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Abstract

We extend the lower bound, obtained by M. Lobanov, on the first order nonlin-
earity of functions with given algebraic immunity, into a bound on the higher order
nonlinearities.

1 Introduction

Let n and r be positive integers such that r ≤ n. The r-th order nonlinearity of a Boolean
function f : F n

2 → F2 is the minimum Hamming distance d(f, h) = |{x ∈ F n
2 / f(x) 6=

h(x)}| between f and all functions h of algebraic degrees at most r, that is, whose algebraic
normal forms h(x) =

∑
I⊆{1,...,n} aI

(∏
i∈I xi

)
; aI ∈ F2, are such that max

aI 6=0
|I| ≤ r. In this

paper, we shall denote the r-th order nonlinearity of f by nlr(f).The first order nonlinearity
of f is simply called the nonlinearity of f and denoted by nl(f).
Clearly we have nlr(f) = 0 if and only if f has degree at most r. So, the knowledge of
all the nonlinearities of orders r ≥ 1 of a Boolean function includes the knowledge of its
algebraic degree. It is in fact a much more complete cryptographic parameter than are the
(first order) nonlinearity and the algebraic degree: the former is not sufficient for knowing
the cryptographic behavior of a function (since we need for instance to know what is the
algebraic degree to quantify the resistance to Berlekamp-Massey attack) and the latter is
not sufficient either, since changing one single output bit, in a function of degree less than
n, moves its degree to n, while it clearly does not much improve the cryptographic strength
of the function.
The algebraic immunity of a Boolean function f quantifies the resistance of pseudo-random
generators using it as a nonlinear function (with no memory) to the standard algebraic
attack. It equals, cf. [13], the minimum algebraic degree of nonzero annihilators of f (that
is, of those functions g : F n

2 → F2 whose products with f are null) or of f +1. It is denoted
in this paper by AI(f).
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In [11], M. Lobanov has improved upon the lower bound obtained in [8], on the (first order)

nonlinearity of functions with given algebraic immunity, which was: nl(f) ≥
∑AI(f)−2

i=0

(
n
i

)
.

He obtained that:

nl(f) ≥ 2

AI(f)−2∑
i=0

(
n− 1

i

)
.

In the present paper, we extend this lower bound into a bound on the general r-th order non-
linearity. We obtain a bound which improves in a majority of cases (for reasonable numbers

of variables) upon the lower bound obtained in [4], which was: nlr(f) ≥
∑AI(f)−r−1

i=0

(
n
i

)
.

2 A preliminary result on the dimension of the vector

space of prescribed degree annihilators of a function

In the next lemma, we extend a result from [11], which dealt only with affine functions.

Lemma 1 Let n, r and k be positive integers. Let h be an n-variable Boolean function
of algebraic degree r. The dimension of the set Ank(h) of those annihilators of degrees at
most k of h is at most

∑k
i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
.

Proof:
Since h has degree r and since the dimension of Ank(h) is invariant under affine equiva-
lence, we can assume without loss of generality that h(x) = x1x2 · · ·xr + k(x), where k has
degree at most r and where the term x1x2 · · ·xr has null coefficient in its ANF. For any
choice of n− r bits ur+1, . . . , un, the restriction hur+1,...,un of h obtained by fixing the vari-
ables xr+1, . . . , xn to the values ur+1, . . . , un (respectively) has degree r, and has therefore
odd weight (i.e. has a support of odd size), since r is the number of its variables. Hence it
has weight at least 1. For every (ur+1, . . . , un) ∈ F n−r

2 , let us denote by xur+1,...,un a vector
x such that (xr+1, . . . , xn) = (ur+1, . . . , un) and h(x) = 1. Let g be an element of Ank(h),

and let g(x) =
∑
u∈Fn

2
wt(u)≤k

aux
u be its ANF (where xu =

∏n
i=1 xui

i and where wt denotes the

Hamming weight).
Since we have h(x) = 1 ⇒ g(x) = 0 and since g(x) =

∑
u�x au, where u � x means that ev-

ery coordinate of u is upper bounded by the corresponding coordinate of x, the coefficients
au are the solutions of the system S of linear equations

∑
u�xur+1,...,un

au = 0. If, in each

equation, we transfer all unknowns au such that (u1, . . . , ur) 6= (0, . . . , 0) to the right hand
side, we obtain a system S ′ in the unknowns au such that (u1, . . . , ur) = (0, . . . , 0). Replac-
ing the right hand sides of the resulting equations by 0 (i.e. considering the correspond-
ing homogeneous system S ′

0) gives the system that we obtain when we characterize the
(n− r)-variable annihilators of degrees at most k of the constant function 1, considered as
a function in the variables xr+1, . . . , xn. Since the constant function 1 admits only the null
function as annihilator, this means that the matrix of S ′

0 has full rank
∑k

i=0

(
n−r

i

)
. Hence,

S has rank at least
∑k

i=0

(
n−r

i

)
. The dimension of Ank(h) equals the number of variables
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of the system S, minus its rank, and is therefore upper bounded by
∑k

i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
.

�

Remark: If h has weight 2n − 2n−r, then the dimension of Ank(h) equals
∑k−r

i=0

(
n−r

i

)
.

Indeed, h+1 is then the indicator of an (n−r)-dimensional flat (see e.g. [12]), and we may
without loss of generality assume that h(x) = x1x2 · · ·xr +1. Then the elements of Ank(h)
are the products of h(x)+1 = x1x2 · · ·xr with functions in the variables xr+1, . . . , xn whose
degrees are at most k− r. The dimension of Ank(h) equals then

∑k−r
i=0

(
n−r

i

)
. Note that, in

the case r = 1, this is the value of the upper bound given by Lemma 1, that is, the value
obtained by Lobanov.

3 The lower bound on the r-th order nonlinearity

Theorem 1 Let f be a Boolean function in n variables and let r be a positive integer. The
nonlinearity of order r of f satisfies:

nlr(f) ≥ 2

AI(f)−r−1∑
i=0

(
n− r

i

)
.

Proof:
Let h be any function of degree at most r and let d be the Hamming distance between
f and h. Since the Hamming weights of the functions f(h + 1) and (f + 1)h satisfy
wt(f(h + 1)) + wt((f + 1)h) = d, we have min(wt(f(h + 1)), wt((f + 1)h)) ≤ d/2. If
min(wt(f(h + 1)), wt((f + 1)h)) = wt(f(h + 1)), let f1 = f and h1 = h + 1. Otherwise, let
f1 = f + 1 and h1 = h. We have then wt(f1h1) ≤ d/2.
Let k be any positive integer. A Boolean function of degree at most k belongs to Ank(f1h1)
if and only if the coefficients in its ANF satisfy a system of wt(f1h1) equations in

∑k
i=0

(
n
i

)
variables. Hence we have: dim(Ank(f1h1)) ≥

∑k
i=0

(
n
i

)
− d/2.

According to Lemma 1, we have dim(Ank(h1)) ≤ maxr
j=1

(∑k
i=0

(
n
i

)
−

∑k
i=0

(
n−j

i

))
=∑k

i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
.

If dim(Ank(f1h1)) > dim(Ank(h1)), then there exists an annihilator g of f1h1 which is
not an annihilator of h1. Then, gh1 is a nonzero annihilator of f1 and has degree at
most k + r. Thus, if k = AI(f) − r − 1, we arrive to a contradiction. We deduce that

dim(AnAI(f)−r−1(f1h1)) ≤ dim(AnAI(f)−r−1(h1)). This implies:
∑AI(f)−r−1

i=0

(
n
i

)
− d/2 ≤∑AI(f)−r−1

i=0

(
n
i

)
−

∑AI(f)−r−1
i=0

(
n−r

i

)
, that is:

d ≥ 2

AI(f)−r−1∑
i=0

(
n− r

i

)
.

Hence the nonlinearity of order r of f is lower bounded by this same expression. �
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Remarks:
1. The bound of Theorem 1 improves upon the bound nlr(f) ≥

∑AI(f)−r−1
i=0

(
n
i

)
of [4] for

r = 1 (in which case it is Lobanov’s bound) and for greater values of r as well, except when
n is large, AI(f) is large and r is neither small nor near AI(f)−1. For instance, the bound
of Theorem 1 is better than the bound of [4] for every n ≤ 12 and for every value of AI(f)
and r. We give in Table 1 at the end of the paper, for each value of 13 ≤ n ≤ 30, the few
values of AI(f) and of r for which the bound of Theorem 1 is worse than the bound of [4].
2. Lobanov’s bound does not guarantee that having a high algebraic immunity im-
plies a high resistance to the correlation attacks. Indeed, such resistance needs (see
e.g. [10, 2]) a high (first order) nonlinearity and even for AI(f) = (n + 1)/2, which
is the highest possible algebraic immunity of an n-variable function, a nonlinearity of
2
∑(n+1)/2−2

i=0

(
n−1

i

)
= 2n−1 −

(
n−1

(n−1)/2

)
≈ 2n−1 − 2n

√
2πn

(the minimum ensured by Lobanov’s

bound) is not quite satisfactory. But Theorem 1, with r ≥ 2, shows that having a high
algebraic immunity is a strong property, not only with respect to the resistance to algebraic
attacks, but also with respect to the resistance to higher order linear attacks. Indeed, the
complexity of such attacks increases fastly with the order.
3. If r ≥ AI(f), then the bound of Theorem 1 and the bound of [4] give no information;
we have then no lower bound on nlr(f). But if f is balanced, we have an upper bound: as
shown in [3], we have indeed nlr(f) ≤ 2n−1 − 2n−r.
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n AI(f) r
13 7 3–4
14 7 3
15 8 2–5
16 8 3–5
17 8 3–4
17 9 2–6
18 8 3–4
18 9 2–6
19 8 3–4
19 9 2–6
19 10 2–7
20 9 3–5
20 10 2–7
21 9 3–5
21 10 2–7
21 11 2–8
22 9 3–5
22 10 2–7
22 11 2–8
23 9 3–5
23 10 3–7
23 11 2–8
23 12 2–9
24 9 4–5
24 10 3–6
24 11 2–8
24 12 2–9
25 9 4
25 10 3–6
25 11 2–8
25 12 2–9
25 13 2–10
26 10 3–6
26 11 3–8
26 12 2–9
26 13 2–10
27 10 3–6
27 11 3–7
27 12 2–9
27 13 2–10
27 14 2–11

Table 1: The few cases where the bound of [4] is better than the bound of
Theorem 1, for n ≤ 27
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