.) The seC".n of nonces and the sét'.h of hash values are defined anaol-
ogously, where, howevet,is replaced by, andn, respectively. (The specific details of

the encoding of types and the exact length of the bit strings of these sets is not essential
for the results shown in this paper as long as certain conditions are satisfied. For ex-
ample, the size of the set of nonces and hashes should grow exponentigliyhich

for the specific definition is the case.) Giverand a bit stringm, type returnsa iff

m € {0,1}73 andm is prefixed witha. Analogously for the types andh.

We say that a bit string of the forma- m (wherem may have to satisfy certain
efficiently checkable conditions) is a public key or a bit string of typdélence, the
algorithmtype returnse if a message is of the above type. Analogously for typ@/e
assume that public and private keys obtained by runKif{g) are prefixed witke and
d, respectively. The set of bit strings of typéd) is denoted by".e (C".d).

By (-, )., m1(-), andms(-) we denote efficiently computable functions which sat-
isfy the following conditions:(m,m’). is prefixed withp, 71 ({m,m’).) = m, and
m2({m,m’).) = m’ for all bit stringsm andm’. On inputn andm, the algorithmtype
returnsp iff m is prefixed withp and (7 (m), ma(m)). = m. By C".p we denote the
set of bit strings for whichype returnsp.

A bit string obtained as a concatenationcfthe type), a public key (as defined
above), and some bit string (the actual ciphtertext, which may satisfying certain effi-
ciently computable conditions) such that all three components can efficiently be recov-
ered is called a ciphertext or a bit string of typeHence type returnsc if a given bit
string is of the required form. We assume that the encryption algorithm returns a bit
string of typec. The set of bit strings of typeis denoted by’".c. Given a bit string of
type ¢, we denote byubkey the algorithm recovering the public key, i.e., the second
component of the message. We emphasize that this public key was not necessarily used
to obtain actual ciphtertext of the message.

We denote byC".g the set of bit strings on whictype does not return one of the
typesa, n, e, d, ¢, h, p. In this case, we requingpe to returng (for garbage).
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D Transitions in the Concrete Execution Model

In an execution of a protocol, the adversary may make a sequence of queries, which in-
duces a sequence of (concrete) global states. Next we explain the queries the adversary
may make.

— Corrupt query: at the beginning of the execution, the adversary may corrupt a set
of parties via a requesiorrupt(ay, as, ..., a;) whereay, as,...,a; € C".a. As
a result, public and private keys are generated for the agents by rukpi{ny
times (with independent random coins). All agent names along with their public and
private keys are given to the adversary and added to the current intruder knowledge.
— New session query: the adversary initiates a new session by issuing a request of
the formnew (i, ay,...,a;) wherei € [k] anday,...,ar € C".a. As a result,
the following happens: first, for all; (j € [k]) for which no public key has been
generated so far, a public and private key pair is generated by ruKai{ng. Then,
an instance for running (a concrete version@f);) is initiated. This instance gets
n as well asay, ..., a; along with their public keys and the private key ofas
input. Then, for all variables(’, occurring inI7(i) random nonces (derived from
C".n) are generated. These are also given to the instance as input. Accordingly, if
(Sld, f, ¢, H) is the current global state, then the new stat&ig’, ', ¢, H) where
Sld" = SId U {sid} with sid = [SId| 4+ 1 and f’ is defined as follows:
o f'(sid") = f(sid") for sid’ € Sld (i.e., the local states of previous sessions
remain unchanged);

o f/(sid) = (i,0,¢, (a1,...,ax)) whereo is defined as follows:
o(4;) =aj 1<j<k
o(X},) L crn j e N, XY oceurring inZI(j)

— Send message query: by issuing the a query of the §ewal (sid, m), wheresid €
Sld andm € C" the adversary can send a message to instaidcel'he effect
of this query is the following: assume that the current global statglds f, ¢, H),
f(sid) = (i,0,p, (a1, ...,a;)), and the outgoing edges phre labeled by the agent
rules((l1,71), ..., (lx,mx)) (in this order). Starting from the left-most rule, agent
a; (who carries out sessiaid) will first check whethern matches with one of the
agent rules. Sayl;, ;) is the first to match. Them,; produces output according
to this rule and then moves the program pointeptolt will also store the values
assigned to variables i) (and hencey;) along the way. We now briefly explain
how!; is matched against and then explain how the output is produced according
tor,.
Matjching ofl; againstm: this is done recursively on the structurel pf
o If [; is a variable such that no value has been stored for this variable so far and
m is of the same type as the variable (this can be checked by rutypagn
m), thenm is assigned to this variable. If a variable has been assigned to the
variable already, then it is checked whether is coincides with
e If [; is of the form(t,, t2), then itis checked whetheype(m) = p and the two
components ofn are extracted by running; andr,. Then, these components
are matched with, andt,, respectively (in some order).
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o If [; is of the form{¢}%  , , with z € X.r, then it is checked whethen is of
J ek(Aq) i : .
type ciphertext, and if it is, the public key is extracted (by runrpngkey on
m). Then,m is decrypted using the decyrption key @f If the decryption is
successful, the resulting plaintext is matched with

e If Ijis of the form{t}{, 4 ) With r € Rand,,, then the encryptiom” of the bit
string corresponding towith some randomness replaced foand the public
key of a; is computed. More precisely, we distinguish between two cases: if
{t}gk(Aj) occurred in some preceeding agent rule, thérhas been computed
already and it is simply checked whetherandm’ coincide. Otherwise, if
{t}ex(a,) has nooccurred before, then it follows from the condition on roles of

protocols tha{t}gk( 4,) can be derived from the messages seen so far (formally,

we have tha(l@ NX) UKL Fx rURanda, {t}gk(Aj)). Following the derivation
tree, one can therefore compute a bit string correspondingTtbis bit string

can then be encryption with the public keyafand some fresh random coins.
Itis then checked whether the resulting bit string coincides witl{A techni-

cal detail is that not all variables m;‘, N X might have been assigned values
yet since, for example, they occur in a different component,of which has

not been matched yet. However, if the matching is successful, they will be sub-
stituted by bit string and then can be used to evaltiate

o If [; is of the formh(t), then it follows from the condition on roles of protocols
thatt can be derived from the messages seen so far (formally, we have that
(KiNX)UK} Fx.rURand,, h(t) which implies that/C), N X) UK, Fx.URand.,

t). As above, one can therefore evalugtehich results in a bit string, and then
compare this bit string ten.

If one of the above checks fails, the instance will ignore the incoming message and
the internal state will not be changed.

The output, i.e., the bit string, produced according,tis computed following the
structure ofr; in the obvious way. The condition for role of protocols guarantee
that the computation can actually be carried out.

According to the above description, the current global stéte, f, ¢, H) is up-
dated to(Sld, f’, ¢’, H) in the obvious way: if the matching betwegrandm fails,

then the global state does not change. Otherwise obtained fromp by adding

the bit string produced as output. We defifiésid’) = f(sid") for everysid’ # sid.

If f(sid) = (i,0,p, (a1,...,a;)), the new local statg’(sid) of the sessiosid is
(i,0',pj, (a1,...,a;)) whereg' is obtained froms by adding the substitution of
the variables iri; that have not been subsituted before according to the matching
of [; andm.

Hash query: the adversary may issue a hash request to the random oracle of the
form hash(m). If the current global state iSld, f, ¢, H), then the effect of this
query is the following: ifH does not contain an entry fen, then a bit string is
chosen randomly fron@”.h. This bit string is given to the adversary. The global
state, in particularp and’, are updated accordingly.
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E IND-CCA Security for Asymmetric Encryption Schemes

In this appendix we recall a standard notion of security for asymmetric encryption
schemes, namelfND-CCA security. The formulation that we give is the multi-user
version, known to be equivalent to the single user version (see, e.g., [10]).

For a fixed encryption scheméf = (K., Enc, Dec), a left-right encryption oracle
parametrized by a bii and encryption keyk is an oracle which accepts as queries
pairs of equal-length bitstringng, m1) and returns an encryptidinc(pk, my,).

Given an encryption schemd& = (K., Enc, Dec) we consider the experiment
Expfffffg“b (n) parametrized by the bit, and that uses adversad; The adversaryl
is provided access to polynomially many left-right oracles, each parametrizedrizy
a public keypk; generated vidpk;, sk;) < K.(n). The adversary is also given access
to corresponding decryption oracles, that is, oracles parametrized by the decryption
keyssk;, that accept as input bitstrings and return the decryption of the bitstring under
sk;. The adversary is allowed to make as many encryption and decryption queries as
he likes, under the condition that he is does not submit to the decryption oracle under
sk; a ciphertext obtained from the encryption oracle ungler When A finishes its
execution, the adversary outputs adiwhich is his guess as to what the biis) and
the bitd is the output of the experiment. We define the advantagé loy:

Advfffffga =Pr Epoﬁdjgao (n) = 1} —Pr [Exp%‘fg‘“ n)=1

and we say thatl€ is IND-CCA secure if for all probabilistic polynomial-time adver-
saries, the functiomdvf{ffiga(n) is negligible.

F Proof of Lemma 1

Let ¢ be an arbitrary set of messages ana nonce symbol that occurs ¢n

Right implication =. First, ¢ - n implies thatn occurs inPat,,(¢) by induction
on the proof of$ - n and using that can be obtained using only decomposition rules
(that is projections and decryption).

Second, assume that there exikfssubterm ofp such thaip - M andp such that
M|, = n, so that there is no encryption alopgand for allp’ < p, M|, = h(M’)
implies ¢,n = M’. SinceM only contains pairing and hashes alongt is easy to
verify thatn occurs inPat? (M) thus inPat,, (¢) (sinceM is a deducible subterm).

Left implication <. Assume that occurs inPat,,(¢) and thatvM € ¢, ¥p such
thatM |, = n and such that there is no encryption algngp’ such thatV/|,, = h(M’)
and¢,n b/ M'.

We prove by induction o/ that for anyM/ subterm ofé such thatp - M, n
occurs inPat? (M) implies ¢ - n.

— Base caseM is a constant or a name.occurs inPat? (M) implies M = n thus
dFn=DM.

— If M = (M, Ms). Thenn must occur inPat? (M) for i equal 1 or 2. Since
¢ + M;, we deduce by induction hypothesis thgt n.
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- M = {M'}[ - Thenn occurs inPat;, (M),

e r € Rand,q,. Then M’ € ¢ by construction ofg. Thus¢ + M’ and by
inductiong + n.

e Otherwise, we must have,n + dk(a). This implies¢ + dk(a) (this can
be shown using the fact thik(a) can be obtained using only decomposition
rules). We deduce that - M’ thus we obtain again by induction hypothesis
o+ n.

— M = h(M'). Thenn occurs inPat? (M’) and we must have, n - M'.

e Either¢ - M’ and applying the induction hypothesis we geét n.

e Or ¢ I/ M’. It means that there exists some cont€ékcomputable by the
adversary (that is, there is no agent encryptionand termsiNy, ..., N,
deducible subterms af such thatC[Ny, ..., Ni,n] = M'. (See for example
Proposition 7 of [1].) Lep be such thafi/’|, = n (p also position of”).

x If there exists an adversary encryption algndhat is, there exists a sub-
term {M"}{, ) of M" with n occurring inPat?(M”) thenM” € ¢ by
construction ofp. Hence + n by induction hypothesis.

x If there is no adversary encryption alopgit means that there is no en-
cryption at all. Thus by hypothesis, there exigts< p such thatM|, =
h(M") and¢,n t/ M”. But M"” must be equal t&’'[Ny,. .., Ng,n] for
someC’ sub-context of”. Hencegp, n I/ M”, contradiction.

G Decidability of nonce secrecy preservation

This appendix is devoted to the proof of Theorem 2. NP-hardness comes from the same
construction than NP-hardness for deciding usual secrecy. The non-deterministic proce-
dure to decide nonce secrecy preservation works in two steps. First, arbitrary constraint
systems are reduced to solved constraint systems using non-deterministic transforma-
tion rules Second, we show how to decide nonce preservation for solved constraint

systems.

G.1 Reduction to solved forms

Using some simplification rules, solving general constraint systems can be reduced to
solving simpler constraint systems that we have called solved.

The simplification ruleswe consider are defined in Figure 2. All the rules are in
fact indexed by a substitution: when there is no index then the identity substitution
is implicitly considered. We write”' ~" C’ if there areCy,...,C, with n > 1,
C'=C,, C ~y, Cf vy, -+~ Cpando = o109...0,. We writeC' ~~1 C” if
C ~m C' for somen > 1.

The simplification rules are correct, complete and terminating in polynomial time.

Theorem 3. LetC' be a constraint system,a substitution and: be a nonce.

1. (Correctness) I2 ~* (’ for some constraint systefif and some substitution

o and if § is a solution ofC” such thatn occurs inPat,, (lhs(C?)#) thendd is a
solution ofC' such that: occurs inPat,, (1hs(C)o#0).
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Ry CATlFu ~ CATI# it TU{z|T IFzeCT ST} Frand

u

adv

R, CATIFu ~sCo ATol-uo if o = mgu(t,u),t € St(T),

t # u, t,u not variables
R3 CANTIFu ~sCo A Toluo if o = mgu(t1,t2),t1,t2 € St(T),

t1 # ta, t1,t2 Not variables

Ry CATIFu ~ L if var(T,u) = 0 andT trand,,, ©
R(ﬁ) C/\T|F<’u,1,UQ> ~ COCANTWHFu ATIF us
Ry, CATIFh(u) ~ CATIFu
Ry CATIF{ui}y, ~» CATIFur ATIFuz 7€ Randaay

Ruey C ~o Co if o = {ek(a)/z},ek(a) € lhs(C),
x key variable in key position

St(T') denotes the set of subterms of the term&'in

Fig. 2. Simplification rules.

2. (Completeness) fis a solution ofC' such thatn occurs inPat,, (Ihs(C)60) and if
C'is not in solved form, then there exist a constraint syst€mand substitutions
0,0" such that) = o¢’, C ~~F C" and#’ is a solution ofC’ such that: occurs in
Pat,, (Ihs(C")6").

3. (Termination) IfC' ~" C’ for some constraint syste@f and some substitution
thenn is polynomially bounded in the size ©f

The proof is a simple extension of the proof provided in [9] (without XOR). The ex-
tension to our nonce secrecy notion simply relies on the fact that whe@ever C”

and thenlhs(C)(c8) = (Ihs(C)o)8 = lhs(C")0 for any substitutior® solution ofC”.

The rule R, has been added for our decidability purposes but does not compromise
the correctness and completeness of the transformation rules.

G.2 Decidability of nonce secrecy for solved forms

Using the general approach presented in the previous section, verifying nonce secrecy
can be reduced in non deterministic polynomial time to deciding these properties on
constraint systems in solved form. Indeed, applying Theorem 3, we have that a con-
straint systemZ' preserves the nonce secrecyroff and only if there exists a con-
traint system in solved fornk’ such thatE’ preserves the nonce secrecyrofind
E ~F E'. By definition, a constraint systei’ in solved form preserves the nonce
secrecy ofn if and only if there does not exist a solutiet of £’ such thatn occurs
in Pat,, ({hs(C")o’). Since we only consider well-typed substitutio(z) = ek(a) for
some agent identity for any key variabler. We can thus assume that the rllg, has
been applied as much as possible.

Let E be a solved form and be a nonce. We considér’ the solved form defined
as follows:

E' ={Tuvar(T)IFu|TI-ueE}

Then it is easy to verify that:
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— o is a solution ofF if and only if o is a solution ofE”,

— n occurs inPat,, (lhs(Eo)) if and only if n occurs inPat,, (lhs(E'0)).

We can thus assume thedr(7) C T foranyT I+ w € E. In that case, we say that
FE contains its variablesln what follows, a solved form is redefined as a well-formed
constraint system in solved form that contains its variables and has no successor for the
Ry, rules. Itis sufficient to decide nonce secrecy only on solved forms.

Given E in solved form, the decision procedure works as follows:

1. Check whetheEU{lhs(E) IF n} has a solution (this is decidable [15]). If yes then
E clearly does not preserve nonce secrecy.

2. If not, choose non-deterministically a succesgbrin solved form ofE, that is
E' = EorE ~} E'for somesr and check whether occurs inPat*(®") (1hs(E")).

If yes thenFE clearly does not preserve nonce secrecy. If not tfigmeserves nonce
secrecy ofn.

The completeness of the non-deterministic decision procedure relies on the follow-
ing property.

Proposition 2. Let E be a solved form and be a nonce. Assum®& U {lhs(E) I+ n}
has no solution. Assumié does not preserve nonce secrecy:pfhat is, there exists a
solutiond of E such that: occurs inPat,, (ihs(E®)). Then

— eithern occurs inPat,, (lhs(E)),
— or there existsr such thatt? ~F E’ and E’ does not preserve nonce secrecy.of

Assuming Proposition 2, we get that does not preserve nonce secrecynaf and
only if E has a successdt’ in solved form such thatl ~~1 E’ andn occurs in
Pat,,(lhs(E")), which proves the correctness of our decision procedure. Indeed, apply-
ing Proposition 2, ifEf does not preserve nonce secrecyiahen eithem occurs in
Pat,, (lhs(E)) or there existg such thatt ~} E’ andE’ does not preserve nonce se-
crecy ofn. We can assume that' is in solved form otherwise we can apply Theorem 3
(possibly several times) and until we gét in solved form and’ such that=” ~7, E”
and E” does not preserve nonce secrecy.offhus we can apply Proposition 2 again
until n occurs inPat,, (lhs(E")).

The remaining of the section is devoted to the proof of this proposition. We need
some intermediate lemmas and definitions.

We define public terms to be terms constructed by the adversary.

Definition 6. Public contextre terms with variables defined inductively as follows:

t b1,y 1= public terms
| x variablez
| a agent identitya
| g garbageg
| {t};k(a) adversary encryption; € Rand,q,
| h(t) hash
\

(t1,t2)  pairing
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A public contexis a linear public term (no variable appears twice). By convention, the
expressiorC|ty, ..., t,] denotes the termi'o where the exact set of variables @fis
{z1,...,zp}ando = {t1/21,... tn/xn}.

Lemma 4. Letn be anoncetbeatermE = {T I a;,..., T} Ik a;} withT; C T; 14
be a constraint system in solved form anle a solution of.

— If Tjo, n FRrand, ., tthenthere exists a public conteXtsuch that = C[t,0,. .., t0,n]
where each; is a subterm of ; such thatl’; Frand,,, t; @and¢; is not a variable.

— If T} FRrand,,, ¢ then there exists a public contextsuch thatt = Cft,. .., ]
where each; is a subterm of; such thatl’; Frand,,, t; @andt¢; is not a variable.

adv

Proof. We prove the first part of Lemma 4, the second part is done similarly. We con-
sider a minimal proof offjo, n Frand,,, t in the sense that, at each step it uses the
smallest premises. More formally, for any sub-prdgtr, n Frand,,, «, leti be the
minimal index such that it is also a proof @fo,n Frang,,, . If ¢ > 2, we must
haveT;_,0,n t/rand,,, u. The proof is done by inductiop and the length on the
proof of Tjo,n Frand,., t (I€Xicographical order). If there exists < j such that
T;0,n FRrand,,, t We are done by induction hypothesis. Thus we can assume that
is actually the minimal index such th&fo, n Frand, ., t-

adv

— If t = n then we considef’ = [].

— If t € Tjo, thent = t,0 with ¢t; € Tj. If ¢, is not a variable, we are done. Lihe
the minimal index such that it is also a proofBb, n Fgrand,,, t. If t1 is a variable,
we havet; € T;. By definition of constraint system, there exists: i such that
T, IF t1 € E. Sinceoc is a solution ofE, we havel;o Frana , ti0 = t, which
contradicts the minimality of.

— Ifthe last applied rule is a construction rute= f(¢y,...,t;) with f € {({),enc, h}.
By induction there exist public contekt; such that; = C[tio,...,t; o,n]. We
consider the public context = f(C1, ..., C,). Note that iff is an encryption, an
adversary randomness must have been used.

— If the last applied rule is a projection rule.

adv

Tjo,n FRand,q, (M1, M2)

adv

TjO‘, n }_Randadv m;
By induction hypothesis, there exist a public contéktsuch that(m,ms) =
Cltio,...,tyo,n] where eacht; is a subterm off; such thatl; Frang,,, t; and
t; is not a variable. IiC = (C, Cs) then the public context’; satisfies the con-
ditions. Otherwisgm,, m2) = t;o0 some non variable deducible subtermZof
Thust, = (t},t5). We havel; Frand, ,, t; andm; = t;o. If ¢ is not a variable, we
are done. I is a variable, we must hav¢ € T and there exists < j such that
Ti0 FRand,,, ™M, Which contradicts the minimality of.

— If the last applied rule is a decryption rule.

dk(b)

adv

Tjo,n FRrand,a, {Mtekpy 01 Frand

Tja,n }_Rand m

adv
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By induction hypothesis, there exist a public contéxtsuch that{m}gk(b) =
Cltio,...,tgo,n] where each; is a subterm off; such thatl; Fgrand,,, ti
andt¢; is not a variable. IfC = {C;}¢, then the public context’; satisfies
the conditions. Otherwisém}, ;,, = t10 some non variable deducible subterm
of T;. Thust; = {t'}},. t" is not a variable otherwise the ruf., would be
applicable, which contradicts thd has no successor. Thi$ = ek(b). Since
T;0,m FRand,,, dk(b), by induction hypothesis, there exists a public contéxt
such thatdk(b) = Cltio,...,tx0o,n] where each; is a subterm off; such that

T; FRrand,,, t: andt; is not a variable. We must haveé = [] thusdk(d) = t0.
Sincet; is not a variable, by well-formedness of the constraint system, we must
havet; = dk(b) thusT} Frand,,, dk(b). We deduce thdf; Frand,,, t'. If t’ is not

a variable, we are done. #f is a variable, we show again that this contradicts the
minimality of j.

Lemma 5. If lhs(F)o,n Frand

adv

dk(a) thenlhs(E) Frand,,, dk(a).

Proof. This a consequence of Lemma 4. ASSUM&FE)o, n Frand,,, dk(a). By Lemma4,
there exists a public contekt such thatdk(a) = C[tio,...,tro,n] where each, is

a subterm oflhs(FE) such thatlhs(F) Frand,,, t:; @ndt; is not a variable. We must
haveC = [_] thusdk(a) = t;0. Sincet; is not a variable, by well-formedness of the
constraint system, we must hasie= dk(a) thusihs(E) Frand,,, dk(a).

tif and only iflhs(E)o, n Frand

adv

Lemma 6. Ihs(FE)o,n Frand t.

adv adv

Proof. Sincelhs(E)o C lhs(E)o, hs(E)o,n Frand
t.

vau L iMpliesihs(E)o,n Frand, .

Conversely, sincé is well formedihs(E) = lhs(E) thuslhs(E)o = lhs(E)o U
{{m}}, subterm ofr | r € Randuq,}. Let us show that actually any terfm}}, sub-
term of o such that € Rand,q4,, is deducible fronmihs(E)o, n. By Lemma 4, there ex-
ists a public context” such tha{m}) = C[tio, ..., tyo, n] where each; is a subterm
of (hs(E) such thaths(F) Frand,,, t: @ndt; is not a variable. Sinc& is well-formed,
r cannot appears in thg. Thus{m}} = C[n] thusihs(E)o,n Frand,,, {M}5-

Lemma 7. Let E be a constraint system in solved form antle a solution ofZ. Let¢
be a term.

th(E)O' l_Rand
andt = t'o.

t if and only if there exists a term such thatlhs(E) Frand,,, t’

adv

Proof. If there exists a ternt’ such thatths(E) bFrand,,, t' @andt = t'o then clearly
1hs(E)o FRrand,,, t-

Conversely, assumis(E)o brand,,, t- Applying Lemma 4 (with a nonce that
does not occur i), there exists a public contegt such thafm}}, = Cltio, ..., ;0]
where eacht; is a subterm oflhs(E) such thatlhs(E) Frand,,, ti andt; is not a
variable. We choos& = C'[ty, ..., t;]. We havet = t'o. Moreoverihs(E) Frand,,, ti
andC public context implies thatis(E) Frand,,, -

Lemma 8. Let n be a nonce,E’ be a constraint system in solved form asnce a
solution of E. AssumeE U {lhs(E) IF n} has no solution. Assume thatdoes not
occur inPat™*(E)(ihs(E)). Leto be a solution ofZ. Then
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1. eithern does not occur iPat*(E)7(¢) for any termt such thatihs(E)o Frand
tl

2. orthere exists’ such thatk ~*, E’, o = ¢’6, ¢’ is a solution of£” andn occurs
in Pat” (¥ (1hs(E")0).

adv

Note that this lemma implies Proposition 2. Indeed, assime{lhs(E) IF n} has no
solution. Assume there exists a solutionf £ such that occurs inPat**(¥)7 (ihs(E) o).
— Eithern occurs inPat*(&) (1hs(E)),
— or, by Lemma 8, there is two possibilities
e eithern does not occur iRat*(E)7 (¢) for any termt such thaths(E)o Frand

n
t. In that case, we know by Lemma 6 that, for any tefnPat’s(£)7(3) =

Pat*(B)7(¢) sincelhs(E)o, n Frand,,, t' if and only if Ths(E)o, n Frand,
t’ for any termt’. Sincelhs(E)o FRrand,,, t for anyt € lhs(E)o, we deduce
thatn does not occur iRat,, (Ihs(E)o) thus does not occur iRat,, (1hs(E)o),
contradiction.

e orthere exists’ suchthat? ~*, E’,o = ¢’'6 andn occurs inPat”*(F) (1hs(E')f),
which means thak’ does not preserve nonce secrecy.of

adv

It is thus now sufficient to prove Lemma 8

Proof. Let n be a nonceF be a constraint system in solved form antbe a solution
of E. AssumeFE U {ihs(E) |- n} has no solution. Assume thatdoes not occur in
Pat*(®) (1hs(E)).

Either there exists”’ such thatt ~*, E’, 0 = ¢’6, ¢’ is a solution ofE’ andn
occurs inPat* ()% (1hs(E")6) in which case we are done. Or we prove thatoes

not occur inPat**(E)7 (1) for any termt such thaths(E)o Fgrang, ,, t. Let B = {T} IF

n adv

ay, ..., - a}.
Assuméehs(F)o Frand,,, t- By Lemma7,there exists a tetfrsuch thaths(E) Frand, .,
t'andt = t'o.

We first assume that is a subterm oths(FE) and prove the following statement by
induction on(k, |t'|) (lexicographical ordering), whet¢/| denotes the size of.

lhs(E)o
n

n does not occur irPat (t'o) for any termt’ subterm of7}, such that

Ihs(E) Frand,,, -
Base casek = 1 andt’ is atomic.

— If t/ is a nonce or a namé&o = ¢’. Thent’ # n sinceE U {Ihs(E) IF n} has no
solution. Thus: does not occur ifPat™*(E) (/o).

— If ¢ is avariable is excluded sin¢&is a subterm of’; andT} contains no variables.
Induction step: ¢’ subterm off}, such thaths(E) Frand,,, t'-

— If ¢ is anonce or a namé&g = t'. Thent’ # n sinceE U {lhs(E) IF n} has no

solution. Thus: does not occur ifPat*(#)7 (¢/4).
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— If ¢’ is a variable, then by definition of constraint systems, there eXistsk such
thatTy, I- t' € E. We deduce thal o FRrandg,,, t'c. Lett = t'o. By applying
Lemma 4 to constraint systef¥} I+ ay,..., Ty IF ap }, there existug, ..., u,
subterms off}, such that = Cluy,...,u,]oc whereC' is a public context. We
deduce thaPat/"*(F)7 (1) = C[Patlhs(E) (u10), ..., Pat™* By 5)]. Applying
the induction hypothesis, we get thatdoes not occur iPat’*(E) (4,0 thusn
does not occur iPats(E)7 (1),

—If t/ = (t1,t5). ThenPat™*E)7 ('5) = (Pat!*(B)7 (4)) Pat!s(E)(£,)). Since
Ihs(E) Frand,,, t' implies hs(E) Frand,,, t1,t2 andt; and t, are subterms
of Ty, we can apply the induction hypothesis, we get thadoes not occur in
Paths(B)o (1),

- If ' = {t1}], andt,0 = ek(a). We must have, = ek(a) or t, is a variable.
The casé, variable is excluded by application of the transformation felg,. We
assume now, = ek(a).

The case € Rand, g4, is excluded sincé€ is a subterm of ;, andE is well-formed.
Either Ihs(E)o, n trand,,, dk(a), in that casePat*(®)7(¢) = O andn does not
occur in[d.

Or lhs(E)o,n FRrand,,, dk(a). Then by Lemma 5/hs(E) Frand,,, dk(a). Thus
Ihs(E) FRrand,,, t1 andt; is a subterm off}, thus we can apply our induction
hypothesis.

— If ' = h(t"o). Either lhs(E)o,n Hrand,,, t"o, in that casePat*(F)7 (1) = O
andn does not occur if). Or lhs(E)o, n Frand,,, t”o. Applying Lemma 4, there
exists a public context’ such that”c = Cluyo,...,u,0,n| where eachy; is a
subterm ofihs(E) such thaths(F) Frand,,, u; andu; is not a variable.

Either there exists a paghof ¢’ such that’|, is not a variable and |, = u,o for
some: andt’|, # u;. Sinceu; is not a variable, the rul&; of the transformation
rules can be applied. Let = mgu(u;,t|,). We haves = ¢’6 for somef), E ~-
Ec¢’ andn occurs inPat,, (lhs(E")0) sincelhs(E')0 = lhs(E)o’0 = lhs(F)o,
contradiction.

Ort" =C'n,x1,..., Tk, Uiyy - - -, Ui, |. ThENIS(E) Frand,,, t" sincevar(lhs(E)) C
lhs(F) and theu; are subterms of thus ofT}, thus we can apply the induction hy-
pothesis.

In the general case, applying LemmaiHs(E)o Frand,,, t implies that there exists
a public contextC' such that = C#}, ..., t,]c where eacht] is a subterm ofhs(E)
such thaths(F) Frand,,, t; @ndt; is not a variable. Sinc€' is a public context,

adv 71
Pat/ "7 (t) = C[Pat[* )7 (t)0), ..., Patl* ") (t}.0)]

Since the'/ are subterms dhs(E), we have seen thatdoes not occur iRt (£)7 (1),
We conclude that does not occur iPat/s(E)7 (1),

H Proofs for Results in Section 4
H.1 Proof of Proposition 1
Proof (Sketch).
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The proof is in two steps, which we briefly sketch before giving the details.

First, we associate to each computational trace of an arbitrary advedsaym-
bolic trace by parsing each bit-string down to its most basic components (keys, identi-
ties, nonces, randomness), and mapping each of these components to appropriate sym-
bolic constants. In parsing the messages we may freely use the decryption keys, which
are fixed by the randomness used in the trace.

In the second step, we show that the trace associated as above is a valid trace, with
overwhelming probability (over the coins used in the execution). The proof is based
on a characterization of non valid traces that identifies all ways in which the messages
output by the adversary are invalid. Then, we construct an advestrgt simulates
the execution of the protocol in the presence of the adverdaAdversary is against
the encryption scheme and uses its encryption oracles to simulate the execution of the
honest parties. Then, il with non-negligible probability outputs a non-Dolev-Yao
message, adversaB/breaks the security of the encryption scheme.

STEP |. For each concrete execution trate = Execf;(g,,) a(r.) (1) We construct

the symbolict® and the functionc by tracing the queries made by adversatyand
translating them into symbolic queries. Notice that since we do not require fkat
efficiently constructable, in its construction we may safely assume that all decryption
keys are known (notice that they are fixed Ry;).

For corrupt andnew queries the translation is straightforward (party identities
are mapped to appropriate symbols). The interesting party isdeswd queries are
treated. Each bitstringn that occurs in aend query is translated to a symbolic term
c(m) as follows. Agent identities, cryptographic keys, randomness used for encryption
by honest parties, and random nonces (all quantities that are uniquely determined by
Rpr) are canonically mapped to symbolic representations: for example the bit-string
representing the encryption key of pattyis mapped tek(a;). Ciphertexts created by
the adversary are decrypted with the appropriate key (recall that all decryption keys are
available while defining the mapping).

The rest of the messages are interpreted as they occur: each messageby the
adversary is parsed (notice that all decryption keys needed for parsing are known, since
they are fixed by the randomness used in the experiment).

StePII. In the second step of the proof we show that the trdamnstructed as above
is Dolev-Yao with overwhelming probability. The proof relies on the following lemma
that characterizes non Dolev-Yao adversaries. In what follag&,) € Rand,, and
adv(i) € Randgqy-

Lemma9. Let My, ..., My, M be ground terms such that

- M,...,My t/ M,
— names(M) C U, <;<,, names(M;);

— if {M’ Zf(((jg is a subterm of\/ then{M’}:k"(({g is a subterm of soma/;.

There exists a non deducible teffinsubterm of\/, thatisM;, ..., My t# T and there
is a positionp such thatd/|, = T and

1. for any patty’ < p, M|,/ is non deducible fromi{, ..., M,
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2. for any pathp’ < p such thatM/|,, = {M’}ZE((;)) or M|, = h(M’), M|, is nota
subterm of thé\/;'s,
3. — Tisadecryption keyk(a),
— or T is subterm of somé/; and is either a nonce or an encrypted message of

the form{M’}:f((fl)) or a hashh(M").

We say thaf is under attack

Proof. We prove the lemma by induction on the size\af

Base caseM is a nonce, an agent identity, a key or, a garbage symbol. Sifice
is non deducible, by construction of the deduction syst&mmust be a nonce or a
decryption keydk(a) of some honest agent. M is a decryption keyl" := M satisfies
Lemma 9. IfM is a nonce then by hypothesi¥] € | J, ., , names(M;). ThusM is a
subterm of somé/;. We then takd™ := M which satisfies the lemma.

The induction stepl/ is a composed term.

— EitherM = h(M’). If M is a subterm of som&/; thenT := M satisfies the condi-
tions of Lemma 9. Otherwis&/ is not a subterm of any/;. ThenM’ must be non
deducible. Otherwiséd/ would be deducible. We apply the induction hypothesis
on M’ and findT satisfying Lemma 9 fodfy, ..., My andM’.

-OrM = {M’}:‘kj(vé;). Then M’ must be non deducible otherwise’ would be
deducible. We apply the induction hypothesisidhand findT" satisfying Lemma 9
for My, ..., M, andM'.

— OrM = (M*, M?). ThenM* or M?, sayM’, must be non deducible otherwisé
would be deducible. We apply the induction hypothesidfhand findT” satisfying
Lemma 9 forM,, ..., My and M7,

— or M = {M'}*51) By hypothesis, this implies that/ is a subterm of soma;,

ek(a

thusT := M satisfies Lemma 9.

In the three first cases, itis easy to verify tliadlso satisfies Lemma 9 fady, ..., My
andM sinceM is non deducible and/ is not a subterm of som&/; (or M is a pair).

For our proofs, it is important to also show thathif;, Ms, . .., M,, are the output
of honest parties in a symbolic execution of a protocol, then the Tefmhich occurs
in somel;) is in fact constructed by the honest parties, and not by the adversary.

This can be seen as follows. Lef;, . . . , M}, be messages sent (in this order) during
the execution of a protocdll. Therefore, eacld/; is of the formAL; = r;,0; where
l;, — r; is a edge of a role ofI and for each variable of the domain &f 0;(x)
is either a subterm ab/y, ..., M;_, or a deducible term fromd/y,..., M;_,. LetT
satisfy Lemma 9. Sinc& is non deducible it must occur as a non trivial subterm of
somer;,, that is there existg j and a non variable positignof r; such that” = r;|,6;,
which shows thaf” is computed by an honest party.

The main (and final) step of the proof is to show that if there exists an advedsary
for which the associated symbolic traces are non-Dolev-Yao with non-negligible prob-
ability, then we can construct an advers#&rthat breaks encryption.

The adversary3 that we construct uses its access to left-right encryption oracle
and to the corresponding decryption oracles to simulate the parties againstAvtsch
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normally executed, and also simulates the random oracle. In gefidrdgrcepts and
answers all queries that are madebys follows.

— When A sends itxcorrupt(ay, as, . . ., a;) request adversarg generates private
and public keys for parties,, as, . . ., a; and sends them to the adversary.
— When A wants to initiate a new sessiarew (i, a1, . .., ay), if agentsa; are new,

B requests new users corresponding to these agents in the multi-party setting for
public-key encryption. The8 generates all the honest nonces corresponding of
agents; in that new session.

— When A makes asend(s, m) request,3 parses the message possibly using the
decryption oracle and the records of the hashes already generated when simulating
the random oracle and answers according to the protocol (encrypting the message
by himself).

— When A makes ahash(m) request, eitheB8 has already generated a hash value
h for m and simply returns: or B generates a new hash value, memorizes the
association and returns the value4o

The critical part of the proof is how adversadyuses the non-Dolev Yao message
T (described in Lemma 1) to break encryption. We treat separately the casé/Wwhen
a decryption key of an honest agent, and the case Whisna nonce or an encrypted

message of the forrﬁM’}ZfE;)) or a hasth(M') andT is a subterm of some previously
sent messages. We start with the latter case which is more complex.

The first step of3 is to guess whefd” occurs in the execution of honest parties for
the first time. Sincd" is created by some honest party (see the remark after Lemma 1),
this can be done by guessing a session number, in which instruétion), and on
which position ofr;, T occurs. The key idea is to construct two different bit-string
interpretationg, andt; for T', and uses the left-right encryption oracles in such a way
that the view simulated for is such that the bit-string associatedfois precisely
ty, Whereb is the selection bit of the encryption oracles. Then, wiemakes its first
non-Dolev Yao querys recovers, using the decryption oracles, and thereflre

WhenB needs to produce the bit-string representation of the first meddageat
containsT’, it proceeds as follows. 1f' is a noncel3 generates two noncegandt;, and
if T is an encryption3 generates two versiortg andt¢; of the encryption (by calling
the encryption algorithm twice, with different random coins)iis a hash5 generates
two random values$, andt;. Then,B constructs the bitstring/; [T — ¢,] whereb is
the bit used by the left-right encryption oracle. Notice that sifide non-deducible it
occurs either under an encryption or under a hash. In either case, we compute the bit-
string associated to the inner-most “protectiontgfwhich is either a honest encryption
or a hash, by using either the left-right oracle (if it is an encryption application), or by
arandom value (if it is a hash). In the last case we sayAtides acheating hashWe
give examples for the two cases below.

Example 1.If M;[T] is of the form{h(M’[T])}2(2), andT is deducible from\s’[T]
by projections (thus is “unprotected” in’), thenB computes the concrete counterparts
mo andm; for M|[ty] andM [t], respectively and generates a cheating lastich is
associated to the coup{exy, m1). Then, the representation @h(M’[T])}ag(” is an

ek(a)’
encryption ofh, computed by5 himself.
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If M;[T] is of the formh({ M’ [T]}zf(((?)) andT is deducible from\/’[T;) by projec-
tion thenB computes concrete counterpartg andm; for M[ty] andM[t;] and then
uses the left-right oracle to compue; } (). The final value is computed by who

generates a hash valtidor h({m }ek(a))-

Now we argue thaB is able to proceed simulating the rest of the protocol, namely,
to provide the concrete counterpart &f; [¢,] whereb is the bit used by the left-right
encryption oracle. The problematic cases are whenceives hash and send requests
send(s,m) or hash(m). In that casesl3 first parsesn to make sure that it does not
recovert, in clear, that isn is a non Dolev-Yao message.

— WhenB receives a hash quehash(m), there are two cases. EithBrhas already
generated a hash valaefor m, thenB simply answers by:; or 5 has generated
a cheating hash value fer which means thatn is equal to somen,, thusm is
already a non Dolev-Yao message; contradictior8 Has never generated a hash
value form, B simply generates a new value, gives itAp and remembers the
association.

— When B receives a send requesind(sid, m), since3 simulates the protocol it
knows the values of (sid) = (o, j,p). Let ((l1,71), - .., (Ix, 7)) be the outcoming
edges of the node of I1(j). B tries recursively to find a substitutighcompatible
with o such thatn = [;00. Assume he finds one. If, when parsimgadversary3
finds a cheating hash or an encryption that was obtained from the left-right oracle,
adversaryBB recovers the two possibles values and m; for which we know
that the secret valug or ¢, is deducible by projection. Sinag is non-deducible,

t, must be re-encrypted or hashedrimd. As before,5 replaces the inner-most
“protection” of Tj,, either a honest encryption or a hash, by using either the left-
right oracle or by replacing it by a random value (cheating hash).

Next, we explain hows recoversb out of the first non Dolev-Yao output ofl.
We abuse notation and occasionally writé for both a symbolic representation of a
message, and for its bit-string representation. Which is the case can always be deduced
from the context.

This message occurs in either a send query, or in a hash request/ lbet the
symbolic representation of the first non-Dolev Yao querydpfand letp by the path
from the characterization a¥/ given by Lemma 1. We claim th@ can parseV/ to
recovert, associated td@’, following the pathp. We reason inductively on the structure
of M.

— if M = (M'[T], M?[T]) andp = i - p’, B opensM* following the pathy’.

—-if M = {M’[T}}lek(a) andp = 1 - p/, then by Lemma 9) does not occur as
subterm of thel/;’s, and in particular it has not been obtained using the encryption
oracle. Thug3 may submitM to the decryption oracle and recoveiEt;]. Then,
ty, is recovered following the pati.

—if M = h(M'[T]) andp = 1 - p'. Eitherh(M'[m;]) has been obtained using the
random oracle, thu8 knows its form, i.e M’[m;], and opens it following the path
p’. Alternatively,h(M’[M;]) has been obtained by doinglaeating hashi.e. B has
generated a nonce by himself. In this cas@\/’'[m,]) is a subterm of somé/;,
which contradicts Lemma 9.
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We conclude thaB is able to retrievd;, thusb, therefore breaking encryption.

H.2 Proof of Lemma 2

Proof. Given an adversaryl for which the above function is non-negligible, we show
how to construct a successful advers&ragainst the encryption scherec. Recall

that B has access to polynomially many left-right encryption oracles, and to the corre-
sponding decryption oracles. We writgk;, sk;) (for i = 1,2, ...) for the encryption

and decryption keys that parametrize the oracle. AdverSagyecutes4 as a subrou-

tine and simulates for its environment (that is, the experiment defining secrecy of
nonces) by playing the role of the honest parties whose public keys are set to be keys in
{pk17pk2a . }

Notice that althougl8 does not know the secret keys that correspond to the encryp-
tion keys of the parties that it simulates, it can still parse the messages sgnbyy
using the decryption oracles.

The difference between the normal execution and the execution that is simulated by
B is that the encryptions that the honest parties need to compute are computed using
the left right encryption oracles as follows. Whenever some honest pamgds to
encrypt a message under the public key of party, and the message is sufficiently
long (that is, longer than the security parameter), adveiSasiects a random message
rn Of equal length. The encryption is set to g, the result obtained by submitting
(m, ) to the left-right oracle under the public ke¥,. Adversary3 maintains a table
of all pairs(m, ¢,,). Whenever a party needs to decrypt a ciphertgxbbtained from
the left-right oracle5 sets the underlying plaintext to be. In rest, the simulation of
the parties by is precisely as in the normal execution. The outpu3aé whatever
adversaryA4 outputs. Notice that if the bit that parametrizes the left-right oracle9js
then the simulation thas offers to.A is precisely as in the executidixec 4 ;7 whereas
if the bit b is 0 then the simulation thas offers to.A is as inExec’ ;;. We therefore
have that: ’

AdviEe () = Pr | Bxpliec®o () = 1] — Pr | Expliec (n) = 1]
=Pr[Execapg(n)=1]—Pr [ExecOA?H(n) = 1]

SinceEnc is IND-CCA secure, the conclusion of the lemma follows.

H.3 Proof of Lemma 3

Proof. The proof is similar to that of Lemma 2. We show that if there exists a com-
putational adversaryl for which the induced symbolic traces of its oracle execution
are not Dolev-Yao, then, we construct an adverdarghat breaks4€. Adversary3
executes adversapf as a subroutine and emulates the environmentthexpects by
simulating the honest parties. Advers#tyntercepts all queries and answers precisely
as adversarys in the proof of Lemma 2 does. Recall that each time an honest party
needs to encrypt some messaggeadversarys obtains the corresponding ciphertext by

30



submitting(m, r,,,) to its left-right encryption oracle. Here,, is selected uniformly at
random among the string of length equal to thatof

In addition, adversarys keeps track of the symbolic trace that corresponds to the
execution trace, simply by parsing all messages that are sent by the adversary and the
honest parties, and constructing (during the execution) the mappitach time adver-
sary.A sends a messageto one of the partied3 verifies if the symbolic representation
of m can be obtained using Dolev-Yao operations from the symbolic representations of
the messages that the adversary had priorly seen. It is known that for closed terms the
verification procedure can be done in polynomial time. If at any point the message out-
put by A is not Dolev-Yao, thei8 stops its execution and outputsOtherwise, whemd
finishes its execution, adversasyoutputs). Notice that if the bit of the left-right oracle
is 0, then5 simulates perfectly the environmentBfec 4 7(n) whereas ib = 1, then
the simulation is as ifexec ;7(n). Let NDY (Exec4,7(n)) denote the event that the
executionExec 4 17(n) is not Dolev Yao. Similarly, leNDY (Exec’ ;;(n)) denote the
event that the executidixec’; (1) is not Dolev Yao. Then, we obtain that:

AdviEe (n) = Pr | Expgigeco(n) = 1] - Pr | Expjggec () = 1]
= Pr[NDY (Execa,11(n))] — Pr [NDY (Exec% ()]

SincePr [NDY (Exec 4. 17(n)) ] is negligible (Proposition 1) anAdvgféﬁE“(n) is also
negligible (A€ is IND-CCA secure), we obtain that

Pr [ NDY(Exec) 1(n)) ] = Pr[NDY(Exec,;r(n))] — Advi'gnc’ (n)

is also negligible. We conclude thatBixec; ; the computational execution traces are
valid Dolev-Yao traces.
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