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1 IntrodutionManuel Blum showed in [Blu81℄ how to �ip a oin over the telephone line. His protool guaran-teed that even if one party does not follow the protool, the other party still gets a uniformlydistributed oin toss result. This general onept of generating ommon randomness in a waysuh that no dishonest party an ditate the result proved very useful in ryptography, e.g., inthe onstrution of protools for general seure multi-party omputation.Here we are interested in the task of extending a given oin toss. That is, suppose that twoparties already have the possibility of making a single m-bit oin-toss. Is it possible for them toget n > m bits of ommon randomness? The answer we ome up with is basially: �it depends.�The �rst thing the extensibility of a given oin toss depends on is the required seurity type.One type of seurity requirement (whih we all �stand-alone simulatability� here) an simplybe that the protool imitates an ideal oin toss funtionality in the sense of [Gol04℄, where asimulator has to invent a realisti protool run after learning the outome of the ideal oin-toss.A stronger type of requirement is to demand universal omposability, whih basially meansthat the protool imitates an ideal oin toss funtionality even in arbitrary protool environ-ments. Seurity in the latter sense an onveniently be aptured in a simulatability frameworklike the Universal Composability framework [Can01a, Can05℄ or the Reative Simulatabilitymodel [PW01, BPW04℄.Orthogonal to this, one an vary the level of ful�lment of eah of these requirements. Forexample, one an demand stand-alone simulatability of the protool with respet to polynomial-time adversaries in the sense that real protool and ideal funtionality are only omputationallyindistinguishable. This spei� requirement is already ful�lled by the protool of Blum. Alterna-tively, one an demand, e.g., universal omposability of the protool with respet to unboundedadversaries. This would then yield statistial or even perfet seurity. We show that whether suha protool exists depends on the asymptoti behaviour of m.Our results are summarized in the table below. A �yes� or �no� indiates whether a protoolfor oin toss extension exists in that setting. �Depends� means that the answer depends on thesize of the seed (the m-bit oin toss available by assumption), and boldfae indiates novelresults. Seurity type ↓ / level → Computational Statistial Perfetstand-alone simulatability yes depends3 nouniversal omposability depends4 no noKnown results in the perfet and statistial ase. A folklore theorem states, that (perfetly non-trivial) statistially seure oin-toss is impossible from srath (even in very lenient seuritymodels). By Kitaev, this result was extended even to protools using quantum ommuniation(f. [ABDR04℄). [BGR96℄ �rst investigated the problem of extending a oin-toss. They presenteda statistially seure protool for extending a given oin-toss (pre-shared using a VSS), if lessthan 1
6 of the parties are orrupted. Note that their main attention was on the e�ieny of theprotool, sine in that senario arbitrary multi-party omputations and therefore in partiularoin-toss from srath are known to be possible. The result does not apply to the two-party ase.3 Coin toss extension is possible if and only if the seed has superlogarithmi length.4 Coin toss extension is impossible if the seed does not have superlogarithmi length. The possibilityresult depends on the omplexity assumption we use, f. Setion 3.1.2



Our results in the perfet and statistial ase. Our results in the perfet ase are most easilyexplained. For the perfet ase, we show impossibility of any oin toss extension, no matter how(in-)e�ient. We show this for stand-alone simulatability (Coro. 8) and for universal ompos-ability(Coro. 15). Now for the statistial ase. When demanding only stand-alone simulatability,the situation depends on the number of the already available ommon oins. Namely, we give ane�ient protool to extend m ommon oins to any polynomial number (in the seurity param-eter), if m is superlogarithmi (Th. 11). Otherwise, we show that there an even be no protoolthat derives m + 1 ommon random oins (Coro. 8). In the universal omposability setting, thesituation is more lear: we show that there simply is no protool that derives from m ommonoins m + 1 oins, no matter how large m is (Th. 14). (However, here we restrit to protoolsthat run in a polynomial number of rounds.)Known results in the omputational ase. In [Blu81℄ Blum gave a omputationally seure pro-tool. In [Gol04, Proposition 7.4.8℄, this protool is shown to be stand-alone simulatable, andtogether with the sequential omposition theorem [Gol04, Proposition 7.4.3℄ for stand-alone sim-ulatable protools, this gives a omputationally stand-alone simulatable protool for tossingpolynomially many oins.This makes oin-toss extension trivial in that setting, one just ignores the m-bit oin-toss andtosses n-bit from srath.In the omputational universal omposability setting, it has been shown in [CF01℄ that oin-toss annot be ahieved from srath. However, they showed that given a su�iently large om-mon referene string (CRS), bit ommitment is possible. From this it is easy to see that suh aCRS (and therefore also a su�iently large oin-toss) an be extended to any polynomial length.However, it was unlear what the minimum size required from the CRS or the oin-toss is.Note that there is a subtle di�erene between the notion of a CRS and a oin-toss. A CRS israndomness that is available to all parties at the beginning of the protool, while with oin-tossthe randomness is only generated when all parties agree to run the oin-toss. This makes theoin-toss atually the stronger primitive, sine in some situations it is neessary to guaranteethat not even orrupted parties learn the outomes of the oin-toss prior to a given protoolstep.In [Cle86℄, the task of oin-toss is onsidered in a senario slightly di�erent from ours:in [Cle86℄, protool partiipants may not abort protool exeution without generating output. Inthat setting, [Cle86℄ show that oin-toss is generally not possible even against omputationallylimited adversaries. However, to the best of our knowledge, an extension of a given oin toss hasnot been onsidered so far in the omputational setting.Our results in the omputational ase. We answer the question onerning the minimal sizeneessary for a oin-toss to be extensible: If an m-bit oin-toss funtionality is given, and mis not superlogarithmi, then it is already impossible for the parties to derive m + 1 ommonrandom oins (in a universally omposable way) from it (Th. 6). However, we also show that understrengthened omputational assumptions, there are protools that extend m to any polynomialnumber (in the seurity parameter) of ommon random oins, if m is superlogarithmi (Th. 5).In that sense, we give the remaining parts for a omplete haraterization of the omputationalase.Notation� A funtion f is negligible, if for any c > 0, f(k) ≤ k−c for su�iently large k (i.e., f ∈ k−ω(1)).� f is overwhelming, if 1− f is negligible (i.e., f ∈ 1− k−ω(1)).� f is notieable, if for some c > 0, f(k) ≥ k−c for su�iently large k (i.e., f ∈ k−O(1)). Notethat funtions exists, whih are neither negligible nor notieable.� f is polynomially bounded, if for some c > 0, f(k) ≤ kc for su�iently large k (i.e., f ∈ kO(1)).3



� f is polynomially-large, if there is a c > 0 s.t. f(k)c ≥ k for su�iently large k (i.e., f ∈ kΩ(1)).� f is superpolynomial, if for any c > 0, f(k) > kc for su�iently large k (i.e., f ∈ kω(1)).� f is superlogarithmi, if f/ log k →∞ (i.e., f ∈ ω(log k)). It is easy to see that f is superlog-arithmi if and only if 2−f is negligible.� f is superpolylogarithmi, if for any c > 0, f(k) > (log k)c for su�iently large k (i.e.,
f ∈ (log k)ω(1)).� f is exponentially-small, if there exists a c > 1, s.t. f(k) ≤ c−k for su�iently large k (i.e.,
f ∈ Ω(1)−k = 2−Ω(k)).� f is subexponential, if for any c > 1, f(k) < ck for su�iently large k (i.e., f ∈ o(1)k = 2o(k)).2 Seurity de�nitionsIn this setion we roughly sketh the seurity de�nitions used throughout this paper. We dis-tinguish between two notions: stand-alone simulatability as de�ned in [Gol04℄,5 and UniversalComposability (UC) as de�ned in [Can01a℄.Stand-alone simulatability. In [Gol04℄ a de�nition for the seurity of two-party seure funtionevaluations is given (alled seurity in the maliious model). We will give a sketh, for more detailswe refer to [Gol04℄.A protool onsists of two parties that alternatingly send messages to eah other. The partiesmay also invoke an ideal funtionality, whih is given as an orale (in our ases, they invoke asmaller oin-toss to realise a larger one).We say the protool π stand-alone simulatably realises a probabilisti funtion f , if for anye�ient adversary A that may replae none or a single party, there is an e�ient simulator Ss.t. for all inputs the following random variables are omputationally indistinguishable:� The real protool exeution. This onsists of the view of the orrupted parties upon inputs x1and x2 for the parties and the auxiliary input z for the adversary, together with the outputs
I of the parties.� The ideal protool exeution. Here the simulator �rst learn the auxiliary input z and possiblythe input for the orrupted party (the simulator must orrupt the same party as the adver-sary). Then he an hoose the input of the orrupted party for the probabilisti funtion f ,the other inputs are hosen honestly (i.e., the �rst input is x1 if the �rst party is unorrupted,and the seond input x2 if the seond party is).Then the simulator learns the output I of f (we assume the output to be equal for all parties).It may now generate a fake view v of the orrupted parties. The ideal protool exeutionthen onsists of v and I.Of ourse, in our ase the probabilisti funtion f (the oin-toss) has no input, so the abovede�nition gets simpler.What we have skethed above is what we all omputational stand-alone simulatability. Wefurther de�ne statistial stand-alone simulatability and perfet stand-alone simulatability. Inthese ases we do not onsider e�ient adversaries and simulators, but unlimited ones. In thease of statistial stand-alone simulatability we require the real and ideal protool exeution tobe statistially indistinguishable (and not only omputationally ), and in the perfet ase weeven require these distributions to be idential.Universal Composability. In ontrast to stand-alone simulatability, Universal Composability[Can01a℄ is a muh striter seurity notion. The main di�erene is the existene of an environment,that may interat with protool and adversary (or with ideal funtionality and simulator)5 In fat, [Gol04℄ does not use the name stand-alone simulatability but simply speaks about seurity inthe malious model. We adopt the name stand-alone simulatability for this paper to be able to betterdistinguish the di�erent notions. 4



and try to distinguish between real and ideal protool. This additional stritness brings theadvantage of a versatile omposition theorem (the Universal Composition Theorem [Can01a℄).We only sketh the model here and refer to [Can01a℄ for details.A protool onsists of several mahines that may (a) get input from the environment, (b) giveoutput to the environment (both also during the exeution of the protool), and () send messagesto eah other.The real protool exeution onsists of a protool π, an adversary A and an environment Z.Here the environment may freely ommuniate with the adversary, and the latter has full ontrolover the network, i.e., it may deliver, delay or drop messages sent between parties. We assumethe authentiated model in this paper, so the adversary learns the ontent of the messages butmay not modify it. When Z terminates, it gives a single bit of output. The adversary may hooseto orrupt parties at any point in time.6The ideal protool exeution is de�ned analogously, but instead of a protool π there is anideal funtionality F and instead of the adversary there is a simulator S. The simulator an onlylearn and in�uene protool data, if (a) the funtionality expliitly allows this, or (b) it orruptsa party (note that the simulator may only orrupt the same parties as the adversary). In thelatter ase, the simulator an hoose inputs into the funtionality in the name of that party andgets the outputs appartaining to that party. In the ase of unorrupted parties, the environmentis in ontrol of the orresponding in- and output of the ideal funtionality.We say a protool π universally omposably (UC)-implements an ideal funtionality F (orshort π is universally omposable if F is lear from the ontext), if for any e�ient adversary A,there is an e�ient simulator S, s.t. for all e�ient environments Z and all auxiliary inputs zfor Z, the distributions of the output-bit of Z in the real and the ideal protool exeution areindistinguishable.What has been skethed above we all omputational UC. We further de�ne statistial andperfet UC. In these notions, we allow adversary, simulator and environment to be unlimitedmahines. Further, in the ase of perfet UC, we require the distributions of the output-bit of Zto be idential in real and ideal protool exeution.The Ideal Funtionality for Coin Toss. To desribe the task of implementing a universallyomposable oin-toss, we have to de�ne the ideal funtionality of n-bit oin-toss.In the following, let n denote a positive integer-valued funtion.Below is an informal desription of our ideal funtionality for a n-bit oin toss. First, thefuntionality waits for initialization inputs from both parties P1 and P2. As soon as both partieshave this way signalled their willingness to start, the funtionality selets n oins in form ofan n-bit string κ uniformly and sends this κ to the adversary. (Note that a oin toss does notguarantee serey of any kind.)If the funtionality now sent κ diretly and without delay to the parties, this behaviour wouldnot be implementable by any protool (this would basially mean that the protool output isimmediately available, even without interation). So the funtionality lets the adversary deidewhen to deliver κ to eah party. Note however, that the adversary may not in any way in�uenethe κ that is delivered.A more detailed desription follows:6 It is then alled an adaptive adversary. If the adversary an only orrupt parties before the start of theprotool, we speak of stati orruption. All results in this paper hold for both variants of the seurityde�nition. 5



Ideal funtionality CTn (n-bit Coin Toss)1. Wait until there have been �init� inputs from P1 and P2. Ignore messages from theadversary, but immediately inform the adversary about the init.2. Selet κ ∈ {0, 1}n uniformly and send κ to the adversary. From now on:� on the �rst (and only the �rst) �deliver to 1� message from the adversary, send κto P1,� on the �rst (and only the �rst) �deliver to 2� message from the adversary, send κto P2.Using CTn, we an also formally express what we mean by extending a oin toss. Namely:De�nition 1. Let n = n(k) and m = m(k) be positive, polynomially bounded and omputablefuntions suh that m(k) < n(k) for all k. Then a protool is a universally omposable (m→ n)-oin toss extension protool if it seurely and non-trivially implements CTn by having aess onlyto CTm. This seurity an be omputational, statistial or perfet.By a �non-trivial� implementation we mean a protool that, with overwhelming probability,guarantees outputs if no party is orrupted and all messages are delivered. (Alternatively, one mayalso onsider protools that provide output with overwhelming probability.) This requirement isuseful sine without it, a trivial protool that does not generate any output formally implementsevery funtionality. (Cf. [CLOS02℄ and [BHMQU05, Setion 5.1℄ for more disussion and formalde�nitions of �non-triviality.�)On unlimited simulators. Following [BPW04℄, we have modelled statistial and perfet stand-alone and UC seurity using unlimited simulators. Another approah is to require the simulatorsto be polynomial in the running-time of the adversary. All our results apply also to that ase:For the impossibility results, this is straightforward, sine the seurity notion gets striter whenthe simulators beome more restrited. The only possibility result for statistial/perfet seurityis given in Theorem 11. There, the simulator we onstrut is in fat polynomial in the runtimeof the adversary.In the following setions, we investigate the existene of suh oin toss extension protools,depending on the desired seurity level (i.e., omputational / statistial / perfet seurity) andthe parameters n and m.3 The Computational Case3.1 Universal ComposabilityIn the following, we need the assumption of enhaned trapdoor permutations with dense pub-li desriptions (alled ETD heneforth). Roughly, these are trapdoor permutations with theadditional properties that (i) one an hoose the publi key in an oblivious fashion, i.e., evengiven the oin tosses we used it is infeasible to invert the funtion, and (ii) the publi keys areomputationally indistinguishable from random strings.De�nition 2 (Enhaned trapdoor permutations with dense publi desriptions). Asystem of enhaned trapdoor permutations with dense publi desriptions (ETD) onsists ofthe following e�ient algorithms: a key generation algorithm I that (given seurity parameter
k) generates publi keys pk and orresponding trapdoors td (we treat pk and td as e�ientlyomputable funtions to failitate notation), and a domain sampling algorithm S that given pkoutputs an element in the domain of pk , satisfying the following:For any non-uniform probabilisti polynomial-time algorithm A there is a negligible funtion
µ s.t. the following onditions are satis�ed: 6



� Permutations. Pr
[

(pk , td)← I(1k) : pk is a valid publi key and td = pk−1
]

≥ 1−µ(k), andany valid publi key is a permutation.� Almost uniform sampling. For any valid publi key pk that an be output by I(1k), thestatistial distane between the output of S(pk) and randomly hosen elements in the domain(=range) of pk is bounded by µ(k).� Enhaned hardness. For all k ∈ N
Pr

[

(pk , td)← I(1k), y ← S(pk), x′ ← A(1k, pk , y, r) : pk (x′) = y
]

≤ µ(k)Here r denotes the randomness used by S.� Dense publi desriptions. There is a polynomially bounded, e�iently omputable funtion s(not depending on A) s.t.
∣

∣

∣
Pr

[

(pk , td)← I(1k) : A(1k, pk ) = 1
]

− Pr

[

pk ← {0, 1}s(k) uniformly : A(1k, pk ) = 1
]∣

∣

∣
≤ µ(k).Exponentially-hard ETD are de�ned analogously, exept that we require the onditions aboveto hold for all subexponential-time A and an exponentially-small µ.Lemma 3. There is a onstant d ∈ N s.t. the following holds:Assume that ETD exist, s.t. the size of the iruits desribing the ETD is bounded by s(k) forseurity parameter k.7Then there is a protool π using a uniform ommon referene string (CRS) of length s(k)d,s.t. π seurely UC-realises a bit ommitment that an be used polynomially many times.A protool for realising bit ommitment using a CRS has been given in [CLOS02℄. To showthis lemma, we only need to review their onstrution to see, that a CRS of length sd is indeedsu�ient. For details, see Appendix A.2.Lemma 4. Let s(k) be a polynomially bounded funtion, that is omputable in time polynomialin k.Assume one of the following holds:� ETD exist and s is a polynomially-large funtion.� Exponentially-hard ETD exist and s is a superlogarithmi funtion.Then there also exist a onstant e ∈ N independent of s and ETD, s.t. the size of the iruitsdesribing the ETD is bounded by s(k)e for seurity parameter k.This is shown by saling the seurity parameter of the original ETD. The proof is given inAppendix A.3.Theorem 5. Let n = n(k) and m = m(k) be polynomially bounded and e�iently omputablefuntions. Assume one of the following onditions holds:� m is polynomially-large and ETD exist, or� m is superpolylogarithmi and exponentially-hard ETD exist.Then there is a polynomial-time omputationally universally omposable protool π for (m→ n)-oin toss extension.7 By the size of the iruits we means the total size of the iruits desribing both the key generationand the domain sampling algorithm. Note that then trivially also the size of the resulting keys andthe amount of randomness used by the domain sampling algorithm are bounded by s(k).7



Proof. Let d be as in Lemma 3. Let further e be as in Lemma 4. If m is polynomially-large orsuperpolylogarithmi, then s := m1/(de) is polynomially-large or superlogarithmi, resp. So, byLemma 4 there are ETD, s.t. the size of the iruits desribing the ETD is bounded by se = m1/e.Then, by Lemma 3 there is a UC-seure protool for implementing n bit ommitments using an
(m1/d)d = m-bit CRS.Given n bit ommitments, the following protool π UC-realises an n-bit oin-toss (based onthe protool of [Blu81℄): Upon input (init), party P1 ommits to n random bits r1. Upon input
(init), and after P1 has ommitted itself, party P2 sends n random bits r2 to P1. Then P1 unveilsthe bits r1. The output of the parties is the n-bit string r = r1⊕r2, where ⊕ denotes the bit-wiseexlusive or.It is easy to see, that this protool UC-realises an n-bit oin-toss. We only roughly sketh thesimulator S: As soon as all unorrupted parties got input (init), S learns what value r the ideal
n-bit oin-toss has. When P1 is or gets orrupted, S learns the value r1 as soon as P1 ommits,so the simulated r2 an be hosen as r1⊕ r. When P2 is or gets orrupted, but P1 is unorruptedat least during the ommitment to r1, the simulator S unveil value r1 to r2 ⊕ r. In the ase thatboth parties get orrupted, the environment does not learn the value from the ideal oin-toss, sothe simulator an simply hose it to be r1 ⊕ r2.Furthermore, an m-bit CRS an be trivially implemented using an m-bit oin-toss. Usingthe Composition Theorem we an put the above onstrutions together and get a protool thatUC-realises an n-bit oin-toss using an m-bit oin-toss. ⊓⊔Note that given stronger, but possibly unrealisti assumptions, the lower bound for m inTheorem 5 an be dereased. If we assume that for any superlogarithmi m, there are ETDs.t. the size of their iruits is bounded by m1/d (where d is the onstant from Lemma 3), we getoin-toss extension even for superlogarithmi m (using the same proof as for Theorem 5, exeptthat instead of Lemma 4 we use the stronger assumption).However, we annot expet an even better lower bound for m, as the following theorem shows:Theorem 6. Let n = n(k) and m = m(k) be funtions with n(k) > m(k) ≥ 0 for all k,and assume that m is not superlogarithmi (i.e., 2−m is non-negligible). Then there is no non-trivial polynomial-time omputationally universally omposable protool for (m → n)-oin tossextension.Proof (sketh). Assume for ontradition that protool π, with parties P1 and P2 using CTm,implements CTn (with m, n as in the theorem statement). Let A1 be an adversary on π that,taking the role of a orrupted party P1, simply reroutes all ommuniation of P1 (with either P2or CTm) to the protool environment Z1 and thus lets Z1 take part as P1 in the real protool.Imagine a protool environment Z1, running with π and A1 as above, that keeps and internalsimulation P1 of P1 and lets this simulation take part in the protool (through A1). After aprotool run, Z1 inspets the output κ1 of P1 and ompares it to the output κ2 of the unorrupted
P2. In a real protool run with π, A1, and Z1, we will have κ1 = κ2 with overwhelming probabilitysine π non-trivially implements CTn, and CTn guarantees ommon outputs. So a simulator S1,running in the ideal model with CTn and Z1, must be able to ahieve that the ideal output κ2(that is ideally hosen by CTn and annot be in�uened by S1) is idential to what the simulation
P1 of P1 inside Z1 outputs. In that sense, S1 must be able to �onvine� P1 to also output κ2. Tothis end, S1 may�and must�fake a omplete real protool ommuniation as A1 would deliverit to Z1 (and thus, to P1).However, then we an onstrut another protool environment Z2 that expets to take therole of party P2 in a real protool run (just like Z1 expeted to take the role of P1). To this8



end, an adversary A2 on π with orrupted P2 is employed that forwards all ommuniation of
P2 with either P1 or CTn to Z2. Internally, Z2 now simulates S1 (and not P2!) from above andan instane CTn of the trusted host CTn. Reall that S1, given a target string κ by CTn, mimisan unorrupted P2 along with an instane of CTm. In that situation, S1 an onvine an honest
P1 with overwhelming probability to eventually output κ.Chanes are 2−m that the CTm-instane made up by S1 outputs the same seed as the real
CTm in a run of Z2 with π and A2. So with probability at least 2−m−µ for negligible µ, in suha run, Z2 observes a P1-output κ that is idential to the output of the internally simulated CTn.But then, by assumption about the seurity of π, there is also a simulator S2 for A2 and Z2 thatprovides Z2 with an indistinguishable view. In partiular, in an ideal run with S2 and CTn, Z2observes equal outputs from CTn and CTn with probability at least 2−m − µ′ for negligible µ′.This is a ontradition, as both outputs are uniformly and independently hosen n-bit strings,and n ≥ m + 1. ⊓⊔4 Statistial and Perfet Cases4.1 Stand-alone simulatabilityWe start o� with a negative result:Theorem 7. Let m < n be funtions in the seurity parameter k. If m is not superlogarithmi,there is no two-party n-bit oin-toss protool π (not even an ine�ient one) that uses an m-bitoin-toss and has the following properties:� Non-triviality. If no party is orrupted, the probability that the parties give di�erent, invalidor no output is negligible (by invalid output we mean output not in {0, 1}n).� Seurity. For any (possibly unbounded) adversary orrupting one of the parties there is anegligible funtion µ, s.t. for every seurity parameter k and every c ∈ {0, 1}n, the probabilityfor protool output c is at most 2−n + µ(k).If we require perfet non-triviality (the probability for di�erent or no outputs is 0) and perfetseurity (the probability for a given output c is at most 2−n), suh a protool π does not exist,even if m is superlogarithmi.Proof (sketh). It is su�ient to onsider the ase n = m + 1.Without loss of generality, we an assume that the available m-bit oin toss is only usedat the end of the protool. Similarly, we an assume that in the honest ase, the parties neveroutput distint values. A detailed proof for these statements an be found in the full proof.To show the theorem, we �rst onsider �omplete transripts� of the protool. By a ompletetransript we mean all messages sent during the run of a protool, exluding the value of the
m-bit oin-toss. We distinguish three sets of omplete transripts: the set A of transripts havingnon-zero probability for the protool output 0n, the set B of transripts having zero probabilityof output 0n and zero probability that the protool gives no output, and the set C of transriptshaving non-zero probability of giving no output. Note that, sine for a omplete transript, theprotool output only depends on the m-bit oin-toss, any of the above non-zero probabilities isat least 2−m.For any partial transript p (i.e., a situation during the run of the protool), we de�ne threevalues α, β, γ. The value α denotes the probability with whih a orrupted Alie an enforea transript in A starting from p, the value β denotes the probability with whih a orruptedBob an enfore a transript in B, and the value γ denotes the probability that the ompleteprotool transript will lie in C if no-one is orrupted. We show indutively that for any partialtransript p, (1 − α)(1 − β) ≤ γ. In partiular, this holds for the beginning of the protool. For9



simpliity, we assume that 2−m is not only non-negligible, but notieable (in the full proof, thegeneral ase is onsidered). Sine a transript in C gives no output with probability at least 2−m,the probability that the protool generates no output (in the unorrupted ase) is at least 2−mγ.By the non-triviality ondition, this probability is negligible, so γ must be negligible, too. So
(1 − α)(1 − β) is negligible, too. Therefore max {1− α, 1− β} must be negligible. For now, weassume that 1− α is negligible or 1− β is negligible (for the general ase, see the full proof).If 1−α is negligible, the probability for output 0n is at least 2−mα. Sine α is overwhelmingand 2−m notieable, this is greater than 2−n = 1

22−m by a notieable amount whih ontraditsthe seurity property.If 1 − β is negligible, we onsider the maximum probability a orrupted Bob an ahievethat the protool output is not 0n. By the seurity property, this probability should be at most
(2n−1)2−n plus a negligible amount, whih is not overwhelming. However, sine every transriptin B gives suh an output with probability 1, the probability of suh is β, whih is overwhelming,in ontradition of the seurity property.The perfet ase is proven similarly. ⊓⊔The full proof is given in Appendix A.5.Corollary 8. By a non-trivial oin-toss protool we mean a protool s.t. (in the unorruptedase) the probability that the parties give no or di�erent output is negligible. By a perfetlynon-trivial oin-toss protool where this probability is zero.Let m be not superlogarithmi and n > m. Then there is no non-trivial protool realising
n-bit oin-toss using an m-bit oin-toss in the sense of statistial stand-alone simulatability.Let m be any funtion (possibly superlogarithmi) and n > m. Then there is no perfetlynon-trivial protool realising n-bit oin-toss using an m-bit oin-toss in the sense of perfetstand-alone simulatability.Proof. A statistially seure protool would have the seurity property from Theorem 7 and thus,if non-trivial, ontradit Theorem 7. Analogously for perfet seurity. ⊓⊔However, not all is lost:Now we will prove that there exists a protool for oin toss extension from m to n bitwhih is statistially stand-alone simulatably seure. The basi idea is to have the parties P1and P2 ontribute random strings to generate one string with su�iently large min-entropy (themin-entropy of a random variable X is de�ned as minx− logPr[X = x]). The randomness fromthis string is then extrated using a randomness extrator. Interestingly the amount of perfetrandomness (i.e., the size of the m-bit oin-toss) one needs to invest is smaller than the amountextrated. This makes oin toss extension possible.To obtain the oin toss extension we need a result about randomness extrators able to extratone bit of randomness while leaving the seed reusable like a atalyst.Lemma 9. For every m there exists a funtion hm : {0, 1}m × {0, 1}m−1 → {0, 1}, (s, x) 7→ rsuh that for a uniformly distributed s and for an x with a min-entropy of at least t the statistialdistane of s‖hm(s, x) and the uniform distribution on {0, 1}m+1 is at most 2−t/2/

√
2.Proof. Let hm(s, x) := 〈s1 . . . sm−1, x〉 ⊕ sm. Here 〈·, ·〉 denotes the inner produt and ⊕ theaddition over GF(2). It is easy to verify that hm(s, ·) onstitutes a family of universal hashfuntions [CW79℄, where s is the index seleting from that family. Therefore the Leftover HashLemma [ILL89, Sti02℄ guarantees that the statistial distane between s‖hm(s, x) and the uniformdistribution on {0, 1}m+1 is bounded by 1

2

√
2 · 2−t = 2−t/2/

√
2. ⊓⊔10



With this funtion hm a simple protool is possible whih extends m(k) oin tosses to m(k)+1if the funtion m(k) is superlogarithmi.Theorem 10. Let m(k) be a superlogarithmi funtion, then there exists a onstant round sta-tistially stand-alone simulatable protool that realises an (m + 1)-bit oin-toss using an m-bitoin-toss.Proof. Let hm be as in Lemma 9. Then the following protool realises a oin toss extension byone bit. Assume m := m(k) where k is the seurity parameter.1. P1 uniformly hooses a ∈ {0, 1}⌊m−1

2
⌋ and sends a to P22. P2 uniformly hooses b ∈ {0, 1}⌈m−1

2
⌉ and sends b to P13. If one party fails to send a string of appropriate length or aborts then this string is assumedby the other party to be an all-zero string of the appropriate length4. P1 and P2 invoke the m-bit oin toss funtionality and obtain a uniformly distributed s ∈

{0, 1}m. If one party Pi fails to invoke the oin toss funtionality or aborts, then the otherparty hooses s at random5. Both P1 and P2 ompute s‖hm(s, a‖b) and output this string.Similar to onstrution 7.4.7 in [Gol04℄ the protool is onstruted in a way that the adversaryis not able to abort the protool (not even by not terminating). Hene we an safely assumethat the adversary will send some message of the orret length and will invoke the oin tossfuntionality. We assume the adversary to orrupt P2, orruption of P1 is handled analogously.Further we assume the random tape of A to be �xed in the following. Due to these assumptionsthere exists a funtion fA : {0, 1}⌊m/2⌋ → {0, 1}⌈m/2⌉ for eah real adversary A suh that themessage b sent in step 2 of the protool equals fA(a). There is no loss in generality if we assumethe view of the parties to onsists of just a, b, s and the protool output to be s‖hm(s, a‖b).Now for a spei� adversary A with �xed random tape the output distribution of the realprotool (i.e., view and output) is ompletely desribed by the following experiment: hoose
a

R∈ {0, 1}⌊m/2⌋, let b← fA(a), hoose s
R∈ {0, 1}m(k), let r ← s‖hm(s, a‖b) and return ((a, b, s), r).We now desribe the simulator. To distinguish the the random variables in the ideal modelfrom their real ounterparts, we deorate them with a ∼, e.g., ã, b̃, s̃. The simulator in theideal model obtains a string r̃

R∈ {0, 1}m+1 from the ideal n-bit oin-toss funtionality and sets
s̃ = r1 . . . rm. Then the simulator hooses ã

R∈ {0, 1}⌊m−1

2
⌋ and omputes b̃ = fA(ã) by giving ãto a simulated opy of the real adversary. If hm(s̃, ã‖b̃) = r̃m+1 then the simulator gives s̃ to thesimulated real adversary expeting the oin toss. Then the simulator outputs the view (ã, b̃, s̃). Ifhowever, hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds the adversary, i.e., the simulator hoosesa fresh ã

R∈ {0, 1}⌊m−1

2
⌋ and again omputes b̃ = fA(a). If now hm(s̃, ã‖b̃) = r̃m+1 the simulatoroutputs (ã, b̃, s̃). If again hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds the adversary again.If after k invoations of the adversary no triple (ã, b̃, s̃) was output, the simulator aborts andoutputs fail .To show that the simulator is orret, we have to show that the following to distributions arestatistially indistinguishable: ((a, b, s), r) as de�ned in the real model, and ((ã, b̃, s̃), r̃).By onstrution of the simulator, it is obvious that the two distributions are idential underthe ondition that rm = 0, r̃m = 0 and that the simulator does not fail. The same holds given

rm = 1, r̃m = 1 and that the simulator does not fail. Therefore it is su�ient to show two things:(i) the statistial distane between r and the uniform distribution on n bits is negligible, and(ii) the probability that that the simulator fails is negligible. Property (i) is shown using theproperties of the randomness extrator hm. Sine a is hosen at random, the min-entropy of a isat least ⌊m−1
2 ⌋ ≥ m

2 − 1, so the min-entropy of a‖b is also at least m
2 − 1. Sine s is uniformlydistributed, it follows by Lemma 9 that the statistial distane between r = s‖hm(s, a‖b) is11



bounded by 2−m/4−1/2/
√

2 = (2−m)1/4/2. Sine for superlogarithmi m it is 2−m negligible, thisstatistial distane is negligible.Property (ii) is then easily shown: From (i) we see, that after eah invoation of the adversarythe distribution of hm(s̃, ã‖b̃) is negligibly far from uniform. So the probability that hm(s̃, ã‖b̃) 6=
r̃m is at most negligibly higher than 1

2 . Sine the hm(s̃, ã‖b̃) in the di�erent invokations of theadversary are independent, the probability that hm(s̃, ã‖b̃) 6= r̃m after eah ativation is neglibiglyfar from 2−k. So the simulator fails only with negligible probability.It follows that the real and the ideal protool exeution are indistinguishable, and the protoolstand-alone simulatably implements an (m+1)-bit oin-toss. �The idea of the one bit extension protool an be extended by using an extrator whihextrats a larger amount of randomness (while not neessarily treating the seed like a atalyst).This yields onstant round oin toss extension protools. However, the simulator needed forsuh a protool does not seem to be e�ient, even if the real adversary is. To get a protoolthat also ful�ls both the property of omputational stand-alone simulatability and of statistialstand-alone simulatability, we need a simulator that is e�ient if the adversary is.Below we give suh a oin toss extension protool for superlogarithmi m(k) whih is sta-tistially seure and omputationaly seure, i.e., the simulator for polynomial adversaries ispolynomially bounded, too. The basi idea here is to extrat one bit at a time in polynomiallymany rounds.Theorem 11. Let m(k) be superlogarithmi, and p(k) be a positive polynomially-bounded fun-tion, then there exists a statistially and omputationally stand-alone simulatable protool thatrealises an (m + p)-bit oin-toss using an m-bit oin-toss.Proof. Let hm be as in Lemma 9. Then the following protool realises a oin toss extension by
p(k) bits.1. for i = 1 to p(k) do(a) P1 uniformly hooses ai ∈ {0, 1}⌊m−1

2
⌋ and sends ai to P2(b) P2 uniformly hooses bi ∈ {0, 1}⌈m−1

2
⌉ and sends bi to P1() If one party fails to send a string of appropriate length or aborts then this string isassumed by the other party to be an all-zero string of the appropriate length2. P1 and P2 invoke the m-bit oin toss funtionality and obtain a uniformly distributed

s ∈ {0, 1}m. If one party Pi fails to invoke the oin toss funtionality or aborts, then theother party hooses s at random3. P1 and P2 ompute s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k)) and output this string.We only roughly sketh the di�erenes to the proof of Theorem 10. For eah protool round thesimulator follows the strategy desribed in the proof of Theorem 10 (i.e., the simulator rewinds theadversary by one round, if the oin-toss produed is not the orret one.) Then using standard hy-brid tehniques it an be shown that this simulator indeed gives an indistinguishable ideal proto-ol run. Here it is only noteworthy that we use the fat that s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k))is statistially indistinguishable from the uniform distribution on m+p bits. However, this followsdiretly from Lemma 9 and the fat that eah ai‖bi has min-entropy at least ⌊m−1
2 ⌋ even giventhe values of all aµ‖bµ for µ < i. ⊓⊔4.2 Universal Composability (statistial/perfet ase)In the ase of statistial seurity, adversary and protool environment are allowed to be om-putationally unbounded. In that ase, we show that there is no simulatably seure oin toss12



extension protool that runs in a polynomial number of rounds. This is fored by requiring theparties to halt after a polynomial number of ativations. However, note that we do not imposeany restritions on the amount of omputational work these parties perform in one of thoseativations.The proof of this statement is done by ontradition. Furthermore, the proof is split up intoan auxiliary lemma and the atual proof. In the auxiliary lemma, we show that without loss ofgenerality, a protool for statistially universally omposable oin toss extension has a ertainouter form. Then we show that any suh protool (of this partiular outer form) is inseure.For the following statements, we always assume that m = m(k), n = n(k) are arbitraryfuntions, only satisfying 0 ≤ m(k) < n(k) for all k. We also restrit to protools that proeed ina polynomial number of rounds. That is, by a �protool� we mean in the following one in whiheah party halts after at most p(k) ativations, where p(k) is a polynomial whih depends onlyon the protool. (As stated above, the parties are still unbounded in eah ativation.) We startwith a helping lemma whose proof is available in Appendix A.6.Lemma 12. If there is a non-trivial statistially universally omposable protool for (m → n)-oin toss extension, then there is also one in whih eah party� has only one onnetion to the other party and one onnetion to CTm,� in eah ativation sends either an �init� message to CTm or some message to the otherparty,� sends in eah protool run at most one message to CTm, and this is always an �init� message,� the internal state of eah of the two parties onsists only of the view that this party hasexperiened so far, and� after Pi sends �init� to CTm, it does not further ommuniate with P3−i (for i = 1, 2 andin ase of no orruptions).We proeed withLemma 13. There is no non-trivial statistially universally omposable protool for (m → n)-oin toss extension whih meets the requirements from Lemma 12.Proof. Assume for ontradition that π, using CTm, is a statistially universally omposableimplementation of CTn, and also satis�es the requirements from Lemma 12.Assume a �xed environment Z0 that gives both parties �init� input and then waits for bothparties to output a oin toss result. Consider an adversary A0 that delivers all messages betweenthe parties immediately. The resulting setting D0 is depited in Figure 1.Denote the protool ommuniation in a run of D0, i.e., the ordered list of messages sentbetween P1 and P2, by com . Denote by κ1 and κ2 the �nal outputs of the parties. For M ⊆ {0, 1}nand a possible protool ommuniation pre�x c, let E(M, c) be the probability that the protooloutputs are idential and in M , provided that the protool ommuniation starts with c, i.e.,
E(M, c) := Pr [κ1 = κ2 ∈M | c ≤ com ] ,where x ≤ y means that x is a pre�x of y.Note that the parties have, apart from their ommuniation com, only the seed ω ∈ {0, 1}mprovided by CTm for omputing their �nal output κ. So we may assume that there is a deter-ministi funtion f for whih κ1 = κ2 = f(com, ω) with overwhelming probability.For a �xed protool ommuniation com = c, onsider the set

Mc := {0, 1}n \ { f(c, s) | s ∈ {0, 1}m }13
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Fig. 1. Left: The initial setting D0 for the statistial ase. (Some onnetions whih are notimportant for our proof have been omitted.) Right: Setting D1 with a orrupted P1. Setting D2(with P2 orrupted instead of P1) is de�ned analogously.of �improbable outputs� after ommuniation c. Then obviously |Mc| ≥ 2n − 2m ≥ 2n−1. Byde�nition of the ideal output (i.e., the output of CTn in the ideal model), this implies that forsu�iently large seurity parameters k, the probability that κ1 = κ2 ∈Mc is at least 2/5. (Here,any number stritly between 0 and 1/2 would have done as well.) Otherwise, an environmentould distinguish real and ideal model by testing for κ1 = κ2 ∈ Mc. Sine E(Mc, ε) is exatlythat probability, we have E(Mc, ε) ≥ 2/5 for su�iently large k. Also, E(Mc, c) is negligible byde�nition, so Mc satis�es
E(Mc, ε)− E(Mc, c) ≥

1

3
(1)for su�iently large k.Sine the protool onsists by assumption only of polynomially many rounds, c is a list ofsize at most p(k) for a �xed polynomial p. This means that there is a pre�x c of c and a singlemessage m (either sent from P1 to P2 or vie versa) suh that cm ≤ c and

E(Mc, c)− E(Mc, cm) ≥ 1

3p(k)
(2)for su�iently large k. Intuitively, this means that at a ertain point during the protool run, asingle message m had a signi�ant impat on the probability that the protool output is in Mc.Note that suh an m must be either sent by P1 or P2. So there is a j ∈ {1, 2}, suh thatfor in�nitely many k, party Pj sends suh an m with probability at least 1/2. We desribe amodi�ation Dj of setting D0. In setting Dj , party Pj is orrupted and simulated (honestly)inside Zj . Furthermore, adversary Aj simply relays all ommuniation between this simulationinside Zj and the unorrupted party P3−j . For supplying inputs to the simulation of Pj and tothe unorrupted P3−j , a simulation of Z0 is employed inside Zj . The situation (for j = 1) isdepited in Figure 1.Sine Dj is basially only a re-grouping of D0, the random variables com , ω, and κi aredistributed exatly as in D0, so we simply identify them. In partiular, in Dj , for in�nitely many

k, there is with probability at least 1/2 a pre�x c and a message m sent by Pj of com thatsatisfy (2). 14



Now we slightly hange the environment Zj into an environment Z ′
j . Eah time the simulated

Pj sends a message m to P3−j , Z ′
j heks for all subsets M of {0, 1}n whether

∃M ⊆ {0, 1}n : E(M, c)− E(M, cm) ≥ 1

3p(k)
, (3)where c denotes the ommuniation between Pj and P3−j so far.If (3) holds at some point for the �rst time, then Z ′

j tosses a oin b uniformly at random, andproeeds as follows: if b = 0, then Z ′
j keeps going just as Zj would have. In partiular, Z ′

j thenlets Pj send m to P3−j . However, if b = 1, then Z ′
j rewinds the simulation of Pj to the pointbefore that ativation, and ativates Pj again with fresh randomness, thereby letting Pj send apossibly di�erent message m′. In the further proof, c, m, and M refer to these values for whih(3) holds.In any ase, after having tossed the oin b one, Z ′

j remembers the set M from (3), anddoes not hek (3) again. After the protool �nishes, Zj outputs either (⊥,⊥) (if (3) was neverful�lled), or (b, β) for the evaluation β of the prediate [κ1 = κ2 ∈M ] (i.e., β = 1 i� the protoolgives output, the protool outputs math and lie in M).Now by our hoie of j, Pr[b 6= ⊥] ≥ 1/2 for in�nitely many k.Also, Lemma 12 guarantees that the internal state of the parties at the time of tossing bonsists only of c. So, when Z ′
j has hosen b = 1, and rewound the simulated Pj , the probabilitythat at the end of the protool κ1 = κ2 ∈ M is the same as the probability of that event inthe setting Dj under the ondition that the ommuniation com begins with c̄. This probabilityagain is exatly E(M, c̄) by de�nition.Similarly, when Z ′

j has hosen b = 0, the probability that at the end of the protool κ1 =
κ2 ∈ M is the same as the probability of that event in the setting Dj under the ondition thatthe ommuniation com begins with c̄m, i.e. E(M, c̄m).Therefore just before Z ′

j hooses b (i.e., when c̄ and M are already determined), the probabilitythat at the end we will have β = 1 ∧ b = 1 is 1
2E(M, c̄) and the probability of β = 1 ∧ b =

0 is 1
2E(M, c̄m). Therefore the di�erene between these probabilities is at least 1

2

(

E(M, c̄) −
E(M, c̄m)

)

≥ 1
3p(k) .Sine this bound on the di�erene of the probabilities always holds when b 6= ⊥, by averagingwe get

Pr [β = 1 ∧ b = 1 | b 6= ⊥]− Pr[β = 1 ∧ b = 0 | b 6= ⊥] ≥ 1

3p(k)and using the fat that Pr[b 6= ⊥] ≥ 1
2 for in�nitely many k we then have that

Pr[β = 1 ∧ b = 1]− Pr[β = 1 ∧ b = 0] ≥ 1

6p(k)
(4)for in�nitely many k when Z ′

j runs with the real protool as desribed above.We show that no simulator Sj an ahieve property (4) in the ideal model, where Z ′
j runswith CTn and Sj . To distinguish random variables during a run of Z ′

j in the ideal model fromthose in the real model, we add a tilde to a random variable in a run of Z ′
j in the ideal model,e.g., b̃, β̃.Sine the protool π is non-trivial, for any Sj ahieving indistinguishability of real and idealmodel, we an assume without loss of generality that Sj always delivers outputs.By onstrution of b̃ and κ, the variable b̃ and the tuple (M̃, κ) are independent given b̃ 6= ⊥.Hene, sine β̃ is a funtion of M̃ and κ,

Pr

[

(b̃, β̃) = (0, 1)
]

= Pr

[

(b̃, β̃) = (1, 1)
]

. (5)15



So omparing (4) and and (5), Z ′
j 's output distribution di�ers non-negligibly in real and idealmodel. So no simulator Sj an simulate attaks arried out by Z ′

j and Aj , whih gives the desiredontradiation. ⊓⊔Combining the above Lemmas 12 and 13 we therefore get:Theorem 14. There is no non-trivial statistially universally omposable protool for (m→ n)-oin toss extension that proeeds in a polynomial number of rounds.In the proof of Lemma 13, we have used that the protool has only polynomially manyrounds only in one plae. Namely, we obtained in (2) that one party sends a message that hasnon-negligible impat on the probability that κ ∈ M . For perfet seurity, we need only thatone party has some non-zero impat on that probability, i.e., we an drop the requirement onthe polynomial number of protool rounds in the perfet ase. The reasoning in the proof staysexatly the same, only that we end up with the left-hand side of (4) being non-zero instead ofnon-negligible. This su�es to show that the onsidered protool is not perfetly seure, andthus:Corollary 15. There is no non-trivial perfetly universally omposable non-trivial protool for
(m→ n)-oin toss extension (the number of rounds does not matter here).However, we do not know whether or not there is a protool for the statistial ase that proeedsin a superpolynomial number of rounds.Note that all disussions above assume that statistial seurity means seurity with respet tounlimited adversaries, simulators and environments, i.e., mahines that an implement any prob-abilisti funtion, even e.g., the halting problem or similar. Often however, statistial seurityis instead de�ned with respet to unlimited Turing mahines, i.e., mahines that an only im-plement omputable funtions. To show the above results for this ase, one ould try and hekwhether all onstrutions given in the proof above are indeed omputable or an be replaedby omputable approximations. Fortunately, however, there is an easier way, using results from[Unr06℄.Corollary 16. Say a protool is bounded-time if there is a (not neessary small or omputable)bound on the exeution time of that protool (e.g., all e�ient protools are bounded-time). Letfurther n, m be omputable funtions, and m > n.Then there is no non-trivial bounded-time protool for (m → n)-oin toss extension thatproeeds in a polynomial of rounds and that is statistially universally omposable with respet toadversaries / environments / simulators that are unlimited Turing mahines.Proof. [Unr06℄ show that a bounded-time protool is universally-omposably implements a bounded-time funtionality with respet to unlimited adversaries / environments / simulators if and onlyif it universally-omposably implements that funtionality with respet to unlimited Turing ad-versaries / environments / simulators. Sine the n-bit and m-bit oin-toss funtionalities arebounded-time, too (n(k) an be evaluated in �nite time), a protool ontraditing this orollarywould also ontradit Theorem 14. ⊓⊔Similar reasoning applies to the perfet ase, we omit the details here.Aknowledgements. This work was partially supported by the projets ProSeCo (IST-2001-39227) and SECOQC of the European Commission. Part of this work was done while the�rst author was with the IAKS, Universität Karlsruhe. Further, we thank the anonymous refereesfor valuable omments. 16



A Detailed ProofsA.1 An auxiliary lemmaLemma 17. For any interative mahine M , there is a (not neessarily e�ient) interativemahine M ′ that has the same behaviour as M ,8 but M ′ additionally ful�ls the following property:In eah ativation, the output of M ′ depends only on the input and output M ′ reeived so farand on fresh randomness, but not on any internal state.Proof. We transform the mahine M into M ′ as follows: In an ativation of M ′, let com denotethe ommuniation so far. Let Icom denote the inputs of M ′ in com and Ocom the outputs. Then,for any possible output x, M ′ alulates the onditional probability px that M gives output xwhen reeiving Icom under the ondition that it gave outputs Ocom so far. Then M ′ outputs xwith probability px. By onstrution, the probability that M ′ outputs a sequene Ocom giveninputs Icom is the same as the probability that P outputs Ocom given inputs Icom . It follows that
M and M ′ behave identially. ⊓⊔A.2 Proof of Lemma 3Proof (of Lemma 3). The main work (i.e., �nding the protool and proving its seurity) hasbeen done in [CLOS02℄. It is left to show that for their onstrution a CRS of length poly(s) issu�ient. By poly(s) we mean a polynomially-bounded funtion in s whih is independent of sand the hosen ETD. (In [CLOS02℄ it is only shown that a CRS of length p(k) is su�ient, where
k is the seurity parameter and p a polynomial depending on the ETD.)In [CLOS02℄, there is a protool UAHC that, assuming a uniform CRS and the existene ofETD, implements multiple ommitments. The CRS is assumed to ontain the following: (i) arandom image under a one-way funtion fk (that depends on the seurity parameter k). (ii) apubli key for a semantially seure ryptosystem E. (iii) a publi key for a CCA2-seure ryp-tosystem Ecca .The one-way funtion f may be onstruted from the ETD as follows: f interprets its input ras randomness to be used in the ETD key generation algorithm and outputs the resulting publikey. Then for seurity parameter k, the images of f have length s1 ≤ s (sine they are publikeys). Further, sine the publi keys are indistinguishable from uniform randomness by de�nitionof the ETD, random images of f are omputationally indistinguishable from s1-bit randomness.Seond, a semantially seure ryptosystem E an be onstruted from the ETD using theonstrution from [GM84, GL89℄. Then the publi key for E is just a publi key for the ETD. Itfollows that the length of the publi keys is s1(k), and random publi keys are indistinguishablefrom s1-bit randomness.The onstrution of Ecca (from [DDN91℄) is more involved. For this, we �rst need a non-interative zero knowledge proof system (NIZK). [Gol01, Constr. 4.10.4 and 4.10.7℄ together withthe additional remarks in [Gol04, C.4.1℄ present suh a sheme, based on enhaned trapdoorpermutations. We will now examine the size of the CRS needed for that protool. To prove astatement that is desribed by a iruit of size s2, the CRS onsists�for one iteration of theproof�of poly(s2) ommitments to random bits using a trapdoor permutation. The length of eahommitment is O(s) sine s bounds the size of the iruits desribing the trapdoor permutationsheme. To guarantee soundness, poly(s3) · m-parallel exeutions of the sheme are neessary(using the same trapdoor permutation, see [Gol01, Constr. 4.10.4℄) where m is a superlogarithmi8 By having the same behaviour we mean, that given a �xed sequene of inputs, the outputs of M and

M
′ have the same probability distribution. 17



funtion in the seurity parameter. So if we hoose m := s, the length of the CRS used by theNIZK sheme is bounded by poly(s(k) + s2(k)).Another ingredient we need is a universal family of one-way hash funtions. In [Rom90℄ asheme is presented, that onverts a one-way-funtion f into a universal family of one-way hashfuntions. Here both desription and image of the hash funtion have a length s3 ∈ poly(s4),where s4 is the length of the images of f . If we use the f onstruted above, s4 ≤ s.Now, we ome bak to the onstrution of Ecca . In this onstrution, the publi key onsists of(i) a hash funtion h from the abovementioned family (s3 bit), (ii) 2s4 publi keys for a trapdoorpermutation sheme (2s4s bit) and (iii) a CRS for the NIZK sheme above to show a statementthat an be desribed by a iruit of size polynomial in 2s4 and the size of the iruits desribingthe trapdoor-permutation sheme (whih is bounded by s). So the CRS has a length of at most
poly(s+ s4) bit. Putting this together, and noting that s4 ≤ s, we see that the publi key of Eccahas a length in s3 + 2s4s + poly(s + s4) ⊆ poly(s).Finally, sine the protool UAHC from [CLOS02℄ uses a CRS onsisting of a publi key for
E, a publi key for Ecca and an image of f . By our alulations above, the total length of thatCRS lies in poly(s). ⊓⊔A.3 Proof of Lemma 4Proof (of Lemma 4). Let I be the key generation algorithm and S be the sampling algorithmof the system for (exponentially-hard) ETD. We now onstrut a new sheme (I ′, S′) as follows:
I ′(k′) := I(s(k′)) and S′ := S. Sine I and S an be desribed by polynomial-size iruits, (I ′, S′)satis�es the restrition of the iruit size to sc for some c ∈ N. It is left to show, that (I ′, S′) issystem for ETD.We will use the following notation: When talking about the original ETD (I, S), we will usethe names from Def. 2 (e.g., A, k, µ). When talking about (I ′, S′), we will add a prime (e.g., A′,
k′, µ′).Let a polynomial-time A′ be given. W.l.o.g., we an assume that A′ behaves identially for
k′ := k′

1 and k′ := k′
2 with s(k1) = s(k2).We then onstrut a mahine A as follows: Upon input 1k, A hooses k′ to be the smallest

k′ with s(k′) = k (i.e., k′ := min s−1({k})). Then it runs A′(1k′

).As we will show below, A runs in polynomial-time (or subexponential-time in the ase ofexponentially-hard ETD). So there is negligible (or exponentially-small) µ s.t., all onditions inDef. 2 hold. Let µ′(k′) := µ(s(k′)). Then by onstrution, all the onditions in Def. 2 also holdfor A′, µ′ and the modi�ed system (I ′, S′) (to see this, simply substitute s̃(k′) for k). Sine µ′ isnegligible (as we will show below), it follows that (I ′, S′) is a system for ETD.It is left to show that A runs in polynomial-time (or subexponential-time in the ase ofexponentially-hard ETD), and that µ′ is negligible.Sine A runs in time polynomial in k̃ := min s−1({k}) (note that alulating k̃ takes timepolynomial in k̃), it is su�ient to show that k̃ is polynomially-bounded (or subexponential, resp.)in k. We distinguish two ases. Case 1: If s is polynomially-large, then there is a c s.t. s(k′)c ≥ k′for almost all k. Then we have s(k′) ≥ k′1/c and then (sine k1/c is inreasing and invertible)
k̃ = min s−1({k}) ≤ kc for almost all k.Case 2, s is superlogarithmi: Let c ∈ N be arbitrary. Then 2s(k′) ≥ k′c for su�iently large k′.It follows s(k′) ≥ c log k′, and (sine c log k′ is inreasing and invertible) k̃ = min s−1({k}) ≤ 2k′/cfor su�iently large k. Sine this holds for every c ∈ N, k̃ ∈ 2o(k), i.e., k̃ is subexponential in k.It remains to show that µ′ is negligible. In the �rst ase (where s is polynomially-large), µ isnegligible. We an assume w.l.o.g., that µ is also stritly inreasing. Sine s is polynomially-large,there is a c ∈ N, s.t. for su�iently large k′ it is s(k′) ≥ k′1/c. Then µ′(k′) = µ(s(k′)) ≥ µ(k′1/c)18



is negligible. In the seond ase s is superlogarithmi and µ is exponentially-small. So we anw.l.o.g. assume that µ(k) = c−k for some c > 0 and su�iently large k. Then we have that
µ′(k′) = (2−s(k′))log c for almost all k′. Sine 2−s(k′) is negligible, so is µ′. ⊓⊔A.4 Proof of Theorem 6Proof (of Theorem 6). We use the notation from the proof sketh. So assume for ontraditionthat π, using CTm, implements CTn. We start with a network C0 of mahines as in a realprotool run with orrupted P1. More spei�ally, C0 onsists of a party P2, a helping oin tossfuntionality CTm, an adversary A1 that takes the role of a orrupted P1, and an environment
Z1. Note that the orrupted party P1 has been removed, sine it is taken over by the adversary.The mahine A1 simply relays the onnetions of the orrupted P1 to Z1. That is, everymessage sent from CTm or P2 to the orrupted P1 is forwarded to Z1, and A1 lets Z1 sendmessages to CTm or P2 in the name of P1. Now Z1 in turn internally simulates an instane P1of party P1 and lets this simulation take part in the protool through A1. The mahine Z onlygives �init� inputs to the parties P1 and P2 and then ollets their outputs. At the end of theexeution, Z gives output 1 i� both parties give output and both outputs are idential. Theoutput is passed through by Z1. The situation is depited in Figure 2.
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C1, Z1 gives output 1 with overwhelming probability.Now by simulatability, there must be a simulator S1 in the ideal setting with CTn thatsimulates attaks arried out by A1. In our situation (depited in Figure 2), this simulator mustin partiular ahieve that κ1 = κ2 with overwhelming probability. In other words, S1 must�onvine� the simulation of P1 to output the κ1 that was hosen by the ideal CTn. To this end,
S1 may make up an initial seed ω1 from a mahine CTm that is atually not present in the idealmodel. Also, S1 may make up suitable responses from a faked party P2 (that is also not present19



in the ideal model) to ommuniation from P1. Call this network (onsisting of S1, CTn, and Z1)
C2. Sine the probability that Z gave output 1 was overwhelming in C1, the same holds for C2by the de�nition of UC-seurity.Now we modify network C2. First, we re-group mahines and make the simulation P1 of P1a mahine of its own. (This mahine is then idential to P1.) Then, we introdue a new mahine
CTm that ideally selets and delivers an ω1 to P1. Both the ω2 also output by CTm and the ω1still output by S1 are simply olleted by a dummy mahine ∗ that does nothing. The resultingolletion is alled C3 and depited in Figure 3.
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CTn. So the probability that κ1 = κ2 in C5 is at most 2−n (note that it is also possible, that nooutput is generated), and therefore the probability of an 1-output in C5 is bounded by 2−n. Sothe di�erene between the probabilities that Z outputs 1 in runs of C4 and C5 is at least

2−m − µ− 2−n ≥ 2−m−1 − µ20



whih is not negligible sine m is not superlogarithmi. This ontradits the fat derived abovethat the di�erene of the probabilities is negligible. So π annot seurely implement an n-bit ointoss. ⊓⊔A.5 Proof of Theorem 7Proof (of Theorem 7). We �rst onsider the statistial (i.e., non-perfet) ase. Let us assumethat suh a π exists.W.l.o.g., we an assume the following fats about π: (i) If no party is orrupted, both alwaysgive the same output or no output (the latter we write as ⊥). Further, the outome of theprotool (for the honest parties) is a deterministi funtion of the messages sent and the value sof the m-bit oin-toss. If this is not the ase, we an modify π to ontain on�rmation messagesat the end, where both parties tell eah other what they are going to output. If these valuesdo not math, both output ⊥. (ii) No messages are sent after invoking the m-bit oin-toss. If
π sends messages after the m-bit oin-toss, we an transform π s.t. when the m-bit oin-toss
s would have been invoked, both parties perform the remainder of the protool in parallel foreah possible value of s (i.e., eah message sent onsists of 2m di�erent messages, one for eahvalue of s). At the end, when s is �nally hosen, the protool exeution orresponding to s ishosen and the oin-toss. Note that this transformation does not invalidate assumption (i). Theresulting protool is ine�ient (unless m is logarithmi), but this does not matter, sine we provethe theorem even for ine�ient protools π. (iii) The honest parties maintain no internal stateexept for the list of the messages sent so far. Sine we do not require the parties to be e�ient,a mahine an be transformed into suh a mahine without hange of behaviour (by Lemma 17).Further, we an w.l.o.g. assume that n = m + 1.We all the parties Alie and Bob.In the following, by a omplete transript t we mean all messages sent during a run of theprotool π, exluding the value s of the m-bit oin-toss. The protool outome (of the honestparties) is then f(t, s) ∈ {0, 1}n ∪ {⊥} for some deterministi funtion f . By a partial transriptwe mean a pre�x of a omplete transript.We an now distinguish three sets of omplete transripts t: The set A of transripts, wherethe probability is non-zero that the output 0

n is generated, the set B of transripts, wherethe probability of output 0
n and of output ⊥ is zero, and the set C of transripts, where theprobability of output ⊥ is non-zero. Formally:

A :=
{

t : ∃s ∈ {0, 1}m : f(t, s) = 0
n
}

B :=
{

t : ∀s ∈ {0, 1}m : f(t, s) 6= 0
n, f(t, s) 6= ⊥

}

C :=
{

t : ∃s ∈ {0, 1}m : f(t, s) = ⊥
}We now assoiate to eah partial transript p values αp, βp and γp. The value αp is de�nedas the maximum probability, going over all adversaries, that with orrupted Alie the ompletetransript of the protool will lie in A, when starting with the partial transript p (this is well-de�ned, sine the honest parties do not maintain a state exept for the transript so far). In otherwords, αp denote, with what probability a orrupted Alie an enfore a omplete transript in

A. Similarly, βp is de�ned as the maximum probability that the omplete transript will lie in Bfor orrupted Bob. And �nally, γp is the probability that in the unorrupted ase, the ompletetransript will lie in C when starting from p.Let now t be a omplete transript. Then αt, βt, γt ∈ {0, 1}. Furthermore, sine A ∪B ∪ Contains all omplete transripts, at least one of αt, βt, γt is not 0. So, for every omplete transript
t, it holds (1− αt)(1− βt) ≤ γt. 21



Now onsider a partial transript p that is not omplete. Let us assume that at that pointof the protool, it is Alie's turn to sent a message. Then there is a set M of partial transriptsthat an immediately sueed p (one for eah message that Alie an send). Furthermore, foreah partial transript i ∈ M , there is a well-de�ned probability ri that given an unorruptedAlie the next partial transript will indeed be i. It is ∑

i∈M ri = 1. Then we have
αp = max

i∈M
αi, βp =

∑

i∈M

riβi γp =
∑

i∈M

riγi, (6)sine a orrupted Alie may hoose the partial transript i that maximises α, while if only Bobor no-one is orrupted, the next partial transript is hosen aordingly to the probabilities ripresribed by the protool. Let us assume that (1 − αi)(1 − βi) ≤ γi holds for all i ∈ M . Thenwe an onlude (1 − αp)(1 − βp) ≤ γp as follows: First we write ᾱp for 1− αp and analogouslyfor the other values. Then̄
αpβ̄p =

∑

i

riᾱpβ̄i ≤
∑

i

riᾱiβ̄i ≤
∑

i

riγi = γp(note that sine ∑

i∈M ri = 1, (6) also holds for β̄... and γ̄... instead of β... and γ...).Analogous reasoning an be applied when Bob is orrupted. By indution we therefore get
(1−αp)(1−βp) ≤ γp for any partial transript p. Let ∅ denote the empty partial transript, i.e., thebeginning of the protool. Then for α := α∅, β := β∅, γ := γ∅ it also holds that (1−α)(1−β) ≤ γ.Sine π was assumed to be non-trivial, the probability that the protool gives output ⊥ in theunorrupted ase is negligible. If a protool reahes a omplete transript in C, it will output ⊥with probability at least 2−m, so the probability that π output ⊥ is at least 2−mγ, so 2−mγ isnegligible, too. Sine 2−m is non-negligible, there exists an in�nite set K, s.t. 2−m is notieableon K. If γ was non-negligible on K, 2−mγ would be non-negligible on K. So γ must be negligibleon K. Sine (1−α)(1− β) ≥ γ, for eah k ∈ K, one of 1−α and 1− β is bounded by √γ whihis negligible on K. So there is an in�nite set K ′ ⊆ K, s.t. 1− α or 1− β is negligible on K ′.Let us onsider the �rst ase, i.e., α is overwhelming on K ′. By assumption, the probability
P for protool output 0n (with orrupted Alie) is bounded from above by 2−n +µ for negligible
µ. But sine a omplete transript in A has probability at least 2m of giving output 0n, we have
P ≥ 2−mα = 2−n + (α− 1

2 )2−m (note n = m + 1), so µ ≥ (α− 1
2 )2−m. Sine α is overwhelmingand 2−m notieable on K ′, µ is not negligible, whih onludes the proof in this ase.Let us onsider the seond ase, i.e., β is overwhelming on K ′. By assumption, the maximumprobability P for an output in {0, 1}n\{0n} (with orrupted Bob) is at least 2−n(2n−1)+µ(2n−1)for some negligible µ. On the other hand, sine a omplete transript in B has probability 1 ofgiving output in {0, 1}n \ {0n}, we have P ≥ β. It is

P ≥ β = 2−n(2n − 1) +
(

1
2n(2n−1) −

1−β
2n−1

)

(2n − 1)and thus µ ≥ 1
2n(2n−1) −

1−β
2n−1 . Sine 2−m is notieable on K ′, 2n = 2 · 2m is polynomiallybounded on K ′, so 1

2n(2n−1) is notieable on K ′. Further 1 − β is negligible, so the lower boundfor µ is also notieable on K ′. It follows that µ is not negligible, whih onludes the proof inthe statistial (non-perfet) ase.For the perfet ase, the proof of (1−α)(1−β) ≤ γ is performed identially (sine we did notuse the non-triviality and the seurity of π in that part of the proof). By the perfet non-trivialitywe get γ = 0, so for every k, at least one of α, β is 1. If α = 1, the probability for an output of 0nis (for suitable adversary) ≥ 2−m > 2−n. If β = 1, the probability for an output in {0, 1}n \ {0n}is 1 > (2n − 1)2−n. Both ases ontradit the seurity property. ⊓⊔22



A.6 Proof of Lemma 12Proof (of Lemma 12). We split the proof up in several lemmas:Lemma 18. If there is a statistially universally omposable protool for (m → n)-oin tossextension, then there is also one in whih eah party� has only one onnetion to the other party and one onnetion to CTm,� in eah ativation sends either an �init� message to CTm or some message to the otherparty,� sends in eah protool run at most one message to CTm, and this is always an �init� message.Proof. This is proven by a straightforward onversion of a statistially universally omposable
(m → n)-oin toss extension protool into one that satis�es the lemma requirements. We omitthe details. ⊓⊔Lemma 19. If there is a statistially universally omposable protool for (m → n)-oin tossextension, then there is also one in whih� the parties satisfy the requirements from Lemma 18,� the internal state of eah of the two parties onsists only of the view that this party hasexperiened so far.Proof. This is a diret onsequene of Lemmas 18 and 17. ⊓⊔Lemma 20. If there is a statistially universally omposable protool for (m → n)-oin tossextension, then there is also one in whih� the parties satisfy the requirements from Lemmas 18 and 19,� after Pi sends �init� to CTm, it does not further ommuniate with P3−i (for i = 1, 2 andin ase of no orruptions).Proof (sketh). First, using Lemmas 18 and 19, we an transform any statistially universallyomposable (m→ n)-oin toss extension protool into one satisfying the requirements from theselemmas. Call the transformed protool π (with parties P1 and P2). The remaining transformationmodi�es π suh that all requirements from Lemma 20 are met.First, we hange eah Pi (for i ∈ {1, 2}) so as to signal the other party P3−i before it sendsan �init� message to CTm. Then Pi proeeds to send �init� to CTm only after it has reeivedan aknowledgement message from P3−i. This slightly modi�ed protool π1 realizes the originalprotool π sine a simulator (running with π) is informed whenever a party Pi has sent an �init�message to CTm.Seond, eah Pi is modi�ed to wait for CTm-output as soon as Pi itself has sent �init� to
CTm and P3−i has also signalled to do so. All messages from P3−i are bu�ered and proessed by
Pi only when that CTm-output arrives. This protool π2 realizes π1 (and by transitivity also π)sine the modi�ed behaviour of the π2-parties an be simulated by a simulator in π1 simply bydelaying message delivery in π1.Now omes the interesting part: we modify eah Pi so as to postpone the �init� messageto CTm to the end of the protool run. Instead, Pi arries on with π2 as if it had sent �init�.When it goes into the waiting state (for CTm-output ω, whih will now ertainly not arrive), itimmediately leaves that waiting state. Then Pi makes 2m opies of its urrent internal state andarries on with 2m parallel exeutions of π2. In exeution number j (0 ≤ j < 2m), Pi behaves asif it had gotten a seed ω = j from CTm. At the end of the protool run, when all the parallelexeutions have �xed their output, Pi then queries CTm with an �init� message and waits for23
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