
A Simple Left-to-Right Algorithm for Minimal Weight
Signed Radix-r Representations

James A. Muir∗

School of Computer Science
Carleton University, Ottawa, Canada

http://www.scs.carleton.ca/∼jamuir

23 October 2006 12:57:11 EDT

Abstract

We present a simple algorithm for computing the arithmetic weight of an integer with respect to a
given radix r ≥ 2. The arithmetic weight of n is the minimum number of nonzero digits in any signed
radix-r representation of n. This algorithm leads to a new family of minimal weight signed radix-r
representations which can be constructed using a left-to-right on-line algorithm. These representations
are different from the ones previously discovered by Joye and Yen [3]. The idea behind our algorithm
is that of choosing closest elements which was introduced by Muir and Stinson [5]. Our results have
applications in coding theory and in the efficient implementation of public-key cryptography.

Index Terms computer arithmetic, signed radix-r representations, redundant representations, mini-
mal weight representations, left-to-right recoding, elliptic curve cryptography.

1 Introduction

In this paper, we are concerned with radix-r representations where r ≥ 2.

Definition 1. A radix-r representation is a finite sum of the form
∑

i≥0 air i .

Since the sum above is finite, this implies that all but a finite number of the ai are equal to zero. If n is
an integer and n =

∑
i≥0 air i , we say that

∑
i≥0 air i is a radix-r representation of n. To denote radix-r

representations, the following notation is commonly used:

(. . . a3a2a1a0)r = · · · + a3r3
+ a2r2

+ a1r1
+ a0.

Each ai is called a digit.
It is well-known that every non-negative integer has a unique radix-r representation with digits from the

set {0, 1, 2, . . . , r − 1}. Usually, when one speaks of “radix-r representations”, what is meant is radix-r
representations which use these digits. However, we do not need to restrict ourselves to only these digits.
Signed radix-r representations use the digits {0,±1,±2 . . . ,±(r − 1)}. We will often write 1, 2, . . . to
stand for −1,−2, Every integer, except for zero, has several different signed radix-r representations. In
fact, every nonzero integer has an infinite number of such representations (e.g. 42 = (222)4 = (1222)4 =

∗J.A. Muir is supported by a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship.

1

http://www.scs.carleton.ca/~jamuir

(13222)4 = (133222)4 = · · ·). Of these redundant representations, it is possible to select one which has as
few nonzero digits as possible. We say that such representations have minimal weight.

Signed radix-r representations of minimal weight have been studied by various subgroups of computer
scientists; two, in particular, are coding theorists and cryptographers.

AN codes are a family of error detecting and correcting codes ([6] and Chapter 12 of [4] provide good
overviews of AN codes). The messages for these codes are integers. Message encoding and decoding has
the advantage that it is done using regular integer multiplication and division. Integers n0, n1 are encoded as
An0, An1, where A is a fixed integer. Note that

An0 + An1 = A(n0 + n1);

so the sum of two codewords is a codeword. Because of this property, AN codes are useful for detecting
errors in computer arithmetic. If S is the result of a computation and S 6≡ 0 (mod A), then an error has
occurred. The distance function used in AN codes is based on signed radix-r representations.

Definition 2. The arithmetic weight of an integer n, with respect to a given radix r , is the number of nonzero
digits in a minimal weight signed radix-r representation of n.

The distance between x and y is the arithmetic weight of x − y. Finding AN codes that correct more than
one error requires a way of computing an integer’s arithmetic weight.

A method of constructing minimal weight representations, for a general radix r ≥ 2, was provided by
Clark and Liang [1]. This construction reveals an integer’s arithmetic weight. Clark and Liang call their
representations generalized nonadjacent forms (GNAFs) since they generalize Reitwiesner’s nonadjacent
forms [7] which are defined in the case r = 2. Clark and Liang’s algorithm builds a GNAF from least
significant digit to most significant digit.

Cryptographers became interested in minimal weight representations because of their utility in making
the algebraic operations used in public-key cryptography more efficient. As a concrete example, consider
the Elliptic Curve Digital Signature Algorithm (ECDSA) [2]. Signing a message using ECDSA requires a
computation of the form

n P := P + P + · · · + P︸ ︷︷ ︸
n

,

where n is an integer and P is an elliptic curve point. Two well-known algorithms for computing n P
are presented in Figure 1; both are based on replacing n with a signed radix-r representation. The main
difference in the two algorithms is that one processes the digits of (a`−1 . . . a1a0)r = n from left to right and
the other does so from right to left. Note that any signed radix-r representation of n may be used in these
algorithms. However, some work can be saved if a minimal weight representation is used. This is because,
for every nonzero digit in (a`−1 . . . a1a0)r , an elliptic curve addition or subtraction is performed.

The left-to-right algorithm in Figure 1 is generally preferred since the value of the variables Pi , which
are set in the first “for” loop, can be precomputed off-line and stored. This is advantageous if n P must be
computed for various values of n (e.g. when a number of different messages must be signed using ECDSA).
Joye and Yen [3] considered the following problem. Suppose we already have a radix-r representation of n
at the start of the left-to-right algorithm (this might be provided as input). They asked: if that representation
does not have minimal weight, is there a way to compute the digits of a minimal weight representation of
n from left to right? If so, then the digits of this minimal weight representation do not need to be stored
since they can be computed inside the main “for” loop as they are needed. This would reduce the amount of
memory necessary to compute n P .

In [3], Joye and Yen present an algorithm which builds a minimal weight representation from left to
right. The genesis of their algorithm is in identifying and replacing “elementary blocks” in an integer’s
GNAF. This approach initially seems somewhat ad hoc, but their final algorithm speaks for itself.

2

Left-to-Right

Q ←∞
for i = 1 . . . r − 1

do
{

Q ← Q + P
Pi ← Q

Q ←∞
compute (a`−1 . . . a1a0)r = n
for i = `− 1 . . . 0

do

Q ← r Q
if ai 6= 0

then

if ai > 0

then Q ← Q + Pai

else Q ← Q − P−ai

return Q

Right-to-Left

for i = 1 . . . r − 1
do Pi ←∞

Q ← P
compute (a`−1 . . . a1a0)r = n
for i = 0 . . . `− 1

do

if ai 6= 0

then

if ai > 0

then Pai ← Pai + Q
else P−ai ← P−ai − Q

Q ← r Q
Q ←∞, R←∞
for i = 1 . . . r − 1

do
{

Q ← Q + Pi

R← R + Q
return R

FIGURE 1: Left-to-right and right-to-left versions of the radix-r method for computing n P .

It turns out that there is a more natural and simplistic solution to Joye and Yen’s problem. It is based
on a technique introduced by Muir and Stinson [5]. To construct a minimal weight representation of n from
left to right, we choose an integer c, with arithmetic weight equal to one, that is closest to n. The purpose of
the current paper is to explain this technique.

Outline The main part of the paper begins with §2 where we review some basic facts about modular
arithmetic and present some notation. In §3, we explain what we mean by “choosing closest elements” and
demonstrate how this can be efficiently done. Our algorithm for computing an integer’s arithmetic weight
is presented in §4 with the necessary proofs. In §5, we give our left-to-right algorithm for building minimal
weight representations and compare it with Joye and Yen’s. We end with some concluding remarks in §6.

2 Preliminaries

The quotient-remainder theorem tells us that, for any integers n and m > 0, there exist unique integers q
and p such that

n = q · m + p where 0 ≤ p < m.

The value p is commonly denoted by “n mod m”. It follows that there also exist unique integers q̂ and p̂
such that

n = q̂ · m + p̂ where − m/2 ≤ p̂ < m/2.

We will denote the value p̂ by “n mods m”. Note that p̂ is equal to either p or p − m.
Let Dr be the set consisting of the signed radix-r digits:

Dr := {0,±1,±2, . . . ,±(r − 1)}.

If α is a string of digits, we denote the number of nonzero digits in α by wt(α). We refer to wt(α) as the
weight of the string α. The set of all strings composed of digits in Dr is denoted by Dr

∗.

3

For an integer n, we define

wt∗(n) := min{wt(α) : α ∈ Dr
∗, (α)r = n}.

So, wt∗(n) is the minimum number of nonzero digits required to represent n using a Dr -radix-r repre-
sentation. Thus, wt∗(n) is the arithmetic weight of n. If α ∈ Dr

∗ and (α)r = n then it must be that
wt(α) ≥ wt∗(n); if wt(α) = wt∗(n) we say that α has minimal weight.

3 Closest Elements

Let C be the set of integers which have arithmetic weight equal to one:

C :=
{
dr i : i ∈ Z, i ≥ 0, d ∈ Dr \ {0}

}
. (1)

Given a nonzero integer, n, we are interested in finding an element in C that is closest to n, with respect
to the standard Euclidean distance (i.e. |x − y|). The following lemma helps us recognize when c ∈ C is
closest to n.

Lemma 3. Let n be a nonzero integer, i =
⌊

logr |n|
⌋

and c ∈ C. If r i
≤ |c| ≤ r i+1, then c is closest to n if

and only if

|n − c| ≤
r i

2
.

Proof. We will assume n is positive; the argument for n < 0 is the same except for some sign changes. We
have

r i
≤ n < r i+1.

Consider the elements of C in the interval [r i , r i+1]; there are exactly r of them:

r i , 2r i , 3r i , . . . , (r − 1)r i , r i+1.

The distance between each pair of consecutive elements is r i . Thus, if c ∈ C and c ∈ [r i , r i+1], then c is
closest to n if and only if |n − c| ≤ r i/2.

For n 6= 0, consider the following function

closest(n) := n − (n mods rblogr |n|c).

By applying uniqueness from the definition of “mods”, we can deduce that closest(n) equals a multiple of
rblogr |n|c that is closest to n. However, not all multiples of rblogr |n|c are in C, and there are elements of C
which are not multiples of rblogr |n|c. Despite this, our next result shows that closest(n) does what we want.

Theorem 4. closest(n) is an element of C that is closest to n.

Proof. Let i =
⌊

logr |n|
⌋

and p̂ = n mods r i . Note that closest(n) = n − p̂. We will assume n > 0; the
proof for n < 0 is similar.

We have
n = q̂r i

+ p̂,

for some integer q̂. Since r i
≤ n < r i+1 and −r i/2 ≤ p̂ < r i/2, it must be that

q̂ ∈ {1, 2, . . . , r}.

4

So we see that n − p̂ = q̂r i
∈ C. As well, we get the bound

r i
+ p̂ ≤ n ≤ r i+1

+ p̂,

and thus n − p̂ ∈ [r i , r i+1].
To finish the argument, observe

| p̂| ≤ r i/2

H⇒ |n − (n − p̂)| ≤ r i/2.

So, by Lemma 3, n − p̂ = closest(n) is an element of C closest to n.

Note that, depending on the choice of r , some values of n can have two closest elements in C. For such
integers, closest(n) is equal to the largest closest element in C.

4 Minimality

Consider the following procedure:

Algorithm W

INPUT: integers n, r where r ≥ 2.

OUTPUT: an integer w.

w← 0
while n 6= 0

do

w← w + 1
c← closest(n)

n← n − c
return w

Our main result is that Algorithm W computes the arithmetic weight of n. However, before we get to that,
we first need to prove that Algorithm W terminates for all inputs (i.e. we need to prove that “Algorithm” W
really is an algorithm).

Fix some r ≥ 2 and take any n ∈ Z. If n = 0 then Algorithm W clearly terminates, so we need only
consider n 6= 0. It suffices to show that |n| > |n − c| where c = closest(n). Suppose to the contrary that
|n| ≤ |n − c|. Then,

|n| ≤ |n − c|

H⇒ |n| ≤ rblogr |n|c/2 (by Lemma 3)

H⇒ rblogr |n|c ≤ rblogr |n|c/2

H⇒ 2 ≤ 1,

which is a contradiction. Thus, we see that the value of the variable n in the execution of Algorithm W must
go to 0, hence Algorithm W will always terminate. So, “Algorithm” W is aptly named.

Example 5. We build on an example from [3]. Here is the sequence of values that the variable c assumes
during the execution of Algorithm W on input n = 208063846 and r = 4:

201326592, 8388608, − 2097152, 524288, − 65536, − 12288, − 768, 128, − 32, 8, − 2.

The value returned by Algorithm W is 11 which is equal to the number of integers in this sequence. ♦

5

If we let w be the value returned by Algorithm W on input n and r , then we claim that w = wt∗(n). We
will prove this by showing that w ≥ wt∗(n) and w ≤ wt∗(n). We start with w ≥ wt∗(n).

Let c1, c2, . . . cw be the sequence of values that the variable c assumes in the execution of Algorithm W.
We have

c1 is closest to n

c2 is closest to n − c1

c3 is closest to n − c1 − c2

...

cw is closest to n − c1 − c2 − . . .− cw−1.

Because the algorithm terminates, we have

n − c1 − c2 − . . .− cw−1 − cw = 0

H⇒ n = c1 + c2 + · · · + cw.

We show that the ci form a radix-r representation of n. For each ci , write

ci = dir ei where di ∈ Dr \ {0}.

Lemma 6. e1 > e2 > · · · > ew.

Proof. Since we can replace the input n with n − c1, it suffices to prove that e1 > e2. From the definition of
closest(n) we have

e1 ∈
{⌊

logr |n|
⌋

,
⌊

logr |n|
⌋
+ 1

}
,

e2 ∈
{⌊

logr |n − c1|
⌋

,
⌊

logr |n − c1|
⌋
+ 1

}
.

By Lemma 3, we have

|n − c1| ≤ rblogr |n|c/2

H⇒ |n − c1| < rblogr |n|c

H⇒ rblogr |n−c1|c < rblogr |n|c

H⇒
⌊

logr |n − c1|
⌋
+ 1 ≤

⌊
logr |n|

⌋
Thus, the smallest value of e1 is ≥ the largest value of e2. Hence, e1 ≥ e2.

Suppose e1 = e2. From the argument we gave to prove that Algorithm W terminates, we have |n| >
|n − c1| > |(n − c1)− c2|. Thus,

|n − c1| > |n − (c1 + c2)| .

So the integer c1 + c2 is closer to n than c1. However, e1 ≥
⌊

logr |n|
⌋

so rblogr |n|c divides c1 = d1r e1 . And,
because e2 = e1, rblogr |n|c also divides c2. This implies that c1 + c2 is a multiple of rblogr |n|c. But this is a
contradiction because c1 is a multiple of rblogr |n|c that is closest to n (recall that c1 = n−(n mods rblogr |n|c)).
Hence, it must be that e1 6= e2, and thus e1 > e2, as required.

Example 7. Continuing from our previous example with n = 208063846 and r = 4, the sequence of values
that the variable c assumes during the execution of Algorithm W gives the following representation:

208063846 = (30222103032222)4.

Notice that this representation has 11 nonzero digits. Thus 11 ≥ wt∗(208063846). ♦

6

Lemma 8. Let w be the value returned by Algorithm W on input n and r ≥ 2. Then w ≥ wt∗(n).

Proof. By Lemma 6, the sequence of w values that the variable c assumes during the execution of Algo-
rithm W gives us a string α ∈ Dr

∗ with (α)r = n and w = wt(α). Thus, w = wt(α) ≥ wt∗(n).

Next, we need to prove that w ≤ wt∗(n). The following two short lemmas will be of help.

Lemma 9. Let (a`−1 . . . a1a0)r be any representation of n with each digit in Dr and a`−1 6= 0. Let i =⌊
logr |n|

⌋
. Then, `− 1 ≥ i .

Proof. Note that a`−1 6= 0 implies n 6= 0 and so both logr |n| and i are defined. Since n = (a`−1 . . . a1a0)r ,
we have |n| < r `. From the definition of i , we have r i

≤ |n|. Thus, r i
≤ |n| < r `, which gives r i < r ` and

the result follows.

Lemma 10. Let (a`−1 . . . a1a0)r be any representation of n with each digit in Dr and a`−1 6= 0. Let
i =

⌊
logr |n|

⌋
. Then, there are at most two possible values for (a`−1 . . . ai)r · r i ; moreover, both of these

values are in C, and one is equal to closest(n).

Proof. Consider the constrained Diophantine equation

n = xr i
+ y, − r i < y < r i . (2)

It is easily seen that (2) has at most two solutions. More precisely, when r i divides n there is exactly one
solution, and when r i does not divide n there are exactly two solutions. In either case, setting y = n mods r i

always gives a solution, and for the resulting x value we have xr i
= n − (n mods r i) = closest(n).

By the definition of i we have that −r i+1 < n < r i+1. Combining this bound with the fact that
−r i < −y < r i we get

− r i+1
− r i < n − y < r i+1

+ r i

H⇒ − r − 1 < (n − y)/r i < r + 1

H⇒ − r ≤ x ≤ r.

If x = 0, then (2) implies that −r i < n < r i , contrary to the definition of i . Thus, x 6= 0 and hence xr i
∈ C.

Now, to complete the proof, we simply observe that the representation (a`−1 . . . a1a0)r gives us a solution
to (2) because

n = (a`−1 . . . ai)r · r i
+ (ai−1 . . . a0)r ,

and−r i < (ai−1 . . . a0)r < r i . Note that, by Lemma 9, the range of digits a`−1 . . . ai is well defined because
`− 1 ≥ i .

We can now present our final lemma.

Lemma 11. Let w be the value returned by Algorithm W on input n and r ≥ 2. Then w ≤ wt∗(n).

Proof. If n = 0, then w = 0 = wt∗(0), and so the Lemma holds in this case. Suppose n 6= 0. Let
c1, c2, . . . , cw be the sequence of values that the variable c assumes during the execution of Algorithm W.
Let (a`−1 . . . a1a0)r be an arbitrary representation of n with digits in Dr and a`−1 6= 0. Let i =

⌊
logr |n|

⌋
.

Then
n = (a`−1 . . . ai)rr i

+ (ai−1 . . . a0)r .

7

We want to replace (a`−1 . . . ai)rr i with c1 in the equation above. If (a`−1 . . . ai)rr i is equal to c1, then this
is easily done, but it is not always true that (a`−1 . . . ai)rr i

= c1. If (a`−1 . . . ai)rr i
6= c1, we can still carry

out the replacement and maintain equality if we also replace ai−1 with a new digit âi−1 defined as follows:

âi−1 :=

ai−1 if c1 = (a`−1 . . . ai)rr i ,

ai−1 − r if c1 6= (a`−1 . . . ai)rr i and ai−1 > 0,

ai−1 + r if c1 6= (a`−1 . . . ai)rr i and ai−1 < 0.

(3)

Observe that âi−1 ∈ Dr . We will show that

n = c1 + (̂ai−1 . . . a0)r . (4)

Before we prove (4), we first make a note about the definition of âi−1. It may seem as though the
case (a`−1 . . . ai)rr i

6= c1 and ai−1 = 0 is missing from (3), but this is not so. Consider the difference
n − (a`−1 . . . ai)rr i

= (ai−1 . . . a0)r . When ai−1 = 0 we have∣∣n − (a`−1 . . . ai)rr i
∣∣ = |(0ai−2 . . . a0)r | < r i−1

≤
r i

2
.

By Lemma 3, this bound implies that (a`−1 . . . ai)rr i
= closest(n) = c1. Thus when (a`−1 . . . ai)rr i

6= c1,
ai−1 must be nonzero.

Now we return to establishing (4) for each case listed in (3). In the first case there is nothing to prove.
Consider the second case. Suppose that (a`−1 . . . ai)rr i

6= c1 and ai−1 > 0. Then it is easily checked that

x = (a`−1 . . . ai)r , y = (ai−1 . . . a0)r

and
x = (a`−1 . . . ai)r + 1, y = (ai−1 . . . a0)r − r i

are the two solutions to the constrained Diophantine equation n = xr i
+ y,−r i < y < r i . Since

(a`−1 . . . ai)rr i
6= c1, it must be that ((a`−1 . . . ai)r + 1)r i

= c1 (this follows from Lemma 10). Now,

n = ((a`−1 . . . ai)r + 1) r i
+

(
(ai−1 . . . a0)r − r i)

= c1 + (̂ai−1 . . . a0)r ,

which is what we wanted to show. The third case, (a`−1 . . . ai)rr i
6= c1 and ai−1 < 0, is established in the

same way (take x = (a`−1 . . . ai)r − 1, y = (ai−1 . . . a0)r + r i). Thus, no matter what representation of n
we begin with, (4) always holds.

We have

n = c1 + (̂ai−1 . . . a0)r

H⇒ n − c1 = (̂ai−1 . . . a0)r .

Note that âi−1 is nonzero if and only if ai−1 is nonzero. Thus, (ai−1 . . . a0)r and (̂ai−1 . . . a0)r contain the
same number of nonzero digits. If n − c1 6= 0, then (̂ai−1 . . . a0)r must contain another nonzero digit. In
this case, we can do another replacement and incorporate the value c2 by repeating the above process with
n − c1 in place of n. Thus, we see that we can carry out exactly w of these replacements. After we bring cw

into our equation, there can be no more nonzero digits in what remains of the representation (. . . a1a0)r ; this
is because n − c1 − · · · − cw = 0.

Each time we carry out a replacement, we eliminate at least one digit that was nonzero in α = a`−1 . . . a0

and we do not create any new ones. Thus, an upper bound on the number of replacements that can be applied
is wt(α). So, w ≤ wt(α).

This process works for any α ∈ Dr
∗ with (α)r = n. By taking α with wt(α) = wt∗(n) (i.e. by taking a

minimal weight representation of n) we get w ≤ wt∗(n), as desired.

8

Example 12. We illustrate the transformation used in the proof of Lemma 11. The sequence of values that
the variable c assumes during the execution of Algorithm W on input n = 43 and r = 3 is 54,−9,−2. We
can transform any signed radix-3 representation of 43 into the sum 54+ (−9)+ (−2) using the rules listed
in (3). Consider the representation (1121)3 = 43. Since

⌊
log3 43

⌋
= 3 we write

43 = (1)3 · 33
+ (121)3.

Now, (1)3 · 33
6= 54 and a2 = 1 is positive, thus we have

43 = 54+ (221)3.

(221)3 is a representation of −11. Since
⌊

log3 |−11|
⌋
= 2 we write

43 = 54+ (2)3 · 32
+ (21)3.

−9 is closest to −11, and (2)3 · 32
6= −9 with a1 = 2 positive. Thus, we have

43 = 54+ (−9)+ (11)3.

Finally, (11)3 is a representation of −2. Since
⌊

log3 |−2|
⌋
= 0 we write

43 = 54+ (−9)+ (11)3 · 30.

−2 is closest to −2, and (11)3 · 30
= −2 so we have

43 = 54+ (−9)+ (−2).

Notice that the final substitution eliminated two nonzero digits while the first two substitutions each elim-
inated one. If we had instead started with the representation (2102)2 = 43, then our substitutions would
proceed as follows:

43 = (2102)2

= (2)3 · 33
+ (102)3

= 54+ (102)3

= 54+ (1)3 · 32
+ (02)3

= 54+ (−9)+ (02)3

= 54+ (−9)+ (−2).

For this representation, each substitution eliminates one nonzero digit. ♦

After all those lemmas, we can now state a theorem.

Theorem 13. Let w be the value returned by Algorithm W on input n and r ≥ 2. Then w = wt∗(n).

Proof. Apply Lemma 8 and Lemma 11.

9

5 Constructing Representations

We now know that by using the function closest(n) we can build a minimal weight signed radix-r repre-
sentation of an integer. This representation is implicitly constructed in Algorithm W. Here we present an
on-line algorithm which outputs the digits of a minimal weight representation from left to right. As we will
see, when the radix r is even, the representation built by the on-line algorithm matches that of Algorithm W;
when r is odd, however, the two representations can differ.

The input to our algorithm is a representation (b`−1 . . . b1b0)r where each bi ∈ {0, 1, 2, . . . , r − 1}. It is
possible to describe a more general algorithm which takes arbitrary signed radix-r representations as input.
However, restricting the input to representations with non-negative digits simplifies our discussion. As well,
it allows us to compare our algorithm more directly with Joye and Yen’s [3].

Our algorithm uses a “for” loop to construct its output representation (a` . . . a1a0)r . At the beginning of
each iteration of the “for” loop, the algorithm has the following information:

ni = (̂bi bi−1 . . . b0)r where b̂i = bi +1 and 1 ∈ {0,−r}. (5)

Initially, i = ` − 1 and 1 = 0. The value of ai is determined by b̂i and bi−1. Often, b̂i and bi−1 reveal the
value of closest(ni), but this is not always the case. Observe,

ni = (̂bi bi−1 . . . b0)r

H⇒ b̂ir i
≤ ni < (̂bi + 1)r i . (6)

Now consider the possible values of b̂i . Since 1 ∈ {0,−r} and bi ∈ {0, 1, 2, . . . , r − 1}, we have

b̂i ∈ {−r,−(r − 1), . . . ,−1, 0, 1, . . . , r − 1}.

When b̂i 6∈ {−1, 0} then from (6) we see that b̂ir i and (̂bi + 1)r i are two consecutive, nonzero elements
of C that bound ni . Thus, closest(ni) equals either b̂ir i or (̂bi + 1)r i . When r is even, the value of bi−1

always reveals which of the two possibilities is correct: if bi−1 ≥ r/2 then closest(ni) = (̂bi + 1)r i , and
closest(ni) = b̂ir i otherwise. When r is odd, this is not necessarily true.

Example 14. For the radix r = 3, suppose we have ni = (21bi−2bi−3 . . .)3. The most significant digit of
this representation, bi = 2, tells us that 2r i

≤ ni < 3r i . Unfortunately, the next digit, bi−1 = 1, does
not reveal which of these two values is closer. Observe (210bi−3 . . .)3 is closer to 2r i , but (212bi−3 . . .)3 is
closer to 3r i ; similarly for (2110 . . .)3 and (2112 . . .)3. By putting a long run of 1’s to the right of bi , we
see that reading any finite number of digits immediately to the right of bi will not suffice to determine the
closest choice; thus, no on-line algorithm is able to make this determination. ♦

When r is odd, we can deduce the following: if bi−1 > br/2c, then closest(ni) = (̂bi + 1)r i ; if
bi−1 < br/2c, then closest(ni) = b̂ir i ; but, if bi−1 = br/2c, the value of closest(ni) cannot be decided.
Fortunately, when bi−1 = br/2c, it does not matter whether we choose to use (̂bi + 1)r i or b̂ir i in our
representation of ni ; both choices yield minimal weight representations.

Lemma 15. Let r ≥ 2 be odd. If ni = (̂bi bi−1 . . . b0)r with b̂i 6∈ {−1, 0} and bi−1 = br/2c, then

wt∗(ni − closest(ni)) = wt∗
(
ni − b̂ir i) .

Proof. If closest(ni) = b̂ir i , then there is nothing to prove. Assume that closest(ni) = (̂bi + 1)r i . From
the closest choice representation of ni , we have

ni = (̂bi + 1)r i
+ c2 + c3 + · · · + cw.

10

Because ni < (̂bi + 1)r i it must be that c2 < 0. We claim that c2 = dr i−1. To see this, observe

b̂ir i
+ br/2c r i−1

≤ ni < b̂ir i
+ (br/2c + 1)r i−1

H⇒ −r i
+ br/2c r i−1

≤ ni − (̂bi + 1)r i < −r i
+ (br/2c + 1)r i−1

H⇒ (br/2c − r)r i−1
≤ ni − (̂bi + 1)r i < (br/2c − r + 1)r i−1.

By writing r = 2x + 1 where x ≥ 1, it can be shown that br/2c − r ≤ −2. Thus, we have two consecutive
nonzero elements of C that bound ni− (̂bi+1)r i ; so closest

(
ni − (̂bi + 1)r i

)
= dr i−1 where d is a negative

digit in {br/2c − r, br/2c − r + 1}. Now,

ni = (̂bi + 1)r i
+ dr i−1

+ c3 + · · · + cw

= b̂ir i
+ (r + d)r i−1

+ c3 + · · · + cw.

Note that r + d is a valid (positive) digit. Because the first representation has minimal weight, so too does
the second. Hence, the result follows.

In light of Lemma 15, when we cannot decide on the correct value of closest(ni) because bi−1 = br/2c,
we can safely take b̂ir i without sacrificing minimality. However, a consequence of this strategy is that when
r is odd, the minimal weight representation built by our on-line algorithm can be different from the closest
choice representation.

Here is how our algorithm works. When b̂i 6∈ {−1, 0}, it sets ai to equal either b̂i or b̂i + 1, and it does
so in the following way. At first, it takes ai = b̂i , but then, if bi−1 ≥ r/2, it takes ai = b̂i + 1. After ai is
determined, 1 is updated; if ai = b̂i + 1 then 1 = −r , otherwise 1 = 0. It is possible that b̂i + 1 = r , in
which case we cannot take ai = b̂i + 1 because r is not a valid digit for our output representation. However,
this possibility is easily detected and can be dealt with by setting ai+1 = 1 and ai = 0 (we will see that the
previous value of ai+1 is necessarily zero so overwriting it does not cause a problem). It is also possible that
b̂i = −r . This is dealt with similarly; we set ai+1 = −1 and ai = 0 (again, this causes no problem). In the
subsequent loop iteration, we have ni−1 = (̂bi−1bi−2 . . . b0)r = ni − air i .

Two cases which we have not yet addressed are when b̂i ∈ {−1, 0}. For these values, (6) becomes

0 ≤ ni < r i , and − r i
≤ ni < 0.

With respect to determining closest(ni), these bounds are not of much use. Regardless, the algorithm must
set ai to some value. In these cases, we set ai = 0. More precisely, when b̂i = 0, we set ai = 0 and update
1 to equal 0; and when b̂i = −1, we set ai = 0 and update 1 to equal −r . In either situation, it can be
shown that updating the value of 1 is unnecessary. For instance, since 0 ≤ bi ≤ r − 1 and 1 ∈ {0,−r}, if
b̂i = bi +1 = 0, then it must be that bi = 0 and 1 = 0; since 1 is already 0, we do not need to update it.

This strategy for dealing with b̂i ∈ {−1, 0}works well except when it happens that b̂0 = −1. In this case,
we would set a0 = 0 and pass 1 = −r into the subsequent loop iteration. However, there is no subsequent
loop iteration. We deal with this problem by checking the value of 1 after the “for” loop completes. If
1 = −r , then we set a0 = −1.

We still need to justify that setting ai+1 = 1 and ai = 0 instead of ai = r does not overwrite a nonzero
digit. This could only happen if b̂i + 1 = r . From (5), we see that this implies bi = r − 1 and 1 = 0. The
value of 1 was determined in the previous loop iteration when the initial value of ai+1 was set. If ai+1 was
nonzero, then the fact that bi = r − 1 ≥ r/2 would imply 1 = −r , contrary to the fact that 1 = 0. So, the
initial value of ai+1 must have been zero. The case where we set ai+1 = −1 and ai = 0 instead of ai = −r
can be justified similarly. This happens only if b̂i = −r . From (5), we can deduce that bi = 0 and 1 = −r .
The value of 1 was determined in the previous loop iteration. If the initial value of ai+1 was nonzero then

11

we would have 1 = 0 because bi = 0 < r/2, contrary to the fact that 1 = −r . So, again, the initial value
of ai+1 must have been zero.

This method of constructing minimal weight signed radix-r representations is implemented in Algo-
rithm R.

Algorithm R

INPUT: (b`−1 . . . b1b0)r where each bi ∈ {0, 1, . . . , r − 1}.
OUTPUT: (a` . . . a1a0)r

b−1 ← 0, a`← 0, 1← 0
for i = `− 1 . . . 0

do

b̂← bi +1

if b̂ ∈ {−1, 0} then b̂← 0

else

if bi−1 ≥ r/2

then 1←−r, b̂← b̂ + 1
else 1← 0

if b̂ = r then ai+1 ← 1, ai ← 0
else if b̂ = −r then ai+1 ←−1, ai ← 0
else ai ← b̂

if 1 = −r then a0 ←−1
return (a` . . . a1a0)r

Algorithm R can be adapted so that it outputs an integer’s arithmetic weight. This is done in Appendix A.
Computing the arithmetic weight in this way does not require the computation of logarithms or divisions;
these operations are used in Algorithm W.

Algorithm R can be combined with the left-to-right radix-r method of computing n P in Figure 1. How-
ever, the fact that digit ai+1 can be overwritten after the value of ai is determined requires some consider-
ation. One easy way to deal with this is to simply allow digits to take the values ±r . This can be accom-
plished by replacing the “if-else-else” statement at the bottom of the “for” loop in Algorithm R with the
statement ai ← b̂. Note that this change requires the point r P to be precomputed in addition to the points
1P, 2P, . . . , (r − 1)P .

An initial question that we might ask about Algorithm R is whether or not it is equivalent to Joye and
Yen’s (see Figure 1, page 380, of [3]). It is not, and this fact can be easily demonstrated.

Example 16. Let r = 3. The {0, 1, 2}-radix-3 representation of 41 is (1112)3. Here are three minimal
weight {0,±1,±2}-radix-3 representations constructed by three algorithms:

Algorithm R (1121)3

Joye & Yen (1211)3

GNAF (2111)3.

The GNAF of 41 was constructed using Theorem 3 from [1]. Notice that each output is different from the
others. Thus, we can conclude that the algorithms which created these outputs are not equivalent. Note also
that the closest choice representation of 41 is 54+ (−9)+ (−3)+ (−1) = (2111)3 which is different from
the output of Algorithm R. ♦

Example 17. The output of Algorithm R on input (30121230311212)4 = 208063846 was listed in Exam-
ple 6 (note that r is even). Joye and Yen give the output of their algorithm in [3]:

Algorithm R (30222103032222)4

Joye & Yen (30122103031212)4

GNAF (30212103031212)4.

12

Again, these outputs demonstrate that the algorithms are not equivalent. ♦

More generally, it can be shown that, for any r > 2, the smallest positive integer for which the the two
algorithms produce different representations is n = r + br/2c.

Algorithm R does not always produce a different representation than Joye and Yen’s algorithm. In the
case when r = 2, it appears that the outputs of the two algorithms coincide. If we take r = 4 and consider
the representations constructed by the two algorithms for the integers 1 . . . 63, then all but eleven of them
are equal; different representations are output for the integers 6, 13, 22, 24, 25, 38, 39, 52, 53, 54 and 55.

One difference between the outputs produced by Algorithm R and those produced by Joye and Yen’s
algorithm is that Algorithm R’s outputs sometimes have shorter length. For r = 4, when we compare
the outputs of the two algorithms for the integers 1 . . . 2047, we find that 85 representations computed
by Algorithm R are shorter (by one digit in each case) and 1962 representations have the same length.
This difference indicates that the algorithms for computing n P in Figure 1 perform slightly better with the
representations constructed by Algorithm R.

Algorithm R also differs from Joye and Yen’s in that it only examines two input digits, bi , bi−1, before
it sets the value of ai ; Joye and Yen’s algorithm examines three digits, bi , bi−1, bi−2.1 As well, Algorithm R
requires ` loop iterations while Joye and Yen’s algorithm requires ` + 1; here ` is the length of the input
representation. However, deciding which of the two algorithms is more efficient is a subjective task; this is
dependent on what resources (e.g. memory) are available to an implementor. In software, there seems to be
little reason to choose one over the other. In hardware, the fact that Algorithm R requires fewer temporary
variables may be of some benefit. A non-academic reason to choose Algorithm R is that it is not encumbered
by patents. For r = 2, Joye and Yen’s technique has been patented in France (patent no. 2811168) and in
the USA (patent no. 6903663); for r ≥ 2, patents are pending in France and the USA.

6 Concluding Remarks

In this paper, we have presented a new algorithm for computing the arithmetic weight of an integer. This
algorithm leads to a new family of minimal weight signed radix-r representations which can be constructed
using a left-to-right on-line algorithm. The idea behind our algorithm is simply that of choosing closest
elements. This is a very general approach and it may be useful in constructing other families of minimal
weight integer representations. Use of our algorithm is not encumbered by patents.

Acknowledgements

The author is indebted to Harry Reimann for pointing out an error in Algorithm R in a previous version of
this paper.

References

[1] W. CLARK AND J. LIANG. On arithmetic weight for a general radix representation of integers. IEEE
Transactions on Information Theory 19 (1973), 823–826.

[2] FIPS 186-2. Digital Signature Standard (DSS). Federal Information Processing Standards Publication
186-2, U.S. Department Of Commerce / National Institute of Standards and Technology, 2000.
Available from http://www.csrc.nist.gov/publications/fips/

1More precisely, in each loop iteration, Joye and Yen’s algorithm executes one of three cases. In the second case, three input
digits must be examined to determine an output digit; in the first and third cases, only two input digits need to be examined.

13

http://www.csrc.nist.gov/publications/fips/

[3] M. JOYE AND S. YEN. New minimal modified radix-r representation with applications to smart cards.
Public Key Cryptography 2002, Lecture Notes in Computer Science 2274 (2002), 375–383.

[4] J. VAN LINT. Introduction to Coding Theory, 3rd edition, Springer, 1999.

[5] J. MUIR AND D. STINSON. New minimal weight representations for left-to-right window methods.
Cryptographers’ Track at the RSA Conference 2005, Lecture Notes in Computer Science 3376 (2005),
366–383.

[6] T. RAO AND O. GARCIA Cyclic and multiresidue codes for arithmetic operations. IEEE Transactions
on Information Theory 17 (1971), 85–91.

[7] G. REITWIESNER. Binary arithmetic. In Advances in Computers, Vol. 1, Academic Press, 1960, pp.
231–308.

A An Alternate Implementation of Algorithm W

When Algorithm W executes, closest(n) is evaluated a number of times. Evaluating closest(n) requires
computation of a logarithm and a division; these are necessary to determine

⌊
logr |n|

⌋
and n mods rblogr |n|c.

If we already have the radix-r representation of the input n, then these computations can be avoided.
Below is an alternate implementation of our algorithm for computing an integer’s arithmetic weight.

Algorithm W’ takes the radix-r representation of n as input and computes wt∗(n) without using logarithms
or divisions.

Algorithm W’

INPUT: (b`−1 . . . b1b0)r where each bi ∈ {0, 1, . . . , r − 1}.
OUTPUT: the arithmetic weight of n = (b`−1 . . . b1b0)r

b−1 ← 0, w← 0, 1← 0
for i = `− 1 . . . 0

do

b̂← bi +1

if b̂ ∈ {−1, 0} then do nothing

else

w← w + 1
if bi−1 ≥ r/2

then 1←−r
else 1← 0

if 1 = −r then w← w + 1
return w

14

	Introduction
	Preliminaries
	Closest Elements
	Minimality
	Constructing Representations
	Concluding Remarks
	An Alternate Implementation of Algorithm W

