
New Integrated proof Method on Iterated Hash
Structure and New Structures

Duo Lei

Department of Science, National University of Defense Technology,
Changsha, China

Duoduolei@gmail.com

Abstract. A secure hash structure in Random Oracle Model may not
be a secure model in true design. In this paper, we give an integrated
proof method on security proof of iterated hash structure. Based on
the proof method, we can distinguish the security of Merkel-Damag̊ard
structure, wide-pipe hash, double-pipe hash and 3c hash and know the
requirement of true design on compression function, and give a new rec-
ommend structure. At last, we give new hash structure, MAC structure,
encryption model, which use same block cipher round function and key
schedule algorithm, the security proofs on those structures are given.1

1 Introduction

Most of hash functions are iterated hash function and most of compression
functions were iterated by Merkle-Damg̊ard[18, 31] construction(noted M-D con-
struction in this paper) with constant IV[47]. Since the MD5 and SHA1 were
attacked by [9][57][58], more and more attentions had been paid on hash func-
tion.

1.1 Introduction

Generally, the security proof on hash structure are based on the Random Oracle
Model, which make an assumption of compression function with Random Oracle
Model. Some structures are secure in Random Oracle Model, which may be not
a good structure in true design. For example, let M-D hash HM : {0, 1}κ·∗ ×
{0, 1}n → {0, 1}n, z = HM (m, IV), IV ∈ {0, 1}n, m ∈ {0, 1}κ·∗, z ∈ {0, 1}n, the
compression function F : {0, 1}κ×{0, 1}n → {0, 1}n, xh ∈ {0, 1}n, xm ∈ {0, 1}κ,
y ∈ {0, 1}n, y = F (xm, xh), in hash iteration xh is chaining value. The pseudo
random properties of compression function can not prevent things happen like
that: there may be exist message m0 = m0‖ . . . ‖m0 with HM (m0‖ . . . ‖m0, x) ≡
z0, for most x ∈ {0, 1}n with height probability (we call such property as
cluster), if exist such value, then it means for any message m′ the equation
HM (m0‖m′, IV) = HM (m0,H

M (m′, IV)) = z0 being hold. The probability of
existence of m0 may be very small or the value m0 be too long to be used in
1 Revised: July 31, 2006

2 Duo Lei

practical attack, and also the complexity of finding such value is O(t · 2n), t is
some value of t ∈ [1, 2n]. However, if a true design exist such value and the t
is a small value, at least which means a failure of the hash function in theory
level, more importantly, the cluster properties are influenced by both linear and
nonlinear components of compression function.

The proves based on Random Oracle Model can not distinguish exist cluster
or not, because, in Random Oracle Model, we have PY |Xm=xm

= 1
2n , in true

design only permutation has such property, if the compression function is per-
mutation then it exist inverse function, at least the hash will not immune to
meet in middle attack on preimage[41]. The best selection of compression func-
tion should be one way permutation, the one way permutation is difficult to
build in true design, we always select one way function, if we select a one way
function as compression function then exist xm0 with PY |Xm=xm0

> 1
2n , that

means repeat the message block m0 = xm0 may result in cluster, if exist cluster,
we can append such value at end of any given message build collision.

In the attacks on hash function, the attackers can not assume that they are
lucky enough to select some ’advantage value’, by which, they are more easy to
build an attack. But the designers should assume the attackers are lucky enough
to select some advantage value for searching and build collision.

In original discussion about hash function based on sequence of games, the
advantage of attacks are an average advantage of success, two summaries of that
part were given by Victor[52] and Bellare and Rogaway[6]. In paper[52], the
author given some historical remark about ”Hybird arguments” and sequence of
games.

Generally, the illustration of advantage is an average of success, most of proofs
based on game-technology are based on assumption of that, the based function
is pseudo random function or pseudo random permutation, the advantage can
not tell us how many collision exist and what is the true complexity of attack
when the attacker is lucky enough to select some ’advantage value’ for search.

The M-D structure is not immune to extend attack, fix point attack and
multi-collision attack, moreover, some slight weakness in compression function
(like some special plaintexts can make collision) may result in failure of hash
function, so some revised structures have been given, include wide-pipe hash
and double-pipe hash, but the proofs were based on immune against known
attack.

The main ideas of the recent attacks on hash functions are differential at-
tack[8] and were known in block ciphers years ago, which means the attacks
against block ciphers and hash functions are similar. The design criteria of block
ciphers have received much attention and had an interesting framework and
also block cipher cryptanalysis techniques were partially used against hash func-
tions[7, 21]. More and more attentions have been paid on hash functions be pos-
sible to designed by the same technology as block ciphers with same principles
and design criteria[7].

Title Suppressed Due to Excessive Length 3

1.2 The Motivation on Security Proof

In this paper, we give a new evaluate method to evaluate the security of structure,
the new method give the maximum advantage of success based on the conditional
probability of whole structure, the relationship between conditional probability
and the maximum advantage of success on attack can give the information about
existence of collision. Since the distribution of conditional probability is a bijec-
tive transformation with hash function, if the maximum conditional probability
is close to uniform distribution, we can assume the structure is secure, where the
compression function is assumed as Black Box Model, the assumption of Black
Box Model means the chosen plaintext attack and adaptive chosen plaintext
with same complexity and the compression function is immune against those
attack, and also the distribution of input and output of compression function is
independent, so we prefer the compression function is designed as block cipher
design principle.

If the Random Oracle Model analysis method considers the whole structure
is Random Oracle or not, when the compression function is Random Oracle, our
criteria considers, if the compression function is not a Random Oracle Model,
whole structure is how far away from a Random Oracle Model.

In this paper, firstly, we give the definitions of conditional probability of com-
pression function and that of whole structure. In fact the maximum of conditional
probability is the existence of maximum collision and maximum preimage, if the
upper bound of the conditional probability is given, then the upper bound of
existence of collision and preimage are given, and also if the upper bound is near
to uniform distribution, we can assume the structure is secure structure, and
what is needed in true design are that compression function can be designed as
black box model.

Then, we give some different definition of advantage or sequences of games,
by which the maximum advantage of success of the preimage and collision attack
are required, in fact, the maximum advantage has bound of that of conditional
probability, so if the conditional probability is given, then the maximum advan-
tage can be gotten, then we give close relation among the conditional probabil-
ity, maximum advantage of attack and existence of collision and preimage, if the
whole hash function can be seen as black box model, that means the security of
structure against preimage and collision attack become clear.

After the revision of some basic definitions, we build a toy hash to give
an intuitional illustration of weakness in M-D construction and it’s conditional
probability. In toy hash, there may exist cluster, if the compression function exist
xm0 , with PY |Xm=xm0

> 1
2n , even though the compression function is a APN[21]

function. We get conclusion of that, if the compression function y = F (xm0 , xh)
is not a permutation, it is hard to give the proof of a M-D constructed hash func-
tion not existing cluster, for such properties are influenced by both linear and
nonlinear components of compression function. The cluster is also illustrated by
conditional probability, where if there exist cluster, then the conditional prob-
ability Pz|M=m0(z0) are very big, the worst condition is that value equals 1.
Then we give a theorem about the graph and conditional probability. The clus-

4 Duo Lei

ter property was discussed in [46, 41], in this paper, we give a more systematical
discussion.

Based on previous discussion, we reanalysis the known hash structures, in-
clude M-D construction[31, 18], wide-Pipe hash[40], double-pipe hash[40], and
3C[25], the conclusions are that, if the compression functions has property of
exist xm0 with y = F (xm0 , xh) not a permutation, then cluster may exist in the
previous three structured hash functions. But the upper bound of conditional
probability of 3c structure is equals with that of compression function, which
implies if the compression function is pseudo random function, 3c structure can
be seen as pseudo random function, where we assume the compression function
is black box model. Based on conditional probability of structures, we give an
ideal model of hash structure called ideal-pipe hash, which has properties of that
the upper bound of conditional probability is equals with that of compression
function, the 3c structure can be seen as example of ideal-pipe hash.

After discussion about conditional properties of the structures, we give the
maximum advantages of compression function and the iterated structure based
on game-technology, the conclusions of that part are that: in view point of colli-
sion resistance, the M-D structure is secure structure, if the compression function
y = F (xm, xh) with ∀xm0 , y = F (xm0 , xh) being permutation, but not immune
against meet in middle attack on preimage, when the some of that compression
function y = F (xm0 , xh) are not permutation, in true design, the proof of not ex-
isting cluster on whole hash should be given. Let g(x) be not invertible black box
model, if the the compression function y = F (xm, xh) with ∀xm0 , y = F (xm0 , xh)
being permutation, the wide-pipe hash is secure structure and the upper bound
of conditional probability is better than 3c structure, if there exist xm0 with
y = F (xm0 , xh) is not permutation, more discussion should be given which may
exist cluster same as M-D construction. The double-pipe hash is same as M-D
construction, it is not better than wide-pipe hash with F : I2n × I2n → I2n.
The maximum advantages of 3c hash and ideal-pipe hash are also given, which
are good structures for build hash, if only the compression function is black box
model and close to pseudo random function.

In the previous discussion, we assume the compression function is black box
model, which means the compression function is immune against chosen plaintext
attack and adaptive chosen plaintext attack, and the distribution of outputs
and inputs are independent, that properties are required in block cipher design
and have plenty of results, so we prefer design a hash structure based on block
cipher’s structure and round function and key schedule algorithm. We find the
Feistel structure is good structure of building hash. Then a new structure is
given based on Feistel structure, the security proofs are also given. In fact, we
given new structures that can build hash, block cipher(itself is block cipher),
MAC and Block cipher encrypt model based on same compression function and
key schedule algorithm.

And also we give a brief discussion about the relation of ROM, pseudo random
function and conditional probability.

Title Suppressed Due to Excessive Length 5

1.3 Motivation of Feistel Hash

The possibility of building dedicate hash function based on Feistel structure
is discussed in this paper. Feistel structure is known as a good structure for
building block cipher, fixed the left half n bits input with zero, output the
right half byte of last round output, the Feistel structure become an n-bit to
n-bit transformation instead of a 2n-bit to 2n-bit transformation, and is not
invertible, we call it FL-structure(Feistel Like Structure). If the round function
of such Feistel construction is selected same as design criteria of Feistel block
cipher, the new construction inherent the almost all properties of Feistel block
cipher except invertible, the security of Feistel block cipher has been studied
long time and no weakness are founded in structure itself, we deem the new
construction is a good way to build hash compression function. In this paper, we
discussed the possibility of building whole hash function based on FL structure,
and give a recommend model, which is named F-Hash, we give a proof of the
security of such hash function and such hash function is immune against all
known attacks, where most of the securities are based on the securities of based
block cipher. Then with same round function and key schedule, we can also
build a hash, MAC and block cipher encrypt mode called FBC mode. The figure
illustration of Feistel compression function, F-Hash, F-MAC and FBC mode are
given in Fig8, Fig9, Fig10 and Fig11, respectively. In this paper, the padding is
padding zero at end of message, so we don’t consider the padding, and the figure
is drawn similar as the MAC Alred[17].

Luby and Rackoff[30] introduced a model that permits the assessment of the
security of some block cipher constructions, in their discussion, only the high-
level structure is considered, while the lower-level operations are replaced by
random functions. Using such methods, Patarin[33–37] given the security proof
of Feistel structure. Piret given proof of the round function with random permu-
taion[38, 39], similar conclusions were also given in the paper of Vaudenay[55,
56]. But all the discussions were based on assumption of round functions are
independent pseudo random functions. In this paper, we make a assumption of
exist a Feistel block cipher is Black Box Model, then exist FL-Function with
Black Box Model. The previous discussions paid more attention on condition
of same key, the design of hash function requires pay same attention on the
influence of different key encrypt the same plaintext.

The aim of discussions about security of Feistel structure were giving proof
of no ways to distinguish the fix keyed cipher from random permutation, which
were based on assumption that compression function is pseudo random function,
but that is not hold in true design. And in Feistel compression function, the key
schedule algorithm should be considered separately. At end of this paper, we give
some discussion about the security of round function and key schedule algorithm,
but this part is far more hard than design of block cipher. So the security of true
F-Hash is need more discussion.

6 Duo Lei

2 Basic Notation, Definition and Theorem

2.1 Basic Notation

The paper include the knowledge of block cipher, Hash function and complexity
theory, we try to not change the original notation, then many notations are
included in this paper.

– In denotes the set {0, 1}n.
– for a, b ∈ In, a‖b ∈ I2n, |a| = n;
– k(1), k(2), . . . are round keys of key, the key schedule algorithm is denoted as

ϕ(k), k(0) = k, k(i) = ϕ(k(i−1));
– f : Iκ × In → In: round function of block cipher2, y = f(k(i), x), k(i) ∈

Iκ, x ∈ In, round function is also denoted fk(i) .

– Let m(t) def
= m‖ . . . ‖m, where |m(t)| = t · 2n, m ∈ In.

– message3 m ∈ In·∗, mi is message block with mi ∈ In, m = m∗‖m∗−1‖ . . . ‖m1,
then m∗ ⊆ m. A selected m is denoted mi ∈ In·t, t ≥ 1;

– ◦ is the composition of function.

– x′, x, y′, y ∈ In, Ψ(fk)(x′‖x) = y′‖y def⇔
{

y′ = x
y = x′ ⊕ fk(x)

– (x)R and (x)L: the right and left n bits of binary sequence x, respectively;
– 0̃: n-bit binary, all bits are 0;
– EFe : In × I2n → I2n is Feistel structured block cipher with round function

f , EFe(k, x′‖x)
4
= ΨR(f)(x′‖x) = Ψ(fk(R)) ◦Ψ(fk(R−1)) ◦ . . . ◦Ψ(fk(1)(x′‖x));

– ESp : In × In → In, SPN structured block cipher with round function f ,
ESp(k, x) = fk(R′) ◦ fk(R′−1) ◦ . . . ◦ fk(1)(x)

– Fc : In × In → In is Feistel-Like Structured function with round function f ,
Fc(k, x) = (EFe(k, 0̃‖x))R;

– Fc−1 : Feistel-Structured function with one round fewer than Fc;
– x, x′, y, y′, xh, xm ∈ In;
– Xm, Xh,M,X, K, Y, Z, Z̃: Random variables;
– E−1: The inverse of E, where E is a permutation;
– y = F (xm, xh): the hash compression function, where xh is chaining value,

xm is message block;
– z = H(m,x): the hash function, where m is message and x is initial value;
– z = HM (m,x): iterated hash with M-D construction, if m = mt‖ . . . ‖m1, then

z = F (mt, F (mt−1, . . . F (m1, x) . . .)) with compression function y = F (xm, xh);
– Message Padding: adding zero at the end of Message.
– [1, n] be the set of {1, 2, 3, . . . , n};
– z

4
= y{a1,...,at} be binary with t bits and the ith bit of z is aith bit of y;

2 Since the paper has too many notations, to make things simple, we assume the key
length κ = n, that is not required in inner iteration procedure, in last round iteration
if is required, we can using padding to make the input with required length.

3 When message block is used as key, the message block length be κ.

Title Suppressed Due to Excessive Length 7

Remark 1. In iterated hash function H(m,x), we consider the x ∈ In, because

we can redefine a hash function H ′(m,x′)
def
= H(m‖x, IV) = H(m,F (x, IV)),

in selected hash IV is constant, more discussion is given in following section.

Let G : Iκ × Iι → In, y = G(m,x) then

– G(·, x) : Iκ → In, y = Gm0(·, x)
def
= G(m0, x)

– G(m, ·) : Iι → In, y = Gx0(m, ·) def
= G(m,x0)

– {(y, m, x)} def
= {(y, m, x)|m ∈ Iκ, x ∈ Iι, y ∈ In};

– {x0} def
= {x|x ∈ {x}, x = x0};

– Λn ⊂ In;
– {(y, m, x)}G def

= {(y, m, x)|(y, m, x) ∈ {(y, m, x)}, G(m,x) = y};
– {(y0,m, x)}G def

= {(y0,m, x)|(y, m, x) ∈ {(y, m, x)}G, y = y0};
– {(y, m, x0)}G

x0∈Λ

def
= {(y, m, x)|(y, m, x0) ∈ {(y, m, x)}G, x0 ∈ Λ}

– {{(y0,m, x)}G}y0∈Λ
def
=

⋃
y0∈Λ

{{(y0,m, x)}G}

– Ω
def
= {(y, m, x)}, ΩG = {(y, m, x)}G, ωG ∈ ΩG;

– #{·}: the count of ω, where ω ∈ {·}
– TG

def
= max

y0,x0
#{(y0,m, x0)}G,

– SG
def
= max

y0,m0
#{(y0,m0, x)}G,

– RG
def
= max

y0
#{(y0,m, x)}G.

We make a assumption of 1
0 = 0.

2.2 Probability Theory

The notations of the probability in the paper are followed that of PHD paper of
Christian Cachin[12].

A discrete random variable X is a mapping from the sample space Ω to an
alphabet X . X assigns a value x ∈ X to each elementary event in the Ω and the
probability distribution of X is the function

PX : X → < : x 7→ PX(X) = P [X = x] =
∑

ω∈Ω:X(ω)=x

P [ω]

PX(x) = P [x $← X ;ω ← Ω : X(ω) = x]

If the conditioning event involves another random variable Y defined on the
same sample space, the conditional probability distribution of Y given that X
takes on a value x is:

PY |X=x(y) =
PXY (x, y)

PX(x)

whenever PX(x) is positive.

8 Duo Lei

Theorem 1 (Derived Probability). Let function y = G(m,x), G : In·t ×
In → In, t ∈ N, let the distributions of independent random variable M and X
are PX(x) and PM (m), let function χG(m,x)(y) is defined as that

χG(m,x)(y)
def
=

{
1 y = G(m,x)
0 y 6= G(m,x)

the random variable Y ’s distribution can be derived from X and M by:

PY (y)
def
= PY (y = G(M, X))

=
∑

x∈In

∑

m∈In·t

PXM (x,m)χG(m,x)(y)

=
∑

x∈In

∑

m∈In·t

PX(x)PM (m)χG(m,x)(y)

we call the probability of Y is derived probability of M and X.

In fact:

1. PX(x) ≥ 0, PM (m) ≥ 0 ⇒ PY (y) ≥ 0;
2.

∑

y∈In

∑

x∈In

∑

m∈In·t

PX(x)PM (m) · χG(m,x)(y)

=
∑

x∈In

∑

m∈In·t

PX(x)PM (m) ·
∑

y∈In

χG(m,x)(y)

=
∑

x∈In

∑

m∈In·t

PX(x)PM (m)1 = 1 ⇒
∑

y∈In

PY (y) = 1

For any y ∈ In, if does not exist PY (y), then we have PY (y)
def
= 0.

Theorem 2 (Conditional Probability). The conditional probabilities are given
as follows:

1. PY |M=m0(y0) =
∑

x∈In
PX(x)χG(y0,m0, x);

2. PY |X=x0(y0) =
∑

m∈In·t PM (m)χG(y0,m, x0);
3. PY |X=x0,M=m0(y0) = χG(y0,m0, x0);
4. PẎ |M=m0

(y0) =
∑

x∈In

1
2n χG(y0,m0, x);

5. PẎ |X=x0
(y0) =

∑
m∈In·t

1
2n·t χG(y0,m, x0);

6. PẎ |X=x0,M=m0
(y0) = χG(y0,m0, x0);

If X and M are uniformly distributed, which means PM (m) = 1
2n·t , PX(x) = 1

2n ,
when X and M are uniformly distributed, we use notation of PẎ (y), that is also
hold in conditional probability.

Theorem 3. The relation between conditional probabilities and existence of such
value is given as follows:

Title Suppressed Due to Excessive Length 9

1. PẎ (y0) = #{(y0,m,x)}G

2n·2n·t ;

2. PẎ |M=m0
(y0) = #{(y0,m0,x)}G

2n ;

3. PẎ |X=x0
(y0) = #{(y0,m,x0)}G

2n·t ;
4. PẎ |X=x0,M=m0

(y0) = #{(y0,m0, x0)}G.

Corollary 1.

#{(y0,m, x)}G ≤ max{#{(y0,m0, x)}G · 2n·t,#{(y0,m, x0)}G · 2n}

2.3 Definitions Based on Sequence Games

The notations about advantages are from paper[52] and paper[6].

Remark 2. The theorem3 give the relation between the conditional probability
and existence of collision and preimage.

In describing probabilistic processes, we write:x $← X to denote the action of
assigning to the variable x a value sampled according to the distirbution X. If
S is a finite set, we simply write s

$← S to denote assignment to s of an element
sampled from the uniform distribution on S. We shall write Pr[x1

$← X1, x2
$←

X2(x1), . . . , xn
$← Xn(x1, ..., xn−1) : φ(x1, . . . , xn)] to denote the probability

that when x1 is drawn from a certain distribution X1, and x2 is drawn from a
certain distribution X2(x1), possibly depending on the particular choice of x1,
and so on, all the way to xn, the predicate φ(x1, . . . , xn) is true. We allow the
predicate φ to involve the execution of probabilistic algorithms.

Lemma 1 (Difference Lemma[52]). Let A,B, F be events defined in some
probability distribution, and suppose that A ∧ ¬F ⇔ B ∧ ¬F . Then |Pr[A] −
Pr[B]| ≤ Pr[F].

In this section we give some new definitions about attacks on hash function,
the reasons are that:

1. If y = F (xm, xh) is block cipher, where the xm is the key, the AdvInv
F (A)

def
=

Pr[y0
$← In;xm ← In : F (xm, ·) = y0] = 1, since we can get xh by xh =

F−1
xm

(y0), if AdvInv
F (A)

def
= Pr[y0, xh0

$← In;xm ← In : F (xm, ·) = y0], then
AdvInv

F (A) = 1
2n , we have to distinguish the two case.

2. We want to distinguish the difference between the existence of some value
and the advantage of finding such value, more precisely, if block cipher
y = F (xm, xh), where xm is the key, then Pr[y0, xh0

$← In;xm ← In :

F (xm, xh0) = y0] = 1
2n , Pr[y0, xm0

$← In;xh ← In : F (xm0 , xh) = y0] = 1,
but #{(y0, xm, xh0)}F ≈ #{(y0, xm0 , xh)}F .

10 Duo Lei

3. We want to distinguish the difference between experiments of select y
$← S

of Adv(A) = Pr[y $← S;xm ← A : y = F (xm, xh)] and maxy0 Pr[y0 ∈
In, xm ← A : y0 = F (xm, xh)].

4. The previous definition illustrate an average of success, we want to illus-
tration the condition of that Adversary is lucky enough to success with
maximum probability;

5. We also want to give a precise bound about the advantage of finding some
value and existence of such value and also we want to give a more precise
searching space or probability space. The paper[52] also suggest the games
should be defined on a common probability space.

The definition: AdvInv
F (A)

def
= Pr[y0

$← In;xm, xh ← In : F (xm, ·) = y0] can be
given based on games, we also use games to define our objects and to describe
our work, that is based on definition given in [26].

Game(Inv, A, F)

y0
$← In

A(y0) → (xm, xh)
A wins if F (xm, xh) = y0.

Definition 1. The definitions about the maximum advantage of A in finding
Primage and Collision of function H and compression function F are as follows,
Adv(q)

def
= maxq{Adv(A)}, where the maximum is taken over adversaries that

ask at most q queries, q < min{2n−1, 2κ−1}, write Ãdv(A)
def
= max{Adv(A)},

where the maximum is get the luckiest adversary’s advantage, if F is invertible
with F−1, then A can ask queries of F and F−1, the search space is the whole
space.

1. (Fress Start) Pseudo Preimage Attack:

ÃdvPre
F (A) = max

y0
Pr[y0 ∈ In;ω ← AF : ω ∈ {(y0, xm, xh)}F]

ÃdvPre
H (A) = max

z0
Pr[z0 ∈ In;ω ← AF,H : ω ∈ {(z0,m, x)}H]

2. (Fixed Start) Preimage Attack:

ÃdvFixP
F (A) = max

y0,xh0

Pr[y0 ∈ In, xh0 ∈ In;ω ← AF : ω ∈ {(y0, xm, xh0)}F]

ÃdvFixP
HM (A) = max

y0,x0
Pr[y0 ∈ In, x0 ∈ In;ω ← AF,H : ω ∈ {(z0,m, x0)}H]

3. (Free Start) Pseudo Collision Attack:

ÃdvColl
F (A) = max

y0
Pr[ω, ω′ ← AF : ω, ω′ ∈ σ, σ ∈ {{(y0, xm, xh)}F }y0∈In]

ÃdvColl
H (A) = max

y0
Pr[ω, ω′ ← AF,H : ω, ω′ ∈ σ, σ ∈ {{(z0,m, x)}H}z0∈In]

Title Suppressed Due to Excessive Length 11

4. (Fixed Start) Collision Attack:

ÃdvFixC
F (A) = max

y0,xh0

Pr[xh0 ∈ In;ω, ω′ ← AF :

ω, ω′ ∈ σ, σ ∈ {{(y0, xm, xh0)}F }y0∈In
]

ÃdvFixC
H (A) = max

y0,x0
Pr[x0 ∈ In;ω, ω′ ← AF,H :

ω, ω′ ∈ σ, σ ∈ {{(z0,m, x0)}H}z0∈In
]

The definitions can be also given as follows, an example is given:

ÃdvPre
F (A) = max

y0
Pr[y0 ∈ In;ω ← AF : ω ∈ {(y0, xm, xh)}F]

Game(AdvPre
F (A), A, F, y0)

A(y0) → (xm, xh)
A wins if F (xm, xh) = y0.

ÃdvPre
F (q) = max

y0
Pr[y0 ∈ In;ω ← AF : ω ∈ {(y0, xm, xh)}F]

Game(AdvPre
F (q), A, F, y0)

For i = 1, . . . , t do :
A(y0) → (xmi

, xhi
)

A wins if ∃i st. F (xmi , xhi) = y0.

Definition 2 (Black Box Model). G : Iκ × In → In is a Black Box Model,
if the probabilities of success of Game0 and Game1 are same, and G is immune
against those attacks. where q ≤ 2−

n
2 :

Game0(A,F, y0, q)
For i = 1, . . . , t do :

A(y0) → (xmi
, xhi

)
A wins if ∃i st. F (xmi

, xhi
) = y0.

Game1(A,F, y0, q)
Q ← ∅
For i = 1, . . . , t do :

A(y0, Q) → (xmi
, xhi

)
Q ← Q ∪ (F (xmi

, xhi
), xmi

, xhi
)

A wins if ∃i st. F (xmi
, xhi

) = y0.
If no special statement is given, the Black Box Model means G(m, ·) and G(·, x)
are not invertible.

Remark 3. The definition is also same with y = G(x).

Definition 3 (Random Oracle Model). A fixed-size Random Oracle is a
function f : Ia → Ib, chosen uniformly at random from the set of all such
functions.

12 Duo Lei

Theorem 4. For Hash function H and Hash compression function F :

ÃdvFixC
F (A) ≤ ÃdvColl

F (A)

ÃdvFixC
H (A) ≤ ÃdvColl

H (A)

ÃdvFixC
H (A) ≤ ÃdvPre

H (A)

Theorem 5. If y = F (xm, xh) is black box model, then

ÃdvFixP
F (A) = max

y0,xh0

PY |Xh=xh0
(y0).

2.4 The Definitions of Known Structures

Let F : Iκ × In → In, y = F (xm, xh), xh ∈ In, y ∈ In, G : In → Iω, ȳ = G(xh),
ȳ ∈ Iω, m ∈ Iκ·∗, m = m∗‖ . . . ‖m1, then the definition are given as follows:

Definition 4 (M-D hash). Let y = F (xm, xh) is a compression function of
hash function HM , the HM : Iκ·∗ × In → In with M-D construction is defined
as (figure illustration is given in Fig1):

z = HM (m,x)
def
= F (m∗, F (m∗−1, . . . (F (m1, x)) . . .))

x

m1

h1

m2

...

ht-1

mt

ht

Fig. 1. The M-D Hash

Definition 5 (Wide-Pipe Hash). Let y = F (xm, xh), the wide-pipe hash[40]
HW : Iκ·∗ × In → Iω is defined as (figure illustration is given in Fig2):

z̃ = HW (m,x)
def
= G(HM (m∗‖ . . . ‖m1, x))

where z = HM (m,x), z̃ = G(z).

Definition 6 (Double-Pipe hash[40]). Let F̃ : Iκ×I2n → I2n, G̃ : Iκ×I2n →
In the double-pipe hash is defined as HD : Iκ·∗ × I2n → In:

z̃ = HD(m,x′‖x)
def
= G̃(m∗,HM (m∗−1‖ . . . ‖m1, x

′‖x))

= G̃(m∗, F̃ (m∗−1, . . . F̃ (m1, x
′‖x) . . .))

where x, x′ ∈ In, y′‖y = F̃ (xm, x′h‖xh), y, y′ ∈ In, m ∈ Iκ·∗, m = m∗‖ . . . ‖m1,
z′‖z = F̃ (m∗−1, . . . F̃ (m1, x

′‖x) . . .), z̃ = G(m∗, z′‖z) = HD(m,x′‖x), z, z′ ∈ In,
z̃ ∈ In.

Title Suppressed Due to Excessive Length 13

x

m1

F

h1

m2

...

ht-1

mt

F F

ht

G

z

Fig. 2. The Wide-Pipe Hash

Remark 4. The Double-Pipe hash has some different from original design[40],
we give a more general model, the original model is an example of that model.

Figure illustration is given in Fig3

x

m1

h1

m2

...

ht-1

mt

ht z

x'

m1

h'1

m2

...

h't-1

mt

h't

mL

Fig. 3. The Double-Pipe Hash

Remark 5. In iterated hash function H(m,x), we consider the x ∈ In, because

we can redefine a hash function H ′(m,x)
def
= H(m‖x, IV) = H(m,F (x, IV)).

2.5 Definitions of Improved Structures

Definition 7 (Ideal-Pipe Hash). Let y = F (xm, xh), f : Iκ·∗ × In → In,
Ḡ : In × In → In,the function F is hash compression function, ỹ = f(m,x),
ỹ = Ḡ(xm, xh). the Ideal-Pipe hash structure is defined as HI : Iκ·∗ × In → In:

HI(m,x)
def
= Ḡ(f(m,x),H(m∗‖ . . . ‖m1, x))

where z = F (m∗, . . . F (m1, x) . . .), z̃ = Ḡ(f(m,x), z) = HI(m,x).

Remark 6. We give a improved M-D structure called Ideal-pipe hash, the moti-
vation of this structure is to make the conditional probability P ˙̃Z|M=m

(z) approx

2−n, details are discussed in following section.

Similarly, we give a improved wide pipe hash, which were also given in paper
[25] and that was before than me, so we also call it 3C as given in [25], although
we give the structure separately.

14 Duo Lei

x

m1

F

h1

m2

...

ht-1

mt

F F

ht

f(x,m)

z

G

Fig. 4. The Ideal-Pipe Hash

Definition 8 (3C Structure). Let F : In × In → In, the improved wide pipe
hash, 3c-hash structure [25] HN : In·∗×In → In is defined as (figure illustration
is given in Fig5:

z̃ = HN (m,x)
def
= F (h∗ ⊕ . . .⊕ h1 ⊕ h0,H(m∗‖ . . . ‖m1, x))

where x ∈ In, y ∈ In, y = F (xm, xh), m ∈ Iκ·∗, m = m∗‖ . . . ‖m1, hi =
F (mi, hi−1), h0 = x, z = F (m∗, . . . F (m1, x) . . .), z̃ = HN (m,x).

x

m1

h1

m2

...

ht-1

mt

ht
z

Fig. 5. 3C hash

The 3C hash can be considered as a improved structure of wide-pipe hash.
In similar way, we can improve the structure of double-pipe hash, which is called
improved double-pipe hash(The figure illustration is given in Fig.6).

Definition 9 (Improved Double-Pipe Hash). Let F : Iκ×In → In, G : Iκ×
In → In the improved double-pipe structure is defined as HND : Iκ·∗ × In → In:

HND(m,x)
def
= F (HG(m∗‖ . . . ‖m1, x),HF (m∗‖ . . . ‖m1, x))

where x ∈ In, m ∈ Iκ·∗, m = m∗‖ . . . ‖m1, HF = F (m∗, . . . F (m1, x) . . .), HG =
G(m∗, . . . G(m1, x) . . .).

Title Suppressed Due to Excessive Length 15

x

m1

F

h1

m2

...

ht-1

mt

F F

ht z

x

m1

G

h'1

m2

...

h't-1

mt

G G

h't

F

Fig. 6. The Improved Double-Pipe Hash

16 Duo Lei

Part I

Illustration Based on Graph
Theory

19

3 Conditional Probability Based on Grapy Theory

In this section, we will discuss the design principle of compression function to
prevent the conditional probability PŻ|M=mi

(z), where mi = mi‖ . . . ‖mi, mi ∈ In

of hash function z = HM (mi, x), not increase when the message length increased.
Let G is a directed graph, the notations about graph G are from [19]. The main
conclusions of this section are Assumption1, which implies we can only give the
proof of permutation does not existing cluster, and Theorem6, which give the
maximum conditional probability of M-D hash.

Definition 10. We call digraph Gm is derived from function y = Fm(xm, xh), m ∈
In, if the graph Gm is build in following way: the vertices of graph Gm is all
vxh

∈ In, the directed edges are build in following ways: for ∀xh0 ∈ In, if we
have x′h = F (m, xh0) then draw an edge from vxh0

and directed at vx′
h
, the pro-

cedure is stopped until all F (m, xh),∀xh ∈ In are computed and draw an directed
edge from vxh

to vF (m,xh).

– V = V (Gm) is the set of vertices of Gm;
– E = E(Gm) is the set of edges of Gm.
– |G|: The number of vertices of graph G is its order;
– ‖G‖: The number of edges of Graph G;
– vxh0

: The vertex of Gm, where the value of vertex of vxh0
is xh0 , we also use

xh0 to denote the vertex directly;
– (vxh1

vxh2
): The edge of Gm, (vxh1

vxh2
) ∈ E(Gm), we also use (xh1xh2) to

denote the directed edge, where xh2 = F (m, xh1);
– the vertex vxh0

is incident with an edge e if vxh0
∈ e; then e is an edge at

vxh0
;

– The indegree, the outdegree and degree of a vertex at Graph Gm are defined
as follows

dI
Gm(vxh0

) = #{xh|xh0 = F (m, xh), xh ∈ In}

dO
Gm(vxh0

) = #{xh|xh = F (m, xh0), xh ∈ In}

dGm(vxh0
) = dI

Gm(vxh0
) + dO

Gm(vxh0
)

– δ(Gm)
def
= min{dGm(vxh0

)|vxh0
∈ V (Gm)}, ∆(Gm)

def
= max{dGm(vxh0

)|vxh0
∈

V (Gm)};
– Hi is connective subgraph of Gm, the number of connective subgraph in-

cluded in Gm is denoted Υ ; Ci to illustrate the cycles in subgraph Hi(In each
subgraph only exist a cycle); Tij , j ∈ N to illustrate the trees in Hi−E(Ci),
the number of tree in Hi − E(Ci) is denoted τi;

– Two digraphs G1,G2 are isomorphic (symbol ∼=) if there is a bijection φ :
V (G1) → V (G2) : (xy) ∈ E(G1) ⇔ (φ(x)φ(y)) ∈ E(G2);

– If G′ is any subgraph with G′ ⊆ G, G − G′ is obtained from G by deleting
all the vertices in V (G′) and their incident edges.

– If xh0 = F (m, xh0) then the Graph is a loop, we still call it a cycle.

20

3.1 A Toy Hash

To illustrate the ideal more precisely, an example of hash function with M-
D structure is given. Let us consider the compression function F : {0, 1}4 ×
{0, 1}3 → {0, 1}3, the chaining value set A = I3, the message set B = I4, the
value in A and B is illustrated in hexadecimal notation with a dot(010 is denoted
2̇). The Toy Hash HT (m,x) is a iterated hash function with M-D construction
and the compression function is y = F (xm, xh). Table1 is the table illustration
of y = F (xm, xh), both the count of row and column from 0, the first row is
input value xh and the first column is input value xm, the value of column 1 and
row 1 means 1̇ = F (0̇, 0̇). Fig7 is the Graph illustrations of Gi̇, i ∈ [0, 15], i̇ ∈ I4.
The compression functions y = F (·, xh) are designed with different properties,
to illustate the different properties of design principle of compression function,
first sub-figure G0̇ is F0̇(·, xh), which is permutation, FĖ(·, xh) = F0̇(·, xh)⊕ xh,
FḞ (·, xh) = F0̇(·, xh) ∧ xh, F8̇(·, xh) = F2̇(·, xh) ⊕ 3̇, F9̇(·, xh) = F2̇(·, xh) ⊕ 4̇,
FȦ(·, xh) = F2̇(·, xh ⊕ 5̇), FḂ(·, xh) = F1̇(·, xh) ⊕ 7̇, FĊ(·, xh) = F1̇(·, xh) ⊕ 3̇,
FḊ(·, xh) = F1̇(·, xh)⊕ 5̇, F0̇(·, xh) and F2̇(·, xh) are APN Function, F3̇(·, xh) is
almost a linear function, FĊ(·, xh) = F1̇(·, xh)⊕ 3̇, FḊ(·, xh) = F1̇(·, xh)⊕ 5̇.

Table 1. The compression function of Toy Hash, where the row i is the output of
F (˙i− 1, xh), the column j is output of F (xm, ˙j − 1).

xm\xh 0̇ 1̇ 2̇ 3̇ 4̇ 5̇ 6̇ 7̇

0̇ 1̇ 5̇ 7̇ 2̇ 3̇ 6̇ 4̇ 0̇
1̇ 1̇ 2̇ 3̇ 4̇ 5̇ 6̇ 7̇ 7̇
2̇ 0̇ 4̇ 6̇ 6̇ 5̇ 0̇ 5̇ 4̇
3̇ 4̇ 4̇ 5̇ 5̇ 6̇ 6̇ 7̇ 6̇
4̇ 5̇ 4̇ 7̇ 6̇ 5̇ 6̇ 7̇ 4̇
5̇ 4̇ 4̇ 4̇ 7̇ 5̇ 6̇ 3̇ 2̇
6̇ 4̇ 4̇ 6̇ 7̇ 5̇ 6̇ 3̇ 2̇
7̇ 0̇ 2̇ 7̇ 7̇ 6̇ 6̇ 3̇ 3̇
8̇ 3̇ 7̇ 5̇ 5̇ 6̇ 3̇ 6̇ 7̇
9̇ 4̇ 0̇ 2̇ 2̇ 1̇ 4̇ 1̇ 0̇

Ȧ 0̇ 5̇ 4̇ 5̇ 4̇ 0̇ 6̇ 6̇

Ḃ 7̇ 4̇ 5̇ 2̇ 3̇ 0̇ 1̇ 1̇

Ċ 2̇ 1̇ 7̇ 7̇ 6̇ 5̇ 4̇ 4̇

Ḋ 4̇ 7̇ 6̇ 1̇ 0̇ 3̇ 2̇ 2̇

Ė 1̇ 4̇ 1̇ 5̇ 4̇ 2̇ 2̇ 5̇

Ḟ 0̇ 1̇ 2̇ 2̇ 0̇ 5̇ 4̇ 2̇

In Toy Hash we have following properties, where the attacks are build only
by iterated a same message block again and again:

1. We can append message 2̇‖2̇‖2̇ at the end of any message to build collision.

∀m,m′ ∈ I4·∗,HT (2̇(3)‖m, IV) = HT (2̇(3)‖m′, IV) = 0̇

21

1

0

5

7

3

2

6

4

1

0

2

3

5

4

6

7
1

0

2 3

5

4 6

7 0

7

2 3

6

4 5

1

1

0

2

3

5

4

6

7

1

0

2

3

5

4

6

7

1

0

2

3

5

4

6

7

1

0

2

3

5

4

6

7

0 1 2 3 4 5

6 7 0

2

1

4

5

3

6

7

1

3

0

5

6
7

0

2

4

1

3

5

8 9 A B
7

6

3

5

4

0

1

2

2

7

6

4

0

5

3

6

1

2

4

7

3

7

2

5

C D E F
5

4

6

0

1

3

7

2

0

1

6

4

3

5

6

4

1

7

0

2

Fig. 7. The Compression Function of Toy Hash

2. Both Graph G1̇ and G2̇ have cluster at fixed vertex, but the minimum block
length of message block, making collision by appending repeating of same
message block, are different.

∀m,m′ ∈ I4·∗,HT (1̇(t)‖m, IV) = HT (1̇(t)‖m′, IV),∀t ≥ 7

∀m,m′ ∈ I4·∗,HT (2̇(t)‖m, IV) = HT (2̇(t)‖m′, IV),∀t ≥ 3

3. G2̇ and G3̇ are isomorphic, but the function y = F2̇(·, xh) is APN and y =
F3̇(·, xh) is near a linear function.

4. PẎ |M=3̇(y) and PẎ |M=4̇(y) with same distribution, but the derived Graph
G2̇ and G3̇ are far away from each other.

5. maxy PẎ |M=5̇(y) > maxy PY |M=2̇(y), but collision is more easy to build in
iteration procedure when select the message 2̇‖ . . . ‖2̇ or 5̇‖ . . . ‖5̇.

6. F8̇(·, xh) = F2̇(·, xh) ⊕ 3̇, F9̇(·, xh) = F2̇(·, xh) ⊕ 4̇, FȦ(·, xh) = F2̇(·, xh ⊕ 5̇)
but the derived graphs are totally different.

7. FḂ(·, xh) = F1̇(·, xh)⊕ 7̇, but in Graph in G1̇ exist a cluster, the properties
of Graph GḂ is more like the properties of Graph G0̇. but the derived graph
is totally different.

8. FĖ(·, xh) = F0̇(·, xh) ⊕ xh, FḞ (·, xh) = F0̇(·, xh) ∧ xh, the function y =
F0̇(·, xh) is APN permutation, but the Graph properties of derived graphs
of y = F0̇(·, xh) ⊕ xh and y = F0̇(·, xh) ∧ xh are totally differen. Although
the collision is more easy to build in compression function F0̇(·, xh) ∧ xh, in
iteration procedure, the collision of HT is more easy to build by append the
message Ė(4).

22

9. FĊ(·, xh) = F1̇(·, xh)⊕ 3̇, FḊ(·, xh) = F1̇(·, xh)⊕ 5̇,

∀m ∈ I4·∗,HT (1̇(7)‖m, IV) ∈ {7}

∀m ∈ I4·∗,HT (Ċ(2)‖m, IV) ∈ {0̇, 1̇, 2̇, 4̇, 5̇, 6̇}
∀m ∈ I4·∗,HT (Ḋ(4)‖m, IV) ∈ {0̇, 2̇, 4̇, 6̇}

10. For G7̇, we have:

PZ|M=2̇(z) =

1
4 , z ∈ {3, 6, 7}
1
8 , z ∈ {0, 2}
0 , z ∈ {1, 4, 5}

PZ|M=2̇(2)(z) =

1
2 , z ∈ {3}
3
8 , z ∈ {7}
1
8 , z ∈ {0}
0 , z ∈ {1, 2, 4, 5, 6}

PZ|M=2̇(2)(z) =

1
2 , z ∈ {7}
3
8 , z ∈ {3}
1
8 , z ∈ {0}
0 , z ∈ {1, 2, 4, 5, 6}

3.2 The Properties of Graph Gm

Since the graph Gm is build from Function y = Fm(·, xh), it has some properties
that original directed graph does not have.

Lemma 2. Graph Gm is build from y = F (m, xh):

1. The degree of graph Gm, |Gm| = 2n;
2. The edge of graph Gm, ‖Gm‖ = 2n;
3. dO

Gm
(vxh

) = 1;δ(Gm) = 1;
4. ∆(Gm) = 2n + 1.

Proof. 1. #{0, 1}n = 2n ⇒ |Gm| = 2n;
2. ∀xh0 ∈ In exist and only exist one y0 ∈ In with y0 = F (m, xh0), for y0 ∈ In,

that means for each xh0 exist one directed edge from it in Gm, there are 2n

directed edge exist, we get ‖Gm‖ = 2n;
3. for each xh0 ∈ In, we can compute y0 = F (m, xh0), that means dO

Gm(xh0) = 1,
if does not exist x′h0

satisfy xh0 = F (m, x′h0
), then dGm(xh0) = 1.

4. When all edge point at same xh0 include itself, then dGm(xh0) = 2n + 1

Lemma 3. Graph Gm is build from y = F (m, xh):

1. If xh0 ∈ C, exist x′h0
∈ C with xh0 = F (m, x′h0

) ∈ C and F (m, xh0) ∈ C.
2. all cycles C,C ′ in Gm with C ∩ C ′ = ∅ or C = C ′.
3. Exist and only exist one cycle Ci in each connective subgraph Hi;

23

4. Exist Υ cycles C1, . . . , CΥ in Gm ⇔ exist Υ connective subgraph H1, . . . ,HΥ

with Hi ∩Hj = ∅ and Gm = H1 ∪ . . . ∪HΥ .
5. vertexes in each cycle compose a permutation;

Proof. Let |C| = t.

1. dO
Gm(xh) = 1, dC(xh) = 2, |C| = t,

∑
vxh

∈C dI
C(vxh

) =
∑

vxh
∈C dO

C(vxh
) ⇒∑

vxh
∈C dO

C(vxh
) ≤ t,

∑
vxh

∈C dC(vxh
) = 2t ⇒ ∑

vxh
∈C dI

C(vxh
) = t ⇒

dI
C(vxh

) = 1, dO
C(vxh

) = 1
2. From item 1 we have ∀vxh

∈ C, F (m, xh) ∈ C, ∀vxh
∈ C ∩ C ′ ⇒ F (m, xh) ∈

C ∩C ′, since C and C ′ have finite vertexes, we have C = C ′ or C ∩C ′ = ∅;
3. Since Hi is connective subgraph, Hi ∩ Hj = ∅, i 6= j, we have ∀vxh

∈
Hi, F (m, xh) ∈ Hi; let vxh0

∈ Hi, xh1 = F (m, xh0), then v(xh1) ∈ Hi, let
xh2 = F (m, xh1) then xh2 ∈ Hi, since Hi is limited subgraph, there must
be exist xht

with xht
= xhi

, i ≤ t, we find the cycle. If exist Ci, C
′
i ∈ Hi,

then there must exist xh0 , xh′0 ∈ Hi, but xh0 6∈ C and xh′0 6∈ C ′, with
F (m, xh0) ∈ C and F (m, xh′0) ∈ C ′, if xh0 = xh′0 , then get conflict, if we
then find value xht

with xht−1 = F (m, xht
), xh′

t−1
= F (m, xht

), since G1 is
limited graph, we get conflict. We get in one connected subgraph only exist
one cycle.

4. Direct result of item 3.
5. ∀xh0 ∈ C, F (m, xh0) ∈ C and exist x′h0

∈ C with xh0 = F (m, x′h0
).

3.3 The Relation Between Gm and M-D Hash

From the toy hash we can make such conclusion:

Assumption 1 Let Graph Gm is derived from y = F (m, xh), m ∈ In:

1. The paths of Graph Gm are influenced by both linear components and non-
linear components of compression function y = F (·, xh);

2. The cycle number and the length of cycle of Graph Gm are influenced by
both linear components and nonlinear components of compression function
y = F (·, xh);

3. The connectivity of Graph Gm is influenced by both linear components and
nonlinear components of compression function y = F (·, xh);

4. If the vertexes of Graph Gm are not distinguished, then degree of Graph Gm
is not influenced by linear components of compression function y = F (·, xh);

5. If the Graph Gm − v(xh0) is a tree, by append message m
(t)
0 at the end of

messages m,m′ ∈ In·∗, we can build collision.
6. y = F (·, xh) is designed as pseudo random function, which can not prevent

the cluster in iteration procedure.
7. y = F (·, xh) is a pseudo random permutation, then there is no cluster in

iteration procedure.
8. If the two arrow from xh1 and xh2 point at same value, we know we find a

collision with F (m, xh1) = F (m, xh2).

24

9. If no arrow pointed at some point xh0 means ∀xh ∈ In, F (m0, xh) 6= xh0 .

Theorem 6. In M-D hash z = HM (m,x), ∀m ∈ In and digraph Gm exist L ∈ N
such that

PŻ|M=m(t)(z) = 0,∀i ∈ [1, Υ], z 6∈ Ci, t ≥ L

1
2n

≤ PŻ|M=m(t)(z) ≤ |Hi| − |Ci|
2n

,∃i ∈ [1, Υ], z ∈ Ci, Ci ⊆ Hi, t ≥ L

max
z

PŻ|M=m(t)(z) = max
|Tij |
2n

,∀t ≥ L, j ∈ [1, τi], i ∈ [1, Υ].

Proof. 1. If z 6∈ Ci, which implies after several step of iteration, does not exist
xh ∈ In with H(m(t), xh) = z;

2. If z0 ∈ Ci then exist xh0 ∈ Ci with z0 = F (m, xh0) ⇒ PŻ|M=m(t)(z0) ≥ 1
2n

3. Since if z0 is a root of Tij , exits t0 with ∀xh ∈ Tij ,H(m(t0), xh) = z0, so we
have the conclusion.

ut

Part II

Security Proof of Structures

27

4 Conditional Probability of the Structures

4.1 Conditional Probability of Known Structues

Theorem 7 (Conditional Probability of M-D Hash). Let y = F (xm, xh),
z = HM (m,x), x ∈ In, m = m∗ . . . m1 ∈ I∗·n, mi ∈ Iκ, ∗ ≤ t, m and x are
independent from each other and the distribution of y is independent from xm

and xh then:

1. PŻ|M=m(z) ≤ (SF)t

2n ;
2. PŻ|X=x(z) ≤ TF

2κ .

Proof. The Proof is given by deduction theory.

1. When t = 1:

PŻ|M=m(z) ≤ max
m0,z0

∑

x∈In

PX(x)χF (m0,x)(z0)

= max
m0,z0

∑

i∈[1,2n]

2−n#{(z0,m0, xi)}F ≤ 2−nSF

Suppose t < l the inequality is true, when t = l:

PŻ|M=m(z) = PŻ|M=ml‖m′(z)

=
∑

x∈In

PX(x)χF (ml,HM (m′,x))(z)

=
∑

x∈In

∑

u∈In

PX(x)χF (ml,u)(z)χHM (m′,x)(u)

=
∑

u∈In

χF (ml,u)(z)
∑

x∈In

PX(x)χHM (m′,x)(u)

=
∑

u∈In

χF (ml,u)(z)PU̇ |M ′=m′P (u)

≤ 2−nSl−1
F

∑

u∈In

χF (ml,u)(z)

≤ 2−nSl−1
F SF = 2−nSl

F

2. When t = 1

PŻ|X=x(z) ≤ max
x0,z0

∑
m

PM (m)χF (m,x0)(z0)

= max
x0,z0

∑

i

2−κ#{(mi, x0, z0)}F ≤ 2−κTF

28

When t > 1:

PŻ|X=x(z) =
∑

m∈∪l
i=1Iκ·i

PM (m)PŻ|M=m,X=x(z)

=
∑

ml∈Iκ

∑

m′∈∪l−1
i=1Iκ·i

PM ′(m′)PMl
(ml)

PŻ|M=m,X=xP ((z = F (ml, u), u = HM (m′, x)))

=
∑

ml∈Iκ

∑

m′∈∪l−1
i=1Iκ·i

∑

u∈Iκ

PM ′(m′)PMl
(ml)χF (ml,u)(z)χHM (m′,x)(u)

=
∑

u∈Iκ

∑

ml∈Iκ

PMl
(ml)χF (ml,u)(z)

∑

m′∈∪l−1
i=1Iκ·i

PM ′(m′)χHM (m′,x)(u)

=
∑

u∈Iκ

PŻ|U=u(z)PU̇ |X=x(u)

≤ 2−κTF

∑

u∈Iκ

PU̇ |X=x(z) = 2−κTF

From induction principle we get the conclusions. ut
Remark 7. The proof require the compression function with property of y =
F (xm, xh) with PY |Xm=xm

(y) = PY (y), PY |Xh=xh
(y) = PY (y), that are also

required in design of block cipher, so we prefer design hash compression function
based on block cipher design principle.

Theorem 8 (Conditional Probability of Wide Pipe Hash). Let z =
HM (m,x), z̃ = HW (m,x) = G(z), x ∈ In, m = m∗ . . . m1 ∈ I∗·n, mi ∈ Iκ,
∗ ≤ t, m and x are independent and distribution of y is independent from that
of xm and xh:

1. P ˙̃Z|M=m
(z̃) ≤ (SF)tSG

2n ;

2. P ˙̃Z|X=x
(z̃) ≤ TF SG

2κ .

Proof. – ∀ t ≥ 1:

P ˙
Z̃|M=m

(z̃) =
∑

x∈In

PX(x)P ˙
Z̃|M=m,X=x

(z̃ = G(z), z = HM (m,x))

=
∑

x,z∈In

PX(x)χG(z)(z̃)χHM (m,x)(z)

=
∑

z∈In

χG(z)(z̃)
∑

x∈In

PX(x)χHM (m,x)(z)

29

=
∑

z∈In

χG(z)(z̃)PŻ|M=m(z)

≤ max
z

PŻ|M=m(z)
∑

z∈In

χG(z)(z̃)

≤ (SF)tSG

2n

– ∀ t ≥ 1:

P ˙
Z̃|X=x

(z̃) =
∑

m∈∪t
i=1In·i

PM (m)P ˙
Z̃|X=x,M=m

(z̃ = G(z), z = HM (m,x))

=
∑

z∈In

∑

m∈∪t
i=1In·i

PM (m)P ˙̃Z|Z=z
(z̃)PŻ|M=m,X=x(z = HM (m,x))

=
∑

z∈In

χG(z)(z̃)
∑

m∈∪t
i=1In·i

PM (m)PŻ|M=m,X=x(z = HM (m,x))

=
∑

z∈In

χG(z)(z̃)PŻ|X=x(z)

≤ max
z

PŻ|X=x(z)
∑

z∈In

χG(z)(z̃)

≤ TF SG

2κ

ut
Theorem 9 (Conditional Probability of Double Pipe Hash). Let z′‖z =
HM (m,x′‖x), z̃ = HD(m,x′‖x) = G(z), m = m∗ . . . m1 ∈ I∗·n, mi ∈ Iκ, i ≤
∗, ∗ ≤ t, m and x are independent from each other and distribution of y is
independent from that of xm and xh then:

1. P ˙̃Z|M=m
(z̃) ≤ (S

F̃
)tSG

22n ;

2. P ˙̃Z|X=x
(z̃) ≤ TG

2κ .

Proof. – ∀ t ≥ 2:

P ˙
Z̃|M=m

(z̃)

=
∑

x′‖x∈I2n

PX′‖X(x′‖x)

(P ˙
Z̃|M=m∗‖m′,X′‖X=x′‖x

(z̃ = G(m∗, z′‖z), z′‖z = HM (m′, x′‖x)))

=
∑

x′‖x,z′‖z∈I2n

PX′‖X(x′‖x)χG(m∗,z′‖z)(z̃)χHM (m′,x′‖x)(z
′‖z)

=
∑

z′‖z∈I2n

χG(m∗,z′‖z)(z̃)
∑

x′‖x∈I2n

PX′‖X(x′‖x)χHM (m′,x′‖x)(z
′‖z)

30

=
∑

z′‖z∈I2n

χG(m∗,z′‖z)(z̃)PŻ|M=m′(z′‖z)

≤ max
z′‖z

PŻ|M=m′(z′‖z)
∑

z′‖z∈I2n

χG(m∗,z′‖z)(z̃)

≤ (S
F̃
)tSG

22n

– ∀ t ≥ 2:

P ˙
Z̃|X′‖X=x′‖x

(z̃)

=
∑

m∗‖m′∈∪t
i=1In·i

PM (m∗‖m′)

P ˙
Z̃|X′‖X=x′‖x,M=m∗‖m′(z̃ = G(m∗, z′‖z), z = HM (m′, x′‖x))

=
∑

z′‖z∈I2n

∑

m∗‖m′∈∪t
i=1In·i

PM (m∗‖m′)

P ˙̃Z|Z′‖Z=z′‖z,M∗=m∗
(z̃ = G(m∗, z′‖z))

PŻ|M ′=m′,X′‖X=x′‖x(z = HM (m′, x′‖x))

=
∑

z′‖z∈I2n,m∗∈In

χG(m∗,z′‖z)(z̃)

∑

m′∈∪t−1
i=1In·i

PM ′(m′)P ˙Z′‖Z|M ′=m′,X′‖X=x′‖x(z′‖ = HM (m′, x′‖x))

=
∑

z′‖z∈I2n

P ˙
Z̃|Z′‖Z=z′‖z

(z̃)P ˙Z′‖Z|X′‖X=x′‖x(z′‖z)

= max
z′‖z∈I2n

P ˙
Z̃|Z′‖Z=z′‖z

(z̃)
∑

z′‖z∈I2n

P ˙Z′‖Z|X′‖X=x′‖x(z′‖z)

≤ TG

2κ

ut
Corollary 2. ∀y, if y = Fxm

(·, xh) is permutation, then for z = HM (m,x),z̃ =
HW (m,x):

1. PZ|M=m(z) = 2−n;
2. PZ̃|M=m(z̃) = SG2−n;

4.2 Conditional Probability of Improved Structures

Theorem 10 (Ideal-Pipe Hash). ỹ = f(m,x), ỹ = Ḡ(f(m,x), xh), y =
F (xm, xh), for z = HM (m,x), z̃ = HI(f(m,x), z), m = mt‖ . . . ‖m1 ∈ Iκ·t,
m and x are independent from each other, if f(m,x) is independent from x,m
and z then:

31

1. P ˙
Z̃|M=m

(z̃) ≤ Sf TG

2κ ;

2. P ˙
Z̃|X=x

(z̃) ≤ Tf TG

2n .

Proof. ∀ t ≥ 1:

P ˙
Z̃|M=m

(z̃) = P ˙
Z̃|M=m

(z̃ = Ḡ(u, z), u = f(m,x), z = HM (m,x))

=
∑

x,u,z∈In

PX(x)χḠ(z,u)(z̃)χHM (z, m, x)χf(m,x)(u)

u and z are independent, and PX(x) = 2−n

=
∑

u,z∈In

χḠ(z,u)(z̃)
∑

x∈In

PX(x)χHM (z, m, x)

∑

x∈In

PX(x)χf(m,x)(u)

=
∑

u,z∈In

χḠ(z,u)(z̃)PU̇ |M=m(u)PŻ|M=m(z)

≤ max
u0

PU̇ |M=m(u0)2n
∑

z

PŻ|M=m(z)
∑

u

2−nχḠ(z,u)(z̃)

= max
u0

PU̇ |M=m(u0)2n
∑

z

PŻ|M=m(z)PZ̃|Z=z(z̃)

≤ max
u0

PU̇ |M=m(u0)max
z0,z̃0

2nPZ̃|Z=z0
(z̃0)

∑
z

PŻ|M=m(z)

= max
u0

PU̇ |M=m(u0) ≤ SfTḠ

2κ

∀ t ≥ 1:

P ˙
Z̃|X=x

(z̃) = P ˙
Z̃|X=x

(z̃ = Ḡ(u, z), u = f(m,x), z = HM (m,x))

=
∑

u,z∈In

∑

m∈∪t
i=1In·i

PM (m)PZ̃|U̇=u,Z=z(z̃)

PU̇,Ż|M=m,X=x(u = f(m,x), z = HM (m,x))

Since PM (x) = 2−
∑t

i
i·n and u, z are independent

=
∑

u,z∈In

χḠ(z,u)(z̃)

∑

m∈∪t
i=1In·i

PM (m)PU̇ |M=m,X=x(u = f(m,x))

∑

m∈∪t
i=1In·i

PM (m)PŻ|M=m,X=x(z = HM (m,x))

=
∑

u,z∈In

χḠ(z,u)(z̃)PU̇ |X=x(u)PŻ|X=x(z)

32

≤ max
u0

PU̇ |X=x(u0)2n
∑

z

PŻ|X=x(z)
∑

u

2−nP ˙
Z̃|U=u,Z=z

(z̃)

= max
u0

PU̇ |X=x(u0)2n
∑

z

PŻ|X=x(z)P ˙
Z̃|Z=z

(z̃)

≤ max
u0

PU̇ |X=x(u0)max
z0,z̃0

2nP ˙
Z̃|Z=z0

(z̃0)
∑

z

PŻ|X=x(z)

= max
u0

PU̇ |X=x(u0) ≤ TfTḠ

2n

ut

Theorem 11. z = Hm(m,x), z ∈ In,z̃ = HN (m,x), m = mt‖ . . . ‖m1 ∈ Iκ·t,
hi = F (mi, hi−1), h0 = x and m1, . . . , mt are independent from each other, if
f(m,x) = h∗ ⊕ . . .⊕ h1 ⊕ h0 is independent from x and m then:

1. P ˙̃Z|M=m
(z̃) ≤ Sf TG

2n ;

2. P ˙̃Z|X=x
(z) ≤ Tf TG

2n .

5 The Advantage of Hash Function

5.1 The Advantage of Compression Function

Theorem 12 (Pseudo Preimage Attack). Let y = F (xm, xh) is Black Box
Model then:

ÃdvPre
F (q) ≤ 2q ·max{TF

2κ
,
SF

2n
}.

ÃdvPre
F (A) = max{TF

2κ
,
SF

2n
}.

ÃdvPre
F (A) = max

xm,xh

max
y
{PẎ |Xh=xh

(y), PẎ |Xm=xm
(y)}.

Proof. F (xm, xh) is Black Box Model, the only way to get preimage is exhaustive
search. The exhaustive search has following ways:

– For given y0, xh0 searching xm with y = F (xm, xh0)
Game(A,F, q, y0, xh0)

For i = 1, . . . , q do :
A(y0, xh0) → (xmi)

A wins if ∃i st. F (xmi
, xh0) = y0.

the success probability of ith time selection p[Ci] is[3]:

p[Ci] = #{(y0,xm,xh0)}F

2κ−i+1

33

The success probability of q times trying is:

p[C1∨...∨Ct] =
#{(y0, xm, xh0)}F

2κ
+ . . . +

#{(y0, xm, xh0)}F

2κ − q + 1

≤ q · #{(y0, xm, xh0)}F

2κ − q
≤ q · #{(y0, xm, xh0)}F

2κ − 2κ−1

p[C1∨...∨Ct] =
#{(y0, xm, xh0)}F

2κ
+ . . . +

#{(y0, xm, xh0)}F

2κ − q + 1

≥ q · #{(y0, xm, xh0)}F

2κ

We get the maximum success probability is 2q · TF

2κ .
– For given y0, xm0 searching xh, we get the maximum success probability is

2q · SF

2n .
Game(A,F, q, y0, xm0)

For i = 1, . . . , q do :
A(y0, xm0) → (xhi)

A wins if ∃i st. F (xm0 , xhi
) = y0.

– For given y0, randomly searching xh and xm, the maximum success proba-
bility is 2q · Ry

2κ2n .
Game(A,F, q, y0)

For i = 1, . . . , q do :
A(y0) → (xmi

, xhi
)

A wins if ∃i st. F (xmi , xhi) = y0.
ut

Theorem 13 (Pseudo Collision Attack). Let y = F (xm, xh) is Black Box
Model then:

ÃdvColl
F (q) ≤ q(q − 1) ·max{TF − 1

2κ
,
SF − 1

2n
,
RF − 1
2κ2n

}.

ÃdvPre
F (A) = max{TF − 1

2κ − 1
,
SF − 1
2n − 1

,
RF − 1
2κ2n − 1

}.

Proof. The collision can be get only by exhaustive search.

– The fastest way to search for collision is the way based on birthday para-
dox. For random selected xh0 searching xm1 , xm2 , . . . xmt

finding collision of
F (xmi

, xh0) = F (xmj
, xh0),

Game(A,F, q, xh0)
For i = 1, . . . , q do :

A() → (xmi
), (xmi

6= xmj
, j < i)

A wins if ∃i, j st. F (xmi
, xh0) = F (xmj

, xh0)y0.
let Ci be the event that the i-th selection make collision with one of the
previous ones. Then p[Ci] is at most[3]:

34

p[Ci] ≤ i(TF−1)
2κ−i

Then the maximum success probability of q times trying is:

p[C1∨...∨Ct] ≤ p[C1] + . . . + p[Cq]

≤
q−1∑

i=0

i(TF − 1)
2κ − i

≤ q · (q − 1)(TF − 1)
2 · 2κ − q

≤ q · (q − 1)(TF − 1)
2 · 2κ−1

= q(q − 1)
(TF − 1)

2κ

– similar as item 1, we get for selectedxm the complexity is q(q − 1) (SF−1)
2n ;

Game(A,F, q, xm0)
For i = 1, . . . , q do :

A() → (xhi
), (xhi

6= xhj
, j < i)

A wins if ∃i, j st. F (xm0 , xhi
) = F (xm0 , xhj

)y0.

– similar as item 1, searching xm, xh, the complexity is q(q − 1) (RF−1)
2κ2n .

Game(A,F, q)
For i = 1, . . . , q do :

A() → (xmi
, xhi

), ((xmi
, xhi

) 6= (xmi
, xhj

), j < i)
A wins if ∃i, j st. F (xm0 , xhi

) = F (xm0 , xhj
)y0.

ut

Theorem 14 (Fix Start Preimage Attack). Let y = F (xm, xh) then:

1. If y = F (xm, ·) is invertible then:

ÃdvFixP
F (A) = 1.

2. If y = F (xm, ·) is Black Box Model then

ÃdvFixP
F (q) ≤ 2q TF

2κ

ÃdvFixP
F (A) = TF

2κ

Proof.

1. For xh0 , y0, compute F−1
xh0

(y, ·), let xm = F−1
xh0

(y, ·) ⇒ ÃdvFixP
F (A) = 1.

2. For given xh0 , there are two ways to search the preimage of y0:
– Select xh0 , search xm satisfy y0 = F (xm, xh0),

Game(A,F, q, y0, xh0)
For i = 1, . . . , q do :

A(y0, xh0) → (xmi
)

A wins if ∃i st. F (xmi
, xh0) = y0.

in q times trying the maximum success probability is 2q TF

2κ .

35

– For given y0, select xmi
get xhi

, satisfying y0 = F (xmi
, xhi

), then check
xhi

= xh0 being satisfied or not,
Game(A,F, q, y0, xh0)

For i = 1, . . . , q do :
A(y0) → (xmi

)
xhi

← F−1
xmi

(·, y0)
A wins if ∃i st. xh0 = xhi

.
for random selected xmi

, the maximum probability of xhi
= xh0 is:

p = PẎ |Xh=xh0
(y0) ≤ Th

2κ . ut

Theorem 15 (Fix Start Collision Attack). Let y = F (xm, xh):

1. If y = F (xm, ·) is invertible then:

ÃdvFixC
F (q) =

{
1 TF > 1
0 else

;

2. If y = F (xm, ·) is black box model then:

ÃdvFixC
F (q) ≤ q(q − 1)

TF − 1
2κ

.

ÃdvFixC
F (A) =

TF − 1
2κ − 1

.

Proof.

1. For xh0 , random select y0, get xm with y0 = F (xm, xh0), if TF > 1 exist
collision, else no collision.

2. There are two ways to attack:
– The maximum success probability of random select xm1 , . . . , xmt get-

ting y = F (xh0 , xmi), check F (xh0 , xmi) = F (xh0 , xmj) being satiesfied
or not, same as proof of Theorem13, the minimum requirement of com-
putation is q(q − 1)TF−1

2κ ;
Game(A,F, q, xh0)

For i = 1, . . . , q do :
A() → (xmi), (xmi 6= xmj , j < i)

A wins if ∃i, j st. F (xmi , xh0) = F (xmj , xh0)y0.

– For given y0 and xh0 , the success probability of finding collision with
F (xh0 , xmi

) = F (xh0 , xmj
) is same as finding the preimage of y0 =

F (xh0 , xm),
Game(A,F, q, y0, xh0)

For i = 1, . . . , q do :
A(y0) → (xmi

)
xhi

← F−1
xmi

(·, y0)
A wins if ∃i, j st. xh0 = xhi

, xh0 = xhj
, .

the success probability is smaller than q TF−1
2κ . ut

36

5.2 Advantage of Known Structures

Lemma 4 (Conditional Probability of M-D Hash). Let y = F (xm, xh),
z = HM (m,x), x ∈ In, m = m∗ . . . m1 ∈ I∗·κ, mi ∈ Iκ, ∗ ≤ t, m and x are
independent from each other then:

1. PŻ|M=m(z) ≤ (SF)t

2n ;
2. PŻ|X=x(z) ≤ TF

2κ

Remark 8. The bound item 2 is tight, the bound item 1 should be discussed in
true design.

Theorem 16. If z = HM (m,x), y = F (xm, xh), m = m∗ . . . m1 ∈ I∗·κ, ∗ ≤ t,
IV is the initial value, if

1. max
m

max
z

PŻ|M=m(z) ≤ S1
2n ;

2. max
m

max
z

PŻ|M=m(t)(z) ≤ S2
2n ;

3. max
x

max
z

PŻ|X=x(z) ≤ T1
2κ .

then4:

1. If y = F (xm, xh) is Black Box Model:
(a) ÃdvPre

HM (q) ≤ max{2q S1
2n , 2q T1

2κ , q S2
2n }

(b) ÃdvColl
HM (q) = 1

(c) ÃdvFixP
HM (q) ≤ max{2q2 S2

1
22n , 2q T1

2κ , q S2
2n }

(d) ÃdvFixC
HM (q) ≤ max{q2(q − 1) S2

1
22n , q(q − 1)T1

2κ , q S2
2n }

2. If y = F (xm, ·) is invertible then
(a) ÃdvPre

HM (q) = 1
(b) ÃdvColl

HM (q) = 1
(c) ÃdvFixP

HM (q) = 1
(d) ÃdvFixC

HM (q) = 1
3. If y = F (xm, ·) is black box model then

(a) ÃdvPre
HM (q) = 1

(b) ÃdvColl
HM (q) = 1

(c) ÃdvFixP
HM (q) ≤ max{2q2 S2

1
22n , q(q − 1)T1

2κ , q S2
2n }

(d) ÃdvFixC
HM (q) ≤ max{q2(q − 1) S2

1
22n , q(q − 1)T1

2κ , q S2
2n }

Proof.

1. If F is Black Box Model: since the function y = F (xm, xh) is black box
model, then the hash HM (m,x) can be seen as black box model.

4 Where we did pre-computation of HM (m
(l)
0 , IV), l ≥ 1, until get l′ and l′′ with

HM (m
(l′)
0 , IV) = HM (m

(l′′)
0 , IV), for a selected m0.

37

(a) For any selected x0 ∈ In,
Game0(A,F, q, z0, x0)

For i = 1, . . . , q do :
A(z0, x0) → (mi)

A wins if ∃i st. z0 = HM (mi, x0).
The success probability in q time trying is:2q T1

2κ .
Game1(A,F, q, z0,m0)

For i = 1, . . . , q do :
A(z0,m0) → (xi)

A wins if ∃i st. z0 = HM (m0, xi).
The success probability in q time trying is:2q S1

2n . if exist z0 with PZ|M=m0(z0)
get the maximum conditional probability, then the m0 be a large mes-
sage, and one time trying of of Game1 be very big, and also m0 may be
very hard to find, the complexity of finding such value is O(2n), but if
s1 ≥ 2

n
2 and |m| ≤ n

2 · κ, the attack is still possible.
Game2(A,F, z0, x0, m0)

z1 ← x0;Q = ∅;
For i = 1, . . . , t do :

z1 ← F (m0, z1)
Q ← Q ∪ z1

A wins if z0 = z1 or z1 ∈ Q
Requrn t.

The Game2 can be used to find any preimage, for different m0, the t
is different, the best way is select m0 with the minimum t. If the m0 is
the value with P

Z|M=m(T)
0

(z0) = S22−n, then the success probability of

finding preimage z0 with game2 is qS22−n, then the success probability
is qS22−n.

(b) Since HM (m2‖m1, x) = HM (m2,H
M (m1, x)), then we find the collision.

(c) For IV ∈ In,
Game0(A,F, q, z0, IV)

For i = 1, . . . , q do :
A(z0, IV) → (mi)

A wins if ∃i st. z0 = HM (mi, IV).
The success probability in q time trying is:2q T1

2κ .
Game1(A,F, q, z0,m0, IV)

Q → ∅;
For i = 1, . . . , q do :

A(z0,m0) → (xi,mi)
Q → Q ∪H(mi, IV)

A wins if ∃i st. z0 = HM (m0, xi) ∧ xi ∈ Q.
The success equals finding two preimage, so we have, in q time trying,
the probability is :2q S1

2n 2q S1
2n .

Game2(A,F, z0, IV, m0)
z1 ← IV ;Q = ∅;
For i = 1, . . . , t do :

38

z1 ← F (m0, z1)
Q ← Q ∪ z1

A wins if z0 = z1 or z1 ∈ Q
Requrn t.

The Game2 can be used to find any preimage, for different m0, the t
is different, the best way is select m0 with the minimum t. If the m0 is
the value with P

Z|M=m(T)
0

(z0) = S22−n, then the success probability of

finding preimage z0 with game2 is qS22−n, then the success probability
is qS22−n.

(d) For IV ∈ In,
Game0(A,F, q, IV)

For i = 1, . . . , q do :
A(Q, IV) → (mi)

A wins if ∃i, j st. HM (mi, IV) = HM (mj , IV).
The success probability in q time trying is:q(q − 1)T1

2κ .
Game1(A,F, q,m0, IV)

Q → ∅;
For i = 1, . . . , q do :

A(z0,m0) → (xi,mi)
Q → Q ∪H(mi, IV)

A wins if ∃i, j st. HM (m0, xi) = HM (m0, xj) ∧ (xi ∈ Q ∧ xj ∈ Q).
The success equals finding preimage and collision, so we have, in q time
trying, the probability is :q S1

2n (q − 1)q S1
2n .

Game2(A,F, z0, IV, m0)
z1 ← IV ;Q = ∅;
For i = 1, . . . , t do :

z1 ← F (m0, z1)
Q ← Q ∪ z1

A wins if z0 = z1 or z1 ∈ Q
Requrn t.

Game2 aso can be used to find the collision, the success probability is
qS22−n.

2. If xm = F−1(y, xh) then: The conclusions can be get by the direct compu-
tation, since xm = F−1(y, xh).

3. we make assumption of xh can be gotten from xh = F−1(xm0 , y), (that is
the worst condition).
(a) Can be gotten from direct computation;
(b) Can be gotten from direct computation;
(c) For IV ∈ In,

Game0(A,F, q, z0, IV)
Q → ∅; For i = 1, . . . , q do :

A(z0, IV) → (mi, mi)
Q → F−1(mi, z0)

A wins if ∃i st. HM (mi, IV) ∈ Q.
The success probability in q time trying is:q(q − 1)T1

2κ .
Game1(A,F, q, z0,m0, IV)

39

Q → ∅;
For i = 1, . . . , q do :

A(z0,m0) → (xi,mi)
Q → Q ∪H(mi, IV)

A wins if ∃i st. z0 = HM (m0, xi) ∧ xi ∈ Q.
The success equals finding two preimage, so we have, in q time trying,
the probability is :2q S1

2n 2q S1
2n .

Game2(A,F, z0, IV, m0)
z1 ← IV ;Q = ∅;
For i = 1, . . . , t do :

z1 ← F (m0, z1)
Q ← Q ∪ z1

A wins if z0 = z1 or z1 ∈ Q
Requrn t.

The Game2 can be used to find any preimage, for different m0, the t
is different, the best way is select m0 with the minimum t. If the m0 is
the value with P

Z|M=m(T)
0

(z0) = S22−n, then the success probability of

finding preimage z0 with game2 is qS22−n, then the success probability
is qS22−n.

(d) For IV ∈ In,
Game0(A,F, q, IV)

For i = 1, . . . , q do :
A(Q, IV) → (mi)

A wins if ∃i, j st. HM (mi, IV) = HM (mj , IV).
The success probability in q time trying is:q(q − 1)T1

2κ .
Game1(A,F, q,m0, IV)

Q → ∅;
For i = 1, . . . , q do :

A(z0,m0) → (xi,mi)
Q → Q ∪H(mi, IV)

A wins if ∃i, j st. HM (m0, xi) = HM (m0, xj) ∧ (xi ∈ Q ∧ xj ∈ Q).
The success equals finding preimage and collision, so we have, in q time
trying, the probability is :q S1

2n (q − 1)q S1
2n .

Game2(A,F, z0, IV, m0)
z1 ← IV ;Q = ∅;
For i = 1, . . . , t do :

z1 ← F (m0, z1)
Q ← Q ∪ z1

A wins if z0 = z1 or z1 ∈ Q
Requrn t.

Game2 aso can be used to find the collision, the success probability is
qS22−n.

ut

40

Corollary 3. If z = HM (m,x), y = F (xm, xh), m = m∗ . . . m1 ∈ I∗·κ, ∗ ≤ t, IV
is the initial value, If ∀xm0 ∈, y = F (xm0 , xh) is permutation, y = F (xm, ·) is
black box model then:

1. ÃdvFixP
HM (q) ≤ q(q − 1)TF

2κ

2. ÃdvFixC
HM (q) ≤ q(q − 1)TF

2κ

Theorem 17 (Wide-Pipe Hash). Let G is Black Box Model and not invert-
ible, z = HM (m,x), z̃ = HW (m,x) = G(z), x and m1, . . . , mt are independent
from each other, if

1. max
m

max
z

PŻ|M=m(z) ≤ S1
2n ;

2. max
m

max
z

PŻ|M=m(t)(z) ≤ S2
2n ;

3. max
x

max
z

PŻ|X=x(z) ≤ T1
2κ .

then5:

1. If y = F (xm, xh) is Black Box Model or y = F (xm, ·) is black box model :
(a) ÃdvPre

HM (q) ≤ max{2q SGS1
2ω , 2q SGT1

2ω , q SGS2
2ω }

(b) ÃdvColl
HM (q) = 1

(c) ÃdvFixP
HM (q) ≤ max{2q2 SGS2

1
22ω , 2q SGT1

2ω , q SGS2
2ω }

(d) ÃdvFixC
HM (q) ≤ max{q2(q − 1)SGS2

1
22ω , q(q − 1)SGT1

2ω , q SGS2
2ω }

2. If y = F (xm, ·) is invertible then
(a) ÃdvPre

HM (q) = 1
(b) ÃdvColl

HM (q) = 1
(c) ÃdvFixP

HM (q) = 1
(d) ÃdvFixC

HM (q) = 1

Corollary 4. Let G is Black Box Model and not invertible, z = HM (m,x),
z̃ = HW (m,x) = G(z), x and m1, . . . , mt are independent from each other, If
∀xm0 ∈, y = F (xm0 , xh) is permutation, y = F (xm, ·) is black box model then:

1. ÃdvFixP
HM (q) ≤ 2q TF

2ω

2. ÃdvFixC
HM (q) ≤ q(q − 1)TF

2ω

5.3 The Advantages of Improved Structures

Theorem 18 (Ideal-Pipe Hash). ỹ = f(m,x), ỹ = Ḡ(f(m,x), xh), y =
F (xm, xh), for z = HM (m,x), z̃ = HI(f(m,x), z), m = mt‖ . . . ‖m1 ∈ Iκ·t,
m and x are independent from each other, if f(m,x) is independent from x,m
and z then:
5 Where we did pre-computation of HM (m

(l)
0 , IV), l ≥ 1, until get l′ and l′′ with

HM (m
(l′)
0 , IV) = HM (m

(l′′)
0 , IV), for a selected m0.

41

1. If y = F (xm, xh) is Black Box Model or y = F (xm, ·) is black box model
then:
(a) ÃdvPre

HM (q) ≤ max{2q
Tf TḠ

2κ , q
Sf TḠ

2n }
(b) ÃdvColl

HM (q) = max{q(q − 1)Tf TḠ

2κ , q
Sf TḠ

2n }
(c) ÃdvFixP

HM (q) ≤ max{2q
Tf TḠ

2κ , q
Sf TḠ

2n }
(d) ÃdvFixC

HM (q) ≤ max{q(q − 1)TF

2κ , q SF

2n }
2. If y = F (xm, ·) is invertible then

(a) ÃdvPre
HM (q) = 1

(b) ÃdvColl
HM (q) = 1

(c) ÃdvFixP
HM (q) = 1

(d) ÃdvFixC
HM (q) = 1

Theorem 19 (3C Hash). Let z = Hm(m,x), z ∈ In,z̃ = HN (m,x), m =
mt‖ . . . ‖m1 ∈ Iκ·t, hi = F (mi, hi−1), h0 = x and m1, . . . , mt are independent from
each other, if f(m,x) = h∗ ⊕ . . .⊕ h1 ⊕ h0 is independent from x and m then:

1. If y = F (xm, xh) is Black Box Model or y = F (xm, ·) is black box model
then:
(a) ÃdvPre

HM (q) ≤ max{2q
Tf TḠ

2κ , q
Sf TḠ

2n }
(b) ÃdvColl

HM (q) = max{q(q − 1)Tf TḠ

2κ , q
Sf TḠ

2n }
(c) ÃdvFixP

HM (q) ≤ max{2q
Tf TḠ

2κ , q
Sf TḠ

2n }
(d) ÃdvFixC

HM (q) ≤ max{q(q − 1)TF

2κ , q SF

2n }
2. If y = F (xm, ·) is invertible then

(a) ÃdvPre
HM (q) = 1

(b) ÃdvColl
HM (q) = 1

(c) ÃdvFixP
HM (q) = 1

(d) ÃdvFixC
HM (q) = 1

42

Part III

The Feistel Hash
Constructions

45

6 The Feistel Constructions

A Feistel structure is a general way of constructing block ciphers from simple
functions. The original idea was used in the block cipher, invented by Horst
Feistel[22]. The security of the Feistel structure is not obvious, but analysis of
DES[23] has shown that it is a good way to construct ciphers. And some new
ciphers based on Feistel structure of SPN function have been discussed recently
and no weakness is found in Feistel structure itself.

6.1 The Feistel Compression Function

Let Ψ(fk)(x′‖x) = y′‖y def⇔
{

y′ = x
y = x′ ⊕ fk(x) , x′, x, y′, y, k ∈ In, the R round

Feistel structured block cipher is EFe : In×I2n → I2n, EFe(k, x′‖x)
4
= Ψ(fk(R))◦

Ψ(fk(R−1)) ◦ . . . ◦ Ψ(fk(1))(x′‖x).
A R′ round SPN structured block cipher is defined as ESp : In × In → In,

ESp(k, x)
4
= fk(R′) ◦ fk(R′−1) ◦ . . . ◦ fk(1)(x), with same compression function and

key schedule as Feistel compression function.

Definition 11 (FL Structure). Let function Fc : In × In → In, if Fc(k, x) =
(Ψ(fk(R)) ◦ . . . ◦ Ψ(fk(2))(x‖fk(1)(x)))R, then we call function Fc is FL-Function
(Feistel Like Structured function) and the structure of such function is called
FL-Structure(Feistel Like Structure).

In fact, the FL-structure is a Feistel structure with left half bits input of first
round is all zero and output the only right half bites of last round output. Fig8
gives the structure of Feistel construction and Fl-construction.

Definition 12 (Feistel Compression Function). IF the function Fc is used
as compression function of iterated hash with format y = Fc(xm, xh), where xh

is chaining value, we call such function is Feistel Compression Function.

6.2 Feistel Constructions

For M-D hash z = HM (m,x), may exist some m with PŻ|M=m(z0) = 1, which
means HM (m‖m′, IV) is constant, although if exist such m, it is still difficult to
find and the |m| may be too big to be used as message, we still have to prohibit
it. In this subsection we give a new failure tolerant structure of M-D hash with
Feistel compression function.

Definition 13 (F-Hash). Let HF : In·∗ × In → In, F-Hash z̃ = HF (m,x),
m ∈ In·t is defined as:

h0 = x

hi = Fc(mi, hi−1), (i = 1, . . . , t)
h′i = Fc−1(mi, hi−1), (i = 1, . . . , t)

z̃ = ESp(
t⊕

i=1

h′i, ht)

46

In fact, we have h′i‖hi = EFe(mi, 0̃‖hi−1), (i = 1, . . . , t). The figure illustra-
tion of F-Hash is given in Fig9, the security is discussed in next section.

Feistel Block Cipher FL Function

f

(2)k

f

(1)k

(R)k

... ...

(2)k

(1)k

(R)k

... ...

x' x x

f

y' y y

f

f

f

Fig. 8. Contrast Between Feistel Structure and FL-Structure

Definition 14 (F1-MAC). Let MF1 : In × In·∗ × In → In, F-MAC is defined
as z̃ = MF1(k, m, x), m ∈ In·t :

h0 = x

h′i‖hi = EFe(k, mi‖hi−1), (i = 1, . . . , t)

z̃ = ESp(
t⊕

i=1

h′i, ht)

Definition 15 (F2-MAC). Let MF2 : In × In·∗ × In → In, F-MAC is defined
as z̃ = MF2(k, m, x), m ∈ In·t :

h0 = x

h′i‖hi = EFe(k, mi‖hi−1), (i = 1, . . . , t)
z̃ = ESp(h′t, ht)

The advantage of F-MAC are that:

– The F-MAC can prohibit the weak key(Exist m0,k0 and z0 make the prob-
ability with PŻ|M=m0,K=k0

(z0) near to 1, where z0 = MF (k0,m0, x), like
M-D hash);

– In some protocol, the x can be selected as group key(each group with same
key);

– Both k and x can be seen as key.

47

f

(1)

2
m

F-Hash

...

...

0
h

1
h

2
h

1th

C
h
a
in

in
g

Finalization

1 1|| || ... ||t tm m m m

Message Padding

th

IV

f

(2)

2
m

f

()

2

R
m

2
m

f

u

f
(2)

th

(1)

t
h

f

h1

h2
...

zz

1 0(, 0 ||)
FeE m h

2 1(, 0 ||)
Fe

E m h

h2'

1(,0 ||)
Fe

t tE m h

 (,)
Sp

tE h u

ht

k=mt

k=m1

k=m2

h1'

h2'

ht'

u

... ...

...

2
1

(
,0

||
)

F
e

Illu
stra

tio
n

o
f

E
m

h

(
,

)
S

p
t

Illu
stra

tio
n

o
f

E
u

h

(')R

t
h

Fig. 9. F-Hash Function

48

F1-MAC

...

...

0
h

1
h

2
h

1th

C
h
a

in
in

g

Finalization

1 1|| || ... ||t tm m m m

Message Padding
IV

...

z

1 1 0(, ||)
Fe

E k m h

2 1(, ||)
Fe

E k m h

1(, ||)
Fe

t tE k m h

 (,)
Sp

tE h u

mt

m1

m2

h1'

h2'

ht'

u

k

k

k

F2-MAC

m1

...

...

0
h

1
h

2
h

1th

C
h
a

in
in

g

Finalization

Message Padding

m2

mt

m

IV

...

z

1 0(, ||)
Fe

E k m h

2 1(, ||)
Fe

E k m h

1(, ||)
Fe

t tE k m h

 (,)
Sp

t tE h h

k

k

k

ht' ht

1 1|| || ... ||t tm m m m

ht

Fig. 10. F1-MAC and F2-MAC

Definition 16 (FBC Mode). Let EFBC : In × In·t × In → In·(t+1), c =
EFBC(k, m, x) is defined as:

h0 = x

ci‖hi = EFe(k, mi‖hi−1), (i = 1, . . . , t)
c = ht‖ct‖ct−1‖ . . . ‖c1

In FBC mode the ciphertext of Previous encryption is added to subsequent
one encryption, which making the following ciphertext appears ”randomly”, that
mode is similar as CBC mode, which inherent all advantage of CBC mode and
have some improvements on it.

– the CBC mode requires the communication sides hold the initial value x,
the FBC mode does not requirement of that.

– when the x is randomized, all the ciphertext be randomized.
– the fixed initial value x can be used as authentication.
– the encryption and decryption with same structure with different key sched-

ule.

The drawback of that mode is the ciphertext has one more block than the
plaintext.

Theorem 20. Every key recovery attack on FBC mode can be convert to known
plaintext key recovery attack on the Feistel block cipher.

49

F
B

C
-M

o
d
e

......

0h

E
n

C
ryp

tio
n

Message Padding

m

IV

...

1 0(, ||)
Fe

E k m h

2 1(, ||)
Fe

E k m h

1(, ||)
Fe

t tE k m h

k

k

k

ht

1 1|| || ... ||t tm m m m

CipherText
1 1|| || || ... ||t t tc h c c c

h1

h2

ht'

c
2 =

h
2 '

c
1 =

h
1 '

m2

mt

m1

Fig. 11. FBC Encrypt Mode

6.3 Security Proof of the Constructions

The securities of F-Hash, F-MAC are partly based on security of Feistel Block
cipher, we give following assumption for EFe.

Secure of Feistel Compression Function

Assumption 2 For EFe and ESp:

– For each constant key, the encryption procedure and decryption procedure
can be seen as invertible Black Box Model.

– The best way to find the weak key (EFe(k, x′‖x) = EFe(k′, x′‖x)) of EFe

and ESp is exhaustive key search attack based on birthday paradox;
– No weakness are found in EFe and ESp;

Assumption 3 Let the key schedule algorithm of EFe is ψ(k) with k(i) =
ψ(ki−1), k(0) = k, if the EFe satisfy Assumption2, then the EFe with key sched-

ule algorithm k(i) 4= ψ(ki−1)⊕ k, k(0) = k still satisfy Assumption2.

Remark 9. In the prove of security of Feistel structure[33–36], the compression
function is assumed as pseudo random function, then fψ(k)⊕k is still a pseudo
random function. The Assumption3 implies the key schedule algorithm ψ(k) has
properties of does not exit i, j with ψ(k(i)

{j}) ≡ k{j}.

50

Theorem 21. Let for EFe, the round function f with format f(k(i), x) = f(x⊕
k(i)), key schedule algorithm ϕ(k) is not a linear transformation, if there exist
EFe satisfy Assumption1, then excising F̃c that can be seen as a not invertible
Black Box Model.

Proof. Let EFe with rounds r, and round function f(k(i), x) = f(x)⊕ k(i) then

EFe(k0, x
′‖x)R = F̃c(x′, x⊕ x′)⊕ x′ (1)

the key schedule algorithm of F̃c is x′(i) = ψ(k(i)
0) ⊕ x′, where the key schedule

algorithm of EFe is ψ(k), the prove of Eq.1 is given as bellow.
When r = 1 :

(Ψ(f
k
(1)
0

)(x′‖x))R = x′ ⊕ f(x⊕ ψ(k(1)
0))

= 0̃⊕ f((x⊕ x′)⊕ (ψ(k(0)
0)⊕ x′))⊕ x′

= (Ψ(f
k
(1)
0 ⊕x′)(0̃‖x⊕ x′))R ⊕ x′

Let assume r < k the equation is true then:

(Ψ(f
k
(r)
0
◦ . . . ◦ f

k
(1)
0

)(x′‖x))R

= (Ψ(f
k
(r−2)
0 ⊕x′ ◦ . . . ◦ f

k
(1)
0 ⊕x′)(0̃‖x⊕ x′))R ⊕ x′

⊕f((Ψ(f
k
(r−1)
0 ⊕x′ ◦ . . . ◦ f

k
(1)
0 ⊕x′)(0̃‖x⊕ x′))R ⊕ x′ ⊕ k

(r)
0)

= (Ψ(f
k
(r−2)
0 ⊕x′ ◦ . . . ◦ f

k
(1)
0 ⊕x′)(0̃‖x⊕ x′))R

⊕f((Ψ(f
k
(r−1)
0 ⊕x′ ◦ . . . ◦ f

k
(1)
0 ⊕x′)(0̃‖x⊕ x′))R ⊕ (x′ ⊕ k

(r)
0))⊕ x′

= (Ψ(f
k
(r)
0 ⊕x′ ◦ . . . ◦ f

k
(1)
0 ⊕x′)(0̃‖x⊕ x′))R ⊕ x′

And also we have

Fc(k, x) = ẼFe(k, x′0‖x⊕ x′0)
R ⊕ x′0 (2)

where the key schedule algorithm of ẼFe is x
′(i)
0 = ψ(k(i))⊕ x′0.

From Eq.1, we know if EFe satisfy item 1 of Assumption2, then F̃c is a Black
Box Model. From Eq.2, if exist ẼFe satisfy Assumption2, then Fc is Black Box
Model. If for each key, y′‖y = EFe(x′‖x) is invertible Black Box Model, then it
is no advantage to select y′ make the x′ = 0̃, so Fc is not invertible Black Box
Model. ut

Theorem21 implies existing Feistel compression function with Black Box
Model,when existing EFe satisfy assumption, 2.

Lemma 5. For Fc and EFe:

– T1
4
= max

xm0 ,y0
#{(y0, xm0 , xh)}Fc ≡ max

xm0 ,y0
#{(y′‖y0, xm0 , 0̃‖xh)}EF e

;

51

– T2
4
= max

xh0 ,y0
#{(y0, xm, xh0)}Fc ≡ max

xh0 ,y0
#{(y′‖y0, xm, 0̃‖xh0)}EF e

;

– T3
4
= max

y0
#{(y0, xm, xh)}Fc ≡ max

y0
#{(y′‖y0, xm, 0̃‖xh)}EF e

.

Let

– S1
4
= max

xm0 ,y0
#{(y0, xm0 , xh)}Fc−1 ;

– S2
4
= max

xh0 ,y0
#{(y0, xm, xh0)}Fc−1 ;

– S3
4
= max

y0
#{(y′0‖y0, xm, x′h0

‖xh0)}EF e

.

The Security of F-Hash

Theorem 22. For F-Hash z̃ = HF (m,x), x ∈ In, m = m∗‖ . . . ‖m0, z̃ =

ESp(u, z), z = HM (m,x) = h∗, h0 = x, Oh(m,x)
4
= u =

t⊕
i=1

h′i, hi = Fc(mi, hi−1),

h′i = Fc−1(mi, hi−1), mi are independent from each other, x and m are indepen-

dent and uniformly distributed in In and
t⋃

i=1

In·i, respectively, if u = Oh(m,x)

and z = HM (m,x) are independent, h′i, i ∈ [1, ∗] are independent from each
other then :

1: PŻ|M=m(z) ≤ 2−nT
|m|
n

1 ;
2: PŻ|X=x(z) ≤ 2−nT2;
3: P ˙

Z̃|M=m
(z̃) ≤ 2−nS1;

4: P ˙
Z̃|X=x

(z̃) ≤ 2−nS2;

Proof. The Proof is given by deduction theory.

1. When t = 1:

PŻ|M=m(z) ≤ max
m0,z0

∑

x∈In

PX(x)χFc(m0,x)(z0)

= max
m0,z0

∑

i∈[1,2n]

2−n#{(m0, xi, z0)}Fc ≤ 2−nT1

Suppose t < l the inequality is true, when t = l:

PŻ|M=m(z) = PŻ|M=ml‖m′(z)

=
∑

x∈In

PX(x)χFc(ml,HM (m,x))(z)

=
∑

x∈In

∑

u∈In

1
2n
· χFc(ml,u)(z) · χHM (m′,x)(u)

52

=
∑

u∈In

∑

x∈In

1
2n
· χFc(ml,u)(z) · χHM (m′,x)(u)

=
∑

u∈In

(χFc(ml,u)(z) ·
∑

x∈In

1
2n

χHM (m′,x)(u))

=
∑

u∈In

χFc(ml,u)(z) · PU̇ |M ′=m′(u)

≤ 2−nT l−1
1

∑

u∈In

χFc(ml,u)(z)

≤ 2−nT l−1
1 T1 = 2−nT l

1

2. When t = 1

PŻ|X=x(z) ≤ max
x0,z0

∑
m

PM (m)χFc(m,x0)(z0)

= max
x0,z0

∑

i

2−n#{(mi, x0, z0)}Fc ≤ 2−nT2

When t > 1:

PŻ|X=x(z) =
∑

m∈∪l
i=1In·i

PM (m)PŻ|M=m,X=x(z)

=
∑

ml∈In

∑

m′∈∪l−1
i=1In·i

PM ′(m′)PMl
(ml)

PŻ|M=m,X=xP (z = Fc(ml,H
M (m′, x)))

=
∑

ml∈In

∑

m′∈∪l−1
i=1In·i

∑

u∈In

PM ′(m′)PMl
(ml) · χFc(ml,u)(z) · χHM (m′,x)(u)

=
∑

u∈In

∑

ml∈In

PMl
(ml) · χFc(ml,u)(z)

∑

m′∈∪l−1
i=1In·i

PM ′(m′) · χHM (m′,x)(u)

=
∑

u∈In

PŻ|U=u(z)PU̇ |X=x(u)

≤ 2−nT2

∑

u∈In

PU̇ |X=x(z) = 2−nT2

3. ∀ t ≥ 1:

P ˙
Z̃|M=m

(z̃) = P ˙
Z̃|M=m

(z̃ = ESp(u, z), u = Oh(m,x), z = HM (m,x))

53

=
∑

x,u,z∈In

PX(x)χESp(z,u)(z̃)χHM (z,m, x)χOh(m,x)(u)

u and z are independent, and PX(x) = 2−n

=
∑

u,z∈In

χESp(z,u)(z̃)
∑

x∈In

PX(x)χHM (z, m, x)

∑

x∈In

PX(x)χOh(m,x)(u)

=
∑

u,z∈In

χESp(z,u)(z̃)PU̇ |M=m(u)PŻ|M=m(z)

≤ max
u0

PU̇ |M=m(u0)2n
∑

z

PŻ|M=m(z)
∑

u

2−nχESp(z,u)(z̃)

= max
u0

PU̇ |M=m(u0)2n
∑

z

PŻ|M=m(z)PZ̃|Z=z(z̃)

≤ max
u0

PU̇ |M=m(u0)max
z0,z̃0

2nPZ̃|Z=z0
(z̃0)

∑
z

PŻ|M=m(z)

= max
u0

PU̇ |M=m(u0)

PU̇ |M=m(u) =
∑

x∈In

PX(x)PU |M=m,X=x(u = h′1 ⊕
t⊕

i=2

h′i)

=
∑

x∈In

PX(x)PU |M=m′‖m1,X=x(u = v ⊕ h′1, v =
t⊕

i=2

h′i)

=
∑

x∈In

∑

v∈In

PX(x)PUV |M=m′‖m1,X=x(u = v ⊕ h′1, v =
t⊕

i=2

h′i)

=
∑

x∈In

∑

v∈In

PX(x)PU |M1=m1,X=x(u = h′1 ⊕ v)

PV |M ′=m′,X=x(v =
t⊕

i=2

h′i)

=
∑

v∈In

PU |M1=m1(u = h′t ⊕ v)PV |M ′=m′(v =
t⊕

i=2

h′i)

= max PU |M1=m1(u)
∑

v

PV |M ′=m′(v =
t⊕

i=2

h′i) ≤
S1

2n

4. ∀ t ≥ 1:

P ˙
Z̃|X=x

(z̃) = P ˙
Z̃|X=x

(z̃ = ESp(u, z), u = Oh(m,x), z = HM (m,x))

=
∑

u,z∈In

∑

m∈∪t
i=1In·i

PM (m)PZ̃|U̇=u,Z=z(z̃)

54

PU̇,Ż|M=m,X=x(u = Oh(m,x), z = HM (m,x))

Since PM (x) = 2−
∑t

i
i·n and u, z are independent

=
∑

u,z∈In

χESp(z,u)(z̃)

∑

m∈∪t
i=1In·i

PM (m)PU̇ |M=m,X=x(u = Oh(m,x))

∑

m∈∪t
i=1In·i

PM (m)PŻ|M=m,X=x(z = HM (m,x))

=
∑

u,z∈In

χESp(z,u)(z̃)PU̇ |X=x(u)PŻ|X=x(z)

≤ max
u0

PU̇ |X=x(u0)2n
∑

z

PŻ|X=x(z)
∑

u

2−nP ˙
Z̃|U=u,Z=z

(z̃)

= max
u0

PU̇ |X=x(u0)2n
∑

z

PŻ|X=x(z)P ˙
Z̃|Z=z

(z̃)

≤ max
u0

PU̇ |X=x(u0)max
z0,z̃0

2nP ˙
Z̃|Z=z0

(z̃0)
∑

z

PŻ|X=x(z)

= max
u0

PU̇ |X=x(u0)

PU̇ |X=x(u) =
∑

m∈∪t
i=1In·i

PM (m)PU |M=m,X=x(u = h′1 ⊕
t⊕

i=2

h′i)

=
∑

m∈∪t
i=1In·i

PM (m)PU |M=m′‖m1,X=x(u = v ⊕ h′1, v =
t⊕

i=2

h′i)

=
∑

m∈∪t
i=1In·i

PM (m)PUV |M=m′‖m1,X=x(u = v ⊕ h′1, V =
t⊕

i=2

h′i)

=
∑

m∈∪t
i=1In·i

∑

v∈In

PM (m)PU |M1=m1,X=x(u = h′1 ⊕ v)

PV |M ′=m′,X=x(v =
t⊕

i=2

h′i)

=
∑

v∈In

∑

mt∈In

PMt
(mt)PU |M1=m1,X=x(u = h′1 ⊕ v)

∑

m′∈∪t−1
i=1In·i

PV |M ′=m′,X=x(v =
t⊕

i=2

h′i)

=
∑

v∈In

PU |X=x(u = h′1 ⊕ v)PV |X=x(v =
t⊕

i=2

h′i)

55

= max
u0

PU |X=x(u0)
∑

v

PV |X=x(v =
t⊕

i=2

h′i) ≤
S2

2n

ut
Remark 10. In the proof of Theorem22, we use the assumption of h′i, i ∈ [1, ∗]
being independent from each other, which seems is pretty strong assumption, in
fact if the compression function is Black Box Model, which means h′i−1 give no
information about h′i, if the compression function is build with pseudo random
function then the assumption can be happen in true design.

Theorem 23. Let F-Hash z̃ = HF (m,x) satisfying the assumptions and nota-
tions of Theorem22, Fc and ESp are Black Box Model then:

– ÃdvFixP
HF (q) ≤ q · 2−n max{2−nS1, 2−nS2};

– ÃdvFixC
HF (q) ≤ q2 · 2−n max{2−nS2

1 , 2−nS2
2}.

Proof. The proof needs HF is Black Box Model:

1: Since the recovery of ESp−1(z̃0) is cipher only attack, and the Fc is not
invertible, so the HF is not invertible.

2: For x0 if exist HF (mt, x0) give information about selection of m′
t, from ESp

is Black Box Model, we get HM (mt, x0) gives information about selection
of m′

t, from HM (mt, x0) is finite iteration, and m′
t has finite block, we get

exist mi ⊆ mt and m′j ⊆ m′
t with m′j is influenced by mi. but Fc is Black Box

Model and that is imposable. ut

Security about F-MAC and FBC Mode The security of F1-MAC, F2-MAC
and FBC mode can be discussed similar as F-Hash, since the condition probabil-
ity of F −Hash is given, we can give the security prove of the MACs and FBC
mode. The security of F2-MAC can also be discussed similar as CBC-MAC[1]
and the security of FBC mode is similar as that of CBC mode[3], and prohibit
the attack based on fixed IV[3]. More precise discussion and true attacks should
be based on the assumption of round function f and key schedule algorithm ψ,
this paper only give the proof of security of the structure.

6.4 Discussion

The Value of T1,T2,S1,S2 Let g : I2n → I2n, y‖y′ = g(x‖x′) is a random
permutation, then we have[3]:

PY ′|X′=x0(y = g(x0))2−2n

then y = (g(x′0‖x))R is random function, let f(x0, x)
4
= (g(x′0‖x))R:

PY R|X=x0(y = f(x′0‖x0)) = 2−n

56

then we have[3]

PY R|X1=x1,X2=x2(y = f(x′0‖x1), y = f(x′0‖x2)) =
{

2−2n x1 6= x2

2−n x1 = x2

In block cipher EFe, for each fixed key, if we can not distinguish the EFe from
Pseudo random permutation, then we have

P (T1 = k) = 2−k·n2n, P (S1 = k) = 2−k·n2n, k ∈ N

If the Fc is selected as Equation1, then we have

P (T2 = k) = 2−k·n2n, P (S2 = k) = 2−k·n2n, k ∈ N

If for each x′0‖x0, we can not distinguish EFe(k, x′0‖x0) from random function
then we have:

P (T2 = k) = 2−k·n2n, P (S2 = k) = 2−k·n2n, k ∈ N

Round function and Key Schedule Algorithm In the prove of Theorem21,
we find the x′ can be moved into key schedule algorithm and the whole discussion
we assume the round function f is permutation. The most common design of
round function with permutation is SPN structure. The SP structure is used
in Feistel structure can result in linear part can be moved into previous rotund
or posterior round[29], so we prefer the round function with SPS(SBox-Linear
part-Sbox) structure.

The key schedule algorithm ψ is assumed as not a linear transformation, we
prefer the key schedule algorithm itself is pseudo random function, which has
been discussed in PHD paper of Rijmen[49].

6.5 Attacks on F-Hash

Multi Collision[27] Suppose the multi collision is possible, for each inner
collision HM (mi+1,H

M (mi‖ . . . ‖m1, x0)) = HM (m′
i+1,H

M (m′
i‖ . . . ‖m′

1, x0)),
i ∈ [1, t], if the inner collision can make true collision requires Oh(m, IV) =
Oh(m′, IV), that is not always hold when the inner collision is occur. In fact
that will happen with high probability when |mi| = n.

Extension Attack[47] If the extension collision is possible, when exist inner
collision HM (m,x0) = HM (m′, x0), the extension should be with Oh(m′′‖m, IV) =
Oh(m′′‖m′, IV), the complexity of finding Oh(m′′‖m, IV) = Oh(m′′‖m′, IV) is
O(2

√
n), when the collision is final collision HF (m,x) = HF (m′, x), not a inner

collision, the extension attack is impossible.

Fixed Point Attack The requirement on success of fixed point attack is similar
as that multi collision attack, which requires Oh(m, IV) = Oh(m′, IV) and the
fixed block length should be |mi| = n.

57

7 Random Oracle and Conditional Probability

The random oracle model has been introduced by Bellare and Rogaway as a
”paradigm for designing efficient protocols”[2]. It assumes that all parties, in-
cluding the adversary, have access to a public, truly random hash function H.
This model has been proven extremely useful for designing simple, efficient and
highly practical solutions for many problems[15]. From a theoretical perspective,
it is clear that a security proof in the random oracle model is only a heuristic
indication of the security of the system when instantiated with a particular hash
function. In fact, many recent ”separation” results[5, 13, 14, 20, 20, 32, 15] illus-
trated various cryptographic systems secure in the random oracle model but
completely insecure for any concrete instantiation of the random oracle.

x
$← Λ mean selecting a random value from Λ, Func(D, R) be the family of all

random functions of D to R, Perm(D), the family of all random permutations on

D, f
$← Func(D, R), π

$← Perm(D, R), the probability is taken over a random
choice of f from Func(Il, IL), meaning that we have executed the operation

f
$← Func(Il, IL) with properties of[3]:

1. If Fix x and y:P [f(x) = y] = 2−L;
2. If Fix x1,x2 and y1,y2, and x1 6= x2 then:

(a) P [f(x1) = y1|f(x2) = y2] = 2−L

(b) P [f(x1) = y1] = 2−L

(c) P [f1(x1) = y1|f2(x1) = y1] = 2−L

3. If Fix x and y:P [π(x) = y] = 2−L

4. If Fix x1,x2 and y1,y2, and x1 6= x2 then:

P [π(x1) = y1|π(x2) = y2] =
{

1
2L−1

, y1 6= y2

0, y1 = y2

P [π(x1) = y1] = 2−L

P [π1(x1) = y1|π2(x1) = y1] = 2−L

If the f or π is true design function or permutation, then the properties of per-
mutation is still hold, but for the compression function will not hold, it become:

1. exist x0 and y0:P [f(x) = y] = T
2L , where T > 1;

2. If Fix x1,x2 and y1,y2, and x1 6= x2 then:
(a) P [f(x1) = y1|f(x2) = y2] = T

2L

(b) P [f(x1) = y1] = T
2L

(c) P [f1(x1) = y1|f2(x1) = y1] = T
2L .

Let HM be a hash function with M-D construction, in random oracle model,
the compression function F : Iκ × In → In with SF = 1, we have PŻ|M=m ≤
(SF)t2−n = 2−n, then PŻ|M=m = 2−n, but in true design, if the F (·, xh) is not
a permutation, we have SF > 1, so in true design there may be exist a cluster,
but the proof based on random oracle model, can not find the cluster.

58

Let function family F(Iκ, In) : Iκ × In → In, for each xm ∈ Iκ, define
a function Fxm

(·, xh) : In → In ∈ F(Iκ, In), if the function family F(Iκ, In)
is a set of pseudo random function, then we have:∀Fxm(·, xh) ∈ F (Iκ, In) and
∀x, y ∈ In with P (Fxm(·, x) = y) = 2−n, but for selected Fxm(·, xh), if we
get x2 = Fxm

(·, x1), then P (x2 = Fxm
(·, x2)) 6= 2−n, which implies that even

the compression function F (·, xh) is a random oracle model, we asking oracle
xm, xh1 get xh2 = F (xm, xh1), then asking oracle xm, xh2 , then this model is
not a random oracle model. From the analysis, the hash z = HM (m,x) is not a
random oracle model, if we can select the message, even the compression function
set is pseudo random function, the conditional probability PŻ|M=m ≤ St

F 2−n

just implies the output of HM may not be uniformly distributed, no matter the
compression function is Pseudo random function.

But, in 3C hash, Ideal-Pipe hash, we have P ˙̃Z|M=m
(z̃) ≤ SF 2−n implies that

if the compression function is pseudo random function, SF = 1 ⇒ P ˙̃Z|M=m
(z̃) =

2−n, then the hash function is a pseudo random function. So we have if the
structure is secure based on conditional probability, then it be secure in random
oracle model, but the structure is secure in random oracle model, may not be a
secure structure in conditional probability, if use such structure, more discussions
are required.

8 Conclusion

The securities of structures are only illustrated depend on conditional probability
and maximum advantage, the security of ideal pipe hash against the specific
attacks which have been illustrated in some known structures or known design
are not given, we will fulfill this part.

Acknowledgments The paper include many areas in cryptography and we may
not understand some of the reference papers very well, and may be have some
misunderstanding, we hope any comments. And also we want to give thanks to
all comments that were given, we will fulfill this part latter.

References

1. M.Bellare, K.Pietrzak, and P.Rogaway, Improved Security Analyses for CBC
MACs, In Advances in Cryptology Crypto 2005, LNCS 3621, pp.527-545, 2005.

2. M. Bellare and P. Rogaway, Random oracles are practical : a paradigm for designing
efficient protocols. Proceedings of the First Annual Conference on Computer and
Commmunications Security, ACM, 1993.

3. M.Bellare and P.Rogaway, Introduction to Modern Cryptography.
4. M.Bellare, R.Canetti, and H.Krawczyk. Keying hash functions for message authen-

tication, In Advances in CryptologyCRYPTO’96, LNCS 1109, pp.1-15.
5. M. Bellare, A.Boldyreva and A.Palacio. An Uninstantiable Random-Oracle-

Model Scheme for a Hybrid-Encryption Problem, In Advances in CryptologyE-
CRYPTO’2004, LNCS 3027, pp.171-188.

59

6. M.Bellare and P.Rogaway, Code-Based Game-Playing Proofs and the Security of
Triple Encryption, http://eprint.iacr.org/2004/331.pdf.

7. E.Biham. Recent advances in hash functions-the way to go. Presented
at ECRYPT Conference on Hash Functions (Cracow, June 2005), see
http://www.ecrypt.eu.org/stvl/hfw/Biham.ps.

8. E.Biham and A. Shamir, Diffrential cryptanalysis of DES-like cryptosystems, Jour-
nal of Cryptology, Vol.4, No.1, pp.3-72, 1991.

9. E.Biham and R.Chen. Near-Collisions of SHA-0,In Advances in Cryptology
CRYPTO’2004, LNCS 3152,pp.290-305, 2004.

10. J.Black, P.Rogaway, and T.Shrimpton, ”Black-box analysi s of the block-cipher-
based hashfunction constructions from PGV”. In Advances in Cryptology -
CRYPTO’02, volume 2442 of Lecture Notes in Computer Science. Springer-Verlag,
2002.pp.320-335.

11. J.Black, P.Rogaway, A Block-Cipher Mode of Operation for Parallelizable Mes-
sage Authentication, In Advances in Cryptology C Eurocrypt’02, LNCS 2332,
pp.384C397.

12. C.Chchin. Entropy Measures and Uncoditional Security in Cryptography, PHD
thesis.

13. R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, revisited,
STOC98, ACM, 1998.

14. R.Canetti, O.Goldreich and S.Halevi. On the random oracle methodology as ap-
plied to Length-Restricted Signature Schemes. In Proceedings of Theory of Cryp-
tology Conference, pp. 40C57, 2004.

15. J.S.Coron, Y.Dodis, C.Malinaud, and P.Puniya. Merkle-damgard revisited: How to
construct a Hash Function, In Advances in CryptologyCRYPTO’05, LNCS 3621,
pp.430-448.

16. J.Daemen and V.Rijmen: The Design of Rijndael: AES The Advanced Encryption
Standard. Springer, 2002.

17. J.Daemen and V. Rijmen, ”A new MAC Construction Alred and a Specific Instance
Alpha-MAC,”, Fast Software Encryption 2005, LNCS H. Gilbert, H. Handschuh,
Eds., Springer-Verlag, to appear.

18. I.Damg̊ard. A design principle for hash functions. In G. Brassard, editor, Advances
in Cryptology-CRYPTO’ 89, volume 435 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

19. R.Diestel, ”Graph Theory”, Springer-Verlag Heidelberg, New York 1997,2000,2005
20. Y. Dodis, R. Oliveira, K. Pietrzak, On the Generic Insecurity of the Full Domain

Hash, Advances in Cryptology - CRYPTO, August 2005.
21. Ecrypt Consortium. Ongoing Research Areas in Sym-

metric Cryptography, January 2005. Available at URL
https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/ D.STVL.3-2.1.pdf.

22. H.Feistel. Cryptography and Computer Privacy. Scientific American.
23. FIPS 46-3: Data Encryption Standard. In National Institute of Standards and

Technology, Oct. 1999.
24. D.Feng, W.Wu :Block Cipher Analysis and Design.
25. P.Gauravaram, W.Millan, J. Gonzalez Neito and E. Dawson: 3C-A Provably Se-

cure Pseudorandom Function and Message Authentication Code. A New mode of
operation for Cryptographic Hash Function. The preliminary draft version of this
work is available at eprint-2005/390 .

26. D. Hong, B. Preneel, and S. Lee, Higher Order Universal One-Way Hash Functions,
ASIACRYPT 2004, LNCS 3329, pp. 201C213, 2004.

60

27. A.Joux, Multicollisions in iterated Hash functions. Application to cascaded con-
structions. Proceedings Crypto 2004, Springer-Verlag LNCS 3152, pp.306-316,
2004.

28. P.Junod and S.Vaudenay, FOX : a New Family of Block Ciphers, Selected Areas
in Cryptography-SAC 2004,LNCS 2595, pp.131-146

29. D.Lei, L.Chao, F. Keqin. New Observation On Camellia. Selected Area in Cryp-
tography, SAC 2005, LNCS 3897, pp51C64, 2006.

30. M.Luby and C. Rackoff, How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing, Vol. 17, No. 2 (1988) pp.
373C386.

31. R.C.Merkle, One Way Hash Functions and DES, In G. Brassard, editor, Advances
in Cryptology-CRYPTO’ 89, volume 435 of Lecture Notes in Computer Science.
Springer-Verlag, pp.428-446, 1990.

32. J.B.Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs:
The Non-Committing Encryption Case. In Advances in Cryptology - Crypto 2002,
PP.111 -126

33. J.Patarin, Feistel Schemes with Six (or More) Rounds, Fast Software Encryption
1998, pp.103-121.

34. J.Patarin. Luby-Rackoff 7 Rounds are Enough for 2n(1−ε) Security. CRYPTO’03,
Springer, LNCS 2729, pp.513-529.

35. J.Patarin, Security of Random Feistel Scemes with 5 or more rounds. CRYPTO
’04, LNCS 3152, pp.106-122, Springer.

36. J.Patarin, Generic Attacks on Feistel Schemes, Available from the author.
37. J.Patarin, Security of Random Feistel Schemes with 5 or more rounds, Available

from the author.
38. G.Piret, Luby-Rackoff Revisited: On the Use of Permutations as Inner Functions

of a Feistel Scheme,Designs, Codes and Cryptography, 39, pp.233C245, 2006
39. G.Piret, Block Ciphers: Security Proofs, Cryptanalysis, Design, and Fault Attacks,

PHD, 2005.
40. S.Lucks: A Failure-Friendly Design Principle for Hash Functions, ASIACRYPT

2005, LNCS 3788, pp. 474C494, 2005.
41. X.Lai and J. L. Massey: Hash functions based on block ciphers. In Advances in

Cryptology Eurocrypt’92, Lecture Notes in Computer Science, Vol. 658. Springer-
Verlag, Berlin Hei-delberg New York (1993) 55-70. 228(5): 15-23.

42. A.Joux. Multi-collisions in iterated hash functions, application to cascaded con-
structions. Crypto 04, LNCS 3152, 306C316.

43. C.H.Meyer and S.M.Matyas. Cryptography: a New Dimension in Data Security.
Wiley & Sons, 1982.

44. B.Preneel: The State of Cryptographic Hash Functions. In Lectures on Data Se-
curity, Lecture Notes in Computer Science, Vol. 1561. Springer-Verlag, Berlin Hei-
delberg New York (1999) 158-182.

45. B.Preneel, R.Govaerts, and J.Vandewalle, ” Hash functions based on block ci-
phers,”, In Advances in Cryptology -CRYPTO’93, Lecture Notes in Computer
Science,pages 368-378. Springer-Verlag, 1994.

46. B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

47. B.Preneel, V.Rijmen, A.Bosselaers: Recent Developments in the Design of Conven-
tional Cryptographic Algorithms. In State of the Art and Evolution of Computer
Security and Industrial Cryptography. Lecture Notes in Computer Science, Vol
1528. Springer-Verlag, Berlin Heidelberg New York(1998) 106-131.

61

48. M.O.Rabin. Digitalized Signatures. In R. A. Demillo, D. P. Dopkin, A. K. Jones,
and R. J. Lipton, editors, Foundations of Secure Computation, pages 155-166, New
York, 1978. Academic Press.

49. V.Rijmen, Cryptanalysis and design of iterated block ciphers, Katholieke Univer-
siteit Leuven, Belgium, 9 October 1997

50. B.V.Rompay, Analysis and design of cryptographic hash functions, MAC algo-
rithms and block cipher, K. U. Leuven, Juni 2004.

51. P.Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision-Resistance. FSE 2004, LNCS 3017, 371-388.

52. V.Shoup, Sequences of games: a tool for taming complexity in security proofs,
http://eprint.iacr.org/2004/332.pdf

53. C.E.Shannon, A Mathematical Theory of Communication, The Bell System Tech-
nical Journal, Vol.27,pp. 379-423,1948.

54. C.E.Shannon, Communication Theory of Secrecy Systems, Bell System Technical
Journal, Vol 28:pp.656-715, 1949.

55. S.Vaudenay, On the Lai-Massey scheme. In K. Lam, T. Okamoto, and C. Xing,
editors, Advances in Cryptology - ASIACRYPT’99, volume 1716 of Lecture Notes
in Computer Science, pp. 8-19. Springer-Verlag, 2000.

56. S.Vaudenay, Decorrelation: A Theory For Block Cipher security. Journal of Cryp-
tology, 16(4):pp.249-286, 2003.

57. X.Wang, H.Yu, How to Break MD5 and Other Hash Functions, EURO-
CRYPT’2005, Springer-Verlag, LNCS 3494, pp19-35, 2005.

58. X.Wang, X.Lai, D.Feng and H.Yu., Cryptanalysis of the Hash Functions MD4 and
RIPEMD, EUROCRYPT 2005, Springer-Verlag,LNCS 3494, pp1-18, 2005.

59. A.F.Webster and S. E. Tavares. On the design of S-boxes. Advances in Cryptology-
CRYPTO’85 Lecture Notes in Computer Science 218, pp.523-534.

