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Abstract

We obtain tight bound between nonlinearity and algebraic immunity
of a Boolean function and construct balanced functions that achive this
bound for all possible values of parameters.

Boolean functions have wide applications in cryptography. Recently, alge-
braic attacks against stream ciphers were invented that applied the requirement
of high algebraic immunity in combinations with other requirements to Boolean
functions exploited as nonlinear filters in stream ciphers (see, for example, [1, 5]).
One more cryptographic important property of Boolean functions especially im-
portant in stream ciphers is nonlinearity. In this respect the problem of relations
between nonlinearity and algebraic immunity of Boolean functions has an inter-
est.

In [2] it was proved the lower bound for the nonlinearity of a Boolean function
via its algebraic immunity.

In this paper we obtain stronger lower bound for the nonlinearity of a
Boolean function via its algebraic immunity and construct balanced functions
that achive this bound for all possible values of parameters.

It is well known that a Boolean function has the only representation by a
polynomial.

Definition 1. The degree of a Boolean function is the length of the longest
term in its polynomial (the number of variables in this term).

Definition 2. A Boolean function g over F3}' is an annihilator of a Boolean
function f over Fyj' if fg = 0.

Obviously, all annihilators of f form a linear subspace in the space of all
Boolean functions of n variables.



Definition 3. The algebraic immunity AI(F') of a Boolean function f over
F}' is the degree of the Boolean function g over FJ' where g is nonzero Boolean
function of minimum degree such that fg =0 or (f +1)g = 0.

It is known [1, 5] that for any f over F3' the inequality AI(f) < [§] holds.

Definition 4. The weight wt(z) of a vector z in FJ' is the number of ones
in z.

Definition 5. The distance between Boolean functions f; and f5 is defined
as d(f1, fo) =| {x € F | f1(@) # fola)} |

Definition 6. The nonlinearity nl(f) of a Boolean function f over FJ' is

min 1d(f,l).

l, deg(l)<
Definition 7. For any vector u € FJ' the value

Wf(’u) _ Z (_l)f(z)+<u,z>

z€FY

is called the Walsh coefficient of f at u.
The nonlinearity is expressed via Walsh coefficients by the next formula:

1
nl(f)=2""" - 5 max Wy (u))

In [2] it was proved that if nl(f) < 30, (%) then AI(f) < d+ 1. This is
equivalent to the lower bound of nonlinearity

AIL(f)—2

ni(f)> Y (?)

i=0

Definition 8. A Boolean function f(z1,...,x,) is called self-dual if f(z, +
Lzo+1,...;2,+1) = f(z1,...,2,) + 1.

It is easy to see that if f is self-dual then the fact that f has not a nonzero
annihilator of degree less than k follows that f + 1 has not a nonzero annihilator
of degree less than k too. Therefore the minimum degrees of nonzero annihilators
of functions f and f+1 are the same. Thus, for the finding of algebraic immunity
of a self-dual function f it is sufficient to consider only annihilators of the
function f.

Lemma 1. Any annihilator g(x1,...,zn) of the function l(z1,...,2,),
deg(l) = 1, can be represented in the form

where deg(f) = deg(g) — 1.

Proof. Because of affine equivalence without loss of generality it is possible
to assume [ = x1 + 1.

Consider the representation of g(x1,...,z,) in the polynomial form. Since
all annihilators of a function form a linear space, after the cancellation of all
terms that contain z; we must obtain the function g;(x2,...,x,) such that

3



g1l = g1(z1 + 1) = 0. Since g; does not depend on z; we have g; = 0. Hence,
any term of ¢ contains z, then

g(xla"'axn) :xlf(xla"'zxn) = (l+1)f

where deg(f) = deg(g) — 1.0

Lemma 2. Let I(x1,...,2,) be a Boolean function, deg(l) = 1. Then
all annihilators of the function | of degree at most t form the linear space of
dimension Zf;é ("7h.

Proof. Because of an affine equivalence, it is possible to assume | = z1 + 1.

Consider an arbitrary annihilator g(z1, ..., z,) of the function I(z1,...,z,)
such that deg(g) < t. Consider the representation of g(z1, ..., Z,) in the polyno-
mial form. Since all annihilators of a function form a linear space, after the can-
cellation of all terms that contain z; we must obtain the function ¢ (z,...,2z,)
such that ¢11 = g1 (21 + 1) = 0. Since g; does not depend on z; we have g; = 0.
Hence, any term of g contains 1, then

9(@1, .y zn) =21 f(22,. . T0)
where deg(f) <t — 1.
In addition, any function g¢(z1,...,2,) = x1f(x2,...,2,), where
f(za,...,x,) is an arbitrary Boolean function of n — 1 variables and of de-

gree at most ¢ — 1, is an annihilator of [ of degree at most t. It follows the
statement of Lemma. O

Remark. The proof of the next lemma it is possible to find in [4] but we
give it here because of its simplicity.

Lemma 3. If f is a Boolean function over FJ' and AI(f) > k, then

ij (’;) < wt(f) < n_gjko_l (’;)

i=0 i

Proof. We look for an annihilator of the function f by the method of
indeterminate coefficients:

n
g=ap+ E a;r; + E ai; ;5 + - + E iy iy Tiy oo Ty s
i=1

1<i<j<n 1<i1<...<ip<n

deg(g) < k.

The function g is an annihilator of f if and only if f(z) = 1 follows g(z) = 0.
Then in order to provide AI(f) > k, it is necessary that obtained homogeneous
system of linear equations on ag, ai, as, ... has the only zero solution. For this
it is necessary that the number of unknowns does not exceed the number of
equations. The number of equations is wt(f) whereas the number of unknowns
is Zf:o (?) Hence, the left inequality is proved. Applying the same reasoning
to f + 1 we obtain the right inequality. O



Theorem 1. Let f(x1,...,x,) be a Boolean function over F} and AI(f) =
k. Then

n—k

NGET S (";l)zzg(”gl). M)

i=k—1

Proof. For k =1 our bound gives nl(f) > 0. Assume k > 2.

Represent the nonlinearity of the function f in the form ni(f) = 27! —
where o = maxyepp [Wy(u)].

If max,erp |Wy(u)| is achieved at zero vector, then f or f+1 has the weight

[N]]o)

TL_ . .
QTO‘. Then in accordance with Lemma 3 we have

2”—a>k { n
=2 ()

i=0

Therefore, a < 3" (M) <2 sk ("7'). From here we obtain the required
bound on the nonlinearity.

If max,epp |[Wy(u)| is not achieved at zero vector, then there exists the
function I(zy,...,z,),deg(l) = 1, such that d(f,l) = QTLT_O‘ The functions
f and ! have the same values at 2 vectors. Suppose that among these
vectors there exist exactly 8 vectors z where f(z) = 1, then there exist exactly
2"t —wt(f) — § + B vectors where f =0 and [ = 1.

Then

wi(f(I +1)) = wi(f) = B (2)
and
wi((f + 1) = 2" —wi(f) — 5 + B, (3)

The right side in (2) is decreasing in 3 whereas the right side in (3) is increasing
in 8. The equality as achieved for 3 = wt(f) —2" 2 + 2. It follows that

min(wt(f(L + 1)), wi((f + 1)) < 2" 2 -

~|Q

If wt(f(I +1)) < wt((f + 1)l) then define f; = f,l; = | + 1, otherwise define
f1 :f—Fl,ll :l

Input the function f; = fil;. Then wi(fy) < 2" % — 2,

We look for annihilators g of the function fo of degree at most k — 2 by the
method of indeterminate coefficients:

n
g = ap + E a;r; + E Qi T;T; + -4+ E iy i Tiy o Ty
i=1 1<i<j<n 1<i1<...<ip_o2<n

A function g is the annihilator of f if and only if f(x) =1 follows g(z) = 0.
Hence, we obtain the homogeneous system of at most 272 — 7 linear equa-

tions on 25;02 (?) unknowns. The space of solutions of this system has the
; . k—2 _
dimension at least Y-, (7) — (2772 — 2).



By Lemma 2 the dimension of the space of annihilators of the function I, of
degree at most k — 2 is Zf;OB (":1)

IF 0 (7) — (2772 = 2) > i (", Y) then there exists the function f3,
deg(f3) < k — 2, such that fofs = 0 but f3l; # 0. Then f3l; is the annihilator
of fi1, in addition deg(fsl1) < k — 1 that contradicts to AI(f) = k.

Tt follows K2 (7) — (202 — &) < h-3 (»71),

()62 ) E 00

1=

i=k—1
Corollary 1. If n odd and AI(f(z1,...,%,)) = [2] then

Therefore, ni(f) > 271 — S F ("1.0

Note that in [4] it was constructed the function of odd number n of variables
with the algebraic immunity [%£] and nonlinearity ni(f) = 2"~ — (g) Our
Corollary 1 clarifies that this function achieves our bound (4), i. e. among
all functions with maximum possible algebraic immunity this function has the
worst possible nonlinearity. The calculation of its nonlinearity in [4] is quite
difficult and takes some pages. Now the lower bound for the function from [4]
follows immediately from our Corollary 1. At the same time the upper bound
for the nonlinearity of the function from [4] will follow from our Theorem 2 since
this function is a particular case of our functions f,  appeared in the proof of
our Theorem 2. Note also that in [3] for the constructed there the function f
with odd number n of variables and the algebraic immunity {%1 it was proved
the lower bound of nonlinearity nl(f) > 2" ! — (2_:11) that coincides with our
bound in Corollary 1 for all functions with such anmber of variables and such
algebraic immunity.

Corollary 2. If n even and AI(f(zy,...,z,)) = [%] then

3

ni(f) > 27" - (”)

2

Note that in [4] the bound of our Corollary 2 was proved for very narrow
class of functions.

Theorem 2. The bound (1) in Theorem 1 is unimprovable for any n and
any k < [§]. Moreover, for any admissible parameters n and k there exists a
balanced function that achieves this bound.



Proof. Show that the bound (1) in Theorem 1 is unimprovable presenting for
any n and any k£ < [$] the balanced function f(z1,...,2,) such that AI(f) =k

and nl(f) = 2"~' = 008 (7).
Define the function f,, ; by the next way:

0, it wt(zy,...,z,) <k,
for(@i, . oxn) =¢ 1, it wt(zy,...,zn) >n—k,
xy, if k<wit(zy,...,z,) <n—k

Now prove that for any n and any k¥ < [§] we have AI(f, ) = k and
(fnk) =2t ZZL kk 1 (nzl)

It is easy to see that f(z1 + L,za+1,... 2 +1) = f(z1,...,2,) + 1, 1. €.
fnk is a self-dual function. Hence, the functlon fnx is a balanced function.

Since fn,r is self-dual, in order to prove AI(f) > k, it is sufficient to prove
that fy r + 1 has not a nonzero annihilator of degree less than k.

Write the possible annihilator g of the function f+ 1 of degree at most k—1
by means of indeterminate coefficients:

g=agp+ E a;x; + E Qi T;T; + -+ E iy igy_ 1 Tiq oo LTy -

1<i<j<n 1<i1<...<ig—1<n

The function ¢ is the annihilator of f, x + 1 if and only if f(z) + 1 = 1 fol-
lows g(xz) = 0. We obtain the system of homogeneous linear equations on the
coefficients of the function g:

for all vectors x such that wt(z) < k — 1.

Since ¢(0,...,0) = 0, we have ap = 0. Since g(z) = 0 if wt(z) = 1, we have
a; = agp = 0. Applying the induction on the weight of vectors we obtain that all
coefficients of g are zeros, hence, ¢ = 0. Thus, AI(fn ) > k. At the same time
it is easy to see that g(z1,...,2,) = (1 + 1) ... (2 + 1) is the annihilator of
[,k of degree k. Therefore, AI(fn 1) = k.

Calculate the Walsh coefficient of the function f, x at the vector (1,0,...,0)
using the self-duality of f,, ;:

Wia(1,0,,0) = 3 (=)ferlmmmton =
(x17...,z.,,)EF2'"

=2" - th(fmk(xla---awn) +x1) =
=2" = 2(wt(fnx(0,22,...,2n)) + wt(fop(l,z2...,2y) + 1)) =

n—1 il |
= 2" — dwt(fn 1 (0,22, ..., Ty, —4 Z ( , ):2 < . )
1

)
i=n—k+1 i=k—



Hence, nl(fnr) <271 =Y ("7"). Above we proved that AI(f,x) =

(3

k, hence, by Theorem 1 we have nl(fn ;) > 2" 1 — Z?:_kk_l ("Z_l) it follows
n— —k n—
nl(far) =21 =300, (").0
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