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ommon random 
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ommon random 
oins to the parties. In the frameworkof Universal Composability we show the impossibility of se
urely extending a 
oin toss forstatisti
al and perfe
t se
urity. On the other hand, for 
omputational se
urity the existen
eof a proto
ol for 
oin toss extension depends on the number m of random 
oins whi
h 
anbe obtained �for free�.For the 
ase of stand-alone se
urity, i.e., a simulation based se
urity de�nition withoutan environment, we present a novel proto
ol for un
onditionally se
ure 
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ol works for superlogarithmi
 m, whi
h is optimal as we show theimpossibility of statisti
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1 Introdu
tionManuel Blum showed in [Blu81℄ how to �ip a 
oin over the telephone line. His proto
ol guaran-teed that even if one party does not follow the proto
ol, the other party still gets a uniformlydistributed 
oin toss result. This general 
on
ept of generating 
ommon randomness in a waysu
h that no dishonest party 
an di
tate the result proved very useful in 
ryptography, e.g., inthe 
onstru
tion of proto
ols for general se
ure multi-party 
omputation.Here we are interested in the task of extending a given 
oin toss. That is, suppose that twoparties already have the possibility of making a single m-bit 
oin-toss. Is it possible for them toget n > m bits of 
ommon randomness? The answer we 
ome up with is basi
ally: �it depends.�The �rst thing the extensibility of a given 
oin toss depends on is the required se
urity type.One type of se
urity requirement (whi
h we 
all �stand-alone simulatability� here) 
an simplybe that the proto
ol imitates an ideal 
oin toss fun
tionality in the sense of [Gol04℄, where asimulator has to invent a realisti
 proto
ol run after learning the out
ome of the ideal 
oin-toss.A stronger type of requirement is to demand universal 
omposability, whi
h basi
ally meansthat the proto
ol imitates an ideal 
oin toss fun
tionality even in arbitrary proto
ol environ-ments. Se
urity in the latter sense 
an 
onveniently be 
aptured in a simulatability frameworklike the Universal Composability framework [Can01a, Can05℄ or the Rea
tive Simulatabilitymodel [PW01, BPW04℄.Orthogonal to this, one 
an vary the level of ful�lment of ea
h of these requirements. Forexample, one 
an demand stand-alone simulatability of the proto
ol with respe
t to polynomial-time adversaries in the sense that real proto
ol and ideal fun
tionality are only 
omputationallyindistinguishable. This spe
i�
 requirement is already ful�lled by the proto
ol of Blum. Alterna-tively, one 
an demand, e.g., universal 
omposability of the proto
ol with respe
t to unboundedadversaries. This would then yield statisti
al or even perfe
t se
urity. We show that whether su
ha proto
ol exists depends on the asymptoti
 behaviour of m.Our results are summarized in the table below. A �yes� or �no� indi
ates whether a proto
olfor 
oin toss extension exists in that setting. �Depends� means that the answer depends on thesize of the seed (the m-bit 
oin toss available by assumption), and boldfa
e indi
ates novelresults. Se
urity type ↓ / level → Computational Statisti
al Perfe
tstand-alone simulatability yes depends3 nouniversal 
omposability depends4 no noKnown results in the perfe
t and statisti
al 
ase. A folklore theorem states, that (perfe
tly non-trivial) statisti
ally se
ure 
oin-toss is impossible from s
rat
h (even in very lenient se
uritymodels). By Kitaev, this result was extended even to proto
ols using quantum 
ommuni
ation(
f. [ABDR04℄). [BGR96℄ �rst investigated the problem of extending a 
oin-toss. They presenteda statisti
ally se
ure proto
ol for extending a given 
oin-toss (pre-shared using a VSS), if lessthan 1
6 of the parties are 
orrupted. Note that their main attention was on the e�
ien
y of theproto
ol, sin
e in that s
enario arbitrary multi-party 
omputations and therefore in parti
ular
oin-toss from s
rat
h are known to be possible. The result does not apply to the two-party 
ase.3 Coin toss extension is possible if and only if the seed has superlogarithmi
 length.4 Coin toss extension is impossible if the seed does not have superlogarithmi
 length. The possibilityresult depends on the 
omplexity assumption we use, 
f. Se
tion 3.1.2



Our results in the perfe
t and statisti
al 
ase. Our results in the perfe
t 
ase are most easilyexplained. For the perfe
t 
ase, we show impossibility of any 
oin toss extension, no matter how(in-)e�
ient. We show this for stand-alone simulatability (Coro. 8) and for universal 
ompos-ability(Coro. 15). Now for the statisti
al 
ase. When demanding only stand-alone simulatability,the situation depends on the number of the already available 
ommon 
oins. Namely, we give ane�
ient proto
ol to extend m 
ommon 
oins to any polynomial number (in the se
urity param-eter), if m is superlogarithmi
 (Th. 11). Otherwise, we show that there 
an even be no proto
olthat derives m + 1 
ommon random 
oins (Coro. 8). In the universal 
omposability setting, thesituation is more 
lear: we show that there simply is no proto
ol that derives from m 
ommon
oins m + 1 
oins, no matter how large m is (Th. 14). (However, here we restri
t to proto
olsthat run in a polynomial number of rounds.)Known results in the 
omputational 
ase. In [Blu81℄ Blum gave a 
omputationally se
ure pro-to
ol. In [Gol04, Proposition 7.4.8℄, this proto
ol is shown to be stand-alone simulatable, andtogether with the sequential 
omposition theorem [Gol04, Proposition 7.4.3℄ for stand-alone sim-ulatable proto
ols, this gives a 
omputationally stand-alone simulatable proto
ol for tossingpolynomially many 
oins.This makes 
oin-toss extension trivial in that setting, one just ignores the m-bit 
oin-toss andtosses n-bit from s
rat
h.In the 
omputational universal 
omposability setting, it has been shown in [CF01℄ that 
oin-toss 
annot be a
hieved from s
rat
h. However, they showed that given a su�
iently large 
om-mon referen
e string (CRS), bit 
ommitment is possible. From this it is easy to see that su
h aCRS (and therefore also a su�
iently large 
oin-toss) 
an be extended to any polynomial length.However, it was un
lear what the minimum size required from the CRS or the 
oin-toss is.Note that there is a subtle di�eren
e between the notion of a CRS and a 
oin-toss. A CRS israndomness that is available to all parties at the beginning of the proto
ol, while with 
oin-tossthe randomness is only generated when all parties agree to run the 
oin-toss. This makes the
oin-toss a
tually the stronger primitive, sin
e in some situations it is ne
essary to guaranteethat not even 
orrupted parties learn the out
omes of the 
oin-toss prior to a given proto
olstep.In [Cle86℄, the task of 
oin-toss is 
onsidered in a s
enario slightly di�erent from ours:in [Cle86℄, proto
ol parti
ipants may not abort proto
ol exe
ution without generating output. Inthat setting, [Cle86℄ show that 
oin-toss is generally not possible even against 
omputationallylimited adversaries. However, to the best of our knowledge, an extension of a given 
oin toss hasnot been 
onsidered so far in the 
omputational setting.Our results in the 
omputational 
ase. We answer the question 
on
erning the minimal sizene
essary for a 
oin-toss to be extensible: If an m-bit 
oin-toss fun
tionality is given, and mis not superlogarithmi
, then it is already impossible for the parties to derive m + 1 
ommonrandom 
oins (in a universally 
omposable way) from it (Th. 6). However, we also show that understrengthened 
omputational assumptions, there are proto
ols that extend m to any polynomialnumber (in the se
urity parameter) of 
ommon random 
oins, if m is superlogarithmi
 (Th. 5).In that sense, we give the remaining parts for a 
omplete 
hara
terization of the 
omputational
ase.Notation� A fun
tion f is negligible, if for any c > 0, f(k) ≤ k−c for su�
iently large k (i.e., f ∈ k−ω(1)).� f is overwhelming, if 1− f is negligible (i.e., f ∈ 1− k−ω(1)).� f is noti
eable, if for some c > 0, f(k) ≥ k−c for su�
iently large k (i.e., f ∈ k−O(1)). Notethat fun
tions exists, whi
h are neither negligible nor noti
eable.� f is polynomially bounded, if for some c > 0, f(k) ≤ kc for su�
iently large k (i.e., f ∈ kO(1)).3



� f is polynomially-large, if there is a c > 0 s.t. f(k)c ≥ k for su�
iently large k (i.e., f ∈ kΩ(1)).� f is superpolynomial, if for any c > 0, f(k) > kc for su�
iently large k (i.e., f ∈ kω(1)).� f is superlogarithmi
, if f/ log k →∞ (i.e., f ∈ ω(log k)). It is easy to see that f is superlog-arithmi
 if and only if 2−f is negligible.� f is superpolylogarithmi
, if for any c > 0, f(k) > (log k)c for su�
iently large k (i.e.,
f ∈ (log k)ω(1)).� f is exponentially-small, if there exists a c > 1, s.t. f(k) ≤ c−k for su�
iently large k (i.e.,
f ∈ Ω(1)−k = 2−Ω(k)).� f is subexponential, if for any c > 1, f(k) < ck for su�
iently large k (i.e., f ∈ o(1)k = 2o(k)).2 Se
urity de�nitionsIn this se
tion we roughly sket
h the se
urity de�nitions used throughout this paper. We dis-tinguish between two notions: stand-alone simulatability as de�ned in [Gol04℄,5 and UniversalComposability (UC) as de�ned in [Can01a℄.Stand-alone simulatability. In [Gol04℄ a de�nition for the se
urity of two-party se
ure fun
tionevaluations is given (
alled se
urity in the mali
ious model). We will give a sket
h, for more detailswe refer to [Gol04℄.A proto
ol 
onsists of two parties that alternatingly send messages to ea
h other. The partiesmay also invoke an ideal fun
tionality, whi
h is given as an ora
le (in our 
ases, they invoke asmaller 
oin-toss to realise a larger one).We say the proto
ol π stand-alone simulatably realises a probabilisti
 fun
tion f , if for anye�
ient adversary A that may repla
e none or a single party, there is an e�
ient simulator Ss.t. for all inputs the following random variables are 
omputationally indistinguishable:� The real proto
ol exe
ution. This 
onsists of the view of the 
orrupted parties upon inputs x1and x2 for the parties and the auxiliary input z for the adversary, together with the outputs
I of the parties.� The ideal proto
ol exe
ution. Here the simulator �rst learn the auxiliary input z and possiblythe input for the 
orrupted party (the simulator must 
orrupt the same party as the adver-sary). Then he 
an 
hoose the input of the 
orrupted party for the probabilisti
 fun
tion f ,the other inputs are 
hosen honestly (i.e., the �rst input is x1 if the �rst party is un
orrupted,and the se
ond input x2 if the se
ond party is).Then the simulator learns the output I of f (we assume the output to be equal for all parties).It may now generate a fake view v of the 
orrupted parties. The ideal proto
ol exe
utionthen 
onsists of v and I.Of 
ourse, in our 
ase the probabilisti
 fun
tion f (the 
oin-toss) has no input, so the abovede�nition gets simpler.What we have sket
hed above is what we 
all 
omputational stand-alone simulatability. Wefurther de�ne statisti
al stand-alone simulatability and perfe
t stand-alone simulatability. Inthese 
ases we do not 
onsider e�
ient adversaries and simulators, but unlimited ones. In the
ase of statisti
al stand-alone simulatability we require the real and ideal proto
ol exe
ution tobe statisti
ally indistinguishable (and not only 
omputationally ), and in the perfe
t 
ase weeven require these distributions to be identi
al.Universal Composability. In 
ontrast to stand-alone simulatability, Universal Composability[Can01a℄ is a mu
h stri
ter se
urity notion. The main di�eren
e is the existen
e of an environment,that may intera
t with proto
ol and adversary (or with ideal fun
tionality and simulator)5 In fa
t, [Gol04℄ does not use the name stand-alone simulatability but simply speaks about se
urity inthe mali
ous model. We adopt the name stand-alone simulatability for this paper to be able to betterdistinguish the di�erent notions. 4



and try to distinguish between real and ideal proto
ol. This additional stri
tness brings theadvantage of a versatile 
omposition theorem (the Universal Composition Theorem [Can01a℄).We only sket
h the model here and refer to [Can01a℄ for details.A proto
ol 
onsists of several ma
hines that may (a) get input from the environment, (b) giveoutput to the environment (both also during the exe
ution of the proto
ol), and (
) send messagesto ea
h other.The real proto
ol exe
ution 
onsists of a proto
ol π, an adversary A and an environment Z.Here the environment may freely 
ommuni
ate with the adversary, and the latter has full 
ontrolover the network, i.e., it may deliver, delay or drop messages sent between parties. We assumethe authenti
ated model in this paper, so the adversary learns the 
ontent of the messages butmay not modify it. When Z terminates, it gives a single bit of output. The adversary may 
hooseto 
orrupt parties at any point in time.6The ideal proto
ol exe
ution is de�ned analogously, but instead of a proto
ol π there is anideal fun
tionality F and instead of the adversary there is a simulator S. The simulator 
an onlylearn and in�uen
e proto
ol data, if (a) the fun
tionality expli
itly allows this, or (b) it 
orruptsa party (note that the simulator may only 
orrupt the same parties as the adversary). In thelatter 
ase, the simulator 
an 
hoose inputs into the fun
tionality in the name of that party andgets the outputs appartaining to that party. In the 
ase of un
orrupted parties, the environmentis in 
ontrol of the 
orresponding in- and output of the ideal fun
tionality.We say a proto
ol π universally 
omposably (UC)-implements an ideal fun
tionality F (orshort π is universally 
omposable if F is 
lear from the 
ontext), if for any e�
ient adversary A,there is an e�
ient simulator S, s.t. for all e�
ient environments Z and all auxiliary inputs zfor Z, the distributions of the output-bit of Z in the real and the ideal proto
ol exe
ution areindistinguishable.What has been sket
hed above we 
all 
omputational UC. We further de�ne statisti
al andperfe
t UC. In these notions, we allow adversary, simulator and environment to be unlimitedma
hines. Further, in the 
ase of perfe
t UC, we require the distributions of the output-bit of Zto be identi
al in real and ideal proto
ol exe
ution.The Ideal Fun
tionality for Coin Toss. To des
ribe the task of implementing a universally
omposable 
oin-toss, we have to de�ne the ideal fun
tionality of n-bit 
oin-toss.In the following, let n denote a positive integer-valued fun
tion.Below is an informal des
ription of our ideal fun
tionality for a n-bit 
oin toss. First, thefun
tionality waits for initialization inputs from both parties P1 and P2. As soon as both partieshave this way signalled their willingness to start, the fun
tionality sele
ts n 
oins in form ofan n-bit string κ uniformly and sends this κ to the adversary. (Note that a 
oin toss does notguarantee se
re
y of any kind.)If the fun
tionality now sent κ dire
tly and without delay to the parties, this behaviour wouldnot be implementable by any proto
ol (this would basi
ally mean that the proto
ol output isimmediately available, even without intera
tion). So the fun
tionality lets the adversary de
idewhen to deliver κ to ea
h party. Note however, that the adversary may not in any way in�uen
ethe κ that is delivered.A more detailed des
ription follows:6 It is then 
alled an adaptive adversary. If the adversary 
an only 
orrupt parties before the start of theproto
ol, we speak of stati
 
orruption. All results in this paper hold for both variants of the se
urityde�nition. 5



Ideal fun
tionality CTn (n-bit Coin Toss)1. Wait until there have been �init� inputs from P1 and P2. Ignore messages from theadversary, but immediately inform the adversary about the init.2. Sele
t κ ∈ {0, 1}n uniformly and send κ to the adversary. From now on:� on the �rst (and only the �rst) �deliver to 1� message from the adversary, send κto P1,� on the �rst (and only the �rst) �deliver to 2� message from the adversary, send κto P2.Using CTn, we 
an also formally express what we mean by extending a 
oin toss. Namely:De�nition 1. Let n = n(k) and m = m(k) be positive, polynomially bounded and 
omputablefun
tions su
h that m(k) < n(k) for all k. Then a proto
ol is a universally 
omposable (m→ n)-
oin toss extension proto
ol if it se
urely and non-trivially implements CTn by having a

ess onlyto CTm. This se
urity 
an be 
omputational, statisti
al or perfe
t.By a �non-trivial� implementation we mean a proto
ol that, with overwhelming probability,guarantees outputs if no party is 
orrupted and all messages are delivered. (Alternatively, one mayalso 
onsider proto
ols that provide output with overwhelming probability.) This requirement isuseful sin
e without it, a trivial proto
ol that does not generate any output formally implementsevery fun
tionality. (Cf. [CLOS02℄ and [BHMQU05, Se
tion 5.1℄ for more dis
ussion and formalde�nitions of �non-triviality.�)On unlimited simulators. Following [BPW04℄, we have modelled statisti
al and perfe
t stand-alone and UC se
urity using unlimited simulators. Another approa
h is to require the simulatorsto be polynomial in the running-time of the adversary. All our results apply also to that 
ase:For the impossibility results, this is straightforward, sin
e the se
urity notion gets stri
ter whenthe simulators be
ome more restri
ted. The only possibility result for statisti
al/perfe
t se
urityis given in Theorem 11. There, the simulator we 
onstru
t is in fa
t polynomial in the runtimeof the adversary.In the following se
tions, we investigate the existen
e of su
h 
oin toss extension proto
ols,depending on the desired se
urity level (i.e., 
omputational / statisti
al / perfe
t se
urity) andthe parameters n and m.3 The Computational Case3.1 Universal ComposabilityIn the following, we need the assumption of enhan
ed trapdoor permutations with dense pub-li
 des
riptions (
alled ETD hen
eforth). Roughly, these are trapdoor permutations with theadditional properties that (i) one 
an 
hoose the publi
 key in an oblivious fashion, i.e., evengiven the 
oin tosses we used it is infeasible to invert the fun
tion, and (ii) the publi
 keys are
omputationally indistinguishable from random strings.De�nition 2 (Enhan
ed trapdoor permutations with dense publi
 des
riptions). Asystem of enhan
ed trapdoor permutations with dense publi
 des
riptions (ETD) 
onsists ofthe following e�
ient algorithms: a key generation algorithm I that (given se
urity parameter
k) generates publi
 keys pk and 
orresponding trapdoors td (we treat pk and td as e�
iently
omputable fun
tions to fa
ilitate notation), and a domain sampling algorithm S that given pkoutputs an element in the domain of pk , satisfying the following:For any non-uniform probabilisti
 polynomial-time algorithm A there is a negligible fun
tion
µ s.t. the following 
onditions are satis�ed: 6



� Permutations. Pr
[

(pk , td)← I(1k) : pk is a valid publi
 key and td = pk−1
]

≥ 1−µ(k), andany valid publi
 key is a permutation.� Almost uniform sampling. For any valid publi
 key pk that 
an be output by I(1k), thestatisti
al distan
e between the output of S(pk) and randomly 
hosen elements in the domain(=range) of pk is bounded by µ(k).� Enhan
ed hardness. For all k ∈ N
Pr

[

(pk , td)← I(1k), y ← S(pk), x′ ← A(1k, pk , y, r) : pk (x′) = y
]

≤ µ(k)Here r denotes the randomness used by S.� Dense publi
 des
riptions. There is a polynomially bounded, e�
iently 
omputable fun
tion s(not depending on A) s.t.
∣

∣

∣
Pr

[

(pk , td)← I(1k) : A(1k, pk ) = 1
]

− Pr

[

pk ← {0, 1}s(k) uniformly : A(1k, pk ) = 1
]∣

∣

∣
≤ µ(k).Exponentially-hard ETD are de�ned analogously, ex
ept that we require the 
onditions aboveto hold for all subexponential-time A and an exponentially-small µ.Lemma 3. There is a 
onstant d ∈ N s.t. the following holds:Assume that ETD exist, s.t. the size of the 
ir
uits des
ribing the ETD is bounded by s(k) forse
urity parameter k.7Then there is a proto
ol π using a uniform 
ommon referen
e string (CRS) of length s(k)d,s.t. π se
urely UC-realises a bit 
ommitment that 
an be used polynomially many times.A proto
ol for realising bit 
ommitment using a CRS has been given in [CLOS02℄. To showthis lemma, we only need to review their 
onstru
tion to see, that a CRS of length sd is indeedsu�
ient. For details, see Appendix A.2.Lemma 4. Let s(k) be a polynomially bounded fun
tion, that is 
omputable in time polynomialin k.Assume one of the following holds:� ETD exist and s is a polynomially-large fun
tion.� Exponentially-hard ETD exist and s is a superlogarithmi
 fun
tion.Then there also exist a 
onstant e ∈ N independent of s and ETD, s.t. the size of the 
ir
uitsdes
ribing the ETD is bounded by s(k)e for se
urity parameter k.This is shown by s
aling the se
urity parameter of the original ETD. The proof is given inAppendix A.3.Theorem 5. Let n = n(k) and m = m(k) be polynomially bounded and e�
iently 
omputablefun
tions. Assume one of the following 
onditions holds:� m is polynomially-large and ETD exist, or� m is superpolylogarithmi
 and exponentially-hard ETD exist.Then there is a polynomial-time 
omputationally universally 
omposable proto
ol π for (m→ n)-
oin toss extension.7 By the size of the 
ir
uits we means the total size of the 
ir
uits des
ribing both the key generationand the domain sampling algorithm. Note that then trivially also the size of the resulting keys andthe amount of randomness used by the domain sampling algorithm are bounded by s(k).7



Proof. Let d be as in Lemma 3. Let further e be as in Lemma 4. If m is polynomially-large orsuperpolylogarithmi
, then s := m1/(de) is polynomially-large or superlogarithmi
, resp. So, byLemma 4 there are ETD, s.t. the size of the 
ir
uits des
ribing the ETD is bounded by se = m1/e.Then, by Lemma 3 there is a UC-se
ure proto
ol for implementing n bit 
ommitments using an
(m1/d)d = m-bit CRS.Given n bit 
ommitments, the following proto
ol π UC-realises an n-bit 
oin-toss (based onthe proto
ol of [Blu81℄): Upon input (init), party P1 
ommits to n random bits r1. Upon input
(init), and after P1 has 
ommitted itself, party P2 sends n random bits r2 to P1. Then P1 unveilsthe bits r1. The output of the parties is the n-bit string r = r1⊕r2, where ⊕ denotes the bit-wiseex
lusive or.It is easy to see, that this proto
ol UC-realises an n-bit 
oin-toss. We only roughly sket
h thesimulator S: As soon as all un
orrupted parties got input (init), S learns what value r the ideal
n-bit 
oin-toss has. When P1 is or gets 
orrupted, S learns the value r1 as soon as P1 
ommits,so the simulated r2 
an be 
hosen as r1⊕ r. When P2 is or gets 
orrupted, but P1 is un
orruptedat least during the 
ommitment to r1, the simulator S unveil value r1 to r2 ⊕ r. In the 
ase thatboth parties get 
orrupted, the environment does not learn the value from the ideal 
oin-toss, sothe simulator 
an simply 
hose it to be r1 ⊕ r2.Furthermore, an m-bit CRS 
an be trivially implemented using an m-bit 
oin-toss. Usingthe Composition Theorem we 
an put the above 
onstru
tions together and get a proto
ol thatUC-realises an n-bit 
oin-toss using an m-bit 
oin-toss. ⊓⊔Note that given stronger, but possibly unrealisti
 assumptions, the lower bound for m inTheorem 5 
an be de
reased. If we assume that for any superlogarithmi
 m, there are ETDs.t. the size of their 
ir
uits is bounded by m1/d (where d is the 
onstant from Lemma 3), we get
oin-toss extension even for superlogarithmi
 m (using the same proof as for Theorem 5, ex
eptthat instead of Lemma 4 we use the stronger assumption).However, we 
annot expe
t an even better lower bound for m, as the following theorem shows:Theorem 6. Let n = n(k) and m = m(k) be fun
tions with n(k) > m(k) ≥ 0 for all k,and assume that m is not superlogarithmi
 (i.e., 2−m is non-negligible). Then there is no non-trivial polynomial-time 
omputationally universally 
omposable proto
ol for (m → n)-
oin tossextension.Proof (sket
h). Assume for 
ontradi
tion that proto
ol π, with parties P1 and P2 using CTm,implements CTn (with m, n as in the theorem statement). Let A1 be an adversary on π that,taking the role of a 
orrupted party P1, simply reroutes all 
ommuni
ation of P1 (with either P2or CTm) to the proto
ol environment Z1 and thus lets Z1 take part as P1 in the real proto
ol.Imagine a proto
ol environment Z1, running with π and A1 as above, that keeps and internalsimulation P1 of P1 and lets this simulation take part in the proto
ol (through A1). After aproto
ol run, Z1 inspe
ts the output κ1 of P1 and 
ompares it to the output κ2 of the un
orrupted
P2. In a real proto
ol run with π, A1, and Z1, we will have κ1 = κ2 with overwhelming probabilitysin
e π non-trivially implements CTn, and CTn guarantees 
ommon outputs. So a simulator S1,running in the ideal model with CTn and Z1, must be able to a
hieve that the ideal output κ2(that is ideally 
hosen by CTn and 
annot be in�uen
ed by S1) is identi
al to what the simulation
P1 of P1 inside Z1 outputs. In that sense, S1 must be able to �
onvin
e� P1 to also output κ2. Tothis end, S1 may�and must�fake a 
omplete real proto
ol 
ommuni
ation as A1 would deliverit to Z1 (and thus, to P1).However, then we 
an 
onstru
t another proto
ol environment Z2 that expe
ts to take therole of party P2 in a real proto
ol run (just like Z1 expe
ted to take the role of P1). To this8



end, an adversary A2 on π with 
orrupted P2 is employed that forwards all 
ommuni
ation of
P2 with either P1 or CTn to Z2. Internally, Z2 now simulates S1 (and not P2!) from above andan instan
e CTn of the trusted host CTn. Re
all that S1, given a target string κ by CTn, mimi
san un
orrupted P2 along with an instan
e of CTm. In that situation, S1 
an 
onvin
e an honest
P1 with overwhelming probability to eventually output κ.Chan
es are 2−m that the CTm-instan
e made up by S1 outputs the same seed as the real
CTm in a run of Z2 with π and A2. So with probability at least 2−m−µ for negligible µ, in su
ha run, Z2 observes a P1-output κ that is identi
al to the output of the internally simulated CTn.But then, by assumption about the se
urity of π, there is also a simulator S2 for A2 and Z2 thatprovides Z2 with an indistinguishable view. In parti
ular, in an ideal run with S2 and CTn, Z2observes equal outputs from CTn and CTn with probability at least 2−m − µ′ for negligible µ′.This is a 
ontradi
tion, as both outputs are uniformly and independently 
hosen n-bit strings,and n ≥ m + 1. ⊓⊔4 Statisti
al and Perfe
t Cases4.1 Stand-alone simulatabilityWe start o� with a negative result:Theorem 7. Let m < n be fun
tions in the se
urity parameter k. If m is not superlogarithmi
,there is no two-party n-bit 
oin-toss proto
ol π (not even an ine�
ient one) that uses an m-bit
oin-toss and has the following properties:� Non-triviality. If no party is 
orrupted, the probability that the parties give di�erent, invalidor no output is negligible (by invalid output we mean output not in {0, 1}n).� Se
urity. For any (possibly unbounded) adversary 
orrupting one of the parties there is anegligible fun
tion µ, s.t. for every se
urity parameter k and every c ∈ {0, 1}n, the probabilityfor proto
ol output c is at most 2−n + µ(k).If we require perfe
t non-triviality (the probability for di�erent or no outputs is 0) and perfe
tse
urity (the probability for a given output c is at most 2−n), su
h a proto
ol π does not exist,even if m is superlogarithmi
.Proof (sket
h). It is su�
ient to 
onsider the 
ase n = m + 1.Without loss of generality, we 
an assume that the available m-bit 
oin toss is only usedat the end of the proto
ol. Similarly, we 
an assume that in the honest 
ase, the parties neveroutput distin
t values. A detailed proof for these statements 
an be found in the full proof.To show the theorem, we �rst 
onsider �
omplete trans
ripts� of the proto
ol. By a 
ompletetrans
ript we mean all messages sent during the run of a proto
ol, ex
luding the value of the
m-bit 
oin-toss. We distinguish three sets of 
omplete trans
ripts: the set A of trans
ripts havingnon-zero probability for the proto
ol output 0n, the set B of trans
ripts having zero probabilityof output 0n and zero probability that the proto
ol gives no output, and the set C of trans
riptshaving non-zero probability of giving no output. Note that, sin
e for a 
omplete trans
ript, theproto
ol output only depends on the m-bit 
oin-toss, any of the above non-zero probabilities isat least 2−m.For any partial trans
ript p (i.e., a situation during the run of the proto
ol), we de�ne threevalues α, β, γ. The value α denotes the probability with whi
h a 
orrupted Ali
e 
an enfor
ea trans
ript in A starting from p, the value β denotes the probability with whi
h a 
orruptedBob 
an enfor
e a trans
ript in B, and the value γ denotes the probability that the 
ompleteproto
ol trans
ript will lie in C if no-one is 
orrupted. We show indu
tively that for any partialtrans
ript p, (1 − α)(1 − β) ≤ γ. In parti
ular, this holds for the beginning of the proto
ol. For9



simpli
ity, we assume that 2−m is not only non-negligible, but noti
eable (in the full proof, thegeneral 
ase is 
onsidered). Sin
e a trans
ript in C gives no output with probability at least 2−m,the probability that the proto
ol generates no output (in the un
orrupted 
ase) is at least 2−mγ.By the non-triviality 
ondition, this probability is negligible, so γ must be negligible, too. So
(1 − α)(1 − β) is negligible, too. Therefore max {1− α, 1− β} must be negligible. For now, weassume that 1− α is negligible or 1− β is negligible (for the general 
ase, see the full proof).If 1−α is negligible, the probability for output 0n is at least 2−mα. Sin
e α is overwhelmingand 2−m noti
eable, this is greater than 2−n = 1

22−m by a noti
eable amount whi
h 
ontradi
tsthe se
urity property.If 1 − β is negligible, we 
onsider the maximum probability a 
orrupted Bob 
an a
hievethat the proto
ol output is not 0n. By the se
urity property, this probability should be at most
(2n−1)2−n plus a negligible amount, whi
h is not overwhelming. However, sin
e every trans
riptin B gives su
h an output with probability 1, the probability of su
h is β, whi
h is overwhelming,in 
ontradi
tion of the se
urity property.The perfe
t 
ase is proven similarly. ⊓⊔The full proof is given in Appendix A.5.Corollary 8. By a non-trivial 
oin-toss proto
ol we mean a proto
ol s.t. (in the un
orrupted
ase) the probability that the parties give no or di�erent output is negligible. By a perfe
tlynon-trivial 
oin-toss proto
ol where this probability is zero.Let m be not superlogarithmi
 and n > m. Then there is no non-trivial proto
ol realising
n-bit 
oin-toss using an m-bit 
oin-toss in the sense of statisti
al stand-alone simulatability.Let m be any fun
tion (possibly superlogarithmi
) and n > m. Then there is no perfe
tlynon-trivial proto
ol realising n-bit 
oin-toss using an m-bit 
oin-toss in the sense of perfe
tstand-alone simulatability.Proof. A statisti
ally se
ure proto
ol would have the se
urity property from Theorem 7 and thus,if non-trivial, 
ontradi
t Theorem 7. Analogously for perfe
t se
urity. ⊓⊔However, not all is lost:Now we will prove that there exists a proto
ol for 
oin toss extension from m to n bitwhi
h is statisti
ally stand-alone simulatably se
ure. The basi
 idea is to have the parties P1and P2 
ontribute random strings to generate one string with su�
iently large min-entropy (themin-entropy of a random variable X is de�ned as minx− logPr[X = x]). The randomness fromthis string is then extra
ted using a randomness extra
tor. Interestingly the amount of perfe
trandomness (i.e., the size of the m-bit 
oin-toss) one needs to invest is smaller than the amountextra
ted. This makes 
oin toss extension possible.To obtain the 
oin toss extension we need a result about randomness extra
tors able to extra
tone bit of randomness while leaving the seed reusable like a 
atalyst.Lemma 9. For every m there exists a fun
tion hm : {0, 1}m × {0, 1}m−1 → {0, 1}, (s, x) 7→ rsu
h that for a uniformly distributed s and for an x with a min-entropy of at least t the statisti
aldistan
e of s‖hm(s, x) and the uniform distribution on {0, 1}m+1 is at most 2−t/2/

√
2.Proof. Let hm(s, x) := 〈s1 . . . sm−1, x〉 ⊕ sm. Here 〈·, ·〉 denotes the inner produ
t and ⊕ theaddition over GF(2). It is easy to verify that hm(s, ·) 
onstitutes a family of universal hashfun
tions [CW79℄, where s is the index sele
ting from that family. Therefore the Leftover HashLemma [ILL89, Sti02℄ guarantees that the statisti
al distan
e between s‖hm(s, x) and the uniformdistribution on {0, 1}m+1 is bounded by 1

2

√
2 · 2−t = 2−t/2/

√
2. ⊓⊔10



With this fun
tion hm a simple proto
ol is possible whi
h extends m(k) 
oin tosses to m(k)+1if the fun
tion m(k) is superlogarithmi
.Theorem 10. Let m(k) be a superlogarithmi
 fun
tion, then there exists a 
onstant round sta-tisti
ally stand-alone simulatable proto
ol that realises an (m + 1)-bit 
oin-toss using an m-bit
oin-toss.Proof. Let hm be as in Lemma 9. Then the following proto
ol realises a 
oin toss extension byone bit. Assume m := m(k) where k is the se
urity parameter.1. P1 uniformly 
hooses a ∈ {0, 1}⌊m−1

2
⌋ and sends a to P22. P2 uniformly 
hooses b ∈ {0, 1}⌈m−1

2
⌉ and sends b to P13. If one party fails to send a string of appropriate length or aborts then this string is assumedby the other party to be an all-zero string of the appropriate length4. P1 and P2 invoke the m-bit 
oin toss fun
tionality and obtain a uniformly distributed s ∈

{0, 1}m. If one party Pi fails to invoke the 
oin toss fun
tionality or aborts, then the otherparty 
hooses s at random5. Both P1 and P2 
ompute s‖hm(s, a‖b) and output this string.Similar to 
onstru
tion 7.4.7 in [Gol04℄ the proto
ol is 
onstru
ted in a way that the adversaryis not able to abort the proto
ol (not even by not terminating). Hen
e we 
an safely assumethat the adversary will send some message of the 
orre
t length and will invoke the 
oin tossfun
tionality. We assume the adversary to 
orrupt P2, 
orruption of P1 is handled analogously.Further we assume the random tape of A to be �xed in the following. Due to these assumptionsthere exists a fun
tion fA : {0, 1}⌊m/2⌋ → {0, 1}⌈m/2⌉ for ea
h real adversary A su
h that themessage b sent in step 2 of the proto
ol equals fA(a). There is no loss in generality if we assumethe view of the parties to 
onsists of just a, b, s and the proto
ol output to be s‖hm(s, a‖b).Now for a spe
i�
 adversary A with �xed random tape the output distribution of the realproto
ol (i.e., view and output) is 
ompletely des
ribed by the following experiment: 
hoose
a

R∈ {0, 1}⌊m/2⌋, let b← fA(a), 
hoose s
R∈ {0, 1}m(k), let r ← s‖hm(s, a‖b) and return ((a, b, s), r).We now des
ribe the simulator. To distinguish the the random variables in the ideal modelfrom their real 
ounterparts, we de
orate them with a ∼, e.g., ã, b̃, s̃. The simulator in theideal model obtains a string r̃

R∈ {0, 1}m+1 from the ideal n-bit 
oin-toss fun
tionality and sets
s̃ = r1 . . . rm. Then the simulator 
hooses ã

R∈ {0, 1}⌊m−1

2
⌋ and 
omputes b̃ = fA(ã) by giving ãto a simulated 
opy of the real adversary. If hm(s̃, ã‖b̃) = r̃m+1 then the simulator gives s̃ to thesimulated real adversary expe
ting the 
oin toss. Then the simulator outputs the view (ã, b̃, s̃). Ifhowever, hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds the adversary, i.e., the simulator 
hoosesa fresh ã

R∈ {0, 1}⌊m−1

2
⌋ and again 
omputes b̃ = fA(a). If now hm(s̃, ã‖b̃) = r̃m+1 the simulatoroutputs (ã, b̃, s̃). If again hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds the adversary again.If after k invo
ations of the adversary no triple (ã, b̃, s̃) was output, the simulator aborts andoutputs fail .To show that the simulator is 
orre
t, we have to show that the following to distributions arestatisti
ally indistinguishable: ((a, b, s), r) as de�ned in the real model, and ((ã, b̃, s̃), r̃).By 
onstru
tion of the simulator, it is obvious that the two distributions are identi
al underthe 
ondition that rm = 0, r̃m = 0 and that the simulator does not fail. The same holds given

rm = 1, r̃m = 1 and that the simulator does not fail. Therefore it is su�
ient to show two things:(i) the statisti
al distan
e between r and the uniform distribution on n bits is negligible, and(ii) the probability that that the simulator fails is negligible. Property (i) is shown using theproperties of the randomness extra
tor hm. Sin
e a is 
hosen at random, the min-entropy of a isat least ⌊m−1
2 ⌋ ≥ m

2 − 1, so the min-entropy of a‖b is also at least m
2 − 1. Sin
e s is uniformlydistributed, it follows by Lemma 9 that the statisti
al distan
e between r = s‖hm(s, a‖b) is11



bounded by 2−m/4−1/2/
√

2 = (2−m)1/4/2. Sin
e for superlogarithmi
 m it is 2−m negligible, thisstatisti
al distan
e is negligible.Property (ii) is then easily shown: From (i) we see, that after ea
h invo
ation of the adversarythe distribution of hm(s̃, ã‖b̃) is negligibly far from uniform. So the probability that hm(s̃, ã‖b̃) 6=
r̃m is at most negligibly higher than 1

2 . Sin
e the hm(s̃, ã‖b̃) in the di�erent invokations of theadversary are independent, the probability that hm(s̃, ã‖b̃) 6= r̃m after ea
h a
tivation is neglibiglyfar from 2−k. So the simulator fails only with negligible probability.It follows that the real and the ideal proto
ol exe
ution are indistinguishable, and the proto
olstand-alone simulatably implements an (m+1)-bit 
oin-toss. �The idea of the one bit extension proto
ol 
an be extended by using an extra
tor whi
hextra
ts a larger amount of randomness (while not ne
essarily treating the seed like a 
atalyst).This yields 
onstant round 
oin toss extension proto
ols. However, the simulator needed forsu
h a proto
ol does not seem to be e�
ient, even if the real adversary is. To get a proto
olthat also ful�ls both the property of 
omputational stand-alone simulatability and of statisti
alstand-alone simulatability, we need a simulator that is e�
ient if the adversary is.Below we give su
h a 
oin toss extension proto
ol for superlogarithmi
 m(k) whi
h is sta-tisti
ally se
ure and 
omputationaly se
ure, i.e., the simulator for polynomial adversaries ispolynomially bounded, too. The basi
 idea here is to extra
t one bit at a time in polynomiallymany rounds.Theorem 11. Let m(k) be superlogarithmi
, and p(k) be a positive polynomially-bounded fun
-tion, then there exists a statisti
ally and 
omputationally stand-alone simulatable proto
ol thatrealises an (m + p)-bit 
oin-toss using an m-bit 
oin-toss.Proof. Let hm be as in Lemma 9. Then the following proto
ol realises a 
oin toss extension by
p(k) bits.1. for i = 1 to p(k) do(a) P1 uniformly 
hooses ai ∈ {0, 1}⌊m−1

2
⌋ and sends ai to P2(b) P2 uniformly 
hooses bi ∈ {0, 1}⌈m−1

2
⌉ and sends bi to P1(
) If one party fails to send a string of appropriate length or aborts then this string isassumed by the other party to be an all-zero string of the appropriate length2. P1 and P2 invoke the m-bit 
oin toss fun
tionality and obtain a uniformly distributed

s ∈ {0, 1}m. If one party Pi fails to invoke the 
oin toss fun
tionality or aborts, then theother party 
hooses s at random3. P1 and P2 
ompute s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k)) and output this string.We only roughly sket
h the di�eren
es to the proof of Theorem 10. For ea
h proto
ol round thesimulator follows the strategy des
ribed in the proof of Theorem 10 (i.e., the simulator rewinds theadversary by one round, if the 
oin-toss produ
ed is not the 
orre
t one.) Then using standard hy-brid te
hniques it 
an be shown that this simulator indeed gives an indistinguishable ideal proto-
ol run. Here it is only noteworthy that we use the fa
t that s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k))is statisti
ally indistinguishable from the uniform distribution on m+p bits. However, this followsdire
tly from Lemma 9 and the fa
t that ea
h ai‖bi has min-entropy at least ⌊m−1
2 ⌋ even giventhe values of all aµ‖bµ for µ < i. ⊓⊔4.2 Universal Composability (statisti
al/perfe
t 
ase)In the 
ase of statisti
al se
urity, adversary and proto
ol environment are allowed to be 
om-putationally unbounded. In that 
ase, we show that there is no simulatably se
ure 
oin toss12



extension proto
ol that runs in a polynomial number of rounds. This is for
ed by requiring theparties to halt after a polynomial number of a
tivations. However, note that we do not imposeany restri
tions on the amount of 
omputational work these parties perform in one of thosea
tivations.The proof of this statement is done by 
ontradi
tion. Furthermore, the proof is split up intoan auxiliary lemma and the a
tual proof. In the auxiliary lemma, we show that without loss ofgenerality, a proto
ol for statisti
ally universally 
omposable 
oin toss extension has a 
ertainouter form. Then we show that any su
h proto
ol (of this parti
ular outer form) is inse
ure.For the following statements, we always assume that m = m(k), n = n(k) are arbitraryfun
tions, only satisfying 0 ≤ m(k) < n(k) for all k. We also restri
t to proto
ols that pro
eed ina polynomial number of rounds. That is, by a �proto
ol� we mean in the following one in whi
hea
h party halts after at most p(k) a
tivations, where p(k) is a polynomial whi
h depends onlyon the proto
ol. (As stated above, the parties are still unbounded in ea
h a
tivation.) We startwith a helping lemma whose proof is available in Appendix A.6.Lemma 12. If there is a non-trivial statisti
ally universally 
omposable proto
ol for (m → n)-
oin toss extension, then there is also one in whi
h ea
h party� has only one 
onne
tion to the other party and one 
onne
tion to CTm,� in ea
h a
tivation sends either an �init� message to CTm or some message to the otherparty,� sends in ea
h proto
ol run at most one message to CTm, and this is always an �init� message,� the internal state of ea
h of the two parties 
onsists only of the view that this party hasexperien
ed so far, and� after Pi sends �init� to CTm, it does not further 
ommuni
ate with P3−i (for i = 1, 2 andin 
ase of no 
orruptions).We pro
eed withLemma 13. There is no non-trivial statisti
ally universally 
omposable proto
ol for (m → n)-
oin toss extension whi
h meets the requirements from Lemma 12.Proof. Assume for 
ontradi
tion that π, using CTm, is a statisti
ally universally 
omposableimplementation of CTn, and also satis�es the requirements from Lemma 12.Assume a �xed environment Z0 that gives both parties �init� input and then waits for bothparties to output a 
oin toss result. Consider an adversary A0 that delivers all messages betweenthe parties immediately. The resulting setting D0 is depi
ted in Figure 1.Denote the proto
ol 
ommuni
ation in a run of D0, i.e., the ordered list of messages sentbetween P1 and P2, by com . Denote by κ1 and κ2 the �nal outputs of the parties. For M ⊆ {0, 1}nand a possible proto
ol 
ommuni
ation pre�x c, let E(M, c) be the probability that the proto
oloutputs are identi
al and in M , provided that the proto
ol 
ommuni
ation starts with c, i.e.,
E(M, c) := Pr [κ1 = κ2 ∈M | c ≤ com ] ,where x ≤ y means that x is a pre�x of y.Note that the parties have, apart from their 
ommuni
ation com, only the seed ω ∈ {0, 1}mprovided by CTm for 
omputing their �nal output κ. So we may assume that there is a deter-ministi
 fun
tion f for whi
h κ1 = κ2 = f(com, ω) with overwhelming probability.For a �xed proto
ol 
ommuni
ation com = c, 
onsider the set

Mc := {0, 1}n \ { f(c, s) | s ∈ {0, 1}m }13
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Fig. 1. Left: The initial setting D0 for the statisti
al 
ase. (Some 
onne
tions whi
h are notimportant for our proof have been omitted.) Right: Setting D1 with a 
orrupted P1. Setting D2(with P2 
orrupted instead of P1) is de�ned analogously.of �improbable outputs� after 
ommuni
ation c. Then obviously |Mc| ≥ 2n − 2m ≥ 2n−1. Byde�nition of the ideal output (i.e., the output of CTn in the ideal model), this implies that forsu�
iently large se
urity parameters k, the probability that κ1 = κ2 ∈Mc is at least 2/5. (Here,any number stri
tly between 0 and 1/2 would have done as well.) Otherwise, an environment
ould distinguish real and ideal model by testing for κ1 = κ2 ∈ Mc. Sin
e E(Mc, ε) is exa
tlythat probability, we have E(Mc, ε) ≥ 2/5 for su�
iently large k. Also, E(Mc, c) is negligible byde�nition, so Mc satis�es
E(Mc, ε)− E(Mc, c) ≥

1

3
(1)for su�
iently large k.Sin
e the proto
ol 
onsists by assumption only of polynomially many rounds, c is a list ofsize at most p(k) for a �xed polynomial p. This means that there is a pre�x c of c and a singlemessage m (either sent from P1 to P2 or vi
e versa) su
h that cm ≤ c and

E(Mc, c)− E(Mc, cm) ≥ 1

3p(k)
(2)for su�
iently large k. Intuitively, this means that at a 
ertain point during the proto
ol run, asingle message m had a signi�
ant impa
t on the probability that the proto
ol output is in Mc.Note that su
h an m must be either sent by P1 or P2. So there is a j ∈ {1, 2}, su
h thatfor in�nitely many k, party Pj sends su
h an m with probability at least 1/2. We des
ribe amodi�
ation Dj of setting D0. In setting Dj , party Pj is 
orrupted and simulated (honestly)inside Zj . Furthermore, adversary Aj simply relays all 
ommuni
ation between this simulationinside Zj and the un
orrupted party P3−j . For supplying inputs to the simulation of Pj and tothe un
orrupted P3−j , a simulation of Z0 is employed inside Zj . The situation (for j = 1) isdepi
ted in Figure 1.Sin
e Dj is basi
ally only a re-grouping of D0, the random variables com , ω, and κi aredistributed exa
tly as in D0, so we simply identify them. In parti
ular, in Dj , for in�nitely many

k, there is with probability at least 1/2 a pre�x c and a message m sent by Pj of com thatsatisfy (2). 14



Now we slightly 
hange the environment Zj into an environment Z ′
j . Ea
h time the simulated

Pj sends a message m to P3−j , Z ′
j 
he
ks for all subsets M of {0, 1}n whether

∃M ⊆ {0, 1}n : E(M, c)− E(M, cm) ≥ 1

3p(k)
, (3)where c denotes the 
ommuni
ation between Pj and P3−j so far.If (3) holds at some point for the �rst time, then Z ′

j tosses a 
oin b uniformly at random, andpro
eeds as follows: if b = 0, then Z ′
j keeps going just as Zj would have. In parti
ular, Z ′

j thenlets Pj send m to P3−j . However, if b = 1, then Z ′
j rewinds the simulation of Pj to the pointbefore that a
tivation, and a
tivates Pj again with fresh randomness, thereby letting Pj send apossibly di�erent message m′. In the further proof, c, m, and M refer to these values for whi
h(3) holds.In any 
ase, after having tossed the 
oin b on
e, Z ′

j remembers the set M from (3), anddoes not 
he
k (3) again. After the proto
ol �nishes, Zj outputs either (⊥,⊥) (if (3) was neverful�lled), or (b, β) for the evaluation β of the predi
ate [κ1 = κ2 ∈M ] (i.e., β = 1 i� the proto
olgives output, the proto
ol outputs mat
h and lie in M).Now by our 
hoi
e of j, Pr[b 6= ⊥] ≥ 1/2 for in�nitely many k.Also, Lemma 12 guarantees that the internal state of the parties at the time of tossing b
onsists only of c. So, when Z ′
j has 
hosen b = 1, and rewound the simulated Pj , the probabilitythat at the end of the proto
ol κ1 = κ2 ∈ M is the same as the probability of that event inthe setting Dj under the 
ondition that the 
ommuni
ation com begins with c̄. This probabilityagain is exa
tly E(M, c̄) by de�nition.Similarly, when Z ′

j has 
hosen b = 0, the probability that at the end of the proto
ol κ1 =
κ2 ∈ M is the same as the probability of that event in the setting Dj under the 
ondition thatthe 
ommuni
ation com begins with c̄m, i.e. E(M, c̄m).Therefore just before Z ′

j 
hooses b (i.e., when c̄ and M are already determined), the probabilitythat at the end we will have β = 1 ∧ b = 1 is 1
2E(M, c̄) and the probability of β = 1 ∧ b =

0 is 1
2E(M, c̄m). Therefore the di�eren
e between these probabilities is at least 1

2

(

E(M, c̄) −
E(M, c̄m)

)

≥ 1
3p(k) .Sin
e this bound on the di�eren
e of the probabilities always holds when b 6= ⊥, by averagingwe get

Pr [β = 1 ∧ b = 1 | b 6= ⊥]− Pr[β = 1 ∧ b = 0 | b 6= ⊥] ≥ 1

3p(k)and using the fa
t that Pr[b 6= ⊥] ≥ 1
2 for in�nitely many k we then have that

Pr[β = 1 ∧ b = 1]− Pr[β = 1 ∧ b = 0] ≥ 1

6p(k)
(4)for in�nitely many k when Z ′

j runs with the real proto
ol as des
ribed above.We show that no simulator Sj 
an a
hieve property (4) in the ideal model, where Z ′
j runswith CTn and Sj . To distinguish random variables during a run of Z ′

j in the ideal model fromthose in the real model, we add a tilde to a random variable in a run of Z ′
j in the ideal model,e.g., b̃, β̃.Sin
e the proto
ol π is non-trivial, for any Sj a
hieving indistinguishability of real and idealmodel, we 
an assume without loss of generality that Sj always delivers outputs.By 
onstru
tion of b̃ and κ, the variable b̃ and the tuple (M̃, κ) are independent given b̃ 6= ⊥.Hen
e, sin
e β̃ is a fun
tion of M̃ and κ,

Pr

[

(b̃, β̃) = (0, 1)
]

= Pr

[

(b̃, β̃) = (1, 1)
]

. (5)15



So 
omparing (4) and and (5), Z ′
j 's output distribution di�ers non-negligibly in real and idealmodel. So no simulator Sj 
an simulate atta
ks 
arried out by Z ′

j and Aj , whi
h gives the desired
ontradi
ation. ⊓⊔Combining the above Lemmas 12 and 13 we therefore get:Theorem 14. There is no non-trivial statisti
ally universally 
omposable proto
ol for (m→ n)-
oin toss extension that pro
eeds in a polynomial number of rounds.In the proof of Lemma 13, we have used that the proto
ol has only polynomially manyrounds only in one pla
e. Namely, we obtained in (2) that one party sends a message that hasnon-negligible impa
t on the probability that κ ∈ M . For perfe
t se
urity, we need only thatone party has some non-zero impa
t on that probability, i.e., we 
an drop the requirement onthe polynomial number of proto
ol rounds in the perfe
t 
ase. The reasoning in the proof staysexa
tly the same, only that we end up with the left-hand side of (4) being non-zero instead ofnon-negligible. This su�
es to show that the 
onsidered proto
ol is not perfe
tly se
ure, andthus:Corollary 15. There is no non-trivial perfe
tly universally 
omposable non-trivial proto
ol for
(m→ n)-
oin toss extension (the number of rounds does not matter here).However, we do not know whether or not there is a proto
ol for the statisti
al 
ase that pro
eedsin a superpolynomial number of rounds.Note that all dis
ussions above assume that statisti
al se
urity means se
urity with respe
t tounlimited adversaries, simulators and environments, i.e., ma
hines that 
an implement any prob-abilisti
 fun
tion, even e.g., the halting problem or similar. Often however, statisti
al se
urityis instead de�ned with respe
t to unlimited Turing ma
hines, i.e., ma
hines that 
an only im-plement 
omputable fun
tions. To show the above results for this 
ase, one 
ould try and 
he
kwhether all 
onstru
tions given in the proof above are indeed 
omputable or 
an be repla
edby 
omputable approximations. Fortunately, however, there is an easier way, using results from[Unr06℄.Corollary 16. Say a proto
ol is bounded-time if there is a (not ne
essary small or 
omputable)bound on the exe
ution time of that proto
ol (e.g., all e�
ient proto
ols are bounded-time). Letfurther n, m be 
omputable fun
tions, and m > n.Then there is no non-trivial bounded-time proto
ol for (m → n)-
oin toss extension thatpro
eeds in a polynomial of rounds and that is statisti
ally universally 
omposable with respe
t toadversaries / environments / simulators that are unlimited Turing ma
hines.Proof. [Unr06℄ show that a bounded-time proto
ol is universally-
omposably implements a bounded-time fun
tionality with respe
t to unlimited adversaries / environments / simulators if and onlyif it universally-
omposably implements that fun
tionality with respe
t to unlimited Turing ad-versaries / environments / simulators. Sin
e the n-bit and m-bit 
oin-toss fun
tionalities arebounded-time, too (n(k) 
an be evaluated in �nite time), a proto
ol 
ontradi
ting this 
orollarywould also 
ontradi
t Theorem 14. ⊓⊔Similar reasoning applies to the perfe
t 
ase, we omit the details here.A
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A Detailed ProofsA.1 An auxiliary lemmaLemma 17. For any intera
tive ma
hine M , there is a (not ne
essarily e�
ient) intera
tivema
hine M ′ that has the same behaviour as M ,8 but M ′ additionally ful�ls the following property:In ea
h a
tivation, the output of M ′ depends only on the input and output M ′ re
eived so farand on fresh randomness, but not on any internal state.Proof. We transform the ma
hine M into M ′ as follows: In an a
tivation of M ′, let com denotethe 
ommuni
ation so far. Let Icom denote the inputs of M ′ in com and Ocom the outputs. Then,for any possible output x, M ′ 
al
ulates the 
onditional probability px that M gives output xwhen re
eiving Icom under the 
ondition that it gave outputs Ocom so far. Then M ′ outputs xwith probability px. By 
onstru
tion, the probability that M ′ outputs a sequen
e Ocom giveninputs Icom is the same as the probability that P outputs Ocom given inputs Icom . It follows that
M and M ′ behave identi
ally. ⊓⊔A.2 Proof of Lemma 3Proof (of Lemma 3). The main work (i.e., �nding the proto
ol and proving its se
urity) hasbeen done in [CLOS02℄. It is left to show that for their 
onstru
tion a CRS of length poly(s) issu�
ient. By poly(s) we mean a polynomially-bounded fun
tion in s whi
h is independent of sand the 
hosen ETD. (In [CLOS02℄ it is only shown that a CRS of length p(k) is su�
ient, where
k is the se
urity parameter and p a polynomial depending on the ETD.)In [CLOS02℄, there is a proto
ol UAHC that, assuming a uniform CRS and the existen
e ofETD, implements multiple 
ommitments. The CRS is assumed to 
ontain the following: (i) arandom image under a one-way fun
tion fk (that depends on the se
urity parameter k). (ii) apubli
 key for a semanti
ally se
ure 
ryptosystem E. (iii) a publi
 key for a CCA2-se
ure 
ryp-tosystem Ecca .The one-way fun
tion f may be 
onstru
ted from the ETD as follows: f interprets its input ras randomness to be used in the ETD key generation algorithm and outputs the resulting publi
key. Then for se
urity parameter k, the images of f have length s1 ≤ s (sin
e they are publi
keys). Further, sin
e the publi
 keys are indistinguishable from uniform randomness by de�nitionof the ETD, random images of f are 
omputationally indistinguishable from s1-bit randomness.Se
ond, a semanti
ally se
ure 
ryptosystem E 
an be 
onstru
ted from the ETD using the
onstru
tion from [GM84, GL89℄. Then the publi
 key for E is just a publi
 key for the ETD. Itfollows that the length of the publi
 keys is s1(k), and random publi
 keys are indistinguishablefrom s1-bit randomness.The 
onstru
tion of Ecca (from [DDN91℄) is more involved. For this, we �rst need a non-intera
tive zero knowledge proof system (NIZK). [Gol01, Constr. 4.10.4 and 4.10.7℄ together withthe additional remarks in [Gol04, C.4.1℄ present su
h a s
heme, based on enhan
ed trapdoorpermutations. We will now examine the size of the CRS needed for that proto
ol. To prove astatement that is des
ribed by a 
ir
uit of size s2, the CRS 
onsists�for one iteration of theproof�of poly(s2) 
ommitments to random bits using a trapdoor permutation. The length of ea
h
ommitment is O(s) sin
e s bounds the size of the 
ir
uits des
ribing the trapdoor permutations
heme. To guarantee soundness, poly(s3) · m-parallel exe
utions of the s
heme are ne
essary(using the same trapdoor permutation, see [Gol01, Constr. 4.10.4℄) where m is a superlogarithmi
8 By having the same behaviour we mean, that given a �xed sequen
e of inputs, the outputs of M and

M
′ have the same probability distribution. 17



fun
tion in the se
urity parameter. So if we 
hoose m := s, the length of the CRS used by theNIZK s
heme is bounded by poly(s(k) + s2(k)).Another ingredient we need is a universal family of one-way hash fun
tions. In [Rom90℄ as
heme is presented, that 
onverts a one-way-fun
tion f into a universal family of one-way hashfun
tions. Here both des
ription and image of the hash fun
tion have a length s3 ∈ poly(s4),where s4 is the length of the images of f . If we use the f 
onstru
ted above, s4 ≤ s.Now, we 
ome ba
k to the 
onstru
tion of Ecca . In this 
onstru
tion, the publi
 key 
onsists of(i) a hash fun
tion h from the abovementioned family (s3 bit), (ii) 2s4 publi
 keys for a trapdoorpermutation s
heme (2s4s bit) and (iii) a CRS for the NIZK s
heme above to show a statementthat 
an be des
ribed by a 
ir
uit of size polynomial in 2s4 and the size of the 
ir
uits des
ribingthe trapdoor-permutation s
heme (whi
h is bounded by s). So the CRS has a length of at most
poly(s+ s4) bit. Putting this together, and noting that s4 ≤ s, we see that the publi
 key of Eccahas a length in s3 + 2s4s + poly(s + s4) ⊆ poly(s).Finally, sin
e the proto
ol UAHC from [CLOS02℄ uses a CRS 
onsisting of a publi
 key for
E, a publi
 key for Ecca and an image of f . By our 
al
ulations above, the total length of thatCRS lies in poly(s). ⊓⊔A.3 Proof of Lemma 4Proof (of Lemma 4). Let I be the key generation algorithm and S be the sampling algorithmof the system for (exponentially-hard) ETD. We now 
onstru
t a new s
heme (I ′, S′) as follows:
I ′(k′) := I(s(k′)) and S′ := S. Sin
e I and S 
an be des
ribed by polynomial-size 
ir
uits, (I ′, S′)satis�es the restri
tion of the 
ir
uit size to sc for some c ∈ N. It is left to show, that (I ′, S′) issystem for ETD.We will use the following notation: When talking about the original ETD (I, S), we will usethe names from Def. 2 (e.g., A, k, µ). When talking about (I ′, S′), we will add a prime (e.g., A′,
k′, µ′).Let a polynomial-time A′ be given. W.l.o.g., we 
an assume that A′ behaves identi
ally for
k′ := k′

1 and k′ := k′
2 with s(k1) = s(k2).We then 
onstru
t a ma
hine A as follows: Upon input 1k, A 
hooses k′ to be the smallest

k′ with s(k′) = k (i.e., k′ := min s−1({k})). Then it runs A′(1k′

).As we will show below, A runs in polynomial-time (or subexponential-time in the 
ase ofexponentially-hard ETD). So there is negligible (or exponentially-small) µ s.t., all 
onditions inDef. 2 hold. Let µ′(k′) := µ(s(k′)). Then by 
onstru
tion, all the 
onditions in Def. 2 also holdfor A′, µ′ and the modi�ed system (I ′, S′) (to see this, simply substitute s̃(k′) for k). Sin
e µ′ isnegligible (as we will show below), it follows that (I ′, S′) is a system for ETD.It is left to show that A runs in polynomial-time (or subexponential-time in the 
ase ofexponentially-hard ETD), and that µ′ is negligible.Sin
e A runs in time polynomial in k̃ := min s−1({k}) (note that 
al
ulating k̃ takes timepolynomial in k̃), it is su�
ient to show that k̃ is polynomially-bounded (or subexponential, resp.)in k. We distinguish two 
ases. Case 1: If s is polynomially-large, then there is a c s.t. s(k′)c ≥ k′for almost all k. Then we have s(k′) ≥ k′1/c and then (sin
e k1/c is in
reasing and invertible)
k̃ = min s−1({k}) ≤ kc for almost all k.Case 2, s is superlogarithmi
: Let c ∈ N be arbitrary. Then 2s(k′) ≥ k′c for su�
iently large k′.It follows s(k′) ≥ c log k′, and (sin
e c log k′ is in
reasing and invertible) k̃ = min s−1({k}) ≤ 2k′/cfor su�
iently large k. Sin
e this holds for every c ∈ N, k̃ ∈ 2o(k), i.e., k̃ is subexponential in k.It remains to show that µ′ is negligible. In the �rst 
ase (where s is polynomially-large), µ isnegligible. We 
an assume w.l.o.g., that µ is also stri
tly in
reasing. Sin
e s is polynomially-large,there is a c ∈ N, s.t. for su�
iently large k′ it is s(k′) ≥ k′1/c. Then µ′(k′) = µ(s(k′)) ≥ µ(k′1/c)18



is negligible. In the se
ond 
ase s is superlogarithmi
 and µ is exponentially-small. So we 
anw.l.o.g. assume that µ(k) = c−k for some c > 0 and su�
iently large k. Then we have that
µ′(k′) = (2−s(k′))log c for almost all k′. Sin
e 2−s(k′) is negligible, so is µ′. ⊓⊔A.4 Proof of Theorem 6Proof (of Theorem 6). We use the notation from the proof sket
h. So assume for 
ontradi
tionthat π, using CTm, implements CTn. We start with a network C0 of ma
hines as in a realproto
ol run with 
orrupted P1. More spe
i�
ally, C0 
onsists of a party P2, a helping 
oin tossfun
tionality CTm, an adversary A1 that takes the role of a 
orrupted P1, and an environment
Z1. Note that the 
orrupted party P1 has been removed, sin
e it is taken over by the adversary.The ma
hine A1 simply relays the 
onne
tions of the 
orrupted P1 to Z1. That is, everymessage sent from CTm or P2 to the 
orrupted P1 is forwarded to Z1, and A1 lets Z1 sendmessages to CTm or P2 in the name of P1. Now Z1 in turn internally simulates an instan
e P1of party P1 and lets this simulation take part in the proto
ol through A1. The ma
hine Z onlygives �init� inputs to the parties P1 and P2 and then 
olle
ts their outputs. At the end of theexe
ution, Z gives output 1 i� both parties give output and both outputs are identi
al. Theoutput is passed through by Z1. The situation is depi
ted in Figure 2.
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Fig. 2. Left: The real proto
ol with 
orrupted P1 and relaying A1. Right: The real proto
ol with
orrupted P1 and simulator S1.Our �rst 
laim is that in runs of this network C1, eventually identi
al κ1 and κ2 are observedby Z1 with overwhelming probability. Indeed, by de�nition of CTn, in an ideal proto
ol run withno 
orruptions, the outputs κ1 and κ2 must be identi
al if both are output. By simulatability, thismust also hold with overwhelming probability in runs of the real proto
ol without 
orruptions.Sin
e proto
ol π is non-trivial, in su
h a 
ase output is guaranteed, and we have thus κ1 = κ2with overwhelming probability. This 
arries over to C1, sin
e C1 is formed from an un
orruptedreal proto
ol simply by relaying some messages through A1 and by re-grouping ma
hines. So in
C1, Z1 gives output 1 with overwhelming probability.Now by simulatability, there must be a simulator S1 in the ideal setting with CTn thatsimulates atta
ks 
arried out by A1. In our situation (depi
ted in Figure 2), this simulator mustin parti
ular a
hieve that κ1 = κ2 with overwhelming probability. In other words, S1 must�
onvin
e� the simulation of P1 to output the κ1 that was 
hosen by the ideal CTn. To this end,
S1 may make up an initial seed ω1 from a ma
hine CTm that is a
tually not present in the idealmodel. Also, S1 may make up suitable responses from a faked party P2 (that is also not present19



in the ideal model) to 
ommuni
ation from P1. Call this network (
onsisting of S1, CTn, and Z1)
C2. Sin
e the probability that Z gave output 1 was overwhelming in C1, the same holds for C2by the de�nition of UC-se
urity.Now we modify network C2. First, we re-group ma
hines and make the simulation P1 of P1a ma
hine of its own. (This ma
hine is then identi
al to P1.) Then, we introdu
e a new ma
hine
CTm that ideally sele
ts and delivers an ω1 to P1. Both the ω2 also output by CTm and the ω1still output by S1 are simply 
olle
ted by a dummy ma
hine ∗ that does nothing. The resulting
olle
tion is 
alled C3 and depi
ted in Figure 3.
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Fig. 3. Left: The modi�
ation C3 of C2. Right: The re-grouping C4 of C3.The 
olle
tions C2 and C3 provide 
ompletely identi
al views for P1 when ω1 = ω1 in C3. Thisagain happens with probability 2−m be de�nition. Sin
e in C2 Z gave output 1 with overwhelmingprobability, it follows that in C2 the probability is at least 2−m − µ for some negligible µ.Now 
omes the 
ru
ial part: we 
ombine Z, S1, CTn, and the dummy ma
hine ∗ (that is tosay, all ma
hines but P1 and CTm) into a large proto
ol environment Z2. A new real adversary isadded that only relays the 
onne
tion between S1 to P1 and the 
onne
tion between ∗ and CTm.(The 
onne
tion between Z and P1 need not be relayed sin
e this 
onstitutes an input-output
onne
tion and no 
onne
tion for intra-proto
ol 
ommuni
ation.)This re-grouping of ma
hines gives a new network C4 (
f. Figure 3). Note that C4 is only are-grouping of C3 (followed by the insertion of a ma
hine A2) that just forwards messages, andhen
e it still holds that Z gives output 1 with probability 2−m−µ. Note further, that C4 a
tuallyis a 
on�guration of the real proto
ol with environment Z2 and real adversary A2; in this 
asehowever, this is a 
on�guration in whi
h the adversary A2 takes the pla
e of a 
orrupted party
P2.Now by simulatability, there must be a simulator S2 that in an ideal setting with CTn (herewe use the di�erent name CTn only to avoid 
on�i
ting names with the CTn-instan
e inside Z2).This simulator simulates atta
ks 
arried out by A2 on the real proto
ol.In parti
ular, this simulator a
hieves that a 1-output of Z is at most negligibly less probablethan in the real setting C4. However, in the real setting this probability has a lower bound of
2−m− µ for some negligible µ. On the other hand, in the ideal setting of C5, both κ1 and κ2 are
hosen in an ideal manner as independent uniform n-bit strings by instan
es of the trusted host
CTn. So the probability that κ1 = κ2 in C5 is at most 2−n (note that it is also possible, that nooutput is generated), and therefore the probability of an 1-output in C5 is bounded by 2−n. Sothe di�eren
e between the probabilities that Z outputs 1 in runs of C4 and C5 is at least

2−m − µ− 2−n ≥ 2−m−1 − µ20



whi
h is not negligible sin
e m is not superlogarithmi
. This 
ontradi
ts the fa
t derived abovethat the di�eren
e of the probabilities is negligible. So π 
annot se
urely implement an n-bit 
ointoss. ⊓⊔A.5 Proof of Theorem 7Proof (of Theorem 7). We �rst 
onsider the statisti
al (i.e., non-perfe
t) 
ase. Let us assumethat su
h a π exists.W.l.o.g., we 
an assume the following fa
ts about π: (i) If no party is 
orrupted, both alwaysgive the same output or no output (the latter we write as ⊥). Further, the out
ome of theproto
ol (for the honest parties) is a deterministi
 fun
tion of the messages sent and the value sof the m-bit 
oin-toss. If this is not the 
ase, we 
an modify π to 
ontain 
on�rmation messagesat the end, where both parties tell ea
h other what they are going to output. If these valuesdo not mat
h, both output ⊥. (ii) No messages are sent after invoking the m-bit 
oin-toss. If
π sends messages after the m-bit 
oin-toss, we 
an transform π s.t. when the m-bit 
oin-toss
s would have been invoked, both parties perform the remainder of the proto
ol in parallel forea
h possible value of s (i.e., ea
h message sent 
onsists of 2m di�erent messages, one for ea
hvalue of s). At the end, when s is �nally 
hosen, the proto
ol exe
ution 
orresponding to s is
hosen and the 
oin-toss. Note that this transformation does not invalidate assumption (i). Theresulting proto
ol is ine�
ient (unless m is logarithmi
), but this does not matter, sin
e we provethe theorem even for ine�
ient proto
ols π. (iii) The honest parties maintain no internal stateex
ept for the list of the messages sent so far. Sin
e we do not require the parties to be e�
ient,a ma
hine 
an be transformed into su
h a ma
hine without 
hange of behaviour (by Lemma 17).Further, we 
an w.l.o.g. assume that n = m + 1.We 
all the parties Ali
e and Bob.In the following, by a 
omplete trans
ript t we mean all messages sent during a run of theproto
ol π, ex
luding the value s of the m-bit 
oin-toss. The proto
ol out
ome (of the honestparties) is then f(t, s) ∈ {0, 1}n ∪ {⊥} for some deterministi
 fun
tion f . By a partial trans
riptwe mean a pre�x of a 
omplete trans
ript.We 
an now distinguish three sets of 
omplete trans
ripts t: The set A of trans
ripts, wherethe probability is non-zero that the output 0

n is generated, the set B of trans
ripts, wherethe probability of output 0
n and of output ⊥ is zero, and the set C of trans
ripts, where theprobability of output ⊥ is non-zero. Formally:

A :=
{

t : ∃s ∈ {0, 1}m : f(t, s) = 0
n
}

B :=
{

t : ∀s ∈ {0, 1}m : f(t, s) 6= 0
n, f(t, s) 6= ⊥

}

C :=
{

t : ∃s ∈ {0, 1}m : f(t, s) = ⊥
}We now asso
iate to ea
h partial trans
ript p values αp, βp and γp. The value αp is de�nedas the maximum probability, going over all adversaries, that with 
orrupted Ali
e the 
ompletetrans
ript of the proto
ol will lie in A, when starting with the partial trans
ript p (this is well-de�ned, sin
e the honest parties do not maintain a state ex
ept for the trans
ript so far). In otherwords, αp denote, with what probability a 
orrupted Ali
e 
an enfor
e a 
omplete trans
ript in

A. Similarly, βp is de�ned as the maximum probability that the 
omplete trans
ript will lie in Bfor 
orrupted Bob. And �nally, γp is the probability that in the un
orrupted 
ase, the 
ompletetrans
ript will lie in C when starting from p.Let now t be a 
omplete trans
ript. Then αt, βt, γt ∈ {0, 1}. Furthermore, sin
e A ∪B ∪ C
ontains all 
omplete trans
ripts, at least one of αt, βt, γt is not 0. So, for every 
omplete trans
ript
t, it holds (1− αt)(1− βt) ≤ γt. 21



Now 
onsider a partial trans
ript p that is not 
omplete. Let us assume that at that pointof the proto
ol, it is Ali
e's turn to sent a message. Then there is a set M of partial trans
riptsthat 
an immediately su

eed p (one for ea
h message that Ali
e 
an send). Furthermore, forea
h partial trans
ript i ∈ M , there is a well-de�ned probability ri that given an un
orruptedAli
e the next partial trans
ript will indeed be i. It is ∑

i∈M ri = 1. Then we have
αp = max

i∈M
αi, βp =

∑

i∈M

riβi γp =
∑

i∈M

riγi, (6)sin
e a 
orrupted Ali
e may 
hoose the partial trans
ript i that maximises α, while if only Bobor no-one is 
orrupted, the next partial trans
ript is 
hosen a

ordingly to the probabilities ripres
ribed by the proto
ol. Let us assume that (1 − αi)(1 − βi) ≤ γi holds for all i ∈ M . Thenwe 
an 
on
lude (1 − αp)(1 − βp) ≤ γp as follows: First we write ᾱp for 1− αp and analogouslyfor the other values. Then̄
αpβ̄p =

∑

i

riᾱpβ̄i ≤
∑

i

riᾱiβ̄i ≤
∑

i

riγi = γp(note that sin
e ∑

i∈M ri = 1, (6) also holds for β̄... and γ̄... instead of β... and γ...).Analogous reasoning 
an be applied when Bob is 
orrupted. By indu
tion we therefore get
(1−αp)(1−βp) ≤ γp for any partial trans
ript p. Let ∅ denote the empty partial trans
ript, i.e., thebeginning of the proto
ol. Then for α := α∅, β := β∅, γ := γ∅ it also holds that (1−α)(1−β) ≤ γ.Sin
e π was assumed to be non-trivial, the probability that the proto
ol gives output ⊥ in theun
orrupted 
ase is negligible. If a proto
ol rea
hes a 
omplete trans
ript in C, it will output ⊥with probability at least 2−m, so the probability that π output ⊥ is at least 2−mγ, so 2−mγ isnegligible, too. Sin
e 2−m is non-negligible, there exists an in�nite set K, s.t. 2−m is noti
eableon K. If γ was non-negligible on K, 2−mγ would be non-negligible on K. So γ must be negligibleon K. Sin
e (1−α)(1− β) ≥ γ, for ea
h k ∈ K, one of 1−α and 1− β is bounded by √γ whi
his negligible on K. So there is an in�nite set K ′ ⊆ K, s.t. 1− α or 1− β is negligible on K ′.Let us 
onsider the �rst 
ase, i.e., α is overwhelming on K ′. By assumption, the probability
P for proto
ol output 0n (with 
orrupted Ali
e) is bounded from above by 2−n +µ for negligible
µ. But sin
e a 
omplete trans
ript in A has probability at least 2m of giving output 0n, we have
P ≥ 2−mα = 2−n + (α− 1

2 )2−m (note n = m + 1), so µ ≥ (α− 1
2 )2−m. Sin
e α is overwhelmingand 2−m noti
eable on K ′, µ is not negligible, whi
h 
on
ludes the proof in this 
ase.Let us 
onsider the se
ond 
ase, i.e., β is overwhelming on K ′. By assumption, the maximumprobability P for an output in {0, 1}n\{0n} (with 
orrupted Bob) is at least 2−n(2n−1)+µ(2n−1)for some negligible µ. On the other hand, sin
e a 
omplete trans
ript in B has probability 1 ofgiving output in {0, 1}n \ {0n}, we have P ≥ β. It is

P ≥ β = 2−n(2n − 1) +
(

1
2n(2n−1) −

1−β
2n−1

)

(2n − 1)and thus µ ≥ 1
2n(2n−1) −

1−β
2n−1 . Sin
e 2−m is noti
eable on K ′, 2n = 2 · 2m is polynomiallybounded on K ′, so 1

2n(2n−1) is noti
eable on K ′. Further 1 − β is negligible, so the lower boundfor µ is also noti
eable on K ′. It follows that µ is not negligible, whi
h 
on
ludes the proof inthe statisti
al (non-perfe
t) 
ase.For the perfe
t 
ase, the proof of (1−α)(1−β) ≤ γ is performed identi
ally (sin
e we did notuse the non-triviality and the se
urity of π in that part of the proof). By the perfe
t non-trivialitywe get γ = 0, so for every k, at least one of α, β is 1. If α = 1, the probability for an output of 0nis (for suitable adversary) ≥ 2−m > 2−n. If β = 1, the probability for an output in {0, 1}n \ {0n}is 1 > (2n − 1)2−n. Both 
ases 
ontradi
t the se
urity property. ⊓⊔22



A.6 Proof of Lemma 12Proof (of Lemma 12). We split the proof up in several lemmas:Lemma 18. If there is a statisti
ally universally 
omposable proto
ol for (m → n)-
oin tossextension, then there is also one in whi
h ea
h party� has only one 
onne
tion to the other party and one 
onne
tion to CTm,� in ea
h a
tivation sends either an �init� message to CTm or some message to the otherparty,� sends in ea
h proto
ol run at most one message to CTm, and this is always an �init� message.Proof. This is proven by a straightforward 
onversion of a statisti
ally universally 
omposable
(m → n)-
oin toss extension proto
ol into one that satis�es the lemma requirements. We omitthe details. ⊓⊔Lemma 19. If there is a statisti
ally universally 
omposable proto
ol for (m → n)-
oin tossextension, then there is also one in whi
h� the parties satisfy the requirements from Lemma 18,� the internal state of ea
h of the two parties 
onsists only of the view that this party hasexperien
ed so far.Proof. This is a dire
t 
onsequen
e of Lemmas 18 and 17. ⊓⊔Lemma 20. If there is a statisti
ally universally 
omposable proto
ol for (m → n)-
oin tossextension, then there is also one in whi
h� the parties satisfy the requirements from Lemmas 18 and 19,� after Pi sends �init� to CTm, it does not further 
ommuni
ate with P3−i (for i = 1, 2 andin 
ase of no 
orruptions).Proof (sket
h). First, using Lemmas 18 and 19, we 
an transform any statisti
ally universally
omposable (m→ n)-
oin toss extension proto
ol into one satisfying the requirements from theselemmas. Call the transformed proto
ol π (with parties P1 and P2). The remaining transformationmodi�es π su
h that all requirements from Lemma 20 are met.First, we 
hange ea
h Pi (for i ∈ {1, 2}) so as to signal the other party P3−i before it sendsan �init� message to CTm. Then Pi pro
eeds to send �init� to CTm only after it has re
eivedan a
knowledgement message from P3−i. This slightly modi�ed proto
ol π1 realizes the originalproto
ol π sin
e a simulator (running with π) is informed whenever a party Pi has sent an �init�message to CTm.Se
ond, ea
h Pi is modi�ed to wait for CTm-output as soon as Pi itself has sent �init� to
CTm and P3−i has also signalled to do so. All messages from P3−i are bu�ered and pro
essed by
Pi only when that CTm-output arrives. This proto
ol π2 realizes π1 (and by transitivity also π)sin
e the modi�ed behaviour of the π2-parties 
an be simulated by a simulator in π1 simply bydelaying message delivery in π1.Now 
omes the interesting part: we modify ea
h Pi so as to postpone the �init� messageto CTm to the end of the proto
ol run. Instead, Pi 
arries on with π2 as if it had sent �init�.When it goes into the waiting state (for CTm-output ω, whi
h will now 
ertainly not arrive), itimmediately leaves that waiting state. Then Pi makes 2m 
opies of its 
urrent internal state and
arries on with 2m parallel exe
utions of π2. In exe
ution number j (0 ≤ j < 2m), Pi behaves asif it had gotten a seed ω = j from CTm. At the end of the proto
ol run, when all the parallelexe
utions have �xed their output, Pi then queries CTm with an �init� message and waits for23



a seed ω to arrive. Finally, Pi outputs whatever the ωth exe
ution of the parallelized proto
olwould have output.9 Call the proto
ol with these modi�ed parties π3.This proto
ol obviously ful�lls the requirements in the theorem statement, and it only remainsto show that π3 realizes π2 (and thus π), and hen
e is a universally 
omposable proto
ol for 
ointoss extension. An atta
k on π3 
an be simulated in the setting of π2 as follows: up to the pointwhere the �rst π2-party queries CTm, the parties from π2 behave exa
tly as those from π3. Butafter the �rst �init� query, a simulator running with π2 needs to simulate the messages of 2m−1virtual, parallel exe
utions of π3-parties. This is possible, sin
e by Lemma 19, the internal state ofthe parties 
onsists only of the re
eived 
ommuni
ation so far and is known to the simulator. ⊓⊔Referen
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