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Abstract

A cover-free family is a well-studied combinatorial structure that has many applications in
computer science and cryptography. In this paper, we propose a new public key traitor tracing
scheme based on cover-free families. The new traitor tracing scheme is similar to the Boneh-
Franklin scheme except that in the Boneh-Franklin scheme, decryption keys are derived from
Reed-Solomon codes while in our case they are derived from a cover-free family. This results
in much simpler and faster tracing algorithms for single-key pirate decoders, compared to the
tracing algorithms of Boneh-Franklin scheme that use Berlekamp-Welch algorithm. Our tracing
algorithms never accuse innocent users and identify all traitors with overwhelming probability.

Keywords: Public-key traitor tracing, cover-free family.

1 Introduction

In a public key traitor tracing scheme, the encryption key is made public and everyone can use
this public key to encrypt messages and broadcast the resulting ciphertexts to all users. Each user
is given a unique secret key which can be used to decrypt the broadcasted ciphertexts. Malicious
users may combine their decoder keys to construct a pirate decoder that can decrypt the broadcast.
A pirate decoder contains a secret key different from all of the colluders’ secret keys, or a different
decryption algorithm. Pirate decoders can be sold to unauthorised users allowing them to illegally
access the content. A tracing algorithm takes a pirate decoder and outputs one of the colluders.
Typical applications of such systems are distribution of content in pay-per-view television and
web-based content distribution.

Traitor tracing was first introduced by Chor, Fiat and Naor [4]. The first public key traitor tracing
scheme was proposed by Boneh and Franklin [2]. In their scheme, two models of pirate decoders
are considered. The first model is the single-key pirate model and assumes that there are two
separate parties called the key-builder and the box-builder. The key-builder is a group of malicious
users who combine their secret keys to create a new pirate decryption key. The pirate key is then
handed over to the box-builder who implements the decryption box freely based on this single
pirate key. The single-key pirate model is thus a simple but a realistic model of the pirate market.
The second pirate model is more sophisticated and allows a pirate decoder with more than one
pirate key. In Kiayias and Yung’s model [15, 16], a pirate decoder may also have several built-in
self protection functionalities, for example, remembering previous tracer queries, erasing internal
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keys and shutting down when it “detects” that it is being queried by a tracer. “Crafty pirates”
require more advanced tracing algorithms.

A common technique in tracing general pirate decoders is the black box confirmation technique
which has been used in many schemes including [2, 26, 35, 22, 6, 19, 20]. Even though, this
technique achieves the goal of tracing sophisticated pirate decoders, however, it is obviously not an
efficient technique. If c denotes the maximum number of malicious users who have created a pirate
decoder, a traitor tracing algorithm using the back box confirmation technique should implement a
sub-procedure that takes a subset of c users and determines whether the subset contains the whole
set of traitors or not. Thus, for a scheme of n users, up to

(
n
c

)
executions of the sub-procedure may

be required. While there has not been any known efficient tracing algorithm for the crafty pirate
model, it may be argued that this pirate model is not very realistic as a self protection mechanism
in a crafty pirate decoder usually requires the embedding of several keys [36, 37]. It remains as an
open problem to design a public key traitor tracing with efficient tracing algorithm against crafty
pirates.

In this paper, we only deal with single-key pirates. We propose a new public key traitor tracing
scheme with an efficient combinatorial traitor tracing algorithm against single-key pirate decoders
based on cover-free families. At present, Boneh-Franklin’s tracing algorithm [2] is the most efficient
algorithm for tracing single-key pirates. This is an algebraic algorithm which uses Berlekamp-
Welch [1] decoding algorithm for generalized Reed-Solomon codes. Two other traitor tracing
schemes [26, 18] also use Berlekamp-Welch algorithm. Our traitor tracing scheme is similar to
the Boneh-Franklin scheme except that in the Boneh-Franklin scheme, decryption keys are de-
rived from Reed-Solomon codes, but in our scheme, decryption keys are derived from a cover-free
family, resulting in simpler and faster tracing algorithms compared to the tracing algorithms of
Boneh-Franklin scheme.

Cover-free families (CFF) are well-studied combinatorial structures with many applications in com-
puter science and cryptography such as information retrieval, data communication, magnetic mem-
ories, group testing, key distribution and authentication [14, 32, 31]. It is interesting to discover
yet another application of cover-free families for traitor tracing. A c-CFF(m,n) is a pair (S,B)
where S is a set of m points and B is a collection of n subsets (or blocks) of S with the property
that the union of any c blocks cannot cover another block. A cover-free family can be constructed
with large n and relatively small m. In our scheme, there are n users that are used to label the
n blocks, and m modular linear equations that are used to label the m points. Secret keys of
the n users are generated as vector solutions of a certain number of modular equations based on
the incidence matrix of the cover-free family. Our tracing algorithms identify traitors by taking
intersection of certain subsets derived from the cover-free family and so are simpler and faster than
Boneh-Franklin tracing algorithms. The drawback is that our tracing algorithms may not identify
all traitors, although we show that they will identify all traitors with an overwhelming probability.
In addition, our algorithms are error-free, meaning that an innocent user is never wrongly accused
by the algorithms.

Our method of generating secret keys using a number of modular linear equations is inspired by the
work of Narayanan et al. [27], although in [27] the set of equations satisfied by a certain secret key
is chosen randomly, whereas in our scheme the equations are deterministically determined using
the incidence matrix of the cover-free family. In [27], an innocent user may be mistakenly identified
as a traitor. In our scheme however, due to the cover-free property, the traitor tracing algorithms
will never accuse innocent users. We also note that Narayanan et al’s scheme is not a public key
scheme. Finally, flaws in the key generation algorithm of Narayanan et al’s scheme are reported
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in [34].

Organization of the paper. Section 2 introduces cover-free families. Section 3 briefly presents our
intuition behind the scheme. Section 4 describes our new traitor tracing scheme; and the tracing
algorithms are presented separately in Section 5. We conclude our paper in Section 6.

2 Cover-Free Families

Cover-free families were first introduced in 1964 by Kautz and Singleton [14] to investigate superim-
posed binary codes. Since then, these combinatorial structures have been studied extensively and
appeared to have many applications in information theory, combinatorics and cryptography includ-
ing information retrieval, data communication, magnetic memories, group testing, key distribution
and authentication [14, 3, 12, 24, 29, 32, 31].

Definition 1 A c-cover-free family is a pair (S,B), where S is a set of m elements and B is a
collection of n subsets (called blocks) of B with the following property: for any 1 ≤ c′ ≤ c, the
union of any c′ blocks cannot contain any other block. We use the notation c-CFF(m,n) to denote
a c-cover-free family (S,B) with |S| = m and |B| = n.

For the ease of presentation, through out this paper, we assume S = {1, 2, . . . ,m}. The following
theorem gives a lower bound for the parameter m in term of parameters c and n. See [11, 13, 30]
for different proofs of this theorem.

Theorem 1 For a c-CFF(m,n), it holds that

m ≥ θ c2

log c
log n

for some constant θ.

The constant θ in Theorem 1 is shown to be approximately 1/2 in [11], approximately 1/4 in [13]
and approximately 1/8 in [30]. Slightly stronger bounds are given in [33]. A simple construction
of cover-free families is based on concatenated codes [7, 8, 9, 10].

For our traitor tracing scheme construction, we want to choose a c-cover-free family with large n and
small m since as we will see later, the parameter c becomes the collusion threshold, the parameter
n becomes the number of users, and traitor tracing complexity depends on the parameter m.

Suppose we have a c-CFF(m,n) (S,B) with S = {1, 2, . . . ,m} and B = {B1, B2, . . . , Bn}. We
construct its incidence matrixM as follows. The matrix has n rows and m columns. Label n rows
by n blocks of B and label m columns by m elements of the set S. The entryM[i, j] at row labeled
by Bi and column j is 1 if j ∈ Bi and is 0 if j 6∈ Bi. The c-cover-free property is interpreted in the
incidence matrix as follows. For any c′ blocks Bi1 , Bi2 , . . . , Bic′ , where 1 ≤ c′ ≤ c, and any other
block Bk, since Bi1 ∪Bi2 ∪· · ·∪Bic′ does not contain Bk, there must exist j ∈ Bk such that j 6∈ Bi1 ,
j 6∈ Bi2 , . . . , and j 6∈ Bic′ . It means that if we take arbitrary c′ rows i1, i2, . . . , ic′ and any other
row k, then there exists at least a column j such thatM[i1, j] =M[i2, j] = · · · =M[ic′ , j] = 0 and
M[k, j] = 1. The complementary incidence matrix M′ is obtained from the incidence matrix M
by replacing the entries 1 by 0 and replacing 0 by 1. The following property of the complementary
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incidence matrix M′ plays the crucial role in constructing our new traitor tracing scheme. That
is, for any 1 ≤ c′ ≤ c, if we take arbitrary c′ rows and another row ofM′, then there exists at least
a column whose entries on these c′ rows are all 1 and the entry on the other row is 0.

M

. . . j . . .
...

...
...

...
i1 0
i2 0
...

...
...

...
ic′ 0
...

...
...

...
k 1
...

...
...

...

M′

. . . j . . .
...

...
...

...
i1 1
i2 1
...

...
...

...
ic′ 1
...

...
...

...
k 0
...

...
...

...

3 Idea

Suppose we want to construct a public key traitor tracing scheme with n users and c is the collusion
threshold. Then we need to use a c-CFF(m,n) (S,B) with an n×m complementary incidence matrix
M′. We will generate m random modular linear equations:

equation 1 (E1) : µ1,1X1 + µ1,2X2 + · · ·+ µ1,tXt = 0 (mod N1)
equation 2 (E2) : µ2,1X1 + µ2,2X2 + · · ·+ µ2,tXt = 0 (mod N2)

...
...

equation m (Em) : µm,1X1 + µm,2X2 + · · ·+ µm,tXt = 0 (mod Nm)

where parameters t and N1, N2, . . . , Nm will be described in details later. We now label m columns
ofM′ by these m equations E1, E2, . . . , Em, and label n rows ofM′ by n user keys ~v1, ~v2, . . . , ~vn.

M′

E1 E2 . . . Em
~v1 0 1 . . . 0
~v2 1 1 . . . 0
...

...
...

...
~vi 1 0 . . . 1
...

...
...

...
~vn 0 1 . . . 1

User i decryption key has the form ~vi = (vi,1, vi,2, . . . , vi,t) ∈ Nt and is generated in such a way
that, for each 1 ≤ j ≤ m, if M′[i, j] = 1 then ~vi satisties the equation Ej , and if M′[i, j] = 0
then ~vi does not satisty the equation Ej . For example, if the row i of M′ is (1, 0, . . . , 1) then
~vi = (vi,1, vi,2, . . . , vi,t) is generated such that ~vi satisfies equation E1, not satisfy equation E2, . . . ,
and satisfies equation Em.

We will show that in our new traitor tracing scheme, if c′ traitors i1, i2, . . . , ic′ collude then from
their keys ~vi1 , ~vi2 , . . . , ~vic′ they can only create pirate key ~vpirate that has the form

~vpirate = α1 ~vi1 + α2 ~vi2 + · · ·+ αc′ ~vic′ ,
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where α1, α2, . . . , αc′ are integer numbers such that α1 + α2 + · · ·+ αc′ = 1.

Consider the set E of equations that are satisfied by all of the vectors ~vi1 , ~vi2 , . . . , ~vic′ . The linearity
implies that the pirate vector ~vpirate also satisfies all equations in the set E . However, from the
property of the matrixM′, any innocent user k, there exists at least one equation in the set E that
is not satisfied by ~vk.

M′

. . . set E . . .
...

...
...

...
...

~vi1 . . . 1 1 1 1 . . .
~vi2 . . . 1 1 1 1 . . .
...

...
...

...
...

~vic′ . . . 1 1 1 1 . . .
...

...
...

...
...

~vk . . . 0 . . .
...

...
...

...
...

~vpirate . . . 1 1 1 1 . . .

Therefore, from a pirate key ~vpirate, we trace the traitors as follows. First, we identify the set
E of equations that are satisfied by ~vpirate. Next, for each equation in E , take the corresponding
set of vectors that satisfy this equation. Finally, find the intersection of these sets. The set of
indices of the vectors in this intersection identifies the traitors. From the above analysis, we can
see that no vectors corresponding to innocent users can remain in the intersection because, a vector
corresponding to an innocent user must fails at least one equation in the set E .

4 The Proposed Traitor Tracing Scheme

In this section, we present a new public-key traitor tracing scheme based on the idea outlined in
the previous section. We show that our proposed scheme is semantically secure against passive
adversary assuming the difficulty of the standard DDH problem. The scheme has two tracing
algorithms: open-box tracing and black-box tracing which will be presented in the next section.

4.1 Key generation

Let n be the number of users, c be the collusion threshold, and λ, ∆ be security parameters.

1. Select a c-CFF(m,n) (S,B) with an n×m complementary incidence matrix M′ where m =
θ c2

log c log n and θ is a small constant.

2. Choose a group G of ∆-bit order such that it is infeasible to find a multiple of order of G (we
can choose G as the group Z∗M where M = pq is a RSA modulo). Choose a group element g
of high order. Choose 2c+ 1 random numbers d, d1, . . . , d2c such that gcd(d2c, |G|) = 1. Let
y = gd, g1 = gd1 , . . . , g2c = gd2c .

3. Set the public encryption key to be PK = (y, g1, . . . , g2c).

4. Let z = dm/(2c − 2)e. Generate z random λ-bit primes p1, p2, . . . , pz. Pick m numbers
N1, N2, . . . , Nm from {p1, p2, . . . , pz} such that each prime is picked at most 2c− 2 times.
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5. Generate a random m × (2c − 1) matrix (µi,j) such that any 2c − 2 rows of the matrix are
linear independent. Consider the following m random modular linear equations

equation 1 (E1) : µ1,1X1 + µ1,2X2 + · · ·+ µ1,2c−1X2c−1 = 0 (mod N1)
equation 2 (E2) : µ2,1X1 + µ2,2X2 + · · ·+ µ2,2c−1X2c−1 = 0 (mod N2)

...
...

equation m (Em) : µm,1X1 + µm,2X2 + · · ·+ µm,2c−1X2c−1 = 0 (mod Nm)

Label m columns of M′ by m equations and label n rows of M′ by n vectors ~v1, ~v2, . . . , ~vn.
Each vector is of the form ~vi = (vi,1, vi,2, . . . , vi,2c−1) and is generated in such a way that, for
each 1 ≤ j ≤ m, ifM′[i, j] = 1 then ~vi satisfies Ej , and ifM′[i, j] = 0 then ~vi does not satisfy
Ej . By Chinese Remainder Theorem, we can choose each vector component vi,k as a natural
number less than the product (p1p2 . . . pz).

6. For each user i, calculate

vi,2c = d−1
2c (d− d1vi,1 − d2vi,2 − · · · − d2c−1vi,2c−1) (mod |G|)

and set the secret decryption key of user i to be dki = (~vi, vi,2c) = (vi,1, vi,2, . . . , vi,2c−1, vi,2c).

Example. Let look at steps 4 and 5 in the following toy example with m = 5 and c = 2.

Step 4: z = d5/2e = 3. Generate 3 random primes p1, p2, p3. Pick 5 numbers N1, N2, N3, N4, N5

from {p1, p2, p3} such that each prime is picked at most 2 times. Let’s pick N1 = N2 = p1,
N3 = N4 = p2, N5 = p3.

Step 5: Generate 5 random modular linear equations

equation 1 (E1) : µ1,1X1 + µ1,2X2 + µ1,3X3 = 0 (mod p1)
equation 2 (E2) : µ2,1X1 + µ2,2X2 + µ2,3X3 = 0 (mod p1)
equation 3 (E3) : µ3,1X1 + µ3,2X2 + µ3,3X3 = 0 (mod p2)
equation 4 (E4) : µ4,1X1 + µ4,2X2 + µ4,3X3 = 0 (mod p2)
equation 5 (E5) : µ5,1X1 + µ5,2X2 + µ5,3X3 = 0 (mod p3)

Suppose the first row of M′ is (1, 1, 0, 1, 0) then the ~v1 = (v1,1, v1,2, v1,3) is generated so that

equation 1 (E1) : µ1,1v1,1 + µ1,2v1,2 + µ1,3v1,3 = 0 (mod p1)
equation 2 (E2) : µ2,1v1,1 + µ2,2v1,2 + µ2,3v1,3 = 0 (mod p1)
equation 3 (E3) : µ3,1v1,1 + µ3,2v1,2 + µ3,3v1,3 6= 0 (mod p2)
equation 4 (E4) : µ4,1v1,1 + µ4,2v1,2 + µ4,3v1,3 = 0 (mod p2)
equation 5 (E5) : µ5,1v1,1 + µ5,2v1,2 + µ5,3v1,3 6= 0 (mod p3)

We first solve for (v1,1, v1,2, v1,3) in (E1) and (E2) in modulo p1, then solve for (v1,1, v1,2, v1,3) in
(E3) and (E4) in modulo p2, and solve for (v1,1, v1,2, v1,3) in (E5) in modulo p3, and finally, using
Chinese Remainder Theorem to derive the final solution in modulo p1p2p3.

Remark.

1. The public encryption key PK = (y, g1, . . . , g2c) contains 2c + 1 group elements, so PK is
approximately (2c+ 1)∆-bit long.

2. User decryption key dki = (~vi, vi,2c). Since each component of ~vi is a natural number less
than p1p2 . . . pz, it is zλ-bit long. Thus, ~vi is (2c− 1)zλ-bit long. So dki is ∆ + (2c− 1)zλ ≈
∆ + λθ c2

log c log n-bit long.
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4.2 Encryption and Decryption

Encryption. A message M ∈ G is encrypted as

(M yr, gr1, g
r
2, . . . , g

r
2c),

where r is a random number.

Decryption. User i using the secret decryption key dki to decrypt

M yr

(gr1)vi,1 (gr2)vi,2 . . . (gr2c)
vi,2c

= M.

The correctness of the decryption algorithm can easily be verified as follows. In the step 6 of the
key generation, we have

vi,2c = d−1
2c (d− d1vi,1 − d2vi,2 − · · · − d2c−1vi,2c−1) (mod |G|),

so d1vi,1 + d2vi,2 + · · ·+ d2c−1vi,2c−1 + d2cvi,2c = d (mod |G|). Thus

gd1vi,1gd2vi,2 . . . gd2cvi,2c = gd,

and
g
vi,1
1 g

vi,2
2 . . . g

vi,2c
2c = y.

Therefore,
M yr

(gr1)vi,1 (gr2)vi,2 . . . (gr2c)
vi,2c

=
M yr

yr
= M.

4.3 Security of the Encryption Scheme

We show that our encryption scheme is semantically secure against a passive adversary assuming
the difficulty of the decision Diffie–Hellman problem in G.

The decision Diffie–Hellman problem in G is to distinguish between tuples of the form (ν, νa, νb, νab)
and the form (ν, νa, νb, νc) where ν is chosen random from G and a, b, c are random number.

With the assumption that the decision Diffie–Hellman problem in G is hard we show that the
probability for an adversary to win in the following game is negligible over one half. In this
game, the challenger executes the key generation procedure and gives the public encryption key
to the adversary. The adversary then produces two messages M0 and M1 and gives them to the
challenger. The challenger randomly chooses δ ∈ {0, 1} and gives the adversary a ciphertext of Mδ.
The adversary then answers δ′ ∈ {0, 1} and she wins if δ′ = δ.

Theorem 2 The encryption scheme is semantically secure against a passive adversary assuming
the difficulty of the DDH problem.

A proof of the above theorem can be found in the appendix. Similar to the Boneh–Franklin [2]
scheme, our scheme can be modified to achieve security against chosen ciphertext attacks using
Cramer–Shoup [5] approach.
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5 Traitor Tracing Algorithms

This section is divided into three parts. In the first part, we will show that if the traitors do not
know a non-zero multiple of the order of the group G and the discrete log problem in G is hard
then the only pirate key that the traitors can construct is a convex pirate key. Convex pirate key
is a key of the type

dkpirate = α1dki1 + α2dki2 + · · ·+ αc′dkic′ ,

where α1, α2, . . . , αc′ are integer numbers such that α1 +α2 + · · ·+αc′ = 1. Here dki1 , dki2 , . . . , dkic′
are decryption keys of c′ traitors with 1 ≤ c′ ≤ c.

In the second part, we present open-box traitor tracing algorithm. That is how to trace traitors
given a convex pirate key dkpirate. Finally, black-box traitor tracing algorithm is presented in the
third part.

5.1 Pirate Keys

In the key generation procedure, the public key is set to PK = (y, g1, g2, . . . , g2c) where y = gd,
g1 = gd1 , g2 = gd2 , . . . , g2c = gd2c . A tuple (e1, e2, . . . , e2c) ∈ Z2c is said to be a (discrete log)
representation of y with respect to the base g1, g2, . . . , g2c if y = ge11 g

e2
2 . . . ge2c2c , or equivalently,

e1d1 + e2d2 + . . .+ e2cd2c = d (mod |G|).

It is clear that each user decryption key dki = (~vi, vi,2c) = (vi,1, . . . , vi,2c−1, vi,2c) is a representation
of y with respect to g1, . . . , g2c. Any representation (e1, e2, . . . , e2c) can be used for decrypting a
ciphertext (M yr, gr1, g

r
2, . . . , g

r
2c) as

M yr

(gr1)e1(gr2)e2 . . . (gr2c)e2c
= M.

A group of malicious users {i1, i2, . . . , ic′}, where 1 ≤ c′ ≤ c, can use their keys dki1 , dki2 , . . . , dkic′
to construct a pirate key as follows. They select random integer numbers α1, α2, . . . , αc′ such that
α1 + α2 + · · ·+ αc′ = 1 and calculate

dkpirate = α1 dki1 + α2 dki2 + . . .+ αc′ dkic′ .

It is easy to see that dkpirate is a representation of y with respect to g1, g2, . . . , g2c so it can be use
as a pirate key for decryption.

In this construction of pirate key, we call {i1, i2, . . . , ic′} as active traitors if all the linear coefficients
α1, α2, . . . , αc′ are non-zero. The purpose of traitor tracing is to identify these active traitors.

There may be some inactive traitors who support the collusion but they did not contribute their
keys into the formation of pirate key. It is impossible to trace these inactive traitors. So we only
focus on tracing active traitors. For this purpose, we define the following set

Convex(i1, i2, . . . , ic′) = {α1 dki1 + . . .+ αc′ dkic′ : α1, . . . , αc′ ∈ Z \ {0}, α1 + · · ·+ αc′ = 1}.

In the following lemma, we show that if the active traitors {i1, i2, . . . , ic′} do not know a non-zero
multiple of the order of the group G and the discrete log problem in G is hard then the only pirate
keys that they can construct are convex pirate keys in the above set Convex(i1, i2, . . . , ic′). A proof
of the lemma is given in the appendix.
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Lemma 1 Let (y, g1, g2, . . . , g2c) be a public key. Suppose an adversary is given the public key and
c private keys dki1 , . . . , dkic. If the adversary can generate a new representation of y with respect
to g1, g2, . . . , g2c that is not in the set ⋃

U⊂{i1,i2,...,ic}

Convex(U)

then either the adversary knows a non-zero multiple of |G| or the adversary can effectively compute
discrete logs in G.

5.2 Open-Box Tracing Algorithm

In open-box tracing, we assume that the tracer can open the pirate decoder and obtain the pirate
key dkpirate. Let ~vpirate be the vector formed by the first 2c− 1 components of dkpirate. Then

~vpirate = α1 ~vi1 + α2 ~vi2 + . . .+ αc′ ~vic′

where α1, α2, . . . , αc′ are non-zero integers whose sum is equal to 1.

Recall that in the key generation algorithm, we generate n vectors ~v1, ~v2, . . . , ~vn and m equations
E1, E2, . . . , Em so that each of the vectors satisfies a number of equations based on the n×m matrix
M′.

For an equation E, let Vector(E) denote the set of all vectors that satisfy E.

Let denote by Equation( ~vi1 , ~vi2 , . . . , ~vic′ ) the set of all equations that are satisfied by all of the
vectors ~vi1 , ~vi2 , . . . , ~vic′ , and similarly, let denote by Equation(~vpirate) the set of all equations that
are satisfied by ~vpirate.

By linearity, any equation that is satisfied by all of the vectors ~vi1 , ~vi2 , . . . , ~vic′ must be satisfied by
~vpirate. Thus, Equation( ~vi1 , ~vi2 , . . . , ~vic′ ) must be a subset of Equation(~vpirate).

The following theorem states that it is likely that these two sets are equal and the probability that
Equation( ~vi1 , ~vi2 , . . . , ~vic′ ) is a proper subset of Equation(~vpirate) is negligible.

Theorem 3 It must hold that

1. Equation( ~vi1 , ~vi2 , . . . , ~vic′ ) ⊂ Equation(~vpirate);

2. Prα1,...,αc′ [Equation( ~vi1 , ~vi2 , . . . , ~vic′ ) 6= Equation(~vpirate)] < 2m
2λ

.

Let k be an innocent user (i.e. outside of the set of active traitors i1, i2, . . . , ic′). The special
property of the matrix M′ states that there must exist an equation Ej such that Ej is satisfied
by all of the vectors ~vi1 , ~vi2 , . . . , ~vic′ but Ej is not satisfied by ~vk. It means that there exists
Ej ∈ Equation(~vpirate) such that Ej is not satisfied by ~vk.

This leads to the following tracing algorithm: first identify the set of all equations, Equation(~vpirate),
that are satisfied by ~vpirate, then find the set V of all vectors among ~v1, ~v2, . . . , ~vn that satisfy all
equations in Equation(~vpirate). The index set of the vector set V is then the set of traitors. This
set V can be formulated as

V =
⋂

E∈Equation(~vpirate)

Vector(E).
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5.2.1 The algorithm

Input: A convex pirate key dkpirate

1. Form ~vpirate from the first 2c− 1 components of dkpirate;

2. Go through m equations and identify the set Equation(~vpirate) of all equations that are satisfied
by ~vpirate.

3. Each equation E ∈ Equation(~vpirate) has the associated set Vector(E). Find the intersection
V of all these vector sets.

4. Output the index set X of V .

The following theorem guarantees the correctness of the open-box tracing algorithm.

Theorem 4 Let dkpirate ∈ Convex(i1, i2, . . . , ic′) where 1 ≤ c′ ≤ c, and X be the output of the
open-box tracing algorithm executed on the input dkpirate. Then

1. X does not contains any innocent users, i.e. for all 1 ≤ k ≤ n if k 6∈ {i1, . . . , ic′} then k 6∈ X;

2. X is a subset of active traitors, i.e. X ⊂ {i1, i2, . . . , ic′};

3. the probability that X contains all active traitors is close to 1, more specifically,

Pr[X = {i1, . . . , ic′}] > 1− 2m
2λ
.

5.2.2 Example

Let look at the following toy example with c = 2, n = 5, m = 6. We use a 2-CFF(6,5) (S,B) with
S = {1, 2, 3, 4, 5, 6} and B has 5 blocks B1 = {1}, B2 = {2, 4}, B3 = {3}, B4 = {4, 5} and B5 = {6}
(Note to readers: generally n is much larger than m, please do not get the wrong impression by
this toy example!).

M

1 2 3 4 5 6
B1 = {1} 1 0 0 0 0 0
B2 = {2, 4} 0 1 0 1 0 0
B3 = {3} 0 0 1 0 0 0
B4 = {4, 5} 0 0 0 1 1 0
B5 = {6} 0 0 0 0 0 1

M′

E1 E2 E3 E4 E5 E6

~v1 0 1 1 1 1 1
~v2 1 0 1 0 1 1
~v3 1 1 0 1 1 1
~v4 1 1 1 0 0 1
~v5 1 1 1 1 1 0

Based on the matrix M′, we have six equations and five vectors are generated for five users. For
example, ~v1 satisfies E2, E3, E4, E5, E6 but does not satisfy E1.

The associated Vector sets for these equations are:

Vector(E1) = {~v2, ~v3, ~v4, ~v5}, Vector(E2) = {~v1, ~v3, ~v4, ~v5},
Vector(E3) = {~v1, ~v2, ~v4, ~v5}, Vector(E4) = {~v1, ~v3, ~v5},
Vector(E5) = {~v1, ~v2, ~v3, ~v5}, Vector(E6) = {~v1, ~v2, ~v3, ~v4}.
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Remark that these Vector sets are independent to the generation of equations and vectors. We
can find these sets by either looking at matrix M′ or M. For example, based on matrix M′ then
Vector(E1) is identified by the entries 1 on the first column, and based on matrixM then Vector(E1)
is identified by the entries 0 on the first column. These Vector sets can be easily precomputed based
on the c-CFF (S,B).

Now suppose that user 2 and user 3 are active traitors, they construct dkpirate. We will go through
the open-box tracing algorithm step by step:

1. Form ~vpirate from the first three components of dkpirate; ~vpirate must be an active convex
combination of ~v2 and ~v3;

2. Go through six equations and identify the set of all equations that are satisfied by ~vpirate.
Since ~v2 and ~v3 both satisfy E1, E5, E6, ~vpirate satisfies E1, E5, E6. As stated in Theorem 3,

Equation(~vpirate) ⊃ Equation(~v2, ~v3) = {E1, E5, E6}.

and it is likely that Equation(~vpirate) = {E1, E5, E6}.
We assume Equation(~vpirate) = {E1, E5, E6};

3. Identify the intersection of Vector sets associated with the equations E1, E5, E6:

V = Vector(E1) ∩ Vector(E5) ∩ Vector(E6)
= {~v2, ~v3, ~v4, ~v5} ∩ {~v1, ~v2, ~v3, ~v5} ∩ {~v1, ~v2, ~v3, ~v4}
= {~v2, ~v3, ~v5} ∩ {~v1, ~v2, ~v3, ~v4}
= {~v2, ~v3};

4. Output the index set of V : X = {2, 3} – these are active traitors.

5.2.3 Rationale

Firstly, in the step 2 of the above example, one can wonder what would happen if Equation(~vpirate)
contains more than {E1, E5, E6}, eventhough Theorem 3 asserts that this scenario only happens
with a very small probability. The answer is, if this happens then we only catch a subset of active
traitors. Indeed, suppose Equation(~vpirate) = {E1, E3, E5, E6} then in step 3,

V = Vector(E1) ∩ Vector(E3) ∩ Vector(E5) ∩ Vector(E6)
= {~v2, ~v3, ~v4, ~v5} ∩ {~v1, ~v2, ~v4, ~v5} ∩ {~v1, ~v2, ~v3, ~v5} ∩ {~v1, ~v2, ~v3, ~v4}
= {~v2};

Thus, the algorithm outputs one active traitor X = {2}, and does not detect the other active
traitor. We would like to emphasize here that, in all cases, there will be no innocent users are
mistakenly output as traitors.

Secondly, one can question the significance of the usage of the cover-free family. The answer is, if
we do not use cover-free families then the algorithm will output innocent users as traitors.

Consider the following example where B has one more blocks B6 = {2, 3}. Now (S,B) is no longer
2-cover-free because B6 = {2, 3} is covered by B2 = {2, 4} and B3 = {3}. We have one more user,
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user 6, and the new matrices are

M

1 2 3 4 5 6
B1 = {1} 1 0 0 0 0 0
B2 = {2, 4} 0 1 0 1 0 0
B3 = {3} 0 0 1 0 0 0
B4 = {4, 5} 0 0 0 1 1 0
B5 = {6} 0 0 0 0 0 1
B6 = {2, 3} 0 1 1 0 0 0

M′

E1 E2 E3 E4 E5 E6

~v1 0 1 1 1 1 1
~v2 1 0 1 0 1 1
~v3 1 1 0 1 1 1
~v4 1 1 1 0 0 1
~v5 1 1 1 1 1 0
~v6 1 0 0 1 1 1

The new associated Vector sets are:

Vector(E1) = {~v2, ~v3, ~v4, ~v5, ~v6}, Vector(E2) = {~v1, ~v3, ~v4, ~v5},
Vector(E3) = {~v1, ~v2, ~v4, ~v5} , Vector(E4) = {~v1, ~v3, ~v5, ~v6},
Vector(E5) = {~v1, ~v2, ~v3, ~v5, ~v6}, Vector(E6) = {~v1, ~v2, ~v3, ~v4, ~v6}.

If user 2 and user 3 are active traitors and in step 2 of the tracing algorithm we have Equation(~vpirate) =
{E1, E5, E6} then in step 3,

V = Vector(E1) ∩ Vector(E5) ∩ Vector(E6)
= {~v2, ~v3, ~v4, ~v5, ~v6} ∩ {~v1, ~v2, ~v3, ~v5, ~v6} ∩ {~v1, ~v2, ~v3, ~v4, ~v6}
= {~v2, ~v3, ~v6}.

The algorithm has mistaken output user 6 as an active traitor.

5.2.4 Comparison with Boneh–Franklin’s Scheme

While our encryption scheme is the same as the encryption scheme of Boneh–Franklin [2], our
tracing algorithm is much simpler. Tracing algorithm in Boneh–Franklin’s scheme involves solving
a linear system of dimension n (the total number of users) and decoding BCH error-correcting
codes using Berlekamp’s [1] algorithm. Whereas, in our tracing algorithm, it only has two simple
steps:

Step 1: Finding the set Equation(~vpirate) of equations that are satisfied by ~vpirate. There are totally
m = θ c2

log c log n equations. This step involves m number of testings whether the vector ~vpirate
satisfies each equation or not.

Step 2: Finding the intersection V of Vector sets associated with equations in Equation(~vpirate).
This is a very simple step because m Vector sets associated with m equations are precomputed.

Let r be a small positive integer (for example r = 2). The intersection step is performed even faster
if we precompute and store

(
m
r

)
intersection sets

V{i1,i2,...,ir} = Vector(Ei1) ∩ Vector(Ei2) ∩ · · · ∩ Vector(Eir) where 1 ≤ i1 < i2 < · · · < ir ≤ m.

These intersection sets have small cardinalities compared to n. If |Equation(~vpirate)| < r then V
is an intersection of small number (< r) of sets Vector. If |Equation(~vpirate)| ≥ r then V is the
intersection of |Equation(~vpirate)|/r < m/r number of intersection sets V{i1,i2,...,ir}.

With a much simpler tracing algorithm, our scheme achieves almost the same goals as the Boneh–
Franklin scheme:
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Error Free Tracing: There are no innocent users mistakenly output by the tracing algorithm as
traitors. Output of the tracing algorithm are active traitors.

Full Tracing: While the tracing algorithm in the Boneh–Franklin scheme always outputs all active
traitors, our tracing algorithm outputs all active traitors with probability almost near 1. Our
algorithm outputs a proper subset of active traitors with only a negligible probability.

5.3 Black-Box Tracing Algorithm

A black-box tracing algorithm for single-key pirate can be developed using Boneh–Franklin’s [2]
approach. In this approach, we need to choose a underlying group G so that the tracer can
efficiently solve the discrete log problem in the group such as those used in [28]. If this is the case,
then suppose dkpirate = (v1, v2, . . . , v2c) is a pirate key, we can find the values v1, v2, . . . , v2c as
follows. Query the pirate device by invalid ciphertexts of the form C ′ = (Y, gr1 , . . . , gr2c). The
pirate device will respond with the value Y/gr1v1+...+r2cv2c . Hence, we can calculate gr1v1+...+r2cv2c .
After 2c queries, the tracer can calculate gv1 , . . . , gv2c , and with the above assumption, all the
components of the pirate key v1, . . . , v2c can be derived by the tracer. From here, the tracer can
identify the set of active traitors as it does in the open-box tracing algorithm.

6 Conclusion

In this paper, we show yet another application of cover-free families in cryptography. We show
how to use a cover-free family to construct a public-key traitor tracing scheme. The encryption
system of our proposed traitor tracing scheme is similar to that of Boneh–Franklin [2] scheme,
thus it is semantically secure against passive adversary assuming the intractability of the standard
DDH problem. Our scheme can easily modified as the Boneh–Franklin’s scheme to obtain chosen
ciphertext security against active adversary. The main advantage of our scheme over the Boneh–
Franklin is in traitor tracing algorithms. While tracing algorithm in Boneh–Franklin’s scheme
involves solving a linear system of dimension n (the total number of users) and decoding BCH
error-correcting codes using Berlekamp’s [1] algorithm, our tracing algorithm only has two simple
steps related to O( c2

log c log n) number of modular linear equations (c is the collusion threshold).
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Appendix

Proof of Theorem 2. Assume that there exists an adversary, that given the public encryption key
PK = (y, g1, . . . , g2c), produces two messages M0,M1 ∈ G. Given the encryption C of Mδ, where
δ is chosen random in {0, 1}, the adversary can identify δ with non-negligible advantage. We show
that we can use such adversary to solve the DDH problem in G.

Indeed, given a tuple (ν, νu, νv, νw), we will decide if w = uv.

Step 1. Choose 2c random numbers k1, . . . , k2c. Let y = ν, g1 = (νu)k1 , . . . , g2c = (νu)k2c .

Step 2. Give PK = (y, g1, . . . , g2c) to the adversary.
The adversary returns two messages M0,M1 ∈ G.

Step 3. Pick a random δ ∈ {0, 1} and give the adversary the ciphertext

C = (Mδ ν
v, (νw)k1 , . . . , (νw)k2c).

The adversary returns δ′ ∈ {0, 1}.

Step 4. If δ′ = δ then output w = uv. Otherwise, output w 6= uv.

If w = uv then the ciphertext C is an encryption of Mδ. If w 6= uv then the ciphertext is
an encryption of M ′ = Mδ ν

v−w
u , which can be considered as a random message. Therefore, a

non-negligible success probability for the adversary implies a non-negligible success probability in
solving DDH in G.

Proof of Lemma 1. Suppose there exists an adversary that, given the public key PK = (y, g1, g2, . . . , g2c)
and c private keys dki1 , . . . , dkic , can generate a new representation of y with respect to g1, g2, . . . , g2c

that is not in the set ⋃
U⊂{i1,i2,...,ic}

Convex(U),

We prove that we can use such adversary to find a non-zero multiple of |G| or to calculate discrete
log in G.

Indeed, given z = gx, we show how to use the adversary either to compute x or derive a multiple
of |G|. First, choose random numbers r1, . . . , rc, u, v and two random square matrices A = (ai,j)
and B = (bi,j) of size c such that det(A) = det(B) = 1. Then, solve for s1, . . . , sc, rc+1, . . . , r2c in
the following equations

A ·


s1

s2
...
sc

 =


u
u
...
u

 and A ·


r1

r2
...
rc

+B ·


rc+1

rc+2
...
r2c

 =


v
v
...
v

 .

Let y = gvzu, g1 = gr1zs1 , . . . , gc = grczsc , gc+1 = grc+1 , . . . , g2c = gr2c . For each 1 ≤ i ≤ c, let
αi = (ai,1, . . . , ai,c, bi,1, . . . , bi,c) be the vector formed by joining the ith row of the matrix A and
the ith row of the matrix B, then it is easy to check that αi is a representation of y with respect
to g1, . . . , g2c. Now, give the public key (y, g1, . . . , g2c) and c representations α1, . . . , αc to the
adversary. The adversary will return another representation α = (t1, t2, . . . , t2c). Since α is not a
convex combination of α1, . . . , αc, we must have t1s1 + . . .+tcsc 6= u with overwhelming probability.
Since α is a representation, we have x(t1s1 + . . .+tcsc)+(t1r1 + . . .+t2cr2c) = xu+v (mod |G|). So
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x(t1s1+. . .+tcsc−u) = (v−(t1r1+. . .+t2cr2c)) (mod |G|). So either (t1s1+. . .+tcsc−u) is a non-zero
multiple of |G| or we can compute the discrete log x = (v−(t1r1+. . .+t2cr2c))(t1s1+. . .+tcsc−u)−1.

Proof of Theorem 3. 1. For any equation E ∈ Equation( ~vi1 , ~vi2 , . . . , ~vic′ ), E must be satisfied by
all of the vectors ~vi1 , ~vi2 , . . . , ~vic′ . Since ~vpirate is a linear combination of ~vi1 , ~vi2 , . . . , ~vic′ , ~vpirate
also satisfies the equation E, thus, E ∈ Equation(~vpirate). Therefore, Equation( ~vi1 , ~vi2 , . . . , ~vic′ ) ⊂
Equation(~vpirate).

2. For each equation Ej , we will show that

Prα1,...,αc′ [Ej ∈ Equation(~vpirate), Ej 6∈ Equation( ~vi1 , ~vi2 , . . . , ~vic′ )] <
2
2λ
,

since there are m equations, we ontain

Prα1,...,αc′ [Equation(~vpirate) 6= Equation( ~vi1 , ~vi2 , . . . , ~vic′ )] <
2m
2λ
.

Indeed, consider the equation Ej :

µj,1X1 + µj,2X2 + · · ·+ µj,2c−1X2c−1 = 0 (mod Nj).

Let ~µj = (µj,1, µj,2, . . . , µj,2c−1), then Ej 6∈ Equation( ~vi1 , ~vi2 , . . . , ~vic′ ) implies that

ξ1 = ~µj · ~vi1 6= 0 (mod Nj)
ξ2 = ~µj · ~vi2 6= 0 (mod Nj)

...
ξc′ = ~µj · ~vic′ 6= 0 (mod Nj).

Let ξ = ~µj · ~vpirate, then ξ = α1ξ1 + α2ξ2 + · · ·+ αc′ξc′ . Since Ej ∈ Equation(~vpirate) implies ξ = 0
(mod Nj), we have

Prα1,...,αc′ [Ej ∈ Equation(~vpirate), Ej 6∈ Equation( ~vi1 , ~vi2 , . . . , ~vic′ )]

< Prα1,...,αc′ [ξ = α1ξ1 + α2ξ2 + · · ·+ αc′ξc′ = 0 (mod Nj)] =
1
Nj

<
1

2λ−1
,

where the last inequality is derived from the fact that Nj is a λ-bit prime.

Proof of Theorem 4. 1. We prove by contradiction. Suppose k 6∈ {i1, i2, . . . , ic′} and the output
X of the tracing algorithm contains k. Since X is the intersection of all sets Vector(E) where
E ∈ Equation(~vpirate), k must be contained in each of the set Vector(E). It means that ~vk satisfies
any equation E in Equation(~vpirate). However, the special property of the matrix M′ states that
there must exist an equation Ej such that Ej is satisfied by all of the vectors ~vi1 , ~vi2 , . . . , ~vic′ but
Ej is not satisfied by ~vk. That is, there must exist Ej ∈ Equation(~vpirate) such that ~vk does not
satisfy Ej – a contradition. Thus, the tracing algorithm never outputs an innocent user.

2. Since for any k 6∈ {i1, i2, . . . , ic′}, we have k 6∈ X, it must follow that X ⊂ {i1, i2, . . . , ic′}.

3. We have ⋂
E∈Equation( ~vi1 , ~vi2 ,..., ~vic′

)

Vector(E) = { ~vi1 , ~vi2 , . . . , ~vic′}.
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Thus,

Pr[X 6= {i1, . . . , ic′}] ≤ Prα1,...,αc′ [Equation(~vpirate) 6= Equation( ~vi1 , ~vi2 , . . . , ~vic′ )] <
2m
2λ
.

It follows that
Pr[X = {i1, . . . , ic′}] = 1− Pr[X 6= {i1, . . . , ic′}] > 1− 2m

2λ
.
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