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Abstract Physical Uncloneable Functions (PUFs) can be used as a cost-e�ective means to

store cryptographic key material in an uncloneable way. In coating PUFs, keys are generated

from capacitance measurements of a coating containing many randomly distributed particles

with di�erent dielectric constants.

We introduce a physical model of coating PUFs by simplifying the capacitance sensors to

a parallel plate geometry. We estimate the amount of information that can be extracted from

the coating. We show that the inherent entropy is proportional to
p
n(log n)3=2, where n is the

number of particles that �t between the capacitor plates in a straight line. However, measure-

ment noise may severely reduce the amount of information that can actually be extracted in

practice. In the noisy regime the number of extractable bits is in fact a decreasing function of

n. We derive an optimal value for n as a function of the noise amplitude, the PUF geometry

and the dielectric constants.

Keywords: Physical Uncloneable Function, PUF, Challenge-Response Pair, authentication,

coating, dielectric, capacitance, entropy, key extraction

1 Introduction

1.1 General introduction to PUFs

A `Physical Uncloneable Function' (PUF) is a function that is realized by a physical system,

such that the function is easy to evaluate but the physical system is hard to characterize,

model or reproduce.

Physical tokens were �rst used as identi�ers in the 1980s in the context of strategic arms

limitation treaty monitoring. The concept was later investigated for civilian purposes [1].

The tokens which were then studied are very hard to reproduce physically, but quite easy

to read out completely, i.e. all the physical parameters necessary for successful identi�cation

are readily given up by the token. This makes these tokens suitable for systems where the

veri�er knows with certainty that an actual token is being probed and that the measuring

device can be trusted. However, the tokens are not suitable for online identi�cation protocols

with a remote party. An imposter can relatively easily copy the data from someone's token,

and then enter that data through a keyboard. The veri�er cannot tell if a token is actually

present.

Truly uncloneable tokens (PUFs) were introduced by Pappu [2, 3]. These tokens are so

complex that it is infeasible to fully read out the data contained in a token or to make a
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computer model that predicts the outputs of a token [4]. This makes PUFs suitable for online

protocols as well as veri�cation involving physical probing by untrusted devices.

A PUF is a physical system designed such that it interacts in a complicated way with

stimuli (challenges) and leads to unique but unpredictable responses. A PUF challenge and the

corresponding response are together called a Challenge-Reponse-Pair (CRP). A PUF behaves

like a keyed hash function; the physical system consisting of many `random' components

is equivalent to the key. In order to be hard to characterize, the system should not allow

eÆcient extraction of the relevant properties of its interacting components by measurements.

Physical systems that are produced by an uncontrolled production process, e.g. random

mixing of several substances, turn out to be good candidates for PUFs. Because of this lack

of control, it is hard to produce a physical copy of the PUF. Furthermore, if the physical

function is based on many complex interactions, then mathematical modeling is also very

hard. These two properties together are referred to as Uncloneability.

1.2 Applications

From a security perspective the uniqueness of the responses and uncloneability of the PUF

are very useful properties. Because of these properties, PUFs can be used as unique identi�ers

[1, 5, 6, 7], means of tamper-detection and/or as a cost-e�ective source for key generation

(common randomness) between two parties [8, 9]. By embedding a PUF inseparably into a

device, the device becomes uniquely identi�able and uncloneable. Here `inseparable' means

that any attempt to remove the PUF will with very high probability damage the PUF and

destroy the key material it contains. A wide range of devices can be equipped with a PUF

in this way, e.g. smart-cards, credit cards, RFID tags, value papers, chips, security cameras,

etc.

Several secure identi�cation and authentication protocols based on CRPs have been worked

out in [8, 10, 11]. Typically there are two phases: enrollment and veri�cation. In the enroll-

ment phase, a number of challenges is chosen randomly, and the corresponding PUF responses

are measured and then stored in some form. In the veri�cation phase the PUF is subjected

to one or more of the enrollment challenges. The response is checked against the enrolled

response data.

We distinguish between on the one hand `identi�cation', where a direct comparison is

made between unprocessed PUF outputs, usually involving a correlation or distance measure,

and on the other hand `authentication', where a cryptographic key is derived from the PUF

output for performing a cryptographic challenge-response protocol. In this paper we focus

on the latter case. The typical scenario is that the veri�er and the PUF holder are separated

and communicate over an insecure channel.

For cryptographic protocols it is important to ensure that exactly the same bit string is

derived from the enrollment and veri�cation measurements in spite of the measurement noise.

To this end so-called `helper data' is generated for each CRP, data that describes how the PUF

output should be processed, quantized etc. to obtain a noise-resilient bit string. The helper

data for each enrolled challenge is stored together with the challenge. In most applications

only the keys need to be kept secret. Hence, the challenges and helper data can be stored

anywhere (e.g. conveniently on the PUF), while the keys must either be stored in a safe place

or in some encrypted or hashed form. In the veri�cation phase the veri�er selects an enrolled

challenge with the corresponding helper data. The PUF is subjected to this challenge and

the PUF output is combined with the helper data to obtain a bit string. If this bit string
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Figure 1: Structure of a coating PUF. The sensor wires are perpendicular to the paper.

is exactly equal to the enrolled key, then the cryptographic challenge-response protocol will

result in a successful match, convincing the veri�er that the PUF is authentic. Furthermore,

at the end of the protocol the veri�er and the PUF holder possess a shared secret that they

can use e.g. as a session key. (Well designed protocols hide this key from eavesdroppers).

A special class of applications becomes possible if so-called `control' is introduced [10]. A

Controlled PUF (CPUF) is a PUF that is bound to a processor which completely governs the

input and output. The chip can prohibit frequent challenging of the PUF and forbid certain

classes of challenges. It can scramble incoming challenges. Furthermore, it can hide the

physical output of the PUF, revealing to the outside world only indirect information derived

from the output, e.g. an encryption or hash. This control layer substantially strengthens the

security, since an attacker cannot probe the PUF at will and cannot interpret the responses.

CPUFs allow for new applications such as `certi�ed execution' and `certi�ed measurement'

[8, 10].

1.3 Coating PUFs

Several physical systems are known on which PUFs can be based. The main types are optical

PUFs [2, 3], coating PUFs [8], silicon PUFs [11, 12] and acoustic PUFs [8]. In this paper we

discuss coating PUFs. The idea of using an `active coating' was proposed in [13] and further

developed in the context of PUFs in [8].

Coating PUFs are integrated with an IC (see Fig. 1). The IC is covered with a coating

consisting of e.g. aluminophosphate, which is doped with random dielectric particles. By

random dielectric particles we mean several kinds of particles of random size and shape with

a relative dielectric constant "r di�ering from the dielectric constant of the coating matrix. In

order to challenge the coating PUF, an array of metal sensors (e.g. a comb structure of wires),

is laid down directly beneath the passivation layer. SuÆcient randomness is only obtained if

the dielectric particles are approximately of the same size as the distance between the sensor

parts, or smaller.

A challenge corresponds to a voltage of a certain frequency and amplitude applied to the

sensors at a certain point of the sensor array. Because of the presence of the coating material

with its random dielectric properties, the sensor plates with the material in between behave

as a capacitor with a random capacitance value. The capacitance value is then converted into

a bit string which can be used as an identi�er or a key.

Coating PUFs have the advantage of possessing a high degree of integration. The matrix

containing the random particles can be part of a tamper-resistance coating. A coating PUF
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also has the advantage that it is easily turned into a Controlled PUF (CPUF), as it is insepa-

rably bound to the underlying device. The control electronics can simply be put underneath

the coating.

1.4 Information-theoretical approach to PUFs

A general information-theoretical framework for the analysis of the security of PUFs was

formulated in [4]. The central concept is the entropy of a measurement, i.e. the amount of

information about the PUF's structure that is revealed by a measurement. One needs the

notion of `PUF space' or con�guration space, a discrete space where each point corresponds

to a possible PUF realisation. A measurement is represented as a partitioning of the PUF

space, and the measurement entropy is the entropy of this partitioning. This formalism will

be used for the analysis in sections 3 and 4.

1.5 Contributions of this paper

This paper contains the following novel contributions:

� We introduce a model of a coating PUF measurement at one location in the sensor array,

by describing each sensor as a parallel plate capacitor. The geometry is simpli�ed, but

the e�ects of �nite particle size are incorporated, as well as the insensitivity of the

capacitance to particle permutations.

� Using our model, we compute the entropy of the probability distribution function of

the capacitance. This `inherent entropy' is the absolute upper bound on the extractable

information. It corresponds to `perfect' measurements, i.e. without any noise. The

inherent entropy scales as
p
n(lnn)3=2, with n the number of particles that �ts linearly

between the capacitor plates.

� There are two counteracting e�ects at work. On the one hand, smaller particle size

leads to more inherent PUF entropy. On the other hand, smaller particles imply better

mixing, which leads to a reduced variance of the capacitance. (This is a `law of large

numbers' e�ect proportional to 1=
p
#particles). The latter puts a lower bound on the

useful particle size, since a large capacitance variance is needed in order to obtain a

good signal to noise ratio. We derive an optimum particle size that yields the highest

number of extractable bits.

� In the regime of noisy measurements, the number of extractable bits is largest if (i)

the relative dielectric constants of the two coating materials di�er strongly, and (ii) the

mixture contains only a small fraction of the substance with the low dielectric constant,

namely of the order of the ratio of the two constants.

� If the measurement noise � is very small, of the order 1=(density of states), individual

capacitance states may be resolved. The density of states has a sharp peak, but the

capacitances most likely to be measured lie outside this peak. Hence, if � is made so

small that individual states can just be resolved, one enters into a regime where the

�nite density of states limits the extractable entropy, while the extractable entropy is

still far smaller than the inherent entropy.
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2 Modelling coating PUFs

2.1 Motivation

Our aim is to estimate the maximum amount of information that can be extracted from

a coating PUF. To this end we formulate a physical model of a capacitance measurement

(section 2.2) and compute the Shannon entropy of the capacitance distribution. We do not

aim for an exact answer, but we want to know the order of magnitude and the scaling

behaviour, i.e. the dependence of the entropy on all the important model parameters such as

the distance between the sensor wires, the dielectric constants, the size of the random particles

and the relative amounts of the random particles. We di�erentiate between two regimes:

1. Measurements with very little noise. In this case the amount of information that

can be extracted is limited by the entropy of the PUF itself. The PUF entropy is �nite

due to the �nite size of the random particles. The computation is presented in section 3.

2. Noisy measurements. In this case the �nite particle size e�ects are unnoticeable,

because they are overshadowed by the noise. The measurement entropy is completely

determined by the signal to noise ratio. This computation is presented in section 4.

2.2 The model

For the sake of simplicity, we model the sensor wires and the coating above them as an ordi-

nary capacitor consisting of two parallel electrode plates with a dielectric substance between

them. This simpli�cation will of course fail to represent the spatially varying electric �eld

produced by the wires. However, we are interested only in the statistical properties of parti-

cle distributions within the region that contains most of the electric �eld density. As a �rst

approximation, we idealize the geometry of the �eld.

As a �rst step we study the capacitor shown in Fig. 2a, a parallel-plate capacitor �lled

with layers 1 : : : n of equal thickness a=n with dielectric constants "1 : : : "n. It is well known

[14] that its capacitance is given by

Cn layers = Cref �
 
1

n

nX
s=1

1

"s

!�1

; Cref =
A"0

a
; (1)

where A is the plate area, "0 the permittivity of the vacuum, and Cref the capacitance of the

system with vacuum between the plates, which we will use as a reference value throughout

the paper. The result (1) has several invariance properties. A re-ordering of the layers does

not change the capacitance. Additionally, C remains unchanged even if we split up a layer,

so that we have more than n layers, and then re-order. In fact, as long as we make changes

in the vertical direction only, the capacitance depends just on the average value of 1=".

As a second step we look at the capacitor shown in Fig. 2b, with m columns of di�erent

dielectric material. This capacitor can, in good approximation, be considered as m parallel

components, and hence its total capacitance is the sum of the parts,

Cm columns = Cref �
1

m

mX
j=1

"j (2)

We observe that only the average dielectric constant matters.
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Figure 2: Motivation of the model. (a) A capacitor consisting of several dielectric layers

parallel to the plates. (b) Dielectric columns perpendicular to the plates. (c) Combination of

layers and columns. The volume between the plates is �lled with random dielectric building

blocks.

This leads us to the construction of our model (see Fig. 2c). Between the plates there is a

mixture of two substances which have di�erent dielectric constants, "1 and "2. Without loss

of generality we will always assume that "2 < "1.

The volume is discretized: there are m columns of n `voxels'. When the mixture is

produced, the probability that a voxel will be occupied by substance 1 is denoted as p, and

the probability of having substance 2 is q = 1� p. The number of voxels in the j-th column

that ends up �lled with substance 1 is denoted as Nj . Writing the total capacitance as a sum

of parallel column capacitances we have

C =

mX
j=1

Cj ; Cj =
Cref

m
� n
�
Nj

"1
+
n�Nj

"2

��1

: (3)

Note that C is invariant under swaps of complete columns and under voxel shifts within a

column.

For convenience later on, we introduce the following notation. The number of columns

containing precisely k particles of substance 1 (k = 0 : : : n) is denoted as �k. The set f�kg
satis�es

Pn
k=0 �k = m, since the total number of columns is m. The capacitance is then

expressed as

C =

nX
k=0

�k�k ; �k =
Cref

m
� n
�
k

"1
+
n� k

"2

��1

: (4)

Note that discrepancies may arise between our model and the geometry of Fig. 1 when the

dielectric constants become very large. In our model the electric �eld lines are forced to move

perpendicular to the plates, through the `columns', while in Fig. 1 the �eld lines are free to

avoid the coating altogether. However, we expect our model to be useful for reasonable values

of "1; "2.

2.3 The density of states

First we examine the density of states (d.o.s.) in our model. The d.o.s. is the number of

states that exist per in�nitesimal interval on the capacitance axis, and we will denote it as
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Figure 3: Density of states for n = 180, m = n. Left: Location of the peak as a function of

"2="1. Right: Width of the peak as a function of "2="1. The squares are numerical simulation

results. The dashed curve in the left graph corresponds to (6). The dashed curve in the right

graph is the estimate (7) with � = 0:9. All capacitances have been expressed in units of Cref"1.

D(C). The total number of capacitance values in the model is given by the number of points

in the �-lattice, i.e. the number of ways to partitionm into n+1 non-negative integers, where

the ordering is important.

Nstates =

mX
�0=0

m��0X
�1=0

� � �
m��0������n�2X

�n�1=0

1 =

�
n+m

n

�
: (5)

The d.o.s. must satisfy
R Cref"1
Cref"2

D(C)dC = Nstates. The states are distributed non-uniformly

over the C-axis. In appendix B we estimate the shape ofD(C) based on a typical set argument.

The highest concentration of states occurs at C = Cpeak. For symmetry reasons, this point

occurs when all the �k are equal, i.e. �k = m=(n+1) for all k. The corresponding capacitance

Cpeak is given by

Cpeak �
Cref

"�1
2 � "�1

1

ln
"1

"2
: (6)

Terms of order 1=n are neglected. In the vicinity of this peak, the d.o.s. turns out to have an

almost gaussian distribution with variance �,

�2 � �2C
2
ref

n
�
�
"1"2 � C2

peak

	
; (7)

where � is a `curve �tting' constant of order unity. Fig. 3 shows that (7) has good correspon-

dence with simulation results. However, the typical set approximation is only valid close to

the peak. The tails of the d.o.s. are not gaussian.

2.4 The probability distribution of the capacitance

Without loss of generality we assume that the ratio "2="1 is chosen to be a non-algebraic

number. In this way the mapping from f�kg to C is bijective, i.e. the capacitance is uniquely

determined by the set f�kg. (A proof is presented in Appendix A). This means that the

probability distribution of C is equivalent to the probability distribution of f�kg. The latter
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is obtained as follows. First we introduce the notation xk for the probability of �nding k

voxels with substance 1 in a given column. This is the binomial distribution,

xk =

�
n

k

�
pkqn�k: (8)

Then we note that the total probability of a con�guration f�kg is a multiplication of probabili-
ties xk, one for each column. Finally, the capacitance is invariant under column permutations,

and hence the number of such permutations must be taken into account. This brings us to

the following expression,

P� =

�
m

�

� nY
k=0

x�kk ;

�
m

�

�
=

m!

�0! � � � �n!
: (9)

Here we have used the shorthand notation � = f�kg with the implicit constraint
Pn

k=0 �k =

m. It is easily veri�ed that the probabilities P� add up to unity using the following general

identity [15], X
�

�
m

�

� nY
k=0

Y �k
k = (Y0 + � � � + Yn)

m: (10)

A useful identity (for the computation of moments) can be derived from (10) by taking the

derivative @=@Ys, X
�

�s

�
m

�

� nY
k=0

Y
�k
k = mYs(Y0 + � � �+ Yn)

m�1: (11)

3 Entropy of a `noiseless' measurement

3.1 Analytic part of the calculation

The goal is to compute the Shannon entropy H� of the distribution (9). The �rst steps can

be done analytically. We start by expanding lnP�

H� = �
X
�

P� lnP� = �
nX

k=0

lnxk
X
�

P��k �
X
�

P� ln

�
m

�

�
: (12)

The �-sum in the �rst right-hand-side term is evaluated using the identity (11) with Yk ! xk,

yielding
P

� P��k = mxk. Rewriting the ln of the binomial in the last term as a sum of

logarithms, we get

H� = �m
nX

k=0

xk lnxk � lnm! +

nX
k=0

X
�

P� ln(�k!): (13)

All three terms in (13) have a combinatorial interpretation. The �rst term is m times the

entropy of the binomial distribution xk. This represents the measurement entropy of m

separate distinguishable columns. (Note that the capacitance measurement in our model does

not `see' the locations of columns.)

The second term is the entropy of permuting the m columns. The third term is the

average entropy of permuting only those columns that have the same �lling value k, for all k
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separately. The second and third term together represent the average entropy of the

�
m

�

�
distinct column con�gurations that are consistent with a given set �.

The last term in (13) can be further evaluated. The �-sum averages a quantity that

depends only on one component, �k, of the set �. Hence the average w.r.t. the probability

P� can be replaced by the average w.r.t. the marginal distribution P�k of the component �k.

H� = �m
nX

k=0

xk lnxk � lnm! +

nX
k=0

mX
�k=0

P�k ln(�k!): (14)

The marginal distribution is given by

P�k =

�
m

�k

�
x�kk (1� xk)

m��k : (15)

The derivation is given in appendix C. Note that P�k is a binomial distribution corresponding

to �k out of m events with base probability xk. This is what one would intuitively expect.

As xk itself is a binomial in k, we have `nested' binomial distributions.

3.2 Approximation

We cannot evaluate the third term in (14) exactly. However, we can make a good approxi-

mation for n� 1, m�p
n. (We remind the reader that m / n in the 2D case and m / n2

in the 3D case). We make use of the fact that both binomial distributions P�k and xk are

sharply peaked, and that xk can be approximated by a normal distribution Nnp;�(k) in the

vicinity of its peak, with � =
p
npq. Furthermore, we de�ne a constant c and an interval

Ic = (np� c�; np+ c�) such that mxk > 1 for k 2 Ic. The details of the calculation are shown

in appendix D. The result is

H� � 1
3
c3� +O(c�) ; c = f

s
ln

m2

2�npq
; (16)

where f is a numerical constant of order one. Fig. 4 shows that the approximation is quite

accurate.

There is an intuitive way of understanding the scaling H� / c3�. The entropy is ap-

proximately the log of the number of lattice points in the �-con�guration lattice that carry

substantial probability. The probability is concentrated around a sharp peak at h�ki = mxk.

In each of the n+ 1 dimensions the standard deviation is
p
mxk. However, in most of these

dimensions
p
mxk is far less than one lattice point, and hence these hardly contribute to the

entropy. In the contributing dimensions (k 2 Ic) the standard deviation is of order
p
mxnp.

Since jIcj = 2c� we then get H� / ln(
p
mxnp)

2c� � c� ln(m=
p
n) � c3�.

In the case of a two-dimensional capacitor, m / n, where the proportionality constant

depends on the length and the width of the capacitor. In the three-dimensional case, m will

scale as m / n2. In both cases we have lnm / lnn, and therefore H� scales as

H� /
p
n(lnn)3=2: (17)

This equation for the entropy H� is the main result of this section.
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Figure 4: Intrinsic entropy of a capacitor for m = n,p = 1
2
. The squares show the result of

numerical evaluation of (14). The dotted curve is the approximation (50) with f = 1:27. The

entropy is expressed in `natural units', i.e. the logarithm with base e is used.

4 Entropy of a noisy measurement

In the case of a noisy measurement, the noise is larger than the e�ects caused by the �niteness

of the particle size. For all intents and purposes the capacitance can be treated as a continuous

variable, i.e. a stochastic variable C with a smooth probability distribution function �(C).

In order to obtain reproducible measurements in spite of the noise, the C-axis is divided into

bins of size �, where � is chosen proportional to the noise amplitude.

The entropy H�[�] of the thus discretised distribution is given by [16]

H�[�] = h[�]� ln�; (18)

where we have introduced the di�erential entropy h[�] = �
R
dC�(C) ln�(C). If the noise

level is reduced, h[�] remains constant, but the term � ln� grows, and hence H� grows. If

the noise is made very small, the dielectric particle size becomes noticeable and (18) becomes

invalid. Then one has to use the results of section 3.

The di�erential entropy h[�] is readily estimated. In appendix E we give an approximation

for the average �c and variance �c of the capacitance, using the model de�ned in section 2.2

and the capacitance distribution P� (9). For n� 1 we have

�c �
Cref

p"�1
1 + q"�1

2

; �c � �c

r
pq

nm
� j"

�1
1 � "�1

2 j
p"�1

1 + q"�1
2

: (19)

Fig. 5 compares (19) to numerical simulations. The error in �c is 2%, while the error in �c is

0.2%.

Note that �c is a decreasing function of n andm. This can be understood as follows. When

the number of random particles between the plates is large, the probability of deviating from

the average value hki = np is small for all columns. A �ner mixing process allows for a better

approximation of perfectly uniform mixing of the two substances.

If the capacitance distribution is sharply peaked (�c=�c � 1) then we can replace it with a

gaussian distribution without much loss of accuracy. The di�erential entropy of the gaussian
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Figure 5: Left: Probability distribution of the capacitance. Right: �c as a function of

n. The dotted line represents the estimate (19). The squares show the statistical result of

104 randomly generated �llings. The parameters are m = n = 70, p = 1
2
, "2 = "1=2, and

capacitances have been normalized w.r.t. Cref"1.

distribution N�c;�c is given by [16]

h[N�c;�c ] = ln(�c
p
2�e): (20)

Combining (18) and (20) we can write the entropy of the discretised distribution as

H�[�] = ln(
�c

�

p
2�e): (21)

This equation has the form of a channel capacity for a noisy channel with signal to noise ratio

(�c=�)2.

4.1 Optimal choice of "1; "2; p

In the derivation of (21) it was assumed that the distribution is sharply peaked. However, it

is possible to obtain a rather broad distribution. Let (1; "max), with "max � 1, be the interval

from which "1; "2 may be chosen. Take "1 = "max and make q and "2="1 very small. In this

limit we have

�c !
Cref"1p
nm

p
q "2="1

(q + "2="1)2
: (22)

�c can be made large by choosing either (a) q = O("2="1) � 1 or (b) q � "2="1 � p
q.

For both approaches we show that the broadening of the distribution is not unlimited. The

lowest feasible value of q must satisfy q > 1=(nm). Otherwise, there would be only a small

probability of having substance 2 in the capacitor at all, which clearly is not desirable.

� Case (a): We set "2="1 = �q, with � a constant of order unity. This gives

�c !
Cref"1

1 + 1=�
; �c !

Cref"1�

(1 + �)2
1p
qnm

� Cref"1

4
p
qnm

(23)

with equality for � = 1. Since q > 1=(nm), �c cannot exceed Cref"1=4, i.e. one quarter

of the full capacitance range.
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� Case (b): We can realize the choice q � "2="1 � p
q by setting "2="1 = Bq
, with B

a constant of order unity and 
 2 (1
2
; 1). This yields

�c ! Cref"1 ; �c !
Cref"1

B(nm)1�

; (24)

which is far smaller than Cref"1 since nm� 1.

We conclude that no reasonable choice of q and "2 can give rise to a �c exceeding Cref"1=4.

In practice �c does not even come close to this value, because q has to be chosen much larger

than 1=(nm) to get substantial mixing. Furthermore, in case a the parameter q cannot be

much smaller than 1="max, which may be a further impediment to lowering q.

It is also important to note that the intrinsic entropy H� (16) becomes quite small in the

limit of small q. In fact, a point q0 may even exist where H� gets smaller than H�[�] (21). In

that case (21) is clearly not the correct expression for the entropy. If we set "2="1 = q with
1
nm < q � 1 (case a), then the crossover point H�[�] = H� is given by the following implicit

equation for q0,

nq0

�
ln

m2

2�nq0

�3
= 9

"
ln
Cref"1

p
2�e

4�
p
m
p
nq0

#2
(25)

Here we have put f = 1. Note that (25) can be read as a relationship between the three

parameters m, Cref"1=� and nq0. The extractable entropy in this regime is

H = min

(
ln
Cref"1

p
2�e

4�
p
m
p
nq
;
1

3

p
nq

�
ln

m2

2�nq

�3=2
)

(26)

The point "2="1 = q = q0, with q0 de�ned by (25), represents the optimal parameter choice

yielding the highest possible entropy for �xed n and m. It is not a sharply peaked optimum,

however, because of the weak q-dependence of ln(1=
p
q) in H�[�].

In this section we have always assumed that the measurement noise � is so large that

many states �t inside a capacitance interval of width �, i.e. we have assumed � > 1=D(C).

In the limit "2="1 ! 0 the d.o.s. gets very sharply peaked around C = Cref"2, such that

almost all states are concentrated there (see Fig. 3). This leaves few states in the vicinity of

C = �c. Thus, if � is small enough, � < 1=D(�c) becomes a possibility. In that case (21,26)

are valid no longer and the �nite d.o.s. limits the extractable entropy.

5 Transition between noisy and noiseless regimes; Optimal n

In this section we investigate the limit of small �. As mentioned in the previous section, it

can occur for small � that the extractable entropy is limited by the �nite density of states. A

transition between the `noiseless' and `noisy' regime takes place when the noise � is so small

that individual states on the C-axis can be resolved. This happens when 1=� is comparable

in magnitude to D(�c). Taking this into account, (21) is replaced by

H�[�] = ln
�p

2�emin
n�c
�
; D(�c)�c

o�
; (27)

where we have assumed that �c=�c is suÆciently small, so that the d.o.s. in the interval

(�c � �c; �c + �c) is approximately constant at D(�c). (We are not looking at `case a' here).
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Unfortunately, the results of section 2.3 do not give us the d.o.s. at C = �c, since in

general �c does not lie close to Cpeak (6). We have to resort to another type of approximation

to determine the d.o.s. in the tail of the D(C) distribution. Note that, since �c lies in this

tail, the transition e�ects are noticeable, long before each individual state on the whole C-axis

can be resolved! Consequently, the extractable entropy (27) will be signi�cantly smaller than

the intrinsic entropy H� even when D(�c) < 1=�.

We de�ne ÆC as the smallest capacitance step that we can generate by applying (integer)

changes Æ�k to the `average' con�guration �k = mxk. This gives us the estimate D(C) �
1=ÆC. The best method we could identify is to center the Æ�k parameters around the center

of the �k distribution (k = np), and to arrange them in such a way that they generate an

N -th derivative. For instance, if we take

Æ�np+v = (�1)v+1

�
N

1
2
N + v

�
; v 2 f�1

2
N; : : : ; 1

2
Ng (28)

then the capacitance step ÆC =
P

k �kÆ�k is the discretised derivative @N

@kN
�k at k = np. It

turns out that for n > 105 the best result is obtained at N = 2. For n < 105 the optimal N

can be much higher. However, the allowed values of Æ�k are bounded by the `starting values'

mxk, and this bounds N . The highest allowed N satis�es Æ�np = �mxnp with Æ�np de�ned
in (28). Using Stirling's approximation for the binomial, the bound can be expressed as

2N+1

p
N

=
mp
npq

: (29)

The resulting ÆC is

ÆC � @N

@kN
�k

����
k=np

= Cref

N !

mnN
("�1

2 � "�1
1 )N

(p"�1
1 + q"�1

2 )N+1
: (30)

When ÆC (30) is equal to �, then the transition between the `noisy' and `noiseless' regime

takes place.

The point of equality, � = ÆC, can be seen as an equation expressing the transition value

of � as a function of n, m, "1, "2 and p. Conversely, the equation can also be read to give

the transition values for n, m as a function of �, "1, "2 and p. If we write m = �nd�1, with

� a proportionality constant and d the number of dimensions (2 or 3) of the capacitor, then

the transition value of n is given by the implicit equation

ntrans =

�
CrefN !("�1

2 � "�1
1 )N

��(p"�1
1 + q"�1

2 )N+1

� 1

N+d�1

(31)

where N depends on ntrans logarithmically according to (29),

N � log2
�

e
p
pq

+ (d� 3
2
) log2 ntrans: (32)

Eq. (31) roughly de�nes the optimal particle size for a given noise level. On the one hand,

larger particles lead to a smaller number of distinguishable capacitance values (ÆC grows)

within the region of high probability, and hence the measurable entropy decreases. On the

other hand, taking smaller particles also reduces the measurable entropy, since the ratio �c=�

13



decreases. (Remember that �c / 1=
p
n). For small changes in n, N is almost a constant,

and (31) gives a power law dependence ntrans / (1=�)
1

N+d�1 , with logarithmic corrections.

Using this approximation, we see that the full �-dependence of the entropy H� (following

from �c / (nm)�
1
2 ) is given by �N�1+d=2

N�1+d
ln�.

6 Summary

Coating PUFs are a cost-e�ective way of storing cryptographic key material in an uncloneable

way. An IC is covered with a coating that is doped with random dielectric particles. A secret

bit string is derived from capacitance measurements.

We have introduced a simpli�ed physical model of coating PUFs by representing each

sensor in the PUF as a parallel plate capacitor. Using this model, we have computed the

intrinsic entropy of the mixture between the capacitor plates as a function of the relative

amounts of the two substances, the number of `columns' (m), and the number of `slots' in

each column (n). For large n and m, the intrinsic entropy scales as
p
n(ln[m=

p
n])3=2.

The actually extractable information can be signi�cantly lower due to measurement noise.

The entropy of a capacitance measurement is dictated by the signal to noise ratio �c=�, where

the `signal' is the variance �c of the capacitance distribution and the noise � is the uncertainty

in the measured capacitance. The variance scales as 1=
p
nm, re
ecting the fact that large

deviations from average �lling become increasingly unlikely when the mixing becomes �ner.

For �xed number of particles, a large variance �c is obtained if one of the dielectric constants

is very large ("1 � 1) and the other close to 1, while the mixing is such that the "1 material

is far more abundant than the other (q = O("2="1)). However, �c cannot be made arbitrarily

large without a penalty, since (a) the inherent entropy, which scales as
p
q, will become too

small, and (b) the mixing ratio q has to be larger than 1=(nm) in order for the "2 material

to be present at all.

At �xed "1, "2, p, the extractable entropy has a maximum as a function of the particle

size when the discrete capacitance steps in the model are approximately equal to the noise

�. The optimal particle size scales as a power of �, with logarithmic corrections.
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A Bijective mapping �$ C

In this appendix we prove that choosing a non-algebraic value for "2="1 implies a bijective

mapping between � and C. (A number is called non-algebraic if it cannot be represented as

the solution of a polynomial equation with integer coeÆcients).

Let's assume that two vectors �(1) and �(2) yield the same value C. Then
P

k dk�k = 0,

where we have de�ned dk = �
(1)

k ��(2)

k . We rewrite this equation as
P

k dk=(k"2="1+n�k) = 0.
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Multiplying by
Q

j(j"2="1 + n� j) we get

nX
k=0

dk
Y
jjj 6=k

(j
"2

"1
+ n� j) = 0: (33)

This is a polynomial equation in "2="1 with integer coeÆcients. Since "2="1 is not an algebraic

number, the equation can only be satis�ed if dk = 0 for all k. Hence �(1) = �(2), which

completes the proof.

B Density of states; Typical set

In this appendix we estimate the shape of the D(C) function. To this end we treat the �k
as stochastic variables with a uniform distribution between 0 and m, subject to the collective

constraint
Pn

k=0 �k = m. In other words, we employ a `fake' uniform distribution instead

of the actual non-uniform probability distribution P� (9). Consequently, all points in the

�-lattice are treated equally. This construction allows us to determine the d.o.s. numerically

by Monte Carlo simulation.

We use the concept of the `typical set' [16] of �-con�gurations. When drawing a random

� from the uniform distribution, there is an overwhelming probability that it will belong to

the typical set.

First we determine the `mean' capacitance Cpeak. For symmetry reasons, this point occurs

when all the �k are equal, i.e. �k = m=(n+1) for all k. The corresponding capacitance Cpeak

is given by

Cpeak =

nX
k=0

m

n+ 1
�k �

Z 1

0

d�
Cref

�"�1
1 + (1� �)"�1

2

=
Cref

"�1
2 � "�1

1

ln
"1

"2
: (34)

Here we have used the de�nition of �k (4) and we have approximated the sum by an integral

by introducing � = k=n (i.e.
P

k ! n
R
d�). Furthermore we have neglected terms of order

1=n.

We determine the shape of the d.o.s. curve by taking the continuum approximation, i.e.

we treat the �k as continuous variables on the interval [0;m]. The number of states that

satisfy the two constraints
P

k �k = m and
P

k �k�k = C can be expressed as an integral

over two Dirac delta functions that enforce those constraints,

D(C) /
Z m

0

d�0 � � �
Z m

0

d�n Æ(

nX
k=0

�k �m)Æ(

nX
k=0

�k�k � C): (35)

We perform a basis transformation �k ! �k that simpli�es the �rst delta function. We de�ne

�0 = (n + 1)�1=2
Pn

k=0 �k and �j = (�0 � �j)=
p
2 for 1 � j � n. The inverse relations are

�0 = �0=
p
n+ 1+

p
2=(n+1)

Pn
j=1 �j and �k = �0=

p
n+ 1+

p
2=(n+1)

Pn
j=1 �j �

p
2�k for

1 � k � n. In the new basis the integrals are of the form

D(C) /
Z
d�0 � � �

Z
d�n Æ(�0 �

mp
n+ 1

)

Æ(Cpeak

p
n+ 1

m
�0 +

p
2

m

nX
j=1

�j [Cpeak �m�j ]� C): (36)
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The integration intervals of the � variables are more complicated than in (35). We Integrate

out the �rst delta function, which leads to the replacement �0 ! m=
p
n+ 1. Next we use an

integral representation for the second delta function according to Æ(x) = (2�)�1
R1
�1dp e

ipx.

The exp of the sum nicely factors into a product where each factor only depends on a single

�j variable.

D(C) /
Z 1

�1

dp

2�
e�ip[C�Cpeak]

Z
d�1 � � �

Z
d�n

nY
j=1

exp ip

p
2

m
�j [Cpeak �m�j]: (37)

However, the factorisation is incomplete in the sense that the �1 � � � �n integrals cannot be

evaluated independently, as the integration bounds on each � variable are a�ected by the

other � variables.

At this point we introduce an approximation: We estimate the integration intervals based

on the properties of the typical set. First of all, from the symmetry between the �k it follows

that the bounds on all the �j do not depend on j. Furthermore, we can think of the d.o.s.

as a probability distribution for C based on continuous variables �k, such that each point

in �-space is equally likely. In this view, �k does not deviate much from its `average' value

m=(n+1) in the set of typical con�gurations. Since �k has to stay nonnegative, the magnitude

of this deviation will be of the orderm=(n+1). Recalling the de�nition �j = (�0��j)=
p
2, we

take an estimated interval �j 2 [�m�=(n+1)
p
2;+m�=(n+1)

p
2]. Here we have introduced a

numerical constant � of order unity which re
ects our ignorance. Note that our approximation

is valid only in the vicinity of C = Cpeak, i.e. inside or close to the typical set.

Each �-integral is evaluated independently, and the result is

D(C) = Nstates

Z 1

�1
dp e�ip(C�Cpeak)G(p)

G(p) �
nY

k=1

sinc
p�(m�k � Cpeak)

n+ 1
; (38)

where `sinc' denotes the function sinc x = x�1 sinx. The G(p) is the generating function for

the distribution of the variable C � Cpeak. All moments of this distribution can be obtained

by di�erentiating G at p = 0. As G(p) is even in p, it is clear that all odd moments are zero.

The width � of the distribution is given by

�2 = � @2G

@p2

����
p=0

=
�2

(n+ 1)2

nX
k=1

(m�k � Cpeak)
2: (39)

The summation of �2k can be approximated by an integration as before, with � = k=n,

m2

nX
k=0

�2k � n

Z 1

0

d� [�"�1
1 + (1� �)"�1

2 ]�2 = n"1"2; (40)

yielding the result (7)

�2 � �2C
2
ref

n
�
�
"1"2 � C2

peak

	
: (41)
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C Marginal distribution of �k

In this appendix we determine the marginal probability distribution (15) of �k. The compu-

tation goes as follows. We start with the distribution (9) for the whole set �. One variable

�k is singled out of the �-summation, leaving all f�jg with j 6= k. Then the identity (10) is

used to evaluate the summation over these n variables.

For some arbitrary function f we can write

X
�

P�f(�k) =

mX
�k=0

�
m

�k

�
x�kk f(�k)

X
f�jg;j 6=k

(m� �k)!Q
t6=k �t!

nY
s;s 6=k

x�ss : (42)

The identity (10), but now for the variables �n�k, gives

X
�

P�f(�k) =

mX
�k=0

�
m

�k

�
x�kk (1� xk)

m��kf(�k) =:

mX
�k=0

P�kf(�k): (43)

D Approximate entropy

In this appendix we approximate the summations in the last term of (14). The computation

consists of three steps.

1. We note that the binomial distribution P�k is sharply peaked around h�ki = mxk. The

valuemxk is vanishingly small when k lies in one of the tails of the binomial distribution

xk. Hence, for `tail' values of k, the contribution to the k-sum will be approximately

P (�k = 0) ln(0!) + P (�k = 1) ln(1!) + P (�k = 2) ln(2!) = P (�k = 2) ln(2), which is

vanishingly small because of the negligible P (�k = 2).

This means that we only have to sum over those values k that lie in the peak of the

distribution xk. The peak is centered on k = np and has standard deviation � =
p
npq.

Our summation interval is Ic = [np � c�; np + c�], where the constant c is somewhat

arbitrarily de�ned such that at the boundaries mxk � 1. We have

mxnp�c� � 1 ; c2 = 2f2 ln
mp
2�npq

; (44)

where f is a numerical constant of order unity. Because of the somewhat fuzzy de�nition

of c, we have to `�t' f to obtain the correct proportionality constant in H�. It turns

out that the best choice for f has a weak dependence on p and lies between 1.1 and 1.3.

Note that we need m >
p
n, otherwise a solution does not exist.

2. For k 2 Ic the distribution P�k is sharply peaked around h�ki > 1. In general, for a sharp

distribution of some variable u and some smooth function f(u) one can approximate

hf(u)i � f(hui). Using this technique, we can write the third term in (14) as

nX
k=0

mX
�k=0

P�k ln(�k!) �
X
k2Ic

ln(mxk)!

�
X
k2Ic

ln
p
2�mxk +m

X
k2Ic

xk lnxk +m ln m
e

X
k2Ic

xk: (45)
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In the last step we have used the Stirling approximation. Substitution of (45) into (14)

gives

H� �
X
k2Ic

ln
p
2�mxk �m ln m

e

X
k2tail

xk �m
X
k2tail

xk lnxk; (46)

where we have neglected terms of order lnm.

3. We can approximately evaluate the summations in (46) by replacing xk for k 2 Ic
by a gaussian distribution with average np and standard deviation � =

p
npq. The

approximation holds for jk � npj � n.

Then we replace the summations by integrations. The �rst term givesZ np+c�

np�c�

dk ln
p
2�mxk � 1

3
c3� + c� ln

p
2�: (47)

In the second term of (46) we get

1�
Z np+c�

np�c�
dk xk � 1� Erf cp

2
�
q

2
� c

�1e�c
2=2 =

2�

mc
; (48)

where we have used the asymptotic expansion of the Erf function for large arguments.

For the computation of the third term in (46) we note that the full k-sum would yield the

entropy Hnp of the binomial distribution, which we know [17] to be Hnp = ln(�
p
2�e)+

O(1=n). We calculate the tail entropy as the full entropy Hnp minus the entropy in the

peak,

Hnp +

Z np+c�

np�c�

dk xk lnxk � [1� Erf cp
2
] ln(�

p
2�e)� cp

2�
e�c

2=2

� 2�

mc
ln(m

p
e): (49)

Comparison of (47), (48) and (49) shows that the �rst term in (46) has contributions

of order c3� and c�, while the second and third term in (46) partly cancel each other,

leaving only a contribution of order c=�.

The �nal result is

H� � 1
3
c3� + c� ln

p
2� + 3�=c: (50)

E Average and variance of the capacitance

In this appendix we estimate the average �c and standard deviation �c of the capacity C =P
k �k�k (4). We have �c = hCi� =

P
k �k h�ki� and

�2c =


C2
�
�
� hCi2� =

nX
k;l=0

�k�l[h�k�li� � h�ki� h�li�] (51)

where the notation h�i� indicates averaging with respect to P� (9). We use the identity (11)

to compute the expectation values analytically,

h�ki� = mxk ; h�k�li� � h�ki� h�li� = �mxkxl + Æklmxk: (52)
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Substitution into (51) gives

�c = m h�ki ; �2c = m
h

�2k
�
� h�ki2

i
: (53)

The notation h�i indicates averaging w.r.t. the distribution xk. Analytic computation does

not yield a closed-form solution. Hence we approximate as follows. We de�ne k = np+ �u,

where � =
p
npq is the standard deviation of xk. In terms of the new variable u, which is of

order 1 in the peak of xk, we can write

�k =
Cref

m[p"�1
1 + q"�1

2 ]
� 1

1 + u 
;  =

�

n
� "�1

1 � "�1
2

p"�1
1 + q"�1

2

: (54)

For n� 1 we can make use of the fact that  = O(1=pn) to make a Taylor expansion in  

to second order. Since hui = 0 and


u2
�
= 1 we obtain�

1

1 +  u

�
� 1 +  2

�
1

(1 +  u)2

�
�
�

1

1 +  u

�2

� (1 + 3 2)� (1 + 2 2) =  2: (55)

This results in

�c =
Cref

p"�1
1 + q"�1

2

; �c = Cref �
r

pq

nm
�
��"�1

1 � "�1
2

��
[p"�1

1 + q"�1
2 ]2

: (56)
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