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Fast exponentiation via prime finite field isomorphism 
Raising of the fixed element of prime order group to arbitrary degree is the main op-
eration specified by digital signature algorithms DSA, ECDSA. Fast exponentiation 
algorithms are proposed. Algorithms use number system with algebraic integer base 
4 2± . Prime group order r can be factored r = ππ  in Euclidean ring [ 2]±  by Pol-
lard and Schnorr algorithm. Farther factorization of prime quadratic integer π = ρρ  
in the ring 4[ 2]±  can be done similarly. Finite field r is represented as quotient 
ring 4[ 2] /( )± ρ . Integer exponent k is reduced in corresponding quotient ring by 
minimization of absolute value of its norm. Algorithms can be used for fast exponen-
tiation in arbitrary cyclic group if its order can be factored in corresponding number 
rings. If window size is 4 bits, this approach allows speeding-up 2.5 times elliptic 
curve digital signature verification comparatively to known methods with the same 
window size. 
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1. Introduction 
Let G be cyclic group of prime computable order. Raising of the fixed element 
a ∈ G to arbitrary degree is the main operation specified by many public key 
cryptosystems, such as digital signature algorithms DSA, ECDSA [2]. In crypto-
graphic applications prime group order is more then 2100. Group G can be given as 
subgroup of finite field [6], elliptic curve or Jacobian of hyperelliptic curve over 
finite field, class group of number field, etc. Group operation can be called both 
addition (additive group) or multiplication (multiplicative group). In additive group 
raising element a to exponent k is denoted as ka (scalar multiplication), in multipli-
cative group it is denoted as ak. 

Let r ∈ >0 be prime order of additive group G and a ∈ G. The general method 
for computing multiple b = ka takes binary representation of the exponent 
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= ∑  [4, 6]. Let bN = 0 and for i = N − 1, N − 2, …, 0 compute bj = 2bj+1 if ki 

= 0 and bi = 2bi+1 + a if ki = 1. This method at average takes log2r doublings and 
0.5⋅log2r additions. 

There is natural way to speed-up this method slightly if element a is fixed. 
Choose window size w bits and compute base {a, 2a, …, (2w − 1)a} (since element 
a is fixed, this base can be stored in computer memory). Transition to next window 
takes w doublings and one addition, so exponentiation takes log2r doublings and 
(log2r)/w additions. Note that size of the base grows as exponent of w, so window 
size cannot be large in practice. If w = 4 and complexities of doubling and addition 
are equal, this gives speeding-up about 20% with respect to previous method. 
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Elliptic curves over prime finite fields belong to the set of most popular mathe-
matical structures in public key cryptology. For example, elliptic curve digital sig-
nature algorithm ECDSA and some national digital signature standards use such 
elliptic curves. 

The most difficult operation during signature generation and verification is 
(scalar) multiplication of the elliptic curve point by a number, that corresponds to 
exponentiation. 

Let p > 3 be a prime, p — prime finite field and 

 E(p): Y2Z = X3 + AXZ2 + BZ3  (1) 

— Weierstrass equation for elliptic curve. Set of points (X, Y, Z)\(0, 0, 0), where 
(X, Y, Z) = (uX, uY, uZ) for any u ≠ 0, form additive Abelian group with zero ele-
ment P∞ = (0, 1, 0), and −(X, Y, Z) = (X, −Y, Z). 

Elliptic curve up to isomorphism over quadratic extension of prime field is 

uniquely determined by its invariant 
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given by polynomials over p. If (X3, Y3, Z3) = 2(X1, Y1, Z1), then 

X3 ≡ 2Y1Z1((3X1
2 + AZ1

2)2 − 8X1Y1
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Z3 ≡ 8Y1
3Z1

3. 
If (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, Z2), then 

X3 ≡ (X2Z1 − X1Z2)(Z1Z2(Y2Z1 − Y1Z2)2 − (X2Z1 + X1Z2)(X2Z1 − X1Z2)2), 

Y3 ≡ (X2Z1 − X1Z2)2(Y2Z1(X2Z1 + 2X1Z2) − Y1Z2(X1Z2 + 2X2Z1)) − Z1Z2(Y2Z1 − Y1Z2)3, 

Z3 ≡ Z1Z2 (X2Z1 − X1Z2)3. 

Elliptic curve isomorphisms are given by maps: (A, B, X, Y) ← (u4A, u6B, u2X, 
u3Y). If p ≡ 3 (mod 4), then using suitable isomorphism one can obtain A = ±1. 

The most difficult operation during elliptic curve point exponentiation is modu-
lar multiplication, so complexity of elliptic curve digital signature algorithms can 
be estimated as number of required modular multiplications. Point doubling takes 
13 modular multiplications, point addition takes 15 modular multiplications. If ad-
dend point has Z1 = 1 (this often holds in practice), then 12 modular multiplications 
are needed for point addition. 

Some specific groups admit additional exponentiation methods. For example, if 
G is elliptic curve over finite field, then for any point P ∈ G its negative −P can be 
computed easily comparatively to point doubling or point addition operations. This 
allows using exponent representation in number system with elements (−1, 0, 1}. 
Hence chains of kind 0, 1, 1, …, 1, 1 can be changed by chains 1, 0, 0, …, 0, −1 
with reduced number of non-zero digits (at average from N/2 to N/3). If window 
size is 1 bit, this allows speeding-up exponentiation about 10%. But for larger win-
dow sizes speeding-up is negligible. 



If there exists element 2 (mod )p−  and j = 203, then elliptic curve is isomor-
phic to curve Y2Z = X3 − 4tX2Z + 2t2XZ2. Transition to equation (1) is given by 
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multiplication by 2− : 
2 2 2

2 2( 2 )2( , , ) , , 2
2

Y X t ZX Y Z Y Z X Z
 −

− = − 
− 

. 

Elliptic curve complex multiplication takes 7 modular multiplications. Using 
complex multiplication instead or with point doubling gives additional acceleration 
[8]. Sometimes using Hesse equation for elliptic curve allows slightly (about 1.3 
times) speed-up point doubling and point addition [3]. But complex multiplication 
formula for such equation is inconvenient. 

Cryptosystem parameters include elliptic curve E(p), point Q of prime order r, 
secret key l and public key P = lQ. Signature generation takes computing point R = 
kQ for random k. Signature verification takes multiplication of both fixed points Q, 
P by exponents. 

The purpose of this paper is to propose new fast exponentiation method based 
on number system with algebraic integer base 2±  or 4 2±  and window size two 
or four bits. Then transition to next window takes only one doubling (compara-
tively to two or four doublings in known methods). This gives significant accelera-
tion (more then two times) with respect to known methods. Algorithms can be used 
for fast exponentiation in arbitrary cyclic group if its order can be factored in cor-
responding number rings. 

2. Algebraic basics 
Number fields 4[ 2], [ 2]± ±   have rings of integers 4[ 2], [ 2]± ±   respec-
tively. These rings are Euclidean [5] and hence possess unique factorization prop-
erty. Group of units is finite for ring [ 2]−  and is infinite for three other rings: in 

[ 2]  free group of units is generated by number 1 2+ − , in 4[ 2]−  this group 
is generated by number 41 2 2 2+ − − − , in 4[ 2]  this group is generated by 
numbers 41 2+  and 41 2−  [1].± 

Field 4[ 2]±  and its ring of integers is quadratic extension of field [ 2]±  
and its ring of integers. Galois group of field 4[ 2]±  over  is cyclic of order 4, it 
is generated by automorphism 4 4( 2) 2iσ ± = ± , where i2 = −1. In spite of 

4[ 2]i∉ ± , norm of algebraic number from field 4[ 2]±  into its subfields can be 
defined. 



Norms of quadratic numbers 2a b+ − , 2a b+  in  are a2 + 2b2, a2 − 2b2 re-

spectively. Norm of algebraic number 
2 34 4 4

0 1 2 32 2 2a a a aξ = + ± + ± + ±  in 
[ 2]±  is ξ⋅σ2(ξ), and its norm in field  is ξ⋅σ(ξ)⋅σ2(ξ)⋅σ3(ξ). 
Let [ ]/( ( ))K z f z=  is number field, obtained by adjoining root α of irreduci-

ble polynomial f(z) and OK is Euclidean ring of integers in field K. Prime r splits in 
OK, if f(z) has root (and hence splits completely) modulo r. Element α (mod r) is 
one of roots of f(z) modulo r. One can choose this root ρ so that congruence ρ ≡ 0 
(mod r) holds. Changing element α by a root of the polynomial gives homomorph-
ism OK → r. Prime algebraic integer ρ generates maximal ideal (ρ), so there ex-
ists isomorphism of prime finite fields r ≅ OK/(ρ). 

Proposed algorithms for raising to power k use finite field representation r ≅ 
OK/(ρ) and exponent k representation as element of OK/(ρ). Element of OK/(ρ) is 
residue class of algebraic integers. Congruence k ≡ k + βρ (mod ρ) holds for any β 
∈ OK. Chose algebraic integer β so that absolute norm of k + βρ is minimal. 

Isomorphism r ≅ OK/(ρ) for fields 4[ 2], [ 2]± ±   is computable in both di-
rections: to compute OK/(ρ) → r substitute α → α (mod r). Consider inverse iso-
morphism. 

Rings [ 2]± , 4[ 2]±  are Euclidean over  [5], division is defined by mini-
mization of absolute value of the norm. Since norm from 4[ 2]±  to [ 2]±  is 
defined by subgroup of Galois group, rings 4[ 2]±  are Euclidean over [ 2]± . 

Prime r such that 2 1
r

−  = 
 

 can be factored in imaginary quadratic order by al-

gorithm of Pollard and Schnorr [7], which is similar to extended Euclidean algo-
rithm. 

Algorithm 1. Prime integer factorization in imaginary quadratic order. 
Input. Prime r. 
Output. Numbers a, b such that r = a2 + 2b2. 
Method. 

1. Compute Jacobi symbol 2
r

− 
 
 

. If it is −1, then there are no solutions. 

2. Compute 2 (mod )u r← − , for example by algorithm in [6]. 
3. i ← 0, ui ← u, mi ← r. 
4. Compute 
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ui+1 ← min{ui (mod mi+1), mi+1 − ui (mod mi+1)}. 



5. If mi+1 = 1, then go to step 6 (in this case equation holds mi = ui
2 + 12 ⋅ 2), else 

i ← i + 1 and go to step 4. 
6. ai ← ui, bi ← 1. 
7. If i = 0, then a ← ai, b ← bi and go to step 9. Else 
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Signs are to be chosen so that division result is integer. 
8. Set i ← i − 1 and go to step 7. 
9. Return: a, b. n 

This algorithm can be applied to real quadratic order [ 2] , which differs 
from imaginary order by infinite group of units. In practice it is never mind which 
of numbers r, −r is represented as a2 − 2b2. If 2 22 ( 2)( 2)r a b a b a b= − = + − , 
then 2 22 ( 2)(1 2)( 2)(1 2)r b a a b a b− = − = + + − − . So more convenient rep-
resentation can be obtained by multiplication of divisor 2a b+  by unit 1 2±  
with norm −1. 

For factoring prime number in 4[ 2]−  firstly factor r in ring [ 2]− : 

 2 2( 2)( 2) 2r a b a b a b= + − − − = ππ = + , (2) 

where 2 0 (mod )a b r+ − ≡ , and then find factorization of this prime quadratic 
number in ring 4[ 2]− : 

 
2 3 2 34 4 4 4 4 42 ( 2 2 2 )( 2 2 2 )a b c d e f c d e f+ − = + − + − + − − − + − − − = ρρ .(3) 

Prime quadratic number 2a bπ = + −  defines finite field [ 2]/( )− π  of r 
elements. This field consists of residue classes modulo π — quadratic integers τ, 
which norm ( )N τ = ττ  satisfies inequality N(τ) ≤ N(τ + βπ) for any [ 2]β∈ − . 
Since norm of imaginary quadratic integer is non-negative, such τ always exists. 

To compute such τ define quadratic integer 0 1 2n nβ = + − , that norm N(τ + 
βπ) is minimal. Norm N(τ + βπ) is quadratic function of n0, n1. Optimal integers n0, 
n1 can be defined by computing derivations of norm N(τ + βπ) by variables n0, n1 
and finding the nearest integers. 

Algorithm 2. Computing field isomorphism r → [ 2]/( )− π . 
Input: k ∈r, r, 2a bπ = + − . 
Output: 0 1 2 [ 2]/( )k k+ − ∈ − π . 
Method. 
1. Set k0 ← k, k1 ← 0. 
2. Until n0 ≠ 0, n1 ≠ 0, do 



a. Find: 0 1
0

2ak bkn
r

+ =   
 and set 0 1 0 1 02 2k k k k n+ − ← + − − π . 

b. Find: 1 0
1

ak bkn
r
− =   

 and set 0 1 0 1 12 2 2k k k k n+ − ← + − − π − . 

3. Return: k0, k1. n 

Algorithm 2 determines reduction in ring [ 2]−  modulo prime ideal (π) and 
hence determines isomorphism of finite fields r → [ 2]/( )− π . Now one can 
apply algorithm 1 to find factorization (3) of quadratic prime integer π in ring 

4[ 2]− . In this case all computation is performed in ring [ 2]− , and in corre-
sponding formulas integer 2 is to be changed by quadratic integer 2− . 

According to (2) number 2a bπ = + −  is determined up to sign, hence, any one 
of integers π, −π can be factored. General length of coefficients of number ρ must 
be minimal. To minimize the general length obtained prime algebraic number ρ 
can be multiplied by a unit of ring 4[ 2]− . Notice that number ρ can be defined 
once, when cryptosystem parameters are computed. 

Similarly prime factorization of group order can be determined in ring 4[ 2] . 
Since the quadratic integer norm can be negative, in algorithm 2 absolute norm 
must be minimized. 

According to quadratic reciprocity low prime r can be factored in [ 2]−  and 
in 4[ 2]−  if r ≡ 3 (mod 8). Similarly prime r can be factored in [ 2]  and in 

4[ 2]  if r ≡ 7 (mod 8). 

3. Fast exponentiation method 
Consider fast exponentiation methods for the fixed element of cyclic group. Few 
variants are possible: using rings [ 2]±  or 4[ 2]± , using window size 2 or 4 
bits. In dependence of ring used the number of doublings can be reduced 2 or 4 
times with respect to usual binary exponent representation and the same window 
size. For example, if ring 4[ 2]−  is used, four bit window corresponds to ele-

ments 
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−∑ , ei ∈ {−1, 0, 1}. Since we raise the fixed element of cyclic 

group, then all such elements can be stored in computer memory. Transition to 
next window takes only one doubling. Two bit window corresponds to elements 

4
0 1 2e P e P+ − . If cyclic group is elliptic curve with j = 203, then transition to next 

window takes only one complex multiplication by 2− . 
If quadratic order [ 2]±  and finite field [ 2]/( )≅ ± π   is used, any expo-

nent 0 < k < r can be represented as 0 1 2 (mod )k k k≡ + ± π  by algorithms 1 and 2 
so that its absolute norm is minimal. Total length of k0, k1 is less or equal to length 
of r. 



Let prime divisor 4[ 2]ρ∈ −  of the group order r with minimal norm over  is 
computed. Then any exponent 0 < k < r can be represented as set (k0, k1, k2, k3): 
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≡ − ρ∑  so that norm of this algebraic integer is minimal. Find alge-

braic integer 
3

4

0
2

i
i

i
n

=

β = −∑  so that norm N(k − βρ) in  is minimal. For this firstly 

find approximation to k in quadratic order [ 2]−  using algorithm 2, then apply 
algorithm 2 to extension 4[ 2]/ [ 2]− −  . Derivation of norm function is linear 
function of ni, what simplifies computation (directly norm 4[ 2]/−   computa-
tion leads to solving cubic equations, this will complicate finding of ni). 

Algorithm 3. Computing field isomorphisms 4[ 2]/( )− ρ  and [ 2]/( )− π . 

Input: 0 2 2 [ 2]/( )k k+ − ∈ − π , π, 
2 34 4 42 2 2c d e fρ = + − + − + − . 

Output: 
2 34 4 4 4

0 1 2 32 2 2 [ 2]/( )k k k k+ − + − + − ∈ − ρ . 
Method. 
1. Set k1 ← 0, k3 ← 0, 

2 34 4 4
0 1 2 32 2 2k k k kκ = + − + − + − . 

2. While n0, n1, n2, n3 ≠ 0, find integers ni that give minimal norm in  of 
4 2

i

inκ − ρ −  and set 4 2
i

inκ ← κ − ρ − . 

3. Return: 
2 34 4 4 4

0 1 2 32 2 2 [ 2]/( )k k k kκ = + − + − + − ∈ − ρ . n 

Consider variants of exponentiation algorithm. Let ring [ 2]−  is used (−2 is 
quadratic residue modulo r). Find factorization (2) using algorithm 1 and find rep-
resentation 0 1 2 (mod )k k k≡ + − π  using algorithm 2: k0 = k00 + 2k01 + 22k02 + …, 
k1 = k10 + 2k11 + 22k12 + … Write exponent k in number system with base 2− : 

2 3
00 10 01 112 2 2 ... (mod )k k k k k≡ + − − − − − + π . 

If signs of integers k0, k1 are the same, then signs alternation is +, +, −, −, +, +, 
−, − or its inverse. This is normal alternation signs. If signs of k0, k1 are different, 
then alternation of signs is not normal (+, −, −, + or its inverse). Sometimes it is 
sufficient to use precomputation base only for normal alternation of signs, i.e. 

0 1 2 3{ 2 2 2 2 }e P e P e P e P+ − − − − , ei ∈ {0, 1}. For example, if elliptic curve has 
complex multiplication by 2− , normal alternation of signs can be obtained by 
exponent representation as 

 
2

00 10 01 112( 2 2 ...) (mod )k k k k k≡ + − − − − − + π . (4) 

Number in brackets has normal alternation of signs. Assume that we can multi-
ply elliptic curve point by an exponent with normal alternation of signs. Then we 



can multiply it by an exponent with arbitrary alternation: firstly multiply point by 
an exponent in brackets (4), apply complex multiplication and add point k00P. 

If real quadratic ring [ 2]  is used and factorization of group order is 
2 22r a b± = ππ = − , normal alternation of signs corresponds to the same signs of 

k0, k1. To obtain normal alternation of signs it is necessary to transform in (4) 
k ← k ± uεπ, where u is fundamental unit and ε ∈ {−1, 0, 1}. 

Both in imaginary and real quadratic rings transition to next number takes two 
doublings for 4 bit window and one doubling for 2 bit window. 

Let ring 4[ 2]−  is used and prime divisor 4[ 2]ρ∈ −  of group order is 
known. For multiply point P by integer k, find algebraic representation of k: 

2 34 4 4 4
0 1 2 32 2 2 [ 2]/( )k k k k+ − + − + − ∈ − ρ . Let ki = ki0 + 2ki1 + … — binary 

digits of its coefficients. Write exponent k in number system with base 4 2− : 

 
2 3 44 4 4 4

00 10 20 30 012 2 2 2 ...k k k k k k= + − + − + − − − −  (5) 

Define normal alternation of signs: +, +, +, +, −, −, −, − or its inverse. This cor-
responds to the case when all ki has the same sign. Normal alternation can by ob-
tained by changing in (5): k ← k ± βρ, where 4[ 2]β∈ −  is “small” algebraic in-
teger (with small absolute norm). Precomputation table contains 15 or 3 elements 
for window size 4 or 2 bits respectively. 

If window size is 4 bits, then transmitting to next window takes only one point 
doubling. If window size is 2 bits, then transmitting to next window takes only one 
complex multiplication by 2− . 

For ring 4[ 2]  exponentiation method is performed similarly. But exponent 
representation takes considering two generators of group of units, so exponent rep-
resenting as element of ring 4[ 2]  with minimal length is less convenient. This 
reasoning shows that use of rings 8[ 2]±  may have little or no advantage since 
rank of its group of units increases. 

Consider the complexity of elliptic curve point multiplication if length of expo-

nent is N bits and window size is 4 bits. Usual method takes 12 13
4
N N+  modular 

multiplications. If ring [ 2]±  is used, point multiplication takes 12 13
4 2
N N

+  

modular multiplications. If ring 4[ 2]±  is used, point multiplication takes 

12 13
4 4
N N

+  modular multiplications. Hence, for N = 160 bits point exponentiation 

can be speeded-up about 1.6 times for quadratic ring and about 2.5 times for ring 
4[ 2]±  comparatively to known methods. The hardest operation during digital 

signature verification according to ECDSA is elliptic curve fixed point multiplica-
tion. So proposed method allows speeding-up digital signature verification 1.6 or 
2.5 times for window size 2 or 4 bits respectively. 



Consider small numerical example for the rings [ 2]− , 4[ 2]− . Let r = 
64019. Find 2 5625 (mod )r− ≡ − , 4 2 9241(mod )r− ≡ . Find prime algebraic di-
visors of prime integer r using algorithm 1:  

231 73 2π = + − , 
2 34 4 43 7 2 2 8 2ρ = − + − + − + − . 

Let k = 12345. Find image of k in finite field [ 2]/( )− π . Algorithm 2 gives n0 
= 45, n1 = −14 and exponent is 94 51 2 (mod )k ≡ − − − π . 

Find image of the exponent in finite field 4[ 2]/( )− ρ : 
2 34 4 494 51 2 0 0 2 3 2 6 2 (mod )− − − ≡ + − − − + − ρ . 

Exponent k representation base 4 2−  is 
2 6 7 114 4 4 42 2 2 2 (mod )k ≡ − − + − + − − − ρ . 

If window size is 4 bits, then exponent k is given by quadriples −(0, 0, 1, 0), (0, 
0, 1, 1), −(0, 0, 0, 1) (beginning from the least significant digits). Alternation of 
signs is normal. The next window passage takes one doubling. So only two dou-
blings and two additions are needed. If known method with the same window size 
is used, then 12345 = 3⋅163 + 3⋅16 + 9. Exponentiation takes two additions and 
eight doublings. 
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