
This is the merged full version of two independent papers that have appeared in the proceedings of
ACISP 2006 and SCN 2006.

Direct Chosen-Ciphertext Secure Identity-Based Key Encapsulation

without Random Oracles

Eike Kiltz1 David Galindo2

August 4, 2006

Abstract

We describe a new and practical identity-based key encapsulation mechanism that is secure in
the standard model against chosen-ciphertext (CCA2) attacks. Since our construction is direct and
not based on hierarchical identity-based encryption, it is more efficient than all previously proposed
schemes. Furthermore, we give the first chosen-ciphertext secure identity-based key encapsulation
mechanism with threshold key delegation and decryption in the standard model.

1 CWI Amsterdam, The Netherlands. Email: kiltz@cwi.nl. URL: http://kiltz.net.
2 Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands. Email:

d.galindo@cs.ru.nl. URL: http://www.cs.ru.nl/~dgalindo/.

http://kiltz.net
http://www.cs.ru.nl/~dgalindo/

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Related Work and Comparison . 3
1.3 Publication Info . 4

2 Definitions 4
2.1 Notation . 4
2.2 Identity Based Key Encapsulation . 4
2.3 Target Collision Resistant Hash Functions . 5

3 Assumptions 6
3.1 Parameter generation algorithms for Bilinear Groups. 6
3.2 The BDDH assumption . 6

4 A chosen-ciphertext secure IB-KEM based on BDDH 6
4.1 Waters’ Hash . 6
4.2 The IB-KEM Construction . 7
4.3 More Efficient Decapsulation . 8
4.4 Security . 8

5 IB-KEM with threshold key-delegation and decapsulation 9
5.1 Definitions . 9
5.2 Security requirements . 10
5.3 Discussion and Difficulties . 12
5.4 The Scheme . 12

6 Extensions 15
6.1 Chosen-ciphertext secure Hierarchical Identity-Based Key Encapsulation 15
6.2 Identity-based Encryption . 15
6.3 A Tradeoff between public key size and security reduction 16
6.4 Selective-identity chosen-ciphertext secure IB-KEM . 16
6.5 Implementing the collision resistant hash function TCR 16

7 Efficiency comparison of our IB-KEM 16
7.1 IB-KEM scheme obtained by the generic CHK transformation 16
7.2 IB-KEM mentioned in BMW . 17
7.3 A comparison . 17

A Security of the IB-KEM 22
A.1 Proof of Lemma A.3 . 29
A.2 Proof of Lemma A.2 . 31

B Security of the Threshold IB-KEM 32
B.1 Proof of Theorem 5.4 . 32
B.2 Proof of Theorem 5.3 . 32

C The IBE scheme from BMW [14] 35
C.1 IBE scheme obtained by the generic CHK transformation 36

1 Introduction

Identity-Based Encryption and Key Encapsulation. An Identity-Based Encryption (IBE)
scheme is a public-key encryption scheme where any string is a valid public key. In particular, email
addresses and dates can be public keys. The ability to use identities as public keys avoids the need to
distribute public key certificates.

Instead of providing the full functionality of an IBE scheme, in many applications it is sufficient
to let sender and receiver agree on a common random session key. This can be accomplished with
an identity-based key encapsulation mechanism (IB-KEM) as formalized in [7]. Any IB-KEM can be
updated to a full IBE scheme by adding a symmetric encryption scheme with appropriate security
properties.

After Shamir proposed the concept of IBE in 1984 [39] it remained an open problem for almost two
decades to come up with a satisfying construction for it. In 2001, Boneh and Franklin [11] proposed
formal security notions for IBE systems and designed a fully functional secure IBE scheme using
bilinear maps. This scheme and the tools developed in its design have been successfully applied in
numerous cryptographic settings, transcending by far the identity based cryptography framework. IBE
is currently in the process of getting standardized — from February 2006 on the new IEEE P1363.3
standard for “Identity-Based Cryptographic Techniques using Pairings” [29] accepts submissions. An
alternative but less efficient IBE construction was proposed by Cocks [19] based on quadratic residues.

Both IBE schemes (through the Fujisaki-Okamoto [24] transformation) provide security against
chosen-ciphertext attacks. In a chosen ciphertext attack, the adversary is given access to a decryption
oracle that allows him to obtain the decryptions of ciphertexts of his choosing. Intuitively, security in
this setting means that an adversary obtains (effectively) no information about encrypted messages,
provided the corresponding ciphertexts are never submitted to the decryption oracle. For different
reasons, the notion of chosen-ciphertext security has emerged as the “right” notion of security for
encryption schemes. We stress that, in general, chosen-ciphertext security is a much stronger security
requirement than chosen-plaintext attacks [4], where in the latter an attacker is not given access to
the decryption oracle.

The drawback of the IBE scheme from Boneh-Franklin and Cocks is that security can only be
guaranteed in the random oracle model [5], i.e. in an idealized world where all parties magically get
black-box access to a truly random function. Unfortunately a proof in the random oracle model can
only serve as a heuristic argument and has proved to possibly lead to insecure schemes when the
random oracles are implemented in the standard model (see, e.g., [15]).

Waters’ IBE. To fill this gap Waters [45] presents the first efficient Identity-Based Encryption scheme
that is chosen-plaintext secure without random oracles. The proof of his scheme makes use of an
algebraic method first used by Boneh and Boyen [8] and security of the scheme is based on the
Bilinear Decisional Diffie-Hellman (BDDH) assumption. However, Waters’ plain IBE scheme only
guarantees chosen-plaintext security.

From 2-level Hierarchical IBE to chosen-chipertext secure IBE. Hierarchical identity-
based encryption (HIBE) [28, 26] is a generalization of IBE allowing for hierarchical delegation of
decryption keys. Recent results from Canetti, Halevi, and Katz [16], further improved upon by Boneh
and Katz [13] show a generic and practical transformation from any chosen-plaintext secure 2-level
HIBE scheme to a chosen-ciphertext secure IBE scheme. Since Waters’ IBE scheme can naturally be
extended to a 2-level HIBE this implies the first chosen-ciphertext secure IBE in the standard model.
Key size, as well as the security reduction of the resulting scheme are comparable to the ones from
Waters’ IBE. However, the transformation involves some symmetric overhead to the ciphertext in form
of a one-time signature or a MAC with their respective keys.

1

1.1 Our Contributions

Our three main contributions can be summarized as follows.

A direct chosen-ciphertext secure IB-KEM based on Waters’ IBE. Our main idea is to
enhance (the IB-KEM version of) Waters chosen-plaintext secure IBE by adding some redundant
information to the ciphertext (consisting of a single group element) to make it chosen-ciphertext secure.
This information is used to check whether a given IB-KEM ciphertext was “properly generated” by
the encryption algorithm or not; if so decryption is done as before, otherwise the ciphertext is simply
rejected. Intuitively, this “consistency check” is what gives us the necessary leverage to deal with the
stronger chosen-ciphertext attacks. Unfortunately implementing the consistency check is relatively
expensive and an equivalent “implicit rejection” method is used to improve efficiency.

This provides the first direct construction of a chosen-ciphertext secure IB-KEM that is not ex-
plicitly derived from hierarchical techniques. No exogenous consistency test relying on a symmetric
primitive like one-time signatures or MACs is required. Our scheme can be proved secure under the
Bilinear Decisional Diffie-Hellman (BDDH) assumption in pairing groups. Chosen-ciphertext security
is obtained at sheer minimal cost. Compared to Waters’ IB-KEM our scheme comes with a cipher-
text overhead of only one single element whereas computational overhead is one more exponentiation
for encryption and one pairing plus two exponentiations for decryption. The security reduction is
comparable to the one for Waters’ scheme, i.e. it introduces only a small additive component.

Using a chosen-ciphertext secure symmetric encryption scheme (also called a data-encapsulation
mechanism DEM) our IB-KEM can be extended to a chosen-ciphertext secure IBE scheme [20, 7].
From a theoretical point of view IB-KEM and IBE are equivalent, i.e. the can can be transformed
into the other and vice-versa. However, there are a numerous practical reasons to prefer a IB-KEM
over an IBE scheme. The biggest advantage is its flexibility, i.e. an IB-KEM completely decouples
the key encapsulation from the asymmetric part. So when performing encryption one is free to
pick whatever security parameter necessary without changing the size of the message space. For
(standard) public-key encryption the same modular approach is incorporated in many standards due
to his simplicity and flexibility (see, e.g., [41, 21, 35]). The same is expected to happen in the new
IEEE P1363.3 standard for “Identity-Based Cryptographic Techniques using Pairings” [29]. Since the
IB-KEM part of a hybrid scheme is independent of the message to be encrypted, many session keys
and the corresponding encapsulated ciphertexts can be pre-computed and stored in memory. So if one
uses a particularly fast symmetric encryption scheme, such as a stream cipher using the MULTI-S01
mode of operation [27], then one can just about perform real-time symmetric encryption.

Our IB-KEM scheme can be extended in a natural way to obtain a chosen-ciphertext secure HIB-
KEM with only one additional element in the ciphertext compared to Waters’ chosen-plaintext secure
HIB-KEM.

A rigorous game-based proof. The proof of Waters’ IBE is already quite complex and has many
technical parts that we found pretty hard to verify. Additionally, many recent results [14, 18, 33]
already use ingredients of Waters’ IBE, some more or less in a “black-box” manner which makes
verification nearly impossible without having completely understood the original work. This goes
along with a general movement in our field to produce proofs that are increasingly hard to verify [6, 42]
and in our opinion this situation has been getting worse and worse. Our additional components to
make Waters IB-KEM chosen-ciphertext secure add even more complexity to the proof.

Motivated by this we give a rigorous, games-based proof of our result that can be easily understood
and verified.

A threshold chosen-ciphertext secure IB-KEM. Threshold techniques are applied to crypto-
graphic protocols whenever one wants to decentralize crucial cryptographic operations that need some

2

additional secret input. The idea is to share this secret input among a number of independent players
and only if a sufficiently large fraction of players (determined by a threshold bound) interact (in an
honest way), the cryptographic operation can be successfully accomplished. No useful information
should be leaked otherwise. We refer to [44] for the numerous applications of threshold cryptography.

In Identity-Based Key Encapsulation there are many operations to which one can possibly apply
threshold techniques. Here we consider making key decapsulation and key delegation threshold. We
will call such schemes threshold identity-based key encapsulation mechanisms, or threshold IB-KEM
for short.

Threshold key delegation means that the user secret key (with respect to some identity) is shared
among many players. Sufficiently many players are needed to reconstruct the full user secret key that
enables to decapsulate any ciphertext received by the identity.

Threshold decapsulation means that a ciphertext is shared among many players into ciphertext
shares. Again, sufficiently many ciphertext shares are needed to combine the shares into the original
encapsulated session key. Note that no (shares of the) user secret key is needed to perform the
reconstruction of the encapsulated key from its shares. Threshold decapsulation in the context of IBE
was first introduced in [3], whereas threshold key delegation was first informally introduced in [12].

In this work we consider chosen-ciphertext secure threshold schemes. In such a chosen-ciphertext
attack, the adversary is given access to an oracle that allows him to obtain partial decapsulation shares
of ciphertexts and partial user secret key shares of identities of his choosing. Intuitively, security in this
setting means that an adversary obtains (effectively) no information about an encapsulated session
key, provided he did not receive sufficiently many partial decapsulation/user secret key shares.

Additionally every threshold IB-KEM has to fulfill some “consistency requirements”. That is,
roughly, it should be impossibly to “abuse” a set of valid shares (i.e. shares that pass their respective
consistency tests) to make the scheme inconsistent, which means (for instance) that the same ciphertext
is decapsulated into distinct session keys.

Extending [43, 3, 10] we introduce the concept identity-based key encapsulation with threshold key-
delegation and decapsulation (or short “threshold IB-KEM”) and provide full security definitions to
model chosen-ciphertext attacks and consistency requirements. To the best of our knowledge we are
the first to define a rigorous model for threshold IB-KEM – all previously proposed models either did
not consider consistency requirements [3] or were only defined for a weaker threshold functionality
(i.e., [17, 10] only consider threshold key-delegation and not threshold decryption).1

We give a new construction of a threshold IB-KEM in the above sense. Our scheme is uncondi-
tionally consistent and can be proved chosen-ciphertext secure under the BDDH assumption in the
standard model. To the best of our knowledge, it is the first threshold IB-KEM proved secure in the
standard model.

1.2 Related Work and Comparison

Our technique to obtain the chosen-ciphertext secure IB-KEM is somewhat reminiscent of the method
used in [14, 31] to obtain chosen-ciphertext secure standard encryption. In fact, as it turns out, our
scheme can be seen as a generalization of the standard public-key encryption scheme from [14], i.e.
ignoring the “identity-based components” of our scheme simplifies to exactly their scheme.

In the same work [14] a technique is sketched how to avoid the CHK transformation to get a direct
chosen-ciphertext secure IB-KEM construction based on Waters’ 2-level HIB-KEM. Compared to our
IB-KEM, however, this construction has a weaker (quadratic) security reduction and nearly doubles
the public key size. In that light our construction can also be viewed as the schemes obtained by

1Here we don’t claim that the scheme from [3] does not fulfill the necessary consistency requirements. We further
remark that the security model from [10] is sufficient for their purpose.

3

combining the 2-level HIBE scheme obtained from Waters’ IBE at the first level and Boneh-Boyen [8]
at the second level with certain “direct chosen-ciphertext secure” techniques from [14] to obtain a
direct chosen-ciphertext secure IBE scheme.

We will carefully review all known chosen-ciphertext secure IB-KEM constructions, including the
above proposal, and make an extensive comparison with our scheme.

It turns out that, to the best of our knowledge, our IB-KEM is the most efficient chosen-ciphertext
secure IB-KEM scheme in the standard model based on a standard complexity-theoretic assumption.

Baek and Zheng [3] give an IBE scheme with threshold decryption. The drawback of this scheme
is that generic proofs of knowledge (POK) of the equality of two discrete logarithms are used and
therefore it inherently relies on random oracles to make the POK non-interactive. Our threshold
IB-KEM is the first such scheme that is provably secure in the standard model. Our construction
is direct and avoids any form of generic POK. We remark that an existing threshold IBE in the
standard model [17] is based on a much weaker security model that in particular avoids all difficulties
encountered in [3] that would made POK necessary. More concretely, the scheme in [11] does not
deal with chosen ciphertext attacks. In [10] it was shown how to transform any IBE scheme into a
threshold (standard) encryption scheme. A special instance of that transformation was already worked
out in [14]. A special instance of that transformation was already worked out in [14].

We stress that, however, it is not trivial to extend the techniques used in [10, 14] in order to
obtain a full threshold IB-KEM. The main difficulty lies in making the IBE decapsulation algorithm
threshold, i.e. to define the partial decapsulation shares. To avoid this difficulties we (roughly) make
use of certain linearity properties of the user secret key of the underlying Waters IBE scheme that can
be used to define and (in conjunction with bilinear maps) check for consistency of the decapsulation
shares.

1.3 Publication Info

An extended abstract of the IB-KEM part of this paper was published in the proceedings of ACISP
2006 [32]; an extended abstract of the threshold IB-KEM part was published in the proceedings of
SCN 2006 [25]. This is the merged full version of the two papers containing all proofs.

2 Definitions

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N then 1k

denotes the string of k ones. If S is a set then s
$← S denotes the operation of picking an element s of

S uniformly at random. We write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . .
and by z

$← A(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .) and letting z be
the output. We write AO1,O2,...(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . . and
access to oracles O1,O2, . . . and by z

$← AO1,O2,...(x, y, . . .) we denote the operation of running A with
inputs (x, y, . . .) and access to oracles O1,O2, . . ., and letting z be the output.

2.2 Identity Based Key Encapsulation

An identity-based key-encapsulation mechanism (IB-KEM) scheme [39, 12] IBKEM = (IBKEMkg,

IBKEMkeyder, IBKEMenc, IBKEMdec) consists of four polynomial-time algorithms. Via (pk ,msk)
$←

IBKEMkg(1k) the randomized key-generation algorithm produces master keys for security parameter

k ∈ N; via sk [id]
$← IBKEMkeyder(msk , id) the master computes the secret key for identity id ; via

4

(C ,K)
$← IBKEMenc(pk , id) a sender creates a random session key K and a corresponding ciphertext

C with respect to identity id ; via K ← IBKEMdec(sk ,C) the possessor of secret key sk decapsulates
ciphertext C to get back a the session key K. Associated to the scheme is a key space KeySp. For

consistency, we require that for all k ∈ N, all identities id , and all (C ,K)
$← IBKEMenc(pk , id), we

have Pr[IBKEMdec(IBKEMkeyder(msk , id),C) = K] = 1, where the probability is taken over the choice

of (pk ,msk)
$← IBKEMkg(1k), and the coins of all the algorithms in the expression above.

Let IBKEM = (IBKEMkg, IBKEMkeyder, IBKEMenc, IBKEMdec) be an IB-KEM with associated
key space KeySp. To an adversary A we associate the following experiment:

Experiment Expib−kem-cca
IBKEM ,A

(k)

(pk ,msk)
$← IBKEMkg(1k)

(id∗, state)
$← AKeyDer(·),Dec(·,·)(find, pk)

K∗
0

$← KeySp ; (C ∗,K∗
1)

$← IBKEMenc(pk , id)

γ
$← {0, 1} ; K∗ ← K∗

γ

γ′
$← AKeyDer,Dec(guess,K∗,C ∗, state)

If γ 6= γ′ then return 0 else return 1

The oracle KeyDer(id) returns sk [id]
$← KeyDer(msk , id) with the restriction that A is not allowed

to query oracle KeyDer(·) for the target identity id ∗. The oracle Dec(id ,C) first computes sk [id]
$←

KeyDer(msk , id) as above and then returns K ← IBKEMdec(sk [id], id ,C) with the restriction that
in the guess stage A is not allowed to query oracle Dec(·, ·) for the tuple (id ∗,C ∗). state is some
internal state information of adversary A and can be any (polynomially bounded) string. We define
the advantage of A in the IND-CCA experiment as

Advib−kem-cca
IBKEM ,A

(k) =

∣∣∣∣Pr
[
Expib−kem-cca

IBKEM ,A
(k) = 1

]
− 1
2

∣∣∣∣ .

An IB-KEM IBKEM is said to be secure against adaptively-chosen ciphertext attacks if the advantage
functions Advib−kem-cca

IBKEM ,A
(k) is a negligible function in k for all polynomial-time adversaries A.

We remark that our security definition is given with respect to “full-identity” attacks, as opposed
to the much weaker variant of “selective-identity” attacks where the adversary has to commit to its
target identity id∗ in advance, even before seeing the public key.

2.3 Target Collision Resistant Hash Functions

Let F = (TCRs)s∈S be a family of hash functions for security parameter k and with seed s ∈ S = S(k).
F is said to be collision resistant if, for a hash function TCR = TCRs (where the seed is chosen at
random from S), it is infeasible for an efficient adversary to find two distinct values x 6= y such that
TCR(x) = TCR(y).

A weaker notion is that of target collision resistant hash functions. Here it should be infeasible for
an efficient adversary to find, given a randomly chosen element x and a randomly drawn hash function
TCR = TCRs, a distinct element y 6= x such that TCR(x) = TCR(y). (In collision resistant hash
functions the value x may be chosen by the adversary.) Such hash functions are also called universal
one-way hash functions [34] and can be built from arbitrary one-way functions [34, 36]. We define
(slightly informal)

Advhash-tcr
TCR,H (k) = Pr[H finds a collision in TCR].

Hash function family TCR is said to be a target collision resistant if the advantage functionAdvhash-tcr
TCR,H

is a negligible function in k for all polynomial-time adversaries H.

5

In practice, to build a target collision resistant hash function TCR, one can use a dedicated cryp-
tographic hash function, like SHA-1 [38]. For that reason and to simplify our presentation, in what
follows we will consider the hash function TCR to be a fixed function.

3 Assumptions

3.1 Parameter generation algorithms for Bilinear Groups.

All pairing based schemes will be parameterized by a pairing parameter generator. This is a PTA
G that on input 1k returns the description of an multiplicative cyclic group G1 of prime order p,
where 2k < p < 2k+1, the description of a multiplicative cyclic group GT of the same order, and a
non-degenerate bilinear pairing ê: G1 ×G1 → GT . See [12] for a description of the properties of such
pairings. We use G

∗
1 to denote G1 \ {0}, i.e. the set of all group elements except the neutral element.

Throughout the paper we use PG = (G1,GT , p, ê) as shorthand for the description of bilinear groups.

3.2 The BDDH assumption

Let PG be the description of pairing groups. Consider the following problem first considered by
Joux [30] and later formalized by Boneh and Franklin [12]: Given (g, ga, gb, gc,W) ∈ G

4
1 × GT as

input, output yes if W = ê(g, g)abc and no otherwise. More formally, to a parameter generation
algorithm for pairing-groups G and an adversary B we assotiate the following experiment.

Experiment Expbddh
G,B (k)

PG $← G(1k)
a, b, c, w

$← Z
∗
p

β
$← {0, 1}

If β = 1 then W ← ê(g, g)abc else W ← ê(g, g)w

β′
$← B(1k,PG , g, ga, gb, gc,W)

If β 6= β′ then return 0 else return 1

We define the advantage of B in the above experiment as

Advbddh
G,B (k) =

∣∣∣∣Pr
[
Expbddh

G,B (k) = 1
]
− 1
2

∣∣∣∣ .

We say that the Bilinear Decision Diffie-Hellman (BDDH) assumption relative to generator G holds
if Advbddh

G,B is a negligible function in k for all PTAs B. The BDDH assumption was shown to hold in
the generic group model in [9].

4 A chosen-ciphertext secure IB-KEM based on BDDH

In this section we present our new chosen-ciphertext secure IB-KEM. From now on let PG = (G1,GT , p, ê, g)
be public system parameters obtained by running the group parameter algorithm G(1k).

4.1 Waters’ Hash

We review the hash function H : {0, 1}n → G1 used in Waters’ identity based encryption schemes [45].
On input of an integer n, the randomized hash key generator HGen(G1) chooses n+1 random groups
elements h0, . . . , hn ∈ G1 and returns h = (h0, h1, . . . , hn) as the public description of the hash

6

IBKEMkg(1k)

u1, u2, α
$← G

∗
1 ; z ← ê(g, α)

H
$← HGen(G1)

mpk ← (u1, u2, z,H) ; msk ← α
Return (mpk ,msk)

IBKEMkeyder(msk , id)

s
$← Zp

sk [id]← (α · H(id)s, gs)
Return sk [id]

IBKEMenc(mpk , id)

r
$← Z

∗
p

c1 ← gr

c2 ← H(id)r ; t← TCR(c1)
c3 ← (ut1u2)

r

K ← zr ∈ GT

C ← (c1, c2, c3) ∈ G
3
1

Return (K,C)

IBKEMdec(sk [id],C)
Parse C as (c1, c2, c3)
Parse sk [id] as (d1, d2)
t ← TCR(c1)
If (g, c1, u

t
1u2, c3) is not a DH tuple

or (g, c1,H(id), c2) is not a DH tuple

then K
$← G

∗
T

else K ← ê(c1, d1)/ê(c2, d2)
Return K

Figure 1: Our chosen-ciphertext secure IB-KEM.

function. The hash function H : {0, 1}n → G
∗
1 is evaluated on a string id = (id 1, . . . , idn) ∈ {0, 1}n as

the product

H(id) = h0

n∏

i=1

hidi

i .

4.2 The IB-KEM Construction

Let TCR : G1 → Zp be a target collision-resistant hash function (which we assume to be included in
the system parameters). Our IB-KEM with identity space IDSp = {0, 1}n (n = n(k)) and key space
KeySp = GT is depicted in Figure 1.
A tuple (g, c1, u

t
1u2, c3) is a Diffie-Hellman tuple

2 if ê(g, c3) = ê(ut1u2, c1). Analogously, (g, c1,H(id), c2)
is a Diffie-Hellman tuple if ê(g, c2) = ê(H(id), c1). Therefore the check in the decapsulation algorithm
IBKEMdec can be implemented by evaluating the bilinear map four times.
We now show correctness of the scheme, i.e. that the session key K computed in the encapsulation

algorithm matches the K computed in the decapsulation algorithm. A correctly generated ciphertext
for identity id has the form C = (c1, c2, c3) = (g

r,H(id)r, (ut1u2)
r) and therefore (g, c1, u

t
1u2, c3) =

(g, gr, ut1u2, (u
t
1u2)

r) is always a DH tuple. A correctly generated secret key for identity id has the
form sk [id] = (d1, d2) = (α · H(id)s, gs). Therefore the decapsulation algorithm computes the session
key K as

K = ê(c1, d1)/ê(c2, d2)

= ê(gr, αH(id)s)/ê(H(id)r, gs)

= ê(gr, α) · ê(gr,H(id)s)/ê(H(id)r, gs)
= zr · ê(gs,H(id)r)/ê(H(id)r, gs)
= zr,

as the key computed in the encapsulation algorithm. This shows correctness.

2A tuple (h, ha, hb, hc) ∈ G
4
1 is said to be a Diffie-Hellman tuple if ab = c mod p.

7

Let C = (c1, c2, c3) ∈ G
3
1 be a (possibly malformed) ciphertext. Ciphertext C is called consistent

(w.r.t the public key pk and identity id) if (g, c1, u
t
1u2, c3) and (g, c1,H(id), c2) are Diffie-Hellman tu-

ples, where t = TCR(c1). Note that any ciphertext properly generated by the encapsulation algorithm
is always consistent. The decapsulation algorithm tests for consistency of the ciphertext. Note that
this consistency test can be performed by anybody knowing the public-key. We call this property
“public verification” of the ciphertext. In the words of [1] the IB-KEM ciphertext is not anonymous.

4.3 More Efficient Decapsulation

We now describe an alternative decapsulation algorithm which is more efficient (but less intuitive).
The idea is to make the Diffie-Hellman consistency check implicit in the computation of the key K.
This is done by choosing a random values r1, r2 ∈ Z

∗
p and computing the session key as

K ← ê(c1, d1 · (ut1u2)
r1 ·H(id)r2)

ê(c2, d2 · gr2) · ê(gr1 , c3)
.

We claim that this is equivalent to first checking for consistency and then computing the key as
K ← ê(c1, d1)/ê(c2, d2) as in the original decapsulation algorithm.

To prove this claim we define the functions ∆1(C) = ê(c1, u
t
1u2)/ê(g, c3) and ∆2(C) = ê(H(id), c1)/ê(g, c2).

Then ∆1(C) = ∆2(C) = 1 if and only if C is consistent. Consequently, for random r1, r2 ∈ Z
∗
p,

K = ê(c1, d1)/ê(c2, d2) · (∆1(C))
r1 · (∆2(C))

r2 ∈ G
∗
T evaluates to ê(c1, d1)/ê(c2, d2) ∈ GT if C is con-

sistent and to a random group element otherwise. As in the original decapsulation algorithm. The
claim then follows by

K = ê(c1, d1)/ê(c2, d2) ·∆1(C)
r1 · (∆2(C))

r2

= ê(c1, d1)/ê(c2, d2) · (ê(c1, ut1u2)/ê(g, c3))
r1 · (ê(H(id), c1)/ê(g, c2))r2

=
ê(c1, d1(u

t
1u2)

r1H(id)r2)

ê(c2, d2 · gr2) · ê(gr1 , c3)
.

We remark that the alternative decapsulation algorithm roughly saves two pairing operation (for the
cost of a couple of exponentiations).

4.4 Security

Theorem 4.1 Assume TCR is a target collision resistant hash function. Under the Bilinear Decisional
Diffie-Hellman (BDDH) assumption relative to generator G, the IB-KEM from Section 4.2 is secure
against chosen-ciphertext attacks.

In particular, given an adversary A attacking the chosen-ciphertext security of the IB-KEM with
advantage εA = Adv

ib−kem-cca
IBKEM ,A

and running time TimeA(k) we construct an adversary B breaking
the BDDH assumption with advantage εB = Adv

bddh
G,B (k) and running time TimeB(k) with

εB(k) ≥
εA(k)−Advhash-tcr

TCR,H (k)

8(n+ 1)q
− q/p;

TimeB(k) ≤ TimeA + Õ(nq · ε−2
A (k)),

where q is an upper bound on the number of key derivation/decryption queries made by adversary A.

8

A game-based proof of Theorem 4.1 will be given in Appendix A. The proof is mainly based on the
one given by Waters [45]. However, we have to do some important modifications to be able to deal
with chosen-ciphertext attacks.

Intuitively, security can be best understood by observing that our scheme is a generalization of
Waters’ (chosen-plaintext secure) IBE scheme, as well as of the chosen-ciphertext secure public-key
encapsulation scheme from [14]. We remark that unfortunately, there does not seem to be a way to
derive security of our IBE scheme directly from security of either of the two schemes and hence details
of the whole proof have to be worked out from scratch.

Relation to Waters’ IBE scheme. The ciphertext in our scheme is basically identical to the
ciphertext from Waters’ IBE scheme plus one redundant element (the element c3) used to check for
consistency of the ciphertext. Hence Waters’ IBE scheme is obtained by ignoring the computation of
c3 in encapsulation as well as the consistency check in decapsulation.

Relation to the Encryption Scheme from BMW. Clearly, IB-KEM implies (standard) public-
key encapsulation by simply ignoring all operations related to the identity. We remark that viewed in
this light (i.e. ignoring the element c2 in encapsulation/decapsulation and ignoring the key derivation
algorithm) our IB-KEM can be simplified to the chosen-ciphertext secure encryption scheme recently
proposed by Boyen, Mei, and Waters [14].

5 IB-KEM with threshold key-delegation and decapsulation

We start with some history and motivation. Threshold key-delegation for IBE was introduced in [11,
10]. The idea is that the master key msk is distributed among different secret key generation players.
Given a master-key share sk i, each player can compute a partial secret key sk [id]i for the user with
identity id . Finally, a sufficiently large fraction of partial user secret keys is needed to reconstruct the
user secret key sk [id].

In contrast, in the model given in [3] the master key is not shared but only the user secret key
sk [id]. Then partial user secret key shares sk [id]i are distributed among a number of decryption
players. Given the share sk [id]i, the i-th decryption player can compute a partial decryption share
Ci of a given an ciphertext C . A sufficiently large fraction of correctly generated ciphertext shares
is needed to finally reconstruct the message. No information about the message should be leaked
otherwise.

Our model of threshold IB-KEM is aimed at capturing the functionalities of both threshold key-
delegation IBE and threshold decryption IBE. That is, in a threshold IB-KEM the players can act at
the same time as private key generation players and decapsulation players, so that they can choose
which role they want to assume depending on the application. Therefore, an encapsulation C sent to
user id can be decapsulated either by reconstructing the user secret key sk [id], or by joining together
a large enough fraction of decapsulation shares Ci.

5.1 Definitions

We now give a formal definition of the functionality of a threshold IB-KEM. A threshold IB-KEM with
participating players 1, . . . ,m consists of nine polynomial-time algorithms TIBKEM = (TIBKEMkg,
TIBKEMkey.Share,TIBKEMkey.Vfy,TIBKEMkey.Combine,TIBKEMenc,TIBKEMdec,TIBKEMdec.Share,

TIBKEMdec.Vfy,TIBKEMdec.Combine). Via (pk , vk , sk)
$← TIBKEMkg(1k , l,m) the randomized key-

generation algorithm produces a public key pk , a public verification key vk , and the m master-key

shares sk = (sk i)1≤i≤m for security parameter k ∈ N and threshold parameter l; via (C ,K)
$←

TIBKEMenc(pk , id) a sender creates a random session keyK and a corresponding ciphertext C with re-

9

spect to identity id ; via sk [id]i
$← TIBKEMkey.Share(pk , i, id , sk i) the ith share sk [id]i of the user secret

key sk [id] is generated; via {accept, fail} ← TIBKEMkey.Vfy(vk , i, id , sk [id]i) the validity of the ith
user secret key share sk [id]i is verified; via {sk [id], fail} ← TIBKEMkey.Combine(pk , vk , id , (sk [id]i)i∈Ir

)
sufficiently many valid user secret key shares {(sk [id]i}i∈Ir

are combined to reconstruct the user secret
key sk [id]. The set of players Ir is called the user secret key reconstruction set. Via {K, fail} ←
TIBKEMdec(pk , sk [id],C) the possessor of the user secret key sk [id] decapsulates the ciphertext C ;
via {(i, Ci), fail} ← TIBKEMdec.Share(pk , vk , id , i, sk [id]i,C) the possessor of the ith user secret key
share sk [id]i partially decapsulates the ciphertext C encrypted with respect to id to get back the ith
decapsulation share Ci; via {accept, fail} ← TIBKEMdec.Vfy(i, pk , vk , id, Ci,C) it can be publicly
verified if the ith decapsulation share Ci is valid; via {M, fail} ← TIBKEMdec.Combine(pk , vk , id ,
(Ci)i∈I′r ,C) sufficiently many valid decapsulation shares {Ci}i∈I′r are combined to reconstruct the ses-
sion key K. The set of players I ′r is called the session key reconstruction set (and may be distinct
from Ir).
Roughly speaking, for correctness we require that all correctly generated shares pass their respective

verification tests. Furthermore, any set of at least l honest players holding shares of a common identity
id should be able to correctly operate the threshold IB-KEM, i.e. they should be able to reconstruct
the user secret key sk[id], or alternatively to decapsulate any correctly generated encapsulation sent to
id . We say that a user secret key or decapsulation share is correctly generated if it has been obtained
by following the protocol specification. Moreover, a user secret key or decapsulation share is said to
be valid if it passes the corresponding verification test.
Each threshold IB-KEM naturally has to fulfull security and consistency requirements. In terms

of security we have to extend the security models in [3, 10] to our setting, meaning that an adversary,
in addition to the master-key shares for corrupted players, gets access to oracles for user secret key
and decapsulation shares. Regarding consistency, we must recall that often one wants threshold
key-delegation (resp. threshold decryption) to be robust, namely if the reconstruction of sk [id] (resp.
threshold decapsulation of a valid encapsulation C) fails, it is useful to detect the players that supplied
invalid partial user secret keys (resp. invalid partial decapsulation shares). This also means that it
should be impossibly to “abuse” shares that passed their respective consistency tests (i.e. shares that
are valid) to make the scheme inconsistent, for instance by decapsulating the same encapsulation into
distinct session keys. We will call this property consistency of the threshold IB-KEM.

5.2 Security requirements

Formally, we associate to a threshold IB-KEM TIBKEM and an adversaryA the experimentExptibkem-cca
TIBKEM ,A

as follows:

Experiment Exptibkem-cca
TIBKEM ,A

(k)

(Ic, state0)
$← A(1k , init) //adversary outputs the set of corrupted users

(pk , sk , vk)
$← TIBKEMkg(1k , l,m)

(id∗, state)
$← AKeyShare(·,·),DecShare(·,·,·)(find, pk , vk , {sk i}i∈Ic

, state0)

K∗
0

$← KeySp ; (C ∗,K∗
1)

$← TIBKEMenc(pk , id)

δ
$← {0, 1} ; K∗ ← K∗

δ

δ′
$← AKeyShare(·,·),DecShare(·,·,·)(guess,K∗,C ∗, state)

If δ 6= δ′ then return 0 else return 1

The set Ic ⊂ {1, . . . ,m} is called the set of corrupted players and its cardinality, |Ic| must be upper
bounded by l − 1. The oracle KeyShare(i, id) returns sk i

$← TIBKEMkey.Share(pk , i, id , sk i) with
the restriction that A is not allowed to query for id 6= id ∗ for non-corrupted players i 6∈ Ic. The

oracle DecShare(i, id ,C) returns Ci
$← TIBKEMdec.Share(pk , vk , i, id , sk i,C) (where the user secret

10

key sk [id]i was generated using sk [id]i
$← TIBKEMkey.Share(pk , i, id , sk i)) with the restriction that A

is not allowed to query for (i, id ∗,C ∗) for non-corrupted players i 6∈ Ic. We define the advantage of A
in the experiment as

Advtibkem-cca
TIBKEM ,A(k) =

∣∣∣∣Pr
[
Exptibkem-cca

IBKEM ,A (k) = 1
]
− 1
2

∣∣∣∣ .

Definition 5.1 A threshold IB-KEM TIBKEM is said to be secure against chosen-ciphertext attacks
if for any l,m with 0 < l ≤ m, the advantage function Advtibkem-cca

TIBKEM ,A(k) is a negligible function in k
for all polynomial-time adversaries A.

Consistency requirements. Any threshold IB-KEM TIBKEM should satisfy two consistency re-
quirements. On the one hand, user secret key consistency requires that for any reconstructed user
secret key sk [id] (obtained from a set of l valid user secret key shares) the same session key is obtained
when decapsulating (via TIBKEMdec) a valid ciphertext under the corresponding id . Secondly, de-
capsulation consistency requires that reconstructing the session key via TIBKEMdec.Combine for the
same ciphertext C and identity id but for several different sets of l valid decapsulation shares results
in the same session key.
Following [43, 10] we will formalize both consistency requirements using an adversary “attacking”

the consistency of the schemes. Here we refer to reader to [1] for a general discussion on defining
adveraries attacking consistency of a cryptographic scheme. As usual, “adversary” refers to a PTA
but we stress that the consistency of our particular scheme can be proven with respect to unbounded
adversaries.
For secret key consistency, we associate to an adversary A the experiment

Experiment Exptibkem-key-consist
TIBKEM ,A

(k)

(Ic, state0)
$← A(1k , init) //adversary outputs the set of corrupted users

(pk , sk , vk)
$← TIBKEMkg(1k , l,m)

(id , D,D′, C)
$← AKeyShare(·,·),DecShare(·,·,·)(find, pk , vk , {sk i}i∈Ic

, state0)
sk [id]← TIBKEMkey.Combine(pk , vk , id , D) ; K ← TIBKEMdec(pk , sk [id], C)
sk [id]′ ← TIBKEMkey.Combine(pk , vk , id , D′) ; K ′ ← TIBKEMdec(pk , sk [id]′, C)
If fail 6= sk [id] 6= sk [id]′ 6= fail and K 6= K ′ then output 1 else output 0

The set Ic and the oracles KeyShare(i, id) and DecShare(i, id ,C) are as defined in the experiment
Exptibkem-cca

TIBKEM ,A
. The sets D = {D1, . . . , Dl} and D′ = {D′1, . . . , D′l} are two sets of valid key shares

with respect to identity id . We define the advantage of A in the experiment as

Advtibkem-key-consist
TIBKEM ,A

(k) = Pr
[
Exptibkem-key-consist

TIBKEM ,A
(k) = 1

]
.

For decapsulation consistency we associate to an adversary A the following experiment:
Experiment Exptibkem-dec-consist

TIBKEM ,A
(k)

(Ic, state0)
$← A(1k , init) //adversary outputs the set of corrupted users

(pk , sk , vk)
$← TIBKEMkg(1k , l,m)

(id , S, S′, C)
$← AKeyShare(·,·),DecShare(·,·,·)(find, pk , vk , {sk i}i∈Ic

, state0)
K ← TIBKEMdec.Combine(pk , vk , id , S,C)
K ′ ← TIBKEMdec.Combine(pk , vk , id , S ′,C)
If fail 6= K 6= K ′ 6= fail then return 1 else return 0

The set Ic and the oracles KeyShare(i, id) and DecShare(i, id ,C) are as defined in the experiment
Exptibkem-cca

TIBKEM ,A
. The sets S = {C1, . . . , Cl} and S′ = {C ′1, . . . , C ′l} are two sets of valid decapsulation

11

shares with respect to (id, C). We define the advantage of A in the experiment as

Advtibkem-dec-consist
TIBKEM ,A (k) = Pr

[
Exptibkem-dec-consist

TIBKEM ,A (k) = 1
]
.

The experimentExptibkem-key-consist
TIBKEM ,A

has already been considered in [10], while the experimentExptibkem-dec-consist
TIBKEM ,A

is considered here for the first time. In particular, previous papers [3, 17] did not consider decapsulation
consistency.

Definition 5.2 A threshold IB-KEM TIBKEM is said to be consistent if for any l,m with 0 <
l ≤ m, and for any PTA adversaries A1 and A2 the two functions Adv

tibkem-key-consist
TIBKEM ,A1

(k) and

Advtibkem-dec-consist
TIBKEM ,A2

(k) are negligible.

5.3 Discussion and Difficulties

It is already known how to make the key derivation threshold [10]. The crucial trick is to use bilinear
pairings to explicitly check if a shared secret key sk [id]i was correctly generated. If not it can be
rejected before the secret is reconstructed.
The difficulty for a full fledged threshold IB-KEM lies in the decapsulation shares. A similar method

as above for generating decapsulation shares does not work since the plaintext M in an element from
the second group GT and we are not given a bilinear pairing on the group GT (which does not exist
since DDH in GT and hence BDDH would be easy otherwise). In existing solutions [3] (based on the
Boneh-Franklin IBE [12]) generic proofs of knowledge (POK) are used instead to prove consistency
and random oracles are essential to make the proofs non-interactive.
We propose a different technique that completely avoids generic POK. The key idea is to make

the decapsulation shares elements from G1. That makes possible to employ our techniques from the
last section to prove consistency of the decapsulation shares. Our technique is reminiscent to the
one proposed in [22] based on the 2-level hierarchical IBE from Gentry and Silverberg [26]. However,
chosen-ciphertext security was not considered in [22]. In contrast to [22] our scheme does not add any
further information to the ciphertext, i.e. we basically get “threshold for free” from chosen-ciphertext
properties.

5.4 The Scheme

For the user secret key reconstruction set Ir ⊆ {1, . . . ,m} we define the Lagrange Coefficients λi
(i ∈ Ir) as λi =

∏
j∈Ir\{i}

j
j−i ∈ Z

∗
p. For any polynomial F ∈ Zp[X] of degree at most |Ir| − 1

this entails
∑

i∈Ir
F (i)λi = F (0). The coefficients λ′i =

∏
j∈I′r\{i}

j
j−i ∈ Z

∗
p are defined analogously

for the session key reconstruction set I ′r ⊆ {1, . . . ,m}. We call a (user secret key/ciphertext) share
valid if it passes the respective consistency check. Let TCR : G1 → Zp be a target collision restant
hash function. Our threshold IB-KEM for identity space {0, 1}n and threshold parameters m and l
(l-out-of-m threshold scheme – at least l honest players are needed to perform threshold operations)
is described by the following algorithms:

Key generation TIBKEMkg(1k, l,m).

Choose u1, u2
$← G

∗
1 and b

$← Zp, and compute α = ub1 and z ← ê(g, α). Choose a random hash

function H
$← HGen(G1) and a parameters the the target collision resistant hash function TCR.

The public key is defined as pk = (u1, u2, z,TCR,H).

Generate shared keys using l-out-of-m secret sharing by choosing Fi
$← Zp for i = 1, . . . , l − 1

and defining F (X) = b +
∑l−1

i=1 Fi · X i. The verification key is defined as vk = (vk 1, . . . , vkm),

where vk i = gF (i). The shared secret key is defined as sk = (sk 1, . . . , skm), where sk i = u
F (i)
1 .

12

Shared user secret key delegation TIBKEMkey.Share(pk , i, id , sk i)

Choose si
$← Zp and compute di,1 ← sk i · H(id)si and di,2 ← gsi . The shared user secret key for

player i is defined as sk [id]i = (di,1, di,2).

Shared user secret key verification TIBKEMkey.Vfy(pk , vk , i, id , sk [id]i)
Parse sk [id]i = (di,1, di,2) and check if ê(di,1, g) = ê(vk i, u1) · ê(di,2,H(id))

Shared user secret key combine TIBKEMkey.Combine(pk , vk , id , (sk [id]i)i∈Ir
)

If |Ir| < l or if one of the shares user secret keys sk [id]i (i ∈ Ir) is not valid return fail.
Otherwise parse sk [id]i = (di,1, di,2) and return sk [id] = (d1, d2) = (

∏
i∈Ir

dλi

i,1,
∏

i∈Ir
dλi

i,2).

Encapsulation TIBKEMenc(pk , id)

Choose r
$← Z

∗
p and compute the encapsulation C = (c1, c2, c3) ∈ G

3
1 as

(c1 = gr, c2 = H(id)r, c3 = (u
t
1u2)

r),

where t = TCR(c1). The corresponding session key is K = zr ∈ GT .

Decapsulation TIBKEMdec(pk , sk [id],C)
Parse C as (c1, c2, c3) and sk [id] as (d1, d2). Compute t = TCR(c1). We call a encapsulation C
consistent iff (g, c1, u

t
1u2, c3) and (g, c1,H(id), c2) are DH tuples

3. (Checking for a DH tuple can
be done by computing the ratio of two pairings, i.e. (g, c1, u

t
1u2, c3) is a DH tuple if ê(g, c1) =

ê(ut1u2, c3).) If C is not consistent then return fail. Otherwise reconstruct the session key as

K = ê(c1, d1)/ê(c2, d2) .

Shared decapsulation TIBKEMdec.Share(pk , vk , i, id , sk [id]i,C)
Parse C as (c1, c2, c3) and compute t = TCR(c1). If C is not consistent then return fail.

Otherwise choose ri
$← Zp and return the shared decapsulation for player i, Ci = (Ci,1, Ci,2, Ci,3)

as

(Ci,1 = gri , Ci,2 = di,1 · (ut1u2)
ri , Ci,3 = di,2) .

Decapsulation share verification TIBKEMdec.Vfy(pk , vk , i, id , Ci,C)
If C is not consistent or if

ê(g, Ci,2) 6= ê(vk i, u1) · ê(Ci,3,H(id)) · ê(Ci,1, u
t
1u2)

then return fail.

Combine decapsulation shares TIBKEMdec.Combine(pk , vk , id , (Ci)i∈I′r ,C)
Parse C as (c1, c2, c3) and compute t = TCR(c1). If |I ′r| < l or if one of the shares Ci is not

valid then return fail. Otherwise compute the values B1 =
∏

i∈I′r
C
λ′i
i,1, B2 =

∏
i∈I′r

C
λ′i
i,2, and

B3 =
∏

i∈I′r
C
λ′i
i,3. Reconstruct the session key as

K =
ê(c1, B2)

ê(c2, B3) · ê(ut1u2, B1)
.

3A tuple (g, ga, gb, gc) ∈ G
4
1 is said to be a Diffie-Hellman tuple (DH tuple) if ab = c mod p.

13

Correctness and Security. It is easy to verify that all verification checks are passed for correctly
generated keys/encapsulations.
We now show correctness of the reconstructed private key. Let Ir a set of cardinality at least

l. Assume the shares sk [id]i are all correct, that is di,1 = sk i · H(id)si and di,2 = gsi . Let us define

s =
∑

i∈Ir
siλi. Then d′2 =

∏
i∈Ir

dλi

i,2 = gs and

d′1 =
∏

i∈Ir

dλi

i,1 =
∏

i∈Ir

sk [id]i · H(id)siλi = H(id)s
∏

i∈Ir

u
F (i)
1 = ub1H(id)

s,

as in key derivation.
We now show correctness of the reconstructed session key. Let I ′r be a set of cardinality at least

l. Assume the shares Ci are all correct, i.e. Ci,1 = gr
′

i , Ci,2 = di,1 · (ut1u2)
r′i = sk i · H(id)si · (ut1u2)

r′i ,

and Ci,3 = di,2 = gsi . We define r′ =
∑

i∈I′r
r′iλ

′
i and s =

∑
i∈I′r

siλ
′
i. Then B1 =

∏
i∈I′r

C
λ′i
i,1 = gr

′

and

B3 =
∏

i∈I′r
C
λ′i
i,3 = gs. Furthermore,

B2 =
∏

i∈I′r

C
λ′i
i,2 =

∏

i∈I′r

gF (i)·λ′i · H(id)si·λ
′

i · (ut1u2)
r′i·λ

′

i

= g
P

i∈I′r
F (i)λ′i · H(id)s · (ut1u2)

r′

= α · H(id)s · (ut1u2)
r′

The key is computed as

K = ê(c1, C
′
2)/(ê(c2, C

′
3) · ê(c3, C ′1))

= ê(gr, α · H(id)s · (ut1u2)
r′)/(ê(H(id)r, gs) · ê(urt1 ur2, gr

′

))

= ê(gr, α) · ê(gr,H(id)s)/ê(H(id)r, gs) · ê(gr, (ut1u2)
r′)/ê(urt1 u

r
2, g

r′))

= zr ,

as in encapsulation.

Theorem 5.3 Assume TCR is a target collision resistant hash function. Under the Bilinear Deci-
sional Diffie-Hellman (BDDH) assumption relative to generator G, our threshold IB-KEM is secure
against chosen-ciphertext attacks. In particular, given an adversary A attacking the chosen-ciphertext
security of the threshold IB-KEM with advantage εA = Adv

tibkem-cca
TIBKEM ,A and running time TimeA(k)

we construct an adversary B breaking the BDDH assumption with advantage εB = Advbddh
G,B (k) and

running time TimeB(k) with

εB(k) ≥
εA(k)−Advhash-tcr

TCR,H (k)

8(n+ 1)q
− q/p;

TimeB(k) ≤ TimeA + Õ(nq · ε−2
A (k)),

where q is an upper bound on the number of key derivation/decapsulation share queries made by
adversary A.
Theorem 5.4 Our threshold IB-KEM is consistent. In particular, we have

Advtibkem-key-consist
TIBKEM ,A1

(k) = Advtibkem-dec-consist
TIBKEM ,A2

(k) = 0 .

The above statement even holds for unbounded adversariesA1 andA2, i.e. we have perfect consistency.

14

The proofs of the two theorems will be given in Appendix B.

Relation to the threshold KEM from BMW. Clearly, our threshold IB-KEM implies (stan-
dard) threshold KEM by simply ignoring all operations related to the identity. We remark that viewed
in this light, our threshold IB-KEM can be simplified to the chosen-ciphertext secure threshold KEM
scheme recently proposed by Boyen, Mei, and Waters [14]. Although the computational cost remains
the same, the public key of our scheme still saves two elements in G1 compared to BMW’s public key.

From threshold IB-KEM to full threshold IBE. Designing a full threshold IBE from a thresh-
old IB-KEM is not an easy task. Let us have a glimpse on that.

In the IB-KEM framework [7], a standard (hybrid) IBE scheme can be obtained by using the
IB-KEM to securely transport a random session key that is fed into a symmetric encryption scheme
to encrypt the plaintext message. If both the IB-KEM and the symmetric encryption scheme are
chosen-ciphertext secure, then the resulting hybrid IBE is also chosen-ciphertext secure, with a tight
reduction. A symmetric encryption scheme secure against chosen-ciphertext attacks can be built from
relatively weak primitives, i.e. from any (one-time) symmetric encryption scheme by essentially adding
a MAC. Alas, sharing a MAC is not trivial in general, and will often lead to costly computations.

This problem can be solved by using the related notion of Tag-IB-KEM, which is obtained by
translating the notion of Tag-KEM [2] to the identity-based encryption setting. A Tag-IB-KEM is an
IB-KEM which takes an additional input called tag. Such a tag is a binary string of appropriate length,
and need not have any particular structure. By extending the results in [2] to the IBE framework, is it
possible to show that combining a CCA secure Tag-IB-KEM with chosen-plaintext secure symmetric
encryption yields a CCA secure IBE scheme. This immediately implies a construction for threshold
IBE from any threshold Tag-IB-KEM, since now we do not need to share the symmetric encryption
component anymore. Finally, a CCA secure threshold Tag-IB-KEM can be built from combining a
threshold IB-KEM, a key derivation function and a MAC, without considerable overheads.

6 Extensions

6.1 Chosen-ciphertext secure Hierarchical Identity-Based Key Encapsulation

Hierarchical identity-based key encapsulation (HIB-KEM) is a generalization of IB-KEM to identities
supporting hierarchical structures [28, 26]. By the relation to Waters IBE scheme it is easy to see
that our technique can also be used to make (the KEM variant of) Waters’ HIBE chosen-ciphertext
secure. To be more precise, we modify Waters’ HIB-KEM and add one more element hrt1 h

r
2 to the

the ciphertext, where t was computed by applying a target-collision hash function to gr (here r is the
randomness used to create the ciphertext). The additional element is used for a consistency check at
decryption. The security reduction is exponential in the depth d of the hierarchy, i.e. it introduces,
roughly, a multiplicative factor of (nq)d.

6.2 Identity-based Encryption

Given a IB-KEM and a symmetric encryption scheme, a hybrid identity-based encryption scheme can
be obtained by using the IB-KEM to securely transport a random session key that is fed into the
symmetric encryption scheme to encrypt the plaintext message. It is well known [20, 7] that if both
the IB-KEM and the symmetric encryption scheme are chosen-ciphertext secure, then the resulting
hybrid encryption is also chosen-ciphertext secure. The security reduction is tight.

A symmetric encryption scheme secure against chosen-ciphertext attacks can be built from rela-
tively weak primitives, i.e. from any (one-time) symmetric encryption scheme by essentially adding a

15

MAC. For concreteness we mention that a chosen-ciphertext secure IBE scheme can be built from our
IB-KEM construction with an additional overhead of about 128 bits (for the MAC).
We note that for the natural task of securely generating a joint random session key, a IB-KEM is

sufficient and a fully-fledged identity-based encryption scheme is not needed.
The same remark holds for hierarchical identity-based encryption (HIBE) and threshold identity-

based encryption.

6.3 A Tradeoff between public key size and security reduction

As independently discovered in [18, 33], there exists an interesting trade-off between key-size of Waters’
hash H and the security reduction of the IBE scheme.
The construction modifies Waters hash H as follows: Let the integer l = l(k) be a new parameter

of the scheme. In particular, we represent an identity id ∈ {0, 1}n as an n/l-dimensional vector id =
(id1, . . . , idn/l), where each id i is an l bit string. Waters hash is then redefined to H : {0, 1}n → G1,

with H(id) = h0
∏n/l

i=1 h
idi

i for random public elements h0, h1, . . . , hn/l ∈ G1. Waters’ original hash
function is obtained as the special case l = 1. It is easy to see that using this modification in our IBE
scheme (i) reduces the size of the public key from n+4 to n/l+4 group elements, whereas (ii) it adds
another multiplicative factor of 2l to the security reduction of the IBE scheme (Theorem 4.1).4

6.4 Selective-identity chosen-ciphertext secure IB-KEM

For the definition of a selective-identity chosen-ciphertext secure IB-KEM we change the security
experiment such that the adversary has to commit to the target idenity id ∗ before seeing the public
key. Clearly, this is a weaker security requirement. We quickly note that (using an algebraic technique
from [8]) by replacing Waters’ hash H with H(id) = h0 · hid

1 (for id ∈ Zp) we get a selective-id chosen-
ciphertext secure IB-KEM. Note that the size of the public-key of this scheme drops to 3 elements.

6.5 Implementing the collision resistant hash function TCR

In practice, to build a target collision resistant hash function, one can use a dedicated cryptographic
hash function, like SHA-1 [38].
Every injective function TCR : G1 → Zp trivially also is (target) collision resistant (with zero

advantage). Boyen, Mei and Waters [14] note that for bilinear maps defined on elliptic curves there
exists a very efficient way to implement such injective mappings. We refer to [14] for more details.

7 Efficiency comparison of our IB-KEM

In this section we compare our IB-KEM from Section 4 with the previous chosen-ciphertext secure
IB-KEM/IBE schemes in the literature.
Basically, there are two proposals of IBE scheme in the literature, one by combining the IBE

schemes [8, 45] with the generic transformation from [16], the other one stems from a remark from [14].
We will now carefully review both constructions and compare them to our proposed scheme.

7.1 IB-KEM scheme obtained by the generic CHK transformation

We begin by reviewing the generic transformation from any (weakly secure) 2-HIBE into a chosen-
ciphertext secure IBE scheme by Canetti, Halevi, and Katz [16] (CHK), which was later improved by

4On the technical side our proof basically stays the same, only the bound from Lemma A.2 needs to be adapted to
take the modified Waters’ hash into account.

16

Boneh-Katz [13] (BK). We describe the CHK transformation in terms of key encapsulation and note
that this is not possible for the improved BK transformation.
The CHK method transforms any two level HIB-KEM into an IB-KEM scheme as follows: the

identity of the IB-KEM scheme becomes the identity of the first level HIB-KEM. To create a ciphertext
of the IB-KEM a random pair of signing/verification keys is chosen. A HIB-KEM ciphertext for the
message is created with respect to the two-level identity consisting of the HIB-KEM identity at the
first level and the verification key at the second level. The resulting HIB-KEM ciphertext is signed
using the signing key. Finally, the HIB-KEM ciphertext is then composed by the HIB-KEM ciphertext,
the signature, and the corresponding verification key.
For decapsulation first the validity of the signature is checked and then, conditioned it was correct,

the HIB-KEM ciphertext is decapsulated using the hierarchical key-derivation algorithm for the 2-level
“identity” consisting of id plus the verification key.
It was proved in [16] that any chosen-plaintext secure 2-HIB-KEM with a weak security property

with respect to the second level of the hierarchy (i.e. selective-identity security) and (full) security at
the first level is sufficient to obtain a chosen-ciphertext secure IBE. Consequently, as noted in [45], the
most efficient instantiation of this transformation is obtained from the hybrid HIB-KEM using Waters
IB-KEM [45] at the first level and Boneh/Boyen’s IB-KEM [8] at the second level.
Combining the results from [16] with [45, 8] we get a chosen-ciphertext secure IB-KEM under the

BDDH assumption. Similar to our scheme the security reduction roughly comes with a multiplicative
factor of ≈ nq.

7.2 IB-KEM mentioned in BMW

In contrast to [16, 13], Boyen, Mei, and Waters [14] propose a non black-box technique to obtain a
chosen-ciphertext secure IB-KEM from a 2-level HIB-KEM without relying on additional primitives
like signatures or MACs. For concreteness we cite their concrete statement (from Sec. 5.3 of the full
version of [14]), referring to the two HIBE constructions from Boneh-Boyen [8] and Waters [45]:

“It is easy to see that we obtain the desired result [i.e. a construction avoiding a signa-
ture/MAC] very simply, by extending the hierarchy in either HIBE construction by one
level, and setting the “identity” for that last level to be the hash value of the previous ci-
phertext components. This gives us (in the Waters case) an adaptive-identity CCA2-secure
HIBE, and (in the Boneh-Boyen case) a selective-identity CCA2-secure HIBE.”

No theorem statement (or further explanation beyond that) is given but it is clear that security relies
on Waters 2-HIBE which has a loss-factor of roughly (nq)2 in the reduction from BDDH. We want to
stress that in their construction the “hashing the previous ciphertext” makes it basically impossible
to replace the second level of Waters HIBE with the more efficient (but only weakly=selective-identity
secure) IBE scheme from Boneh-Boyen. (This is since the challenge ciphertext depends on the target
identity which is used in the second-level of the HIBE scheme and the target identity is not known
until the adversary outputs it.)
Since the construction uses Waters 2-HIBE the public-key has to include two independent sets of

hash public-keys, i.e. the public key contains roughly 2n elements from G1. For the same reason the
security reduction of the proposed IBE scheme depends on the security of Waters’ 2-HIBE which is
quadratic in q and n.

7.3 A comparison

An efficiency comparison between the above two schemes (plus Waters original scheme) and our IBE
is given in Figure 2 which will be further commented in the following prose. We stress that the

17

Scheme CCA? Ciphertext Encapsulation Decapsulation Keysize Security
Overhead #pairings + #[multi,regular,fixed-base]-exp+... pk Reduction

Ours (§4) √
3` 0 + [1, 3, 1] 3 + [1, 0, 2] n+ 4 nq

Hybrid + CHK (§7.1) √
3`+25600 (704) 0 + [1, 3, 1]+Sig 3 + [1, 0, 1]+Vfy n+ 4 nq

BMW (§7.2) √
3`′ 0 + [0, 5, 1] 4 + [0, 1, 0] 2n+ 3 (nq)2

Waters — 2` 0 + [0, 3, 1] 2 + [0, 0, 0] n+ 2 nq

Figure 2: Efficiency comparison for CCA-secure IB-KEMs for identity-space IDSp = {0, 1}n. BMW
is the IB-KEM as proposed in [14], Hybrid + BK is the Waters/BB hybrid HIB-KEM scheme applied
to the CHK transformation as proposed in [45], and Waters is Waters’ original chosen-plaintext secure
IBE scheme [45] (which is added for comparison). The keysize is measured in terms of the number of
group elements of the public key pk . Ciphertext overhead represents the difference (in bits) between
the ciphertext length and the message length. ` is the length of the representation of an element in G1

with respect to the security reduction O(nq), while `′ is the length of a G1 group element with respect
to the security reduction O(n2q2) (thus `¿ `′). For comparison we mention that relative timings for
the various operations are as follows: bilinear pairing ≈ 5 [37], multi-exponentiation ≈ 1.5, regular
exponentiation = 1, fixed-base exponentiation ¿ 0.2.

performance of the security reduction is a crucial parameter here. In light of the keysize/security
reduction tradeoff from Section 6.3 we can also compare the BMW scheme to all other schemes by
“normalizing” the security reduction for all schemes to O(n2q2), i.e. by setting the tradeoff parameter
l to l = log2(nq) ≈ 20 + 7 = 27 (for very optimistic < 220 adversary queries and identities of n = 160
bits5) we get a public-key size of n/27 + 4 ≈ 9 group elements compared to the 2n + 3 = 323 group
elements of BMW with the same security.

The symmetric overhead of the CHK transformation consists of a strong one-time signature plus
a verification key which sums up to ≈ 1602 = 25600 (“security parameter squared”) bits [23].
Since computing Waters hash requires computing n/2 products in G1 on the average, where n ≈

log2 p, it can be seen as a single exponentiation. Therefore we count computing H(id)r for random r
as two (regular) exponentiations. In the decapsulation algorithm of our IB-KEM we assume H(id) to
be precomputed. The size of the secret key sk is the same for all three schemes (a single element in
G1).

To summarize, compared to BMW (from Section 7.2) our proposed chosen-ciphertext secure IBE
scheme achieves better performance and public key sizes with half of the BMW public key size. In
addition, the fact that our security reduction is more efficient than that of the BMW scheme means
that for concrete values of the security parameter our ciphertexts are much shorter even if the two
schemes have the same number of elements in the ciphertext.

In terms of computational efficiency our scheme has one fixed-based exponentiation more than the
the Hybrid + CHK scheme from Section 7.1 but it does not have to resort on any kind of exogenous
consistency check such as a signature or a MAC. Since one fixed-based exponentiation is¿ 0.2 regular
exponentiations (which can fairly be neglected) we conclude that encapsulation/decapsulation in our
scheme is as efficient as in the Hybrid + CHK scheme. The most striking difference, however, is that
our scheme comes with shorter ciphertexts: for current security requirements the ciphertexts difference
(a strong one-time signature plus a verification key) amounts to a couple of thousand bits [23].

We remark that, in order to get a direct full IBE scheme (in contrast to an IB-KEM) we can also
apply the BK-transformation [13] to the construction from Section 7.1 and get a full IBE scheme with
shorter ciphertexts. The latter construction significantly reduces the ciphertext overhead compared

5 160 bits seems to be a reasonable value since for larger identity space you can always first apply a collision resistant
hash function CR : {0, 1}∗ → {0, 1}160.

18

to the CHK-transformation (by replacing the signature with a MAC). Compared to our construction,
however, there is still a difference in the ciphertext size of a MAC tag plus a “commitment” which
sums up to ≈ 576 bits [13].
We conclude that our scheme seems to outperform both existing chosen-ciphertext secure IB-KEM

proposals.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited:
Consistency properties, relation to anonymous ibe, and extensions. In Victor Shoup, editor,
CRYPTO 2005, LNCS, Santa Barbara, CA, USA, August 14–18, 2005. Springer-Verlag, Berlin,
Germany.

[2] Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. Tag-KEM/DEM: A new
framework for hybrid encryption and a new analysis of kurosawa-desmedt KEM. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 128–146, Aarhus, Denmark,
May 22–26, 2005. Springer-Verlag, Berlin, Germany.

[3] Joonsang Baek and Yuliang Zheng. Identity-based threshold decryption. In Feng Bao, Robert
Deng, and Jianying Zhou, editors, PKC 2004, volume 2947 of LNCS, pages 262–276, Singapore,
March 1–4, 2004. Springer-Verlag, Berlin, Germany.

[4] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of
security for public-key encryption schemes. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462
of LNCS, pages 26–45, Santa Barbara, CA, USA, August 23–27, 1998. Springer-Verlag, Berlin,
Germany.

[5] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993.
ACM Press.

[6] Mihir Bellare and Phillip Rogaway. The game-playing technique. Cryptology ePrint Archive,
Report 2004/331, 2004. http://eprint.iacr.org/.

[7] Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic constructions
of identity-based and certificateless KEMs. Cryptology ePrint Archive, Report 2005/058, 2005.
http://eprint.iacr.org/.

[8] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 223–238, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag, Berlin,
Germany.

[9] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
440–456, Aarhus, Denmark, May 22–26, 2005. Springer-Verlag, Berlin, Germany.

[10] Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen ciphertext secure public key threshold
encryption without random oracles. In Topics in Cryptology—CT-RSA 2006, volume 3860 of
Lecture Notes in Computer Science, pages 226–243. Berlin: Springer-Verlag, 2006.

19

http://eprint.iacr.org/
http://eprint.iacr.org/

[11] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229, Santa Barbara, CA, USA,
August 19–23, 2001. Springer-Verlag, Berlin, Germany.

[12] Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003.

[13] Dan Boneh and Jonathan Katz. Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages
87–103, San Francisco, CA, USA, February 14–18, 2005. Springer-Verlag, Berlin, Germany.

[14] Xavier Boyen, Qixiang Mei, and Brent Waters. Simple and efficient CCA2 security from IBE
techniques. In ACM Conference on Computer and Communications Security—CCS 2005, pages
320–329. New-York: ACM Press, 2005. Available at http://eprint.iacr.org/2005/288/, Au-
gust 2005.

[15] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In
30th ACM STOC, pages 209–218, Dallas, Texas, USA, May 23–26, 1998. ACM Press.

[16] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 207–222, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag, Berlin, Germany.

[17] Zhenchuan Chai, Zhenfu Cao, and Rongxing Lu. ID-based threshold decryption without random
oracles and its application in key escrow. Proceedings of ICISC, 2004.

[18] Sanjit Chatterjee and Palash Sarkar. Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. Proceedings of ICISC, 2004.

[19] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Bahram
Honary, editor, Cryptography and Coding, 8th IMA International Conference, volume 2260 of
LNCS, pages 360–363, Cirencester, UK, December 17–19, 2001. Springer-Verlag, Berlin, Germany.

[20] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226,
2003.

[21] CRYPTREC (cryptography research & evaluation committees): The cryptographic technique
evaluation project, August 2003. http://www.ipa.go.jp/security/enc/CRYPTREC/index.html.

[22] Y. Dodis and M Yung. Exposure-resilience for free: The hierarchical id-based encryption case.
In Proceedings of IEEE Security in Storage Workshop 2002, pages 45–52, 2002.

[23] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. Journal of
Cryptology, 9(1):35–67, 1996.

[24] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryp-
tion schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 537–554,
Santa Barbara, CA, USA, August 15–19, 1999. Springer-Verlag, Berlin, Germany.

[25] David Galindo and Eike Kiltz. Threshold chosen-ciphertext secure identity-based key encapsula-
tion without random oracles. In SCN 2006, volume 4116 of LNCS, pages 173–185. Springer-Verlag,
2006.

20

http://eprint.iacr.org/2005/288/

[26] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang Zheng, editor,
ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566, Queenstown, New Zealand, Decem-
ber 1–5, 2002. Springer-Verlag, Berlin, Germany.

[27] Hitachi Ldt. A symmetric key encyption algorithm: MULTI-S01, 2001. available at
http://www.sdl.hitachi.co.jp/crypto/s01/01espec.pdf.

[28] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R. Knud-
sen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 466–481, Amsterdam, The Nether-
lands, April 28 – May 2, 2002. Springer-Verlag, Berlin, Germany.

[29] IEEE P1363.3 Committee. IEEE 1363.3 / CfS — standard for identity-based cryptographic tech-
niques using pairings. http://grouper.ieee.org/groups/1363/index.html/, February 2006.
Call for submissions.

[30] Antoine Joux. A one round protocol for tripartite diffie-hellman. In Algorithmic Number Theory
– ANTS IV, volume 1838 of LNCS, pages 385–394. Springer-Verlag, 2000.

[31] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal Rabin,
editors, TCC 2006, LNCS, pages 581–600, New York, USA, February 5–7, 2006. Springer-Verlag,
Berlin, Germany.

[32] Eike Kiltz and David Galindo. Direct chosen-ciphertext secure identity-based key encapsulation
without random oracles. In ACISP 2006, volume 4058 of LNCS, pages 336–347. Springer-Verlag,
2006.

[33] David Naccache. Secure and practical identity-based encryption. Cryptology ePrint Archive,
Report 2005/369, 2005. http://eprint.iacr.org/.

[34] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications.
In 21st ACM STOC, pages 33–43, Seattle, Washington, USA, May 15–17, 1989. ACM Press.

[35] NESSIE Final report of European project IST-1999-12324: New European Schemes for Signatures,
Integrity, and Encryption, April 2004. Working draft.

[36] John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM
STOC, pages 387–394, Baltimore, Maryland, USA, May 14–16, 1990. ACM Press.

[37] Michael Scott. Faster pairings using an elliptic curve with an efficient endomorphism. Cryptology
ePrint Archive, Report 2005/252, 2005. http://eprint.iacr.org/.

[38] Secure hash standard. National Institute of Standards and Technology, NIST FIPS PUB 180-1,
U.S. Department of Commerce, April 1995.

[39] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David
Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53, Santa Barbara, CA, USA,
August 19–23, 1985. Springer-Verlag, Berlin, Germany.

[40] Victor Shoup. OAEP reconsidered. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 239–259, Santa Barbara, CA, USA, August 19–23, 2001. Springer-Verlag, Berlin, Germany.

[41] Victor Shoup. A proposal for an ISO standard for public key encryption (version 2.1). manuscript,
2001. Available on http://shoup.net/papers/.

21

http://www.sdl.hitachi.co.jp/crypto/s01/01espec.pdf
http://grouper.ieee.org/groups/1363/index.html/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://shoup.net/papers/

[42] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. manuscript,
2004. Available from http://shoup.net/papers/.

[43] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext
attack. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 1–16, Espoo,
Finland, May 31 – June 4, 1998. Springer-Verlag, Berlin, Germany.

[44] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext
attack. Journal of Cryptology, 15(2):75–96, 2002.

[45] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127, Aarhus, Denmark, May 22–26,
2005. Springer-Verlag, Berlin, Germany.

A Security of the IB-KEM

In this section we provide a game-based proof of Theorem 4.1. We will make use of the following
simple “Difference Lemma” [40].

Lemma A.1 Let X1,X2, B be events defined in some probability distribution, and suppose that
X1 ∧ ¬B ⇔ X2 ∧ ¬B. Then |Pr [X1]− Pr [X2]| ≤ Pr [B].

Game 0. Fix an efficient adversary A. We now define a game, Game 0, an interactive game between
adversary A and a simulator. Game 0 is simply the same game as the IB-KEM security experiment
of Section 2.2 in which the simulator provides adversary A’s environment. While describing the
experiment we wll make a couple of conventions on how the simulator chooses the values appearing in
its simulation. These conventions will be purely conceptual and, compared to the original experiment,
do not change the distribution of any value appearing during the experiment. We will also make a
couple of definitions of values appearing during the experiments.
We assume that in the beginning the simulator chooses some values a, b, and c, uniformly dis-

tributed over Zp. The simulation will depend on these values (i.e., the key generation will depend on
a, b, where the challenge ciphertext will depend on c). In sequel games the simulator will ”forget”
the values a, b, and c and instead only use the values ga, gb, and gc for its simulation of the security
experiment.

Key Generation. Initially the simulator runs the IB-KEM key generation algorithm IBKEMkg(1k)
and obtains the public key mpk = (u1, u2, z,H) and secret key msk = α. We make the convention
that the public key is generated as

u1 ← ga, u2
$← G1, z ← ê(ga, gb), H

$← HGen(G1) , (1)

depending on the elements ga, gb. Note that the way the value z = ê(ga, gb) = ê(g, gab) from the public
key is generated implies α = gab = ub1. The secret key α can be computed since a and b are known to
the simulator. The public key is given to the adversary A to start its find phase.
Find Phase. During its execution adversary A makes a number of key derivation and decapsulation
requests. If the adversary makes a key derivation query IBKEMKeyDer(id) then (using its secret key
α) the simulator computes the secret key sk [id] and returns it to the adversary. If the adversary
makes a decapsulation query Dec(id ,C) the simulator (using α) decrypts the ciphertext and returns
the plaintext to the adversary.
Eventually, the adversary returns a target identity id ∗. The simulator chosen a random key K∗

0

and run the encapsulation algorithm to create a key K∗
1 together with the the challenge ciphertext

22

http://shoup.net/papers/

C ∗ = (c∗1, c
∗
2, c

∗
3). We make the convention that the challenge ciphertext C

∗ = (c∗1, c
∗
2, c

∗
3) is computed

as

c∗1 ← gc, t∗ ← TCR(gc), c∗2 ← H(id∗)c, c∗3 ← (ut
∗

1 u2)
c (2)

depending on the random value c chosen by the simulator in advance, and the key K∗
1 = zc. Then the

simulator chooses a random bit γ and the challenge ciphertext C ∗ together with the key K∗ = K∗
γ is

returned to the adversary.

Guess Phase. The adversary continues to make its oracle queries, subsequent key derivation requests
must be different from the target identity id ∗ and decapsulation requests must be different from
(id∗, C∗). Finally, adversary A returns a bit γ ′ ∈ {0, 1}. If γ 6= γ ′ the simulator returns β ′ = 0, else
it returns β′ = 1. This completes the description of the simulator. Note that the simulator behaves
exactly as in the original IB-KEM security experiment.

Now a few important definitions are in place. During its execution A may query the key derivation
oracle for some identity id or the decapsulation oracle for the identity/ciphertext pair (id ,C). We
collect all those identities used to make queries to the key derivation and decapsulation oracle in the
set ĨD . Note that ĨD may contain the target identity id ∗ or one identity more than once. Let ID be
the subset of queried identities obtained by removing from ĨD all multiples and the target identity. We
write ID = {id (1), . . . , id (q0)} (without any particular order) for some q0 ≤ q such that id (i) 6= id (j) for
each 1 ≤ i 6= j ≤ q0 and id

∗ 6∈ ID . Furthermore, we define ID∗ = ID ∪ {id∗} = {id (1), . . . , id (q0), id∗}.
The proof of the theorem is obtained by considering subsequent games, Game 1, Game 2, ..., Game

10. These games will be quite similar to Game 0. In every game the simulators’ output bit β ′ will be
well-defined. For 0 ≤ i ≤ 10 we define the event

Xi : The simulator outputs β
′ = 1 in Game i.

Then, since in Game 0 the simulator exactly plays the IB-KEM security experiment with adversary
A, we have

|Pr[X0]− 1/2| = Advib−kem-cca
IBKEM ,A

.

Game 1. (Eliminate hash collisions) Note that the values c∗1 = gc and t∗ = TCR(gc) from the challenge
ciphertext Eqn. (2) are completely independent of the view of adversary A until A’s guess phase (since
c is simply not touched by the simulator before generating the challenge ciphertext). Therefore we
may assume that the value c∗1 and t

∗ are already generated by the simulator before the key generation.

In this game the simulator changes its answers to all decapsulation queries Dec(id ,C) made by
A as follows: Let C = (c1, c2, c3) and t = TCR(c1). If t = t

∗ and c1 6= c∗1, the simulator aborts.
Otherwise it continues as in the last game. Let HashAbort be the event that this new abortion rule
applies. Until HashAbort happens Game 0 and Game 1 are identical. Therefore by Lemma A.1 we
have

|Pr[X1]− Pr[X0]| ≤ Pr[HashAbort] .

Furthermore,

Pr[HashAbort] ≤ Advhash-tcr
TCR,H (k) ,

i.e. there exists an adversary H against the target collision resistence of TCR (note that c∗1 = gc is
a random element) running in time TimeH(k) ≈ TimeA(k) that succeeds with probability at least
Pr[HashAbort].

Game 2. (Change of the hash keys) This is the same as Game 1 except that the simulator changes
the generation of the hash keys h = (h0, h1, . . . , hn) as follows.

23

Set m = 2q (the choice of m will become clear later). Instead of generating the hash keys with the
hash key-generation algorithm HGen(G1) (cf. Section 4.1) as in the last game the simulator chooses

x0, x1, . . . , xn
$← {0, . . . , p− 1}

y′0, y1, . . . , yn
$← {0, . . . ,m− 1}

k
$← {0, . . . , n} (3)

and sets

y0 ← p− km+ y′0 .

The public keys h = (h0, . . . , hn) of the hash function H are then defined as hi = gxiuyi

1 , for 0 ≤
i ≤ n. By definition the public hash function evaluated in identity id ∈ {0, 1}n is given as H(id) =
h0
∏n

i=1 h
idi

i . From the simulator’s point of view, however, the hash function evaluated in id ∈ {0, 1}n
looks like

H(id) = gx(id)u
y(id)
1 , (4)

with x(id) = x0 +
∑n

i=1 id ixi and y(id) = y0 +
∑n

i=1 id iyi only known to the simulator. On the
other hand note that this change does not affect the distribution of the hash keys h = (h0, h1, . . . , hn).
Therefore we have

Pr[X2] = Pr[X1] .

Game 3. (Abort at the end of the game) Fix all the random variables adversary A gets to see during
its execution, including its random coin tosses: fix mpk , the challenge bit γ, and the randomness used
in answering the key derivation and decapsulation queries. Now the adversary can be seen as a deter-
ministic algorithm, in particular the set of all queried (distinct) identities ID ∗ = {id (1), . . . , id (q0), id∗}
can be seen as fixed. By viewA we denote all these fixed variables.
Define Y = (y′0, y1, . . . , yn, k), where the random variables (y

′
0, y1, . . . , yn, k) are distributed as in

Eqn. (3). It is clear that once viewA is fixed, the random variable Y still has its original distribution.
Define the event

ForcedAbort :

q0∨

i=1

(
y(id (i)) = 0 mod p

)
∨ y(id∗) 6= 0 mod p .

We call this abort forced since in sequel games the simulator is modified such that it always has to
abort once this event happens. For fixed viewA we define

η := Pr
Y

[¬ForcedAbort] (5)

and let λ be a lower bound on η (that holds for every viewA). The following lemma provides a lower
bound on η.

Lemma A.2 For each possible choice of identities ID∗ = {id (1), . . . , id (q0), id∗} we have η ≥ λ =
1

4(n+1)q .

The proof of the lemma is quite technical and is postponed to Section A.2.
Compared to Game 2 we will make two modifications to the simulator in Game 3. The simulation

is exactly the same as in Game 2 until adversary A outputs his guess bit γ ′. Since adversary A already
terminated we can assume viewA to be fixed from now on.

First modification: add forced abort. After adversary A outputs his guess bit γ ′, the simulator
checks if the event ForcedAbort occurs. If yes, it aborts the game and returns a random bit as its
output bit β′. If not the simulation is continued as before.

24

Let’s first make an unsuccessful attempt to relate the two events X3 and X2. Clearly we have
Pr [X3] = Pr [X2 ∧ ¬ForcedAbort] + 1/2 · Pr [ForcedAbort]. Now we would like to continue
with Pr [X2 ∧ ¬ForcedAbort] ≥ Pr [X2] ·Pr [¬ForcedAbort]. However, this is not correct since
the simulator may aborts with a probability that is a function in the choices of the identities ID ∗ =
{id (1), . . . , id (q0), id∗} queried by adversary A and hence the two events X2 and ¬ForcedAbort

cannot be considered as independent.
To get rid of this unwanted dependence the simulator adds some artificial abort such that it always

aborts with probability nearly λ (recall that λ was is upper bound on the abortion probability),
independent of the choices of the identities ID∗ = {id (1), . . . , id (q0), id∗}. This way it will be possible
to decorrelate the event X2 with the abortion.

Second modification: add artificial abort. After the simulator has checked for the event
ForcedAbort (and decided not to abort), it continues as follows: First it samples (using sufficiently
many samples) an estimate η′ of the probability η (over Y) that the ForcedAbort happens (cf.
Eqn. (5)).6 We want to stress that viewA is fixed at this point so sampling does not involve running
adversary A again. This estimate η′ is a function in id (1), . . . , id (q0), id∗.
Depending on the estimate η′ the simulator distinguishes two cases:
Case η′ ≤ λ: the simulator continues as before.
Case η′ > λ: With probability 1 − λ/η′ the simulator aborts and outputs a random bit β ′. With
probability λ/η′ the simulator does not abort and continues as before.
This concludes the description of Game 3.
The following lemma relating the events X2 and X3 will be proved in Section A.1.

Lemma A.3 Let 0 < ρ ≤ 1 be a function in k . If the simulator takes O(ρ−2 ln(ρ−1) · λ−1 ln(λ−1))
samples when computing the estimate η′, then

∣∣∣∣Pr[X2]−
1

2
− Pr[X3]− 1/2

λ

∣∣∣∣ ≤
ρ

2

The parameter ρ will be determined at the end of the proof.

Game 4. (Forced abort during the game I) Compared to the last game we make the following
changes to the simulator: When identity id ∈ ID is queried to the key derivation oracle, the simulator
immediately aborts if y(id) = 0 mod p. When receiving the challenge identity id ∗, the simulator
immediately aborts if y(id∗) 6= 0 mod p. On abort the simulator returns a random bit β ′. The
artificial abort at the end of the simulation is the same as in the last game.
Clearly, this modification does not affect the adversary if there is no forced abort. In case there is

a new forced abort the simulator outputs a random bit β ′ as in Game 3. Therefore we have

Pr [X4] = Pr [X3] .

Game 5. (Change key derivation oracle) The simulator changes its answers to all key derivation

queries IBKEMKeyDer(id) made by the adversaryA as follows: By Eqn. (4) we have H(id) = gx(id)u
y(id)
1

for some values x(id) and y(id) known to the simulator.
Case y(id) = 0 mod p: The simulator aborts (as in the last game).
Case y(id) 6= 0 mod p: The derived key sk [id] = (d1, d2) is computed as follows:
For a random r′ ∈ Zp, the simulator implicitly defines r = −b/y(id) + r′ mod p and computes

d1 ← (gb)−x(id)/y(id)gx(id)r′u
y(id)r′

1 ,

d2 ← (gb)−1/y(id) · gr′ .
6Unfortunately, there seems not to be an efficient way to compute the exact value η. If there was one we could greatly

simplify our analysis.

25

Note that the randomness r is not known to the simulator. Furthermore, the generation of the derived
keys sk [id] = (d1, d2) only depends on g

b and does not involve the knowledge of the secret key α = gab

anymore.

Lemma A.4 Pr[X5] = Pr[X4].

Proof: We have to verify that each derived key sk [id] = (d1, d2) is identically distributed as in the
last game. Let us abbreviate x = x(id), and y = y(id) 6= 0 mod p. Clearly, if r′ is uniform in Zp so is
r. Then by Eqn. (1) and since r′ = r + b/y,

d1 = (gb)−x/ygxr
′

uyr
′

1

= g−bx/ygxr
′

uyr
′

1

= g−bx/ygx(r+b/y)u
y(r+b/y)
1

= g−bx/ygxr+bx/yuyr+b
1

= ub1 · gxruyr1
= α · (gxuy1)r

= α · (H(id))r ,

d2 = (gb)−1/y · gr′

= g−b/y · gr+b/y

= gr ,

are distributed as in the last game (the original experiment).

Game 6. (Change of the public key) In this game the simulator will modify the generation of the
value u2 from the public key mpk . The simulator picks a random d ∈ Zp and computes the value u2

as u2 = (g
a)−t

∗

gd, where t∗ = TCR(c∗1). To summarize, the public key mpk = (u1, u2, z,H) is now
computed as

u1 ← ga, u2 ← (ga)−t
∗

gd, z ← ê(ga, gb) , (6)

the hash keys as in Eqn. (3), and the secret key msk as α = gab = ub1 that is still known to the
simulator. The simulation of A’s queries is done as before, using the secret key α. Note that the
public key is identically distributed as in the last game. Therefore we have

Pr[X6] = Pr[X5] .

Game 7. (Forced abort during the game II) Compared to the last game we make the following changes
to the simulator: When the tuple (id ,C) is queried to the decapsulation oracle for id ∈ ID ∪ {id ∗}
and C = (c1, c2, c3) the simulator computes t = TCR(c1) and immediately aborts if y(id) = 0 mod p,
C is consistent, and t = t∗. In case of abort the simulator returns a random bit β ′.

Lemma A.5 |Pr[X7]− Pr[X6]| ≤ 2q
p .

Proof: Clearly, this modification does not affect the adversary if there is no new forced abort. Note
that any new forced abort implies c1 = c∗1 since otherwise by t = t∗ the simulator already aborted in
the last game (having found a collision in the hash function TCR). In case of a new forced abort we
distinguish between two cases:
Case 1: the new forced abort happens during the guess stage. Recall that we call a ciphertext
C = (c1, c2, c3) consistent if (g, c1, u

t
1u2, c3) is a Diffie-Hellman tuple (where t = TCR(c1)), i.e. if

26

(g, c1, u
t
1u2, c3) = (g, g

r, ut1u2, (u
t
1u2)

r) for some value r ∈ Zp. Note that the way the public-key mpk
is generated by Eqn. (6) and since c1 = c∗1, and t = t∗, for a consistent ciphertext C we have

c3 = (u
t
1u2)

r = ((ga)t−t
∗

gd)r = (ca1)
t−t∗ · cd1 = (c∗1)d = c∗3 , (7)

where d ∈ Zp is only known to the simulator. If id = id
∗ (i.e., if A queries the decapsulation oracle with

the target identity) then c∗2 = c2. Consequently C = C
∗ and so the simulator rejects as in the original

IB-KEM security experiment. If id 6= id ∗ then, by definition, id ∈ ID and the simulator outputs a
random bit β′ as in Game 6 where the abort was still done at the end of the experiment. Therefore,
conditioned on case 1 this does not change the distribution of β ′ and we have Pr[X7] = Pr[X6].

Case 2: the new forced abort happens during A’s find stage. Since in the find stage the adversary has
no information (in a statistical sense) about c∗1 from the challenge ciphertext C

∗, and the adversary
makes at most q decapsulation queries in its find stage, this implies

|Pr[X7]− Pr[X6]| ≤
1

p
+

1

p− 1 + . . .+
1

p− q + 1
≤ q

p− q
≤ 2q

p

and concludes the proof.

Game 8. (Change the answers to the decapsulation queries.) In the last game decapsulation queries
were either aborted or answered using the secret key α, as in the original experiment. In this game
the simulator changes its answers to its decapsulation queries Dec(id ,C) made by A as follows: By
Eqn. (4) we have H(id) = gx(id)u

y(id)
1 for some values x(id) and y(id) known to the simulator.

Case y(id) 6= 0 mod p: the query is answered using sk [id] obtained from the key derivation oracle.
Case y(id) = 0 mod p: the simulator simulates the decapsulation queries as follows: Let C =
(c1, c2, c3,) be the queried ciphertext and let t = TCR(c1).

If the ciphertext is not consistent then return a random message M
If t = t∗ then the simulator aborts (as in the last game)
If t 6= t∗ then
If ê(c1,H(id)) 6= ê(c2, g) then return a random key K

Else return K ← ê(c3/c
d
1, g

b)(t−t∗)−1 .

Lemma A.6 Pr[X8] = Pr[X7].

Proof: Let C = (c1, c2, c3, E) be an arbitrary ciphertext submitted to the decapsulation oracle with
respect to identity id . If y(id) 6= 0 mod p then decapsulation is done using the simulation of the key
derivation oracle which we already showed to be correct so we may now assume y(id) = 0 mod p.
Furthermore we may assume C is consistent because otherwise a random message M gets returned,
as in the last game.

Case 1a: t = t∗ and c1 6= c∗1. In this case the simulator has found a collision in the hash function TCR

and aborts as in the last game.
Case 1b: t = t∗ and c1 = c∗1. In the case the simulator aborts as in forced abort introduced in the last
game.

Case 2: t 6= t∗. Similar to Eqn. (7) consistency of C implies

c3 = (u
t
1u2)

r = ((ga)t−t
∗

gd)r = (ca1)
t−t∗ · cd1 , (8)

and we obtain
(c3/c

d
1)

(t−t∗)−1 = ((ca1)
t−t∗cd1/c

d
1)

(t−t∗)−1 = ca1 . (9)

27

In the original IB-KEM decapsulation algorithm first the secret key for identity id is computed as
sk [id] = (d1, d2) = (α · H(id)s, gs) for random s, and then the session key K is reconstructed as

K = ê(c1, d1)/ê(c2, d2) = ê(c1, α) · ê(c1,H(id)s)/ê(c2, gs)
= ê(ca1, g

b) · (ê(c1,H(id))/ê(c2, g))s

(9)
= ê((c3/c

d
1)

(t−t∗)−1 , gb) · (ê(c1,H(id)s/ê(c2, g))s

= ê(c3/c
d
1, g

b)(t−t∗)−1 · (∆′(C))s,

with ∆′(C) = ê(c1,H(id))/ê(c2, g). Since (∆
′(C))s = 1 if ê(c1,H(id)) = ê(c2, g) and (∆

′(C))s is a
random element in GT otherwise, the decapsulated session key K in the original scheme is distributed
as in the simulation.

Game 9. (Modify the challenge) After A’s find stage the simulator inputs the target identity id ∗
from A. The simulator modifies the computation of the challenge ciphertext C ∗ follows:
Case y(id∗) 6= 0 mod p: The simulator aborts (as in the last game).
Case y(id∗) = 0 mod p: The simulator chooses a random bit γ and creates the challenge ciphertext
C ∗ = (c∗1, c

∗
2, c

∗
3) and key K∗

1 as

c∗1 ← gc, c∗2 ← (gc)x(id∗), c∗3 ← (gc)d, K∗
1 ← ê(g, g)abc . (10)

By virtue of Eqns. (4), (8), and since TCR(c∗1) = t∗ and y(id∗) = 0 mod p, C ∗ is a correctly distributed
ciphertext of K∗

1 . Clearly,

Pr[X9] = Pr[X8] .

Game 10. (Replace the Challenge) The simulator replaces the value K∗
1 from the challenge C

∗ with
a random element from GT . Since K

∗
1 is now completely independent of the challenge bit γ, we have

Pr[X10] = 1/2 .

Observe that Game 10 does not use the secret key anymore and that the whole simulation only depends
on the values ga, gb, gc (i.e., the simulator “forgot the values a, b, and c). Game 9 and Game 10 are
equal unless adversary A can distinguish ê(g, g)abc (the value of K∗

1 in Game 9) from a random element
in GT (the value of K

∗
1 in Game 10). Therefore we have

|Pr[X10]− Pr[X9]| ≤ Advbddh
G,B (k) ,

for any adversary B against the hardness of BDDH running in the same time as the simulator, i.e.
TimeB = TimeA+O(ρ−2 ln(ρ−1)·λ−1 ln(λ−1)+q). The time bound of the simulator is justified by the
ρ−2 ln(ρ−1) ·λ−1 ln(λ−1) samples to compute η′ and the q answers to the key kerivation/decapsulation
queries.

28

Analysis. We collect the probabilities relating the different games as follows:

Advib−kem-cca
IBKEM ,A

= |Pr[X0]−
1

2
|

≤ |Pr[X1] +Adv
hash-tcr
TCR,H (k)−

1

2
|

≤ |Pr[X2]− 1/2 +Advhash-tcr
TCR,H (k)|

≤ |Pr [X3]− 1
2

λ
+

ρ

2
+Advhash-tcr

TCR,H (k)|

≤
|Pr [X7] +

2q
p − 1

2 |
λ

+
ρ

2
+Advhash-tcr

TCR,H (k)

≤
|Pr [X9] +

2q
p − 1

2 |
λ

+
ρ

2
+Advhash-tcr

TCR,H (k)

≤
Advbddh

G,B (k) +
2q
p

λ
+

ρ

2
+Advhash-tcr

TCR,H (k) .

Using λ = 1
4(n+1)q (by Lemma A.2) and defining ρ = Adv

ib−kem-cca
IBKEM ,A

(k) we conclude the proof with

Advib−kem-cca
IBKEM ,A

(k) ≤ 8(n+ 1)q · (Advbddh
G,B (k) + 2q2/p) +Adv

hash-tcr
TCR,H (k)

= O
(
nq · (Advbddh

G,B (k) + q/p) +Advhash-tcr
TCR,H (k)

)
,

where q is an upper bound on all (derivation plus decapsulation) queries made by A,

TimeB(k) = TimeA(k) +O(ρ−2 ln(ρ−1) · λ−1 · ln(λ−1))

= TimeA(k) +O(ε−2
A (k) ln(ε

−1
A (k)) · λ−1 · ln(λ−1)) ,

where εA(k) = Adv
ib−kem-cca
IBKEM ,A

(k), and

TimeH(k) = TimeA(k) +O(1) .

This concludes the proof of Theorem 4.1.

A.1 Proof of Lemma A.3

Proof: Let ArtAbort be the event that the simulator artificially aborts at the end of the simulation.
Let Abort = ArtAbort∨ForcedAbort be the event that it aborts artificially or forced. First we
claim

Claim A.7 For any fixed viewA, |Pr[¬Abort]− λ| ≤ λρ/4.

The proof of the claim is postponed until later.

Since the claim holds for any fixed viewA it also remains true for random viewA, conditioned on γ
′ = γ

and γ′ 6= γ:

|Pr
[
¬Abort | γ′ = γ

]
− λ| ≤ λρ/2, |Pr

[
¬Abort | γ′ 6= γ

]
− λ| ≤ λρ/2 (11)

29

We continue computing Pr [X3]:

Pr [X3] = Pr
[
β′ = 1 ∧Abort

]
+ Pr

[
β′ = 1 ∧ ¬Abort

]

= Pr
[
β′ = 1 | Abort

]
(1− Pr [¬Abort]) + Pr

[
β′ = 1 ∧ ¬Abort

]

In case of abort the simulator outputs a random bit β ′. If the simulator does not abort then it outputs
β′ = 1 if γ = γ′. Therefore we can continue with

Pr [X3] =
1

2
· (1− Pr [¬Abort]) + Pr

[
γ′ = γ ∧ ¬Abort

]

=
1

2
+
1

2
(Pr

[
γ′ = γ ∧ ¬Abort

]
− Pr

[
γ′ 6= γ ∧ ¬Abort

]
)

=
1

2
+
1

2
(Pr

[
¬Abort | γ′ = γ

]
Pr

[
γ′ = γ

]
− Pr

[
¬Abort | γ′ 6= γ

]
Pr

[
γ′ 6= γ

]
) .

Since Pr [γ′ = γ] = Pr [X2] we get

Pr [X3]−
1

2
=

1

2
(Pr

[
¬Abort | γ′ = γ

]
Pr [X2]− Pr

[
¬Abort | γ′ 6= γ

]
(1− Pr [X2]))

=
1

2
· (Pr [X2] · (Pr

[
¬Abort | γ′ = γ

]
+ Pr

[
¬Abort | γ′ 6= γ

]
)− Pr

[
¬Abort | γ′ 6= γ

]
)

Combining this with Eqn. (11) we get
∣∣∣∣Pr [X3]−

1

2
− λ · (Pr [X2]−

1

2
)

∣∣∣∣ ≤ Pr [X2] · λ
ρ

4
+ λ

ρ

4

≤ λ
ρ

2
,

where the last unequation stems from 0 ≤ Pr [X2] ≤ 1. To prove the lemma it leaves to prove
Claim A.7.

Proof of Claim A.7. By construction the two events ArtAbort and ForcedAbort are indepen-
dent and consequently we have

Pr [¬Abort] = Pr [¬ForcedAbort] · Pr [¬ArtAbort] = η · Pr [¬ArtAbort] (12)

Set 0 < ρ′ := ρ/8 ≤ 1/8. Using Chernoff’s bound for the estimate η′ of η we get

Pr[|η′ − η| > ηρ′] < λρ′. (13)

We have

Pr [¬ArtAbort] = Pr
[
¬ArtAbort | |η′ − η| > ηρ′

]
Pr

[
|η′ − η| > ηρ′

]

+Pr
[
¬ArtAbort | |η′ − η| ≤ ηρ′

]
Pr

[
|η′ − η| ≤ ηρ′

]

≤ λρ′ + Pr
[
¬ArtAbort | |η′ − η| ≤ ηρ′

]

= λρ′ +
λ

η′
,

where the last equation is true since for fixed η′ with |η′−η| ≤ ηρ′ we have η′ > η(ρ′+1) ≥ λ(ρ′+1) ≥ λ
and therefore Pr [¬ArtAbort] = λ

η′ . We continue with

Pr [¬Abort] = Pr [¬ForcedAbort] · Pr [¬ArtAbort]

≤ ηλρ′ +
ηλ

η′
≤ λρ′ +

λ

1− ρ′
≤ λ(1 + 2ρ′),

30

since 0 ≤ ρ′ ≤ 1/8. For all fixed η′ with |η′−η| ≤ ηρ′ we have Pr [¬ArtAbort] = min{1, λ
η′ } > λ

η(1+ρ′)

(since η > λ and hence η · (1 + ρ′) > λ). Therefore

Pr [¬Abort] = η · Pr [¬ArtAbort]

≥ η · Pr
[
¬ArtAbort | |η′ − η| ≤ ηρ′

]
· Pr

[
|η′ − η| ≤ ηρ′

]

≥ η · λ

η(1 + ρ′)
· (1− λρ′) ≥ λ · (1− ρ′)2 ≥ λ · (1− 2ρ′)

We showed λ(1− 2ρ′) ≤ Pr [¬Abort] ≤ λ(1 + 2ρ′) which implies |Pr [¬Abort]− λ| ≤ λ · 2ρ′ < λ · ρ4
which proves the claim.

A.2 Proof of Lemma A.2

Proof: Fix the queried identities id (1), . . . , id (q0), id∗. We want to show that

η = Pr
Y

[

q0∧

i=1

(
y(id (i)) 6= 0 mod p

)
∧ y(id∗) = 0 mod p] ≥ λ , (14)

for λ = 1
4(n+1)q .

Over the integers we have by Eqn. (3), y(id∗) = 0 = p − km + y′0 +
∑n

i=1 id
∗
i yi, where 0 ≤ y′0 +∑n

i=1 id
∗
i yi < (n + 1)m. This shows that if y(id

∗) = 0 mod m, then there is a unique 0 ≤ k < n + 1
such that y(id∗) = 0 over the integers. Since k is uniformly and independently distributed between 0
and n, we have that :

η = Pr
Y

[

q0∧

i=1

(y(id (i)) 6= 0 mod p) ∧ y(id∗) = 0 mod p]

≥ 1

n+ 1
· Pr
Y′

[

q0∧

i=1

(y(id (i)) 6= 0 mod m) ∧ y(id∗) = 0 mod m] ,

were Y′ = (y′0, y1, . . . , yn) and the random variables (y
′
0, y1, . . . , yn) are distributed as in (3), i.e. from

now on we consider k to be fixed.

Let id 6= id ′ and a, b ∈ Z. We collect some simple observations on y(·):

Pr
Y′

[y(id) = b mod m] = 1/m (15)

Pr
Y′

[y(id) = a mod m | y(id ′) = b mod m] = 1/m (16)

Pr
Y′

[y(id) = a mod m) ∧ y(id ′) = b mod m)] = 1/m2 . (17)

Eqn. (15) follows since for any choice of y1, ..., yn there is a single choice of y
′
0 that will make the

condition hold. To show Eqn. (16) assume there exists an index 1 ≤ i ≤ n such that id i = 1 and id
′
i =

0. Then fix all yj ’s for j 6= i except yi so that y(id
′) = b. Therefore Pr

[
y(id) = a | y(id ′) = b

]
= 1/m.

If there is no such i then we can use Bayes to reverse roles of id and id ′. Eqn. (17) basically means
that the y(·) mod m are pairwise independent and follows directly from Eqn. (15) and Eqn. (16).

31

We continue to bound η with

η ≥ 1

n+ 1
· Pr
Y′

[

q0∧

i=1

y(id (i)) 6= 0 mod m | y(id∗) = 0 mod m] · Pr[y(id∗) = 0 mod m]

(15)
=

1

(n+ 1)m
· (1− Pr

Y′

[

q0∨

i=1

y(id (i)) = 0 mod m | y(id∗) = 0 mod m])

(17)
=

1

(n+ 1)m
· (1−

q0∑

i=1

Pr
Y′

[y(id (i)) = 0 mod m | y(id∗) = 0 mod m])

(16)
=

1

(n+ 1)m
· (1−

q0∑

i=1

1

m
)

≥ 1

(n+ 1)m
· (1− q

m
)

=
1

4(n+ 1)q
,

where the last equation follows by our choice of m = 2q which minimizes the term.

B Security of the Threshold IB-KEM

B.1 Proof of Theorem 5.4

We now prove consistency of the threshold IB-KEM from Section 5. Fix id and an arbitrary C =
(c1, c2, c3) consistent with id , i.e. we have c1 = gv, c2 = H(id)v, and c3 = (u

t
1u2)

v. First we show
key consistency. Let Di = (di,1, di,2) be two sets of private key shares. Note that the key derivation
shares verification algorithm TIBKEMkey.Vfy(pk , i, id , Di) checks if ê(di,1, g) = ê(vk i, u1)·ê(di,2,H(id)).
Fix di,2 = gsi . The above expression implies that any pair (di,1, di,2) passing the test satisfies di,1 =

u
F (i)
1 ·H(id)si . Therefore the TIBKEMkey.Combine algorithms returns sk [id] = (d1, d2) = (u

a
1·H(id)s, gs)

with s =
∑

siλi. Analogously, for the set D
′ it returns sk ′[id] = (d′1, d

′
2) = (u

a
1 · H(id)s

′

, gs
′

) for some
other s′. By correctess we know that the two valid private keys for identity id decrypt the same
ciphertext C to the same session key and therefore we have K ′ = K and any (even computationally
unbounded adversary) has zero advantage in breaking key consistency.
Decryption consistency is proved in an analogous manner. Let S = {C1, . . . , Cl} with Ci =

(Ci,1, Ci,2, Ci,3). The decryption shares verification algorithm TIBKEMdec.Vfy(vk , i, id , Ci,C) checks
if ê(g, Ci,2) = ê(vk i, u1) · ê(Ci,3,H(id)) · ê(Ci,1, u

t
1u2). Fix Ci,1 = gri and Ci,3 = gsi . Now it is easy to

verify that the above equation implies that Ci,2 = u
F (i)
1 ·H(id)si · (ut1u2)

ri , i.e. all the ciphertext shares
Ci are identically distributed as if they were correctly generated. The same holds for the ciphertext
shares C ′i generated from the set S

′. Finally, by correctness of the scheme, the TIBKEMdec.Combine

algorithm recovers the same key K = K ′ in both cases. This completes the proof.

B.2 Proof of Theorem 5.3

The proof is similar to the proof of Theorem 4.1. Assuming Waters hash function H “behaves well”
(i.e. the event ForcedAbort does not happen), we can perfectly simulate all oracle queries in
a similar manner as in the proof of Theorem 4.1. More precisely, by using the properties of the
Lagrange interpolation polynomial, the KeyShare(·, ·) queries for non-corrupt users are simulated

32

slightly changing the KeyDer(·) outputs and the DecShare(·, ·, ·) queries are simulated slightly
changing Dec(·, ·) answers. In the following the games based proof for Theorem 5.3 is presented.
Note that some of the games are identical to the proof of Theorem 4.1; in this case we refer the reader
to Appendix A.

Game 0′. Threshold key Generation. Without loss of generality, let Ic = {1, . . . , l − 1}
be the set of corrupted players. Initially the simulator runs the TIBE key generation algorithm
TIBKEMkg(1k, l,m) and obtains the public key mpk = (u1, u2, z,TCR,H), the verification key vk and
secret key shares sk = {sk i}1≤i≤m. We make the convention that the public key is generated as

u1 ← ga, u2
$← G1, z ← ê(ga, gb), H

$← HGen(G1) , (18)

depending on the elements ga, gb. Note that the way the value z = ê(ga, gb) = ê(g, gab) from the public
key is generated implies α = gab = ub1. The secret key α can be computed since a and b are known
to the simulator. The verification and secret key shares are computed by following the specification
of the TIBKEMkg algorithm. That is, using the knowledge of b, the simulator explicitly computes a
polynomial F [X] ∈ Zp[X] of degree l − 1, such that F (0) = b. The secret and verification keys are
generated as

For i ∈ {1, . . . ,m} : sk i ← u
F (i)
1 ; vk i ← gF (i) ; vk ← (vk1, . . . , vkm) ; sk ← (sk1, . . . , skm) (19)

The public, verification and secret key shares for corrupted players are given to the adversary in
its find phase.

Find Phase. During its execution adversaryAmakes a number of key derivation and decryption share
requests. If the adversary makes a key derivation share query to oracleKeyShare(j, id), then the sim-
ulator computes the secret key share sk [id]j by using the knowledge of the sharing polynomial F (X),
and returns it to the adversary. If the adversary makes a decryption share query DecShare(j, id ,C)
the simulator (using again F (X)) computes the jth decryption share and gives it to the adversary.
The rest of the game is as described in Game 0, including definitions. Now, for 0 ≤ i ≤ 10, we define

the event X ′
i : The simulator outputs β

′ = 1 in Game i′. We have |Pr[X ′
0]− 1/2| = Advtibkem-cca

TIBKEM ,A .

Game 1′. (Eliminate hash collisions). As in Game 1.

Game 2′. (Change of the hash keys). As in Game 2. Now, the hash function H is computed as

H(id) = gx(id)u
y(id)
1 , where x(id) and y(id) are values only known by the simulator.

Game 3′. (Abort at the end of the game). As in Game 3.

Game 4′. (Forced abort during the game I) As in Game 4. The relation between X ′
0 and X ′

4 are as
in Section A, i.e. ∣∣∣∣

1

2
− Pr[X ′

0]−
Pr[X ′

4]− 1/2
λ

∣∣∣∣ ≤ Adv
hash-tcr
TCR,H (k) +

ρ

2
.

Game 5′. (Change key derivation oracle) The simulator changes its answers to all key derivation
queries KeyShare(id , j) (1 ≤ j ≤ m) made by the adversary A as follows: We have H(id) =

gx(id)u
y(id)
1 for some values x(id) and y(id) known to the simulator.

Case y(id) = 0 mod p: The simulator aborts.
Case y(id) 6= 0 mod p: The derived key sk [id]j = (dj,1, dj,2) is computed as follows:
For a random r′ ∈ Zp, the simulator implicitly defines r = −F (j)/y(id) + r′ mod p and computes

dj,1 ← (vkj)
−x(id)/y(id)gx(id)r′u

y(id)r′

1

dj,2 ← (vkj)
−1/y(id) · gr′

33

Note that the randomness r is not known to the simulator and that the generation of the derived keys
shares sk [id]j does not involve the knowledge of the secret key share skj = gaF (j) anymore. Using a
similar argument as in Lemma A.4, the key derivation shares generated as above are distributed as in
the previous game. Therefore

Pr[X ′
4] = Pr[X

′
5] .

Game 6′. (Change of public key and secret key shares.) The simulator modifies the generation of the
public key mpk = (u1, u2, z,TCR,H), and only uses the values ga, gb and gc as in Game 6 in the proof
of Theorem 4.1 as follows (cf. Eqn. (6)):

u1 ← ga, u2 ← (ga)−t
∗

gd, z ← ê(ga, gb) , (20)

where d
$← Z

∗
p is chosen by the simulator.

In the threshold case the simulator additionally has to compute secret key shares and the verifi-
cation shares. In the last games the was done using b to compute the polynomial F (X), as in the
original key generation algorithm. We now modify the simulator such that the generation of the secret
key shares of corrupted parties, as well as the generation of the verification key does only depend on
the values ga and gb.

1. Generate secret key shares for the l−1 corrupted players. This is done by picking f1, . . . , fl−1
$←

Zq. Let F ∈ Zp[X] of degree l − 1 be the unique polynomial implicitly defined by F (0) = b and
F (j) = fj for 1 ≤ j ≤ l − 1. The simulator computes skj = (ga)fj for 1 ≤ j ≤ l − 1. Note that
the simulator does not know F since it does not know b.

2. Generate verification key vk = (vk1, ..., vkm) such that vkj = gF (j). For 1 ≤ j < l, the simulator
knows fj = F (j), so that vkj can be computed as g

fj . Next, for every index j such that l ≤ j ≤ m,
the simulator computes the Lagrange Coefficients λ0, . . . , λl−1 such that

F (j) =
l−1∑

i=0

λiF (i) . (21)

Following Eqn. (21), each vkj = gF (j) can be computed as vkj = (g
b)λ0 · vkλ11 · · · vk

λl−1

l−1 .

From now on the simulator does not know the secret key shares {skj}{l≤j≤m} of the uncorrupted
players. Note that the public and verification keys, as well as the secret key shares for the corrupted
players are distributed as in the previous game. Therefore we have

Pr[X ′
6] = Pr[X

′
5] .

Game 7′.(Forced abort during the game II) As in Game 7. We have |Pr[X ′
7]− Pr[X ′

6]| ≤ 2q
p .

Game 8′. (Change the answers to the decryption share queries.) The simulator changes its answers
to all decryption queries DecShare(j, id ,C) made by A as follows: By Eqn. (4) we have H(id) =

gx(id)u
y(id)
1 for some values x(id) and y(id) known to the simulator.

Case y(id) 6= 0 mod p: the query is answered using the key derivation share oracle.
Case y(id) = 0 mod p. Then H(id) = gx(id) for a value x(id) known to the simulator. Decryption share
queries are simulated as follows: Let C = (c1, c2, c3) be the queried ciphertext and let t = TCR(c1).

If the ciphertext is not consistent with id and t then return fail

If t = t∗ then abort (as before)

34

If t 6= t∗ then
if sj(id) is undefined then sj(id)

$← Zp

sj ← sj(id) ; r
′
j

$← Zp

Cj,1 ← vk
−1/(t−t∗)
j · gr′j

Cj,2 ← gx(id)sj · (ut1u2)
r′j · vk−d/(t−t∗)j

Cj,3 ← gsj

Note that the generation of the decryption shares for player j only depends on vkj and does not involve
the knowledge of the secret key share sk j anymore. We also ensure that for a fixed identity id the
same randomness sj = sj(id) is used to compute the decryption shares for player j.

Lemma B.1 Pr[X ′
8] = Pr[X

′
7].

Proof: We have to verify that each ciphertext share Cj = (Cj,1, Cj,2, Cj,3) is identically distributed as
in the last game. Let us abbreviate x = x(id). As in Game 8 in Appendix A we only have to consider
the interesting case y(id) = 0 mod p and t 6= t∗. Implicitly define rj = r′j − F (j)/(t − t∗). Clearly, if
r′j is uniform in Zp so is rj . Then by Eqn. (20),

Cj,1 = (gF (j))−1/(t−t∗) · gr′j

= g−F (j)/(t−t∗) · grj+F (j)/(t−t∗)

= grj ,

Cj,2 = gxsj · (ut1u2)
r′j · vk−d/(t−t∗)j

= gxsj · g(a(t−t∗)+d)r′j · g−F (j)d/(t−t∗)

= gxsj · ga(t−t∗)r′j · gdr′j · g−F (j)d/(t−t∗)

= gxsj · ga(t−t∗)rj · gaF (j) · gdrj · gF (j)d/(t−t∗) · g−F (j)d/(t−t∗)

= gxsj · g(a(t−t∗)+d)rj · gaF (j) ,

= H(id)sj · (ut1u2)
rj · skj ,

are distributed as in the last game.

Game 9′. (Modify the challenge.) As in Game 9. We have Pr[X ′
9] = Pr[X

′
8] .

Game 10′. (Replace the challenge.) As in Game 10. We have |Pr[X ′
10]−Pr[X ′

9]| ≤ Advbddh
G,B (k) and

Pr[X ′
10] = 1/2, where B denotes any adversary against the security of BDDH running in the same

time as the simulator.

Analysis. Now relating the probabilities as in Appendix A completes the proof.

C The IBE scheme from BMW [14]

Let CR : G
2
1 × GT → {0, 1}m be a collision-resistant hash function, where we assume m ≈ n. The

BMW IBE scheme with identity space IDSp = {0, 1}n and message space MsgSp = G1 is depicted in
Figure 3.

35

IBKEMkg(1k)

α
$← G

∗
1 ; z ← ê(g, α)

H1
$← HGen(n) ; H2

$← HGen(m)
mpk ← (H1,H2, z) ; msk ← α
Return (mpk ,msk)

IBKEMkeyder(msk , id)

s
$← Zp

sk [id]← (α · H(id)s, gs)
Return sk [id]

IBKEMenc(mpk , id ,M)

r
$← Z

∗
p

c1 ← gr

c2 ← H1(id)
r

K ← zr

E ← K ·M
t← CR(c1, c2, E) ; c3 ← H2(t)

r

Return C ← (c1, c2, c3, E) ∈ G
3
1 ×GT

IBKEMdec(sk [id],C)
Parse C as (c1, c2, c3, E)
Parse sk [id] as (d1, d2)
t← CR(c1, c2, E)
If (g, c1,H2(t), c3) is not a DH tuple

then K
$← G

∗
T

else K ← ê(c1, d1)/ê(c2, d2)
output M = K−1 · E

Figure 3: IBE scheme from BMW.

C.1 IBE scheme obtained by the generic CHK transformation

This construction employs a one-time signature scheme OTS = (SKG, SIGN,VFY). The key generation

algorithm SKG is run to obtain a random pair of verification/signing keys (vk , sigk)
$← (SKG(1k); the

signing key sigk is used to sign a message M to obtain a signature sig
$← SIGNsigk (M) on a message

M ; using the public verification key vk , a signature sig can be verified by running VFYvk (M, sig). We
require that this scheme be secure in the sense of strong unforgeability, see [16] for exact definitions
and constructions (details can be skipped here).

Waters/Boneh-Boyen hybrid + CHK transformation

IBKEMkg(1k)

u1, u2, α
$← G

∗
1 ; z ← ê(g, α)

H
$← HGen(G1)

mpk ← (u1, u2, z,H) ; msk ← α
Return (mpk ,msk)

IBKEMkeyder(msk , id)

s
$← Zp

sk [id]← (α · H(id)s, gs)
Return sk [id]

IBKEMenc(mpk , id ,M)

r
$← Z

∗
p

c1 ← gr

c2 ← H(id)r ; (vk , sigk)
$← SKG(1k)

c3 ← (uvk
1 u2)

r

K ← zr ∈ GT ; E ← K ·M ∈ GT

sig
$← SIGNsigk (c1||c2||c3||E)

Return C ← (c1, c2, c3, E, vk , sig)

IBKEMdec(sk [id],C)
Parse C as (c1, c2, c3, E, vk , sig)
Parse sk [id] as (d1, d2)
If VFYvk (c1||c2||c3||E, sig) = reject

then return reject.
Else
Derive secret key (e1, e2, e3) for the
2-level “identity” (id , vk) as

s′
$← Zp

(e1, e2, e3)← (d1 · (uvk
1 u2)

s′ , d2, g
s′)

K ← ê(c1, e1)/(ê(c2, e2) · ê(c3, e3))
Return M ← E ·K−1

The following theorem combines results from [16] with [45, 8]:

Theorem C.1 Assume OTS is a strongly-secure one-time signature scheme. Under the Biliear Deci-
sional Diffie-Hellman (BDDH) assumption relative to generator G, the IBE scheme is secure against

36

chosen-ciphertext attacks. In particular, assuming BDDH is ε-hard, then the IBE scheme is ≈ O(nqε)-
secure.

37

	Introduction
	Our Contributions
	Related Work and Comparison
	Publication Info

	Definitions
	Notation
	Identity Based Key Encapsulation
	Target Collision Resistant Hash Functions

	Assumptions
	Parameter generation algorithms for Bilinear Groups.
	The BDDH assumption

	A chosen-ciphertext secure IB-KEM based on BDDH
	Waters' Hash
	The IB-KEM Construction
	More Efficient Decapsulation
	Security

	IB-KEM with threshold key-delegation and decapsulation
	Definitions
	Security requirements
	Discussion and Difficulties
	The Scheme

	Extensions
	Chosen-ciphertext secure Hierarchical Identity-Based Key Encapsulation
	Identity-based Encryption
	A Tradeoff between public key size and security reduction
	Selective-identity chosen-ciphertext secure IB-KEM
	Implementing the collision resistant hash function TCR

	Efficiency comparison of our IB-KEM
	IB-KEM scheme obtained by the generic CHK transformation
	IB-KEM mentioned in BMW
	A comparison

	Security of the IB-KEM
	Proof of Lemma A.3
	Proof of Lemma A.2

	Security of the Threshold IB-KEM
	Proof of Theorem 5.4
	Proof of Theorem 5.3

	The IBE scheme from BMW BMW05
	IBE scheme obtained by the generic CHK transformation

