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Abstract

We present a blind signature scheme that is efficient and provably secure without random oracles
under concurrent attacks utilizing only four moves of short communication. The scheme is based on
elliptic curve groups for which a bilinear map exists and on extractable and equivocable commitments.
The unforgeability of the employed signature scheme is guaranteed by the LRSW assumption while the
blindness property of our scheme is guaranteed by the Decisional Linear Diffie-Hellman assumption.

We prove our construction secure under the above assumptions as well as Paillier's DCR assumption
in the concurrent attack model of Juels, Luby and Ostrovsky from Crypto '97 using a common reference
string. Our construction is the first efficient construction for blind signatures in such a concurrent model
without random oracles. We present two variants of our basic protocol: first, a blind signature scheme
where blindness still holds even if the public-key generation is maliciously controlled; second, a blind
signature scheme that incorporates a “public-tagging” mechanism. This latter variant of our scheme
gives rise to a partially blind signature with essentially the same efficiency and security properties as our
basic scheme.

1 Introduction

Blind signatures were introduced by Chaum@np82 and proved to be a most useful cryptographic scheme

that has been the basis of many complex cryptographic constructions including e-cash systems and e-voting
schemes. Informally, a blind signature is a signature scheme that incorporates a signing protocol that allows
the signer to sign a document submitted by a user blindly, i.e., without obtaining any information about the
document itself.

It was observed early on (at least as earlyl2ah8§, see alsoPW91)) that blind signatures contain an
instance of a secure function evaluation protocol in the following sense: the user possesses a private input
and a public-inpupk which is the verification key of a digital signature algorithm, and the signer possesses
a private inputk which is the signing-key of the digital signature algorithm; with this setup the user and the
signer should execute a probabilistic secure function evaluation protocol that will allow the user to compute
o, a signature omn underpk, without revealingm to the signer and without the signer revealisigto
the user. Given the complexity of general secure function evaluation thodgb8¢ GMW87], in early
work on blind signatures this paradigm was not very motivating. A more motivating paradigm was found
in divertible zero-knowledge proof©[089 Oka92 CDP94 and many blind signatures were subsequently
designed in this line of reasoninB$96 PS97 Poi98 AO00, AO01, Abe0] as well as the first attempt to
give provably secure constructions (in the random oracle model) was dBS 9G]

Regarding provably secure constructions, Pointcheval and S#88q, presented secure blind sig-
natures with three communication moves that were proven secure in the random oracle model under the

*An earlier version of this paper was titled “Two-round Concurrent Blind Signatures without Random Oracles” with each round
meant to include two moves; this proved to be confusing with respect to the use of the term “round” in previous works and thus
the “two-round” was removed from the title. The protocols presented in all versions of the present work have always been 4-move
protocols.
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discrete-logarithm assumption assuming only logarithmically many messages were transmitted by the user.
This result was later improved to polynomially many messages but five communication rRov@d and
the round complexity was finally decreased to three moves and polynomially many messag@91in [
Abe0]]. A two moves protocol was presented BNPS0] assuming the RSA inversion oracle assumption.
We stress that all these results were proven secure in the random oracle model.

Concurrency in the context of blind signatures was put forth by Juels, Luby and Ostra\sR97]
who presented the first security model for blind signatures that takes into account that the adversary may
launch many concurrent sessions of the blind signing protocol (operating as either the user or the signer).
Concurrency is particularly important since in implementations of blind signatures in e-voting and e-cash
schemes, see e.gCa82 FOO92 Kim04], the signer is a multi-threaded server that accepts many concur-
rent sessions of users that are executing the signing protocol. Thus, it is of crucial importance to consider the
security of blind signatures, whef) a malicious signer attempts to defeat the blindness of many concur-
rently joining users, an(R) a coalition of malicious users attempts to extract information about the signing
key of the multi-threaded signer server. Still, the design of schemes that satisfied such stronger models
proved elusive. In fact, LindellLin03] showed that concurrent security for blind signatures is impossible
in the bare model (i.e., without any setup assumption). On the other hand, in the CRS model, Canetti et
al. [CLOS03 gave a generic construction for multi-party secure function evaluation that achieves an even
stronger notion of security than concurrency (universal composition) and can be used to solve (generically)
the blind signature problem using a CRS. Note that this construction is not efficient and some trusted setup
assumption such as using a CRS is necessary for a blind signature given the result of Lind&]l More
recently, Camenisch et alCKWO04] using a weaker model than that gL[O97 that only allowed sequential
attacks presented an eight-move blind signature scheme that is based on the Strong-RSA assumption leaving
as open problem the possibility of achieving concurrent security in an efficient scheme.

Our Contribution. In this paper, we give the first efficient construction for blind signatures to achieve con-
current security in the sense dfiJO97 assuming a common reference string. The four-move interactions
between the user and the signer in the signing protocol requires overall communication not exceeding 2
Kbytes (about 10.2 Kbits to be precise) for a full signature generation. Achieving this level of efficiency
while simultaneously maintaining provability in a concurrency model required the careful composition of a
number of cryptographic primitives. As our underlying digital signature scheme (i.e., the type of signature
that is obtained by users) we use the elliptic curve based signature scheme of Camenisch and Lysyanskaya
[CLO4] (henceforth called a CL signature). We also employ a variant of Linear Encryption, an encryption
scheme that was originally introduced in the context of group signatures by Boneh, Boyen and Shacham
[BBS04. Here we find a novel use of this primitive in the context of blind signatures. In addition to
these primitives, our construction makes essential use of discrete-logarithm equivocal commitments based
on Pedersen commitmen®4d9] and extractable commitments based on Paillier encryptamdg.

The central idea of our construction is to use a variant of Linear Encryption to produce a very efficient
secure function evaluation protocol for CL signatures that proceeds roughly as follows: the user selects on
the fly a key for the encryption scheme and encrypts her message with it. The signer upon receiving this
encryption takes advantage of the homomorphic properties of the encryption to blindly transform the cipher-
text into a randomized encryption of a CL signature and then transmits the resulting rerandomized ciphertext
back to the user. We make an essential use of the homomorphic properties of the underlying encryption in
the efficient generation of non-adversarial randomness between the mutually distrustful players.

In order to prove security under concurrent attacks a number of provisions have to be taken in the blind
signature protocol design. Most importantly, in our signing protocol, both sides will be required to prove
statements about their local computations. As a result, performing the whole protocol in four moves is one
of the most delicate parts of our construction. The homomorphic encryption based interaction that is used
for the secure signature computation needs to be paired with an extractable commitment. Moreover, an



equivocable commitment is used for ensuring that no information leakage occurs from the user to the signer
or vice versa. Finally, the signer, proves to the user that he is following the protocol specifications and is
applying his signing key to the user’s ciphertext whereas the user has to prove that he is consistent across
his commitments.

The construction is proven to satisfy the two properties of #®P7 model as follows: the blindness
property is ensured under the Decisional Composite Residuosity assumptieai@f and the Decision
Linear Diffie-Hellman assumption oBBS04. The unforgeability property is proven under the LRSW
assumption of [RSW99. Note that the resulting signature from the signing protocol is about half the size
of an RSA based Chaum blind signature.

Stronger blindness propertyWe consider a stronger adversarial model for blindness where the public-key is
adversarially controlled; we show how it is possible to modify our basic protocol in a straightforward way
to achieve this stronger blindness property.

Public-tagging and partial blindnes#Ve finally provide an extension of our scheme that allows the public-
tagging of blindly signed messages, i.e., all messages that are obtained by the users also contain a publicly
known tag that is decided prior to the signing protocol execution. This extension is essentially equivalent
to a partially blind signature construction, a notion that was formalized\FB§]. In a partially blind
signature every message is tagged with a public-string that is produced jointly by the user and the signer.
The blindness property is then restricted to hold only for blind signatures with same tag. Partial blindness
is important as it allows the signer to reuse the same public-key for a variety of different blind signature
functions.

2 Preliminaries

Bilinear Groups. Let G = (g) be a cyclic group of prime ordersuch that : G x G — G is a bilinear
map, i.e., foralt,v € G anda, b € Z, it holds thate (%, v*) = e(t,v)* ande is non-trivial, i.e.e(g, g) # 1.
Note that|Gr| = p.

Camenisch-Lysyanskaya Signature.Camenisch and Lysyanskay@l[04] proposed a digital signature
scheme (which we will call it CL-signature for short) that was adaptively chosen message secure in the
standard model. Our blind signature will be based on this signhature scheme and we describe it below:
- The key generation algorithgen“”: generate the bilinear group parameterG, Gr, g, ¢); then
chooser,y < Z*, and computeX = ¢* andY = ¢¥; set secret key ask = (x,y) and public
key aspk = (p, G, Gr,g,¢; X,Y).
- The signing algorithnsign®’: on input message, secret keyk = (z, y), and public keyk =
(p,G,Gr,g,e; X,Y), choose a random € G, and output the signature= (a, a¥, a®*"*Y).
- The verification algorithnverify“": on input public keypk = (p,G,Gr, g, ¢e; X,Y’), message
m, and signature = (a, b, c), check whether the verification equations,Y) = e(g,b) and
e(X,a)e(X,b)™ = e(g, c) hold.

The underlying assumption of CL-signatures is called the LRSW assumption, which was introduced by
Lysyanskaya et al. LRSW99. Note that in this paper it was also shown that this assumption holds for
generic groups.

Assumption 2.1 (LRSW Assumption). Given the bilinear group parametdis g, G, Gr,e). Let X, Y €
G,X = ¢*,Y = ¢ and defineDx y () to be an oracle that, on input a value € Z,, it outputs a triple
(a,b,c) such thath = a¥, andc = a®t™*¥ wherea < G. Then, for all probabilistic polynomial time
adversaries,



z,y € Lp; X = g% Y = g¥;(m,a,b,c) — AOxy .
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wheree is a negligible function in security parameterandQ is the set of queries that made toOx y ().

Linear Encryption. Boneh et al. BBS04 proposed a variant of EIGamal encryption, called, Linear En-
cryption that is suitable for groups over which the DDH assumption fails. We call it LE for short.
- The key generation algorithgen’”: the public keypk is a triple of generatorg v,w € G and
the secret keyk is the exponents, y € Z; such that® = v¥ = w.
- The encryption algorithrenc’?: to encrypt a message € G, choose random valuesb € Z,,
and output the triplét®, v*, m - w*?).
- The decryption algorithrdec”?: given an encryptioiT, V, W), we recover the plaintext as

follows m = decZE(T,V, W) = 1.

The Linear encryption is based on the Decision Linear Diffie-Hellman assumption, which was first
introduced by Boneh et alBBS04. With g € G as above, along with arbitrary generatgis andw of G,
consider the following problem:

Definition 2.2 (Decision Linear Diffie-Hellman Problem inG). Givent,v, w,t*, v, w” € G as input,
outputl if o 4+ 5 = v and0 otherwise.

It is believed that DLDH is a hard problem even in bilinear groups where DDH is easy. Now we define
the advantage of an algorithiin deciding the DLDH problem iffz as

Pr[l « A(t,v,w,t* 0%, w*P) . t,v,w € G, o, B € Zy)

AdvpipH = a B v -
—PI‘[l — A(t,U,’UJ,t y U 7X) : t?“awaXaE Gvaaﬁ € Zp]

Assumption 2.3 (Decision Linear Diffie-Hellman Assumption).We say that the Decision Linear Diffie-
Hellman assumption holds i& if for all PPT algorithmsA it holds thatAdva‘LDH is negligible in the security
parameten.

Paillier-Encryption. In our scheme we will employ the public-key encryption introduced by Paillier
Pai9g:
[ _S] The key generation algorithgen”®: let p andq be random primes for which it holds # q,
Ip| = |l and gedpg, (p — 1)(q — 1)) = 1; letn = pg, 7 = lem(p — 1, — 1), K = 7~ ! mod n,
andg = (1 + n); the public key ik = (n, g) while the secret key isk = (p, q).
- The encryption algorithnrenc’®: the plaintext set i&,; given a plaintexin, choose a random
¢ € Zy, and let the ciphertext bB,,, = enc)*(m, () = g"¢" mod n?.

- The decryption algorithrdec”*: given a ciphertexf,,, let K = 7—! mod n and now observe
that (Em)ﬂK — gm-ﬂK . Cn~7rK —_ gm~7rK mod n | Cn~7rK mod nT _ gm mod n | CO mod n7

((Em)™ mod n2)—1

:gm:

1 4+ mn mod n?. Thus, it is possible to recover = - mod n.

The cryptosystem above has been proven semantically secure if and only if the Decisional Composite

Residuosity (DCR) assumptio®$i9q is true. The advantage of an algorith#h in deciding the DCR
problem is defined as follows:

Advhcg = | Pr[l « A(2) : 2z € Z,] — Pr[l — A(z) : z € HR},] |
where R}, is the subgroup ofi-th residues module?.

Assumption 2.4 (Decisional Composite Residuosity AssumptionyVe say that the DCR assumption holds
in G if for all PPT algorithmsA it holds thatAdvg‘CR is negligible in the security parametgr
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Commitment Schemes.A commitment scheme is a protocol with two stages, the commit stage and the
decommit stage, between two parties, the committer and the receiver. A commitment scheme consists of
a key generation algorithrgen which can be used to produce a public kdy a commitment algorithm

com which is used by the committer to produce a commitment to the messaaed the decommitment
information, i.e., (¢, ¢) < com,,(m), and a decommitment verification algorititac which can be used

by the receiver to verify the decommitment informatioand the message with respect to the commitment

¢, i.e.,dec(e,m, () € {0,1}. Frequently the decommitment informatigns the random coins used by the
commitment algorithm and we will write < comy,,(m, ().

A commitment scheme will satisfy two propertidsding, the receiver can not obtain any information
aboutm given com,;(m, ¢); andbinding the committer cannot change his mind abeutater, i.e. he
cannot change the decommitment verification informatien() into some(m’, ¢') wherem # m/, so that
¢ «— comy(m, () anddec(c,m’, (') = 1.

In anextractablecommitment, there is a trapdoor informatioh associated to each public kgy that
allows the trapdoor owner to computefrom anycom,(m, ¢). In anequivocableommitment on the other
hand, there is a trapdoor informatieh associated to each public kgy that allows a committer who is a
trapdoor owner to computg given anym, ¢, m’, ¢ < com,(m, ) so thatdec(c, m’, (') = 1.

Common Reference String Model. In the common reference string (CRS) model, we assume that each
player can access a common string that is guaranteed to come from a prescribed distribution. Furthermore,
no players (including the adversaries) will know the trapdoor information related to the procedure of choos-
ing the string. The trapdoor will be known to the simulator in the proof of security. In practice, a trusted
third party can generate the CRS by running the CRS genexaiter (crs, 7) « K(1%), and discarding the
trapdoorr. The stringcrs is published, and all parties receive it as additional input.

3 Formal Model for Blind Signatures

In this section, we revisit in detail the formal model for blind signatures as introducedl D9[] and

we reformulate it to the common reference string (CRS) model. We stress again that some trusted setup
assumption is necessary in the light of Lindell's negative result for blind signatuie33] in the “bare”
concurrent model.

3.1 Blind Signature Scheme

Definition 3.1 (Blind Signature Scheme).A blind digital signature scheme is a four-tuple, consisting of
two interactive Turing machine$ (U) and two algorithmsden,verify). HereS denotes the signer, atl

the user.
- gen(1?) is a probabilistic polynomial time key-generation algorithm which takes as an input a

security parametel* and outputs a paiipk, sk) of public and secret keys.

- S(pk, sk) andU(pk, m) is a pair of polynomially time bounded probabilistic interactive Turing
machines, where both machines have the following tapes: read-only input tape, write-only output
tape, a read/write work tape, a read-only random tape, and two communication tapes, a read-only
and a write-only tape. They are both given on their input tapes as a common inppraduced
by the key generation algorithm. Additionalfyis given on his input tape the corresponding
secret keysk andU is given on his input tape a message where the length of all inputs must
be polynomial in the security parametet. Both U andS engage in an interactive protocol for
some polynomial ilh number of moves. At the end of this proto&butputs eithecompletedbr
not-completecndU outputs eithet or L.

- verify(m,o,pk) is a deterministic polynomial time algorithm, which outputsr 0.



The correctness requirement for the above is that for any messagmed for all random choices of the
key generation algorithm, if both andU follow the protocol therb always outputgompletedand if the
output of the user is thenverify(m, o, pk) = 1.

Note that in the CRS model, bof) U receive as additional input thers string.

3.2 Blindness and Unforgeability

The security properties for blind signatures definedJinQ97 are blindnessandunforgeability. Below
we revisit their modelling and we give detailed definitions for these properties in the CRS model.

Definition 3.2 (Blindness). Assume(crs, ) « K(1*), (pk, sk) < gen(1}). We define an oracl&?
with public input(1*, crs, pk) which simulates two user instantiatiod$ andU”, where¢ € {0,1}. The
adversaryA will be communicating with this oracle trying to predigtgiven input(1*, crs, pk, sk). The
oracleZ? operates as follows:
- Given (challenge,mg,m1), the oracleZ? simulates two user instantiations” and U™ with
input the public-keypk and the messages, andm,_, respectively. The oraclé? keeps a
database with the state of each user instantiation; the state includes all coin tosses of the user
instantiation and the contents of all tapes including the communication tape. The oracié'uses
(resp.st’?) to record the state df” (resp.U%).
- Given(advance, p, msg), wherep € {L, R}, the oracleZ? recovers the state of, and simulates
the user instantiatiol” with msg till U” either terminates or returns a response to the signer. If
U’ returns a response, th@® returns this tad. The oracle will record the current statg i.e.
stP = stP||st. Note that this kind of query can be executed several times depending on the number
of moves of the blind signature protocol.
- Given(terminate, msg’, msg’®), the oracleZ? recovers the statet” (resp.st’), and simulates
the user instantiatiob)” (resp. UT) with msg” (resp. msg®) till UZ (resp. UT) terminates or
fails. If both user instantiations terminate successfully and output two signatures, then the oracle
returns these signatures.th otherwise returnéL, ).
Given any probabilistic polynomial timd, we define its advantage against blindness as:

Advﬁ}ind(/\) =

Pr [ ¢ — Aﬁ(lk’crs’pk)(l/\,crs,pk,sk) : ] 1
2

¢ & 10,1}, (crs, 7) — K(1*), (pk, sk) — gen(1}) 2

and say that the blind signature scheme satisfies the blindness promaﬂg}jj,d()\) is negligible in\.

Definition 3.3 (Unforgeability). We define an oraclé that is simulating concurrently an arbitrary number
of signer instantiations. The oracle accepts two types of queries defined as follows:
- (start,msg). The oracleZ selects a session identifigid, and simulates the signer instantiation
S with msg till S either terminates or returns a response. If the signer instance returns a response
to the userZ returns this with the session identifieid as an answer to the oracle query. The
oracleZ keeps a database with the statesdbr the session identifiesid; the state includes all
coin tosses o, and the contents of all tapes including the communication tape.
- (advance, sid, msg). The oracleZ looks up the table of sessions and recovers the st&éofthe
session with identifiesid (if sessionsid exists). Subsequently,writesmsg in the communication
tape ofS and simulates it till it either terminates or returns a response to the user. If it returns a
message to the usér,returns this as an answer to the oracle query. If no session identifier exists
the oracle returns “fail.”



The oracleZ maintains a counterthat counts the number of times that the oracle has successfully terminated
a signer session. Each time tlasuccessfully terminates a signer session it increases the céumtdr. A
“one-more forgery” adversary against the blind signature is a polynomial-time probabilistic matthag
is given as input1?, crs, pk) where(crs, 7) < K(1*) and(pk, sk) < gen(1*). The adversary interacts
with Z(crs, pk, sk) and terminates by returning a sequencémf, o1), ..., (my, op) wherem; # m; for
alli,j:1 <1 +#j</{.We define the advantage dfin the above attack by

Advte (A) = Pr[AL (1 — verify(pk, mi, 03)) A (£ > 0)]

unforge

and say that the blind signature scheme is unforgeatenif*

unforge

(A) is negligible inA.

4 The Proposed Scheme

4.1 Setup and Generation of Keys

We start the description of our construction by describing the setup definition as well as the way that the
involved parties, the user and the signer generate their keys.

Public Parameters. The public parametgsub contains general information about all protocol executions
as well as a specific bilinear group parameier, Gr, g, e) appropriately selected.

Common Reference String Next we describe how the common reference sttingis selected. Itincludes
two parts,crs; andcrss. First, we generate parameters for a Pedersenfike9] commitment scheme
over an elliptic curve group: l&& = (g) be a cyclic elliptic curve group of prime ordé); selectr < Zg
and computéh = g"; setcrs; = (Q,g,h, G,’H), whereH : {0,1}* — Zg is a collision resistant hash
function and set the trapdoor to be = . Then we generate parameters for the Paillier encryptiorp let
andq be random primes for which it holds+# q, |p| = |q| and gcdpq, (p — 1)(q — 1)) = 1; letn = pq,
andg = (1 + n); setcrsy = (n,g) and the trapdoors = (p,q). Now we havecrs = (crsy, crsg); the
two trapdoorsr, » as well as any random coins used for the generatiarrsfare discarded.

Signer Parameters The signet uses the algorithrgen to generate his public and secret parameters based
onpub. The signer selects, y < Z;, and computes{’ = g andY” = g¥. Then it sets’Ks = (X,Y’) and
SKs = (x,y); this is the key pair o6.

We note that the parameters selected above are assumed to be long-lived, i.e., they will be used for many
executions of the signing protocol. On the other hand, the user has no long-lived parameters. Siill, as part
of each signing protocol the user will select some public and secret key that will have the lifetime of one
signing protocol execution. We stress that this is not a necessity and each user may also keep his public-key
parameters the same across signing protocol executions; in fact these parameters can be part of a PKI that
all users are members of. This will make the protocol’s time-complexity somewhat more efficient on the
side of the user (but will have the cost of maintaining a user PKI).

User Parameters.Each uset) generates his key pair on the fly: he selects- G\ {1} ands, ¢ < Z*, and

sett,v € G such that® = v¢ = w. SetPKy = (t,v,w) as his public key and keep secrefl<; = (9, ¢)
as his secret key.

Choice of Parameter Lengths.The length of each parametgrn, Q is v, v,, v respectively and should

be selected so that the following are satisfied: (i) The DLDH assumption holds over the bilinear group pa-
rameter(p, G, Gr, g, ), (ii) The LSRW assumption holds over the bilinear group paranigtét, Gr, g, e),

(iif) The discrete-logarithm (DLOG) assumption holds over the elliptic curve cyclic g@ufv) The DCR
assumption holds ove#;,. Based on the present state of the art with respect to the solvability of the above
problems, a possible choice of the parameters is for exampte171 bits, v, = 1024 bits, vg = 171 bits.



4.2 Signing Protocol

We give a high-level description of our protocol before presenting in detail.

(1) First, both the user and the signer obtain the public inpubscrs, and P K, the signer gets the private
input S Ks, and the user gets the private input message

(2) Then the user generates his key gdty, SKy) for Linear Encryption, and keep$K\, secret; the

user generates a Paillier ciphertext for messagehich is used as an extractable commitment; the user
generates a special Linear Encryption ciphertexifovhich will be signed by the signer.

(3) To guarantee that the Linear Encryption ciphertext and the Paillier ciphertext are consistent, the user
interleaves within the protocol execution a 3-maxeprotocol that shows the consistency of the com-
mitment and the encryption. This protocol employs an equivocal Pedersen commitment scheme to allow
zero-knowledge in the concurrent setting (dam0Q). When the signer successfully verifies the 3-move
protocol which was initialized by the user, he will transform the Linear Encryption ciphertext by using his
signing keySKs and appropriately rerandomize it. This will result in the encryption of a CL-signature
which will be recovered by the user using his secret K&, .

(4) To guarantee that the signer follows the protocol specifications, the signer is required to interleave a
3-moveX-protocol as well in order to show that he is applying his secret-key appropriately on the Linear
Encryption ciphertext that is provided by the user. Again we employ an equivocal Pedersen commitment to
allow for concurrent zero-knowledge.

(5) When the user verifies successfully the final step of the signing protocol computation, he decrypts the CL-
signature from the signer’s ciphertext using his secret$&y, and obtains a CL-signature for the message

m. Then he refreshes the randomness of the signature taking advantage of the randomness homomorphic
property of CL-signatures.

Y -protocols and Round-complexity.In our signing protocol we employ two-protocols from both sides of
the interaction. Both these protocols have the fotommitment; challenge; response, decommitment).
A subtle difficulty in the design of our protocol is that if the twBprotocols are executed sequentially they
will result in an overall round complexity of six moves. In order to maintain the four-move protocol com-
plexity we want to “start” theX-protocol for the signer side before the user stiigrotocol terminates.
Nevertheless this will violate the security property of our scheme, so, in order to allow an early start of the
signer sidex-protocol we have the signer commit to the value he will prove a statement about and open the
commitmentonly in casethe user’s sidé&-protocol verifies.

We outline the high-level description of our signing protocoFigure 1 In the first step, the usés
prepares two different encryptions of his private inputcalled £,,, and (7', V, W). Moreover, it computes
the first move of a:-protocol that shows the consistency of the two encryptions and commits to it into
commitmenty. In the second step, the signer prepares an encrypgtithrat can be decrypted by the user
into a CL-signature but does not transmit yet this value to the user. Instead, it prepares the first move of
a X-protocol that shows that he computedcorrectly and commits t@) as well as the first move into
commitments. In the third step, the user, given the challenge of the signer, complet&sghetocol that
shows he computed the two encryptidis and (7', V, W) in a consistent way and transmits to the signer
the decommitment information necessary to verify the consistency of the ciphertexts. In the fourth step,
the signer verifies th&-protocol of the user and if it is accepted, the signer completeEpsotocol and
transmits to the user the encryptigras well as the decommitment information necessary to verify the claim
thatv is correctly computed based on the signer’s public-key. Finally the user verifigsphatocol and if
accepted it outputs the computed blind signature.

The detailed description of the protocol is showrFigure 2 Note thatd; < p, do < p, i.e. A1 < vp,
A2 < vp. For exampleg = A\ = A\ = 80 bits.
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responseg,decommitments

Verify the 3-move X-protocol
(commitments; challenges;

responses, decommitments), then
get ¢ from decommitments and
decrypt it to obtain the signature.

Figure 1: Overview of our blind signature generation protocol.

4.3 Signature Verification

Given a message-signature p@it; o), wheres = (a, b, ¢) , the verification algorithm is based on the two
verification equations below(a, Y) = e(g,b) ande(X, a)e(X,b)™ = e(g, c).

4.4 Correctness and Security

The correctness and security of our scheme is capturethleprem 4.1 Theorem 4.3 Theorem 4.5as
described here.

4.4.1 Correctness

Theorem 4.1 (Correctness).If the signer and the user follow the signing protocol, the resulting signature
satisfies the verification with provability 1.

Proof. First, we check the correctness of the verification equations far.theotocols.



crs = (Q,8,h, G, H;n,g);pub = (p,9,G,Gr,e); PKs = (X,Y)

U] H

MSG = (m), m € [0,2"] SKs = (z,y)

(PKy, SKy) « gen"” (1)
PKU = <t,’U7U)>, SKU = <57£>

(L [072/\0+)\1+Vp:|’ AmaBm L Z:
ke Lk D& 7,0 & G\{1}, 1 & Zg
" (A,,)" mod n?

N R D
TRERE 2
[
0q_0q o

PKy,Em,(0,T,V,W),C
W), Cy = gthi “ 1 di & {0, 110

&
I
=<

3
~)

o KU B KT E Ly, e & Zg
a' =01 = ov’
T — Tacyo/tk’a/ V= Va:yo/vl/a
W' = nyo/eza/wk’a'—&-l’o/
Ly =e(T, b’)ie(t,a’)gl
Ly = e(V,V)e(v,a)!
Ly = (e(W,b)e(0,a"))” e(w, a’)k/“‘?
Wy = ”'[(CLI7 17/77"/7 V/, W/,LT, LV7 Lw)
d1,C.
dy < {0,1}* o Co = g“2h*2
Sm =m—dim (inZ)
Sp=k—dik,s; =1—dql
Fy = By (A;) "% mod n

doy(sm 510,51, Fn ) (B, TV, W 1)

By, €' 725, 8 €7 £[0, 200 FA1 ]

H(Em,T V,W), 0y =! g“1hm
=7 g*n (F,)"(Epn)% mod n?
T :? s, V=% sy
/V[7 =7 gsmqpskTsidr
Sg = X — dax,
S = ]23\' - dgk}/, Sy = 27 — dQZ/

>tq>€

(Sz,Spr,Spr)

Wy = H(a/7 b/a T/a V/7 W/7 LT7 LV7 LW)

Cs 7 nghuz
e(a,Y)="e(¥,

(a0, 7",V W' Lp,Lv,Lw,p2)

9)
LT _? €(T, b/).s,/ t7 )sk/ ( a)dz
Ly =" e(V,V)*e(v,a’)* e(V',0)%
Ly =" (e(W,b')e(0,a'))*
( /) w sy ( /’9)22
a= (@)= ) c= (%)

o ={a,b,c)

output(m; o)

Figure 2: Blind signature generation protocol.
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)" mod n? = g¥mthm(F . (A,,)4)" mod n?
g (Fr)") - (g™ (Am)™% mod n? = g* (F,)"(E,,)™ mod n?,

W — Qr’hwE _ 93m+d1-mw(sk—&-sl)—i-dy(k—&-l) — (esmwsk—&-sl) X (emwk—&-l)dl — QSmwsk+led1,
j'\' — t — t5k+d1 -k t5k . (tk‘)dl — tSdel, ‘7 — ,UlA: ,U.Sl+d1-l — St . (’Ul)dl = St le;
> ! / / ropn) 92
Lt =e(T,b)%e(t,a ) = e(T,V)%=T4%e(t, a')sw T2k = (T, )% e(t,a’)*w (e(T, 0v ) e (t, 0% )F )
/ d / YN d
— e(T, V)% e(t,a') (e(T, b’)‘”e(t,a’)k> L o(T, V) %el(t,d') (e(Tmya LB)e(th ,e)) ’
— e(T, b’)sﬂfe(t, a/)sk/e(Txya’tk;/a/ 6)d2 — 6(T, b/)sf”e(t, a/)sk’e(T', 0)d2
P~ 77 / ’ N
Ly =e(V.V)e(v,a)" = e(V,V)*=+ e (v, a') 20 = e(V, V)% e(v,d') (e(V v )e(v, 0’ ) 2
!/ d Iy d
— 6(‘/, b/)sze(v’al)sl/ (6(V, b’)xe(v, a/)l ) 2 . G(V b/)sx ( /)Sl’ ( (V:vyoz 9)6(1)1 o ,9)> 2
= e(V, V)% e(v,a') e(V e 9)d2 = (V1 ) e(v,a ) e(V',0)%,
L = (W, )e(6,a'))7 e(w,a!VF T = (e(W, e w )P e, e )
/ !/ d
)0, el (o0, el )
! ! d
= (e(W,V')e(0, ")) e(w,a')*w*=v ( W, 609" e (6, 0 )) e(w, 9 )k + ) ’
_ (e(T/V, b’)e(&, a/)>5z e(w, al)sk/+sl/ (mea Hma (K'+")a ’G)dg
= (e(W,b)e(0,d'))* e(w,a’)™*sre(W’, )%

Then we check the correctness of the CL-signature.

/

(a/>a — 9&0{ ,
= (1) = (6 = a,

W /(T = (WG 1) (T )3 (vl )6 e
(

(

a

= (b
= W/

(W/(TVE)) - g7 - (k' (el o
=

m)x 6% . )aa — (eaa’)mnyr:p — amxy+x

v.
So,e(a,Y) = e(g,b) ande(X,a)e(X,b)™ = e(g, ¢). O

4.4.2 Unforgeability

In this subsection, we prove the unforgeability of our scheme. Before proving the unforgeability of our
scheme, we first build a useful lemma which guarantees that the user will use the same plaintext in the Linear
Encryption and in the Paillier encryption based on the three-move proof in the blind signature generation
protocol. Based on the lemma, then we can simulate the signer successfully and reduce the unforgeability
to the unforgeability of the CL-signature.

Lemma 4.2. In the blind signature generation protocol, under the DLOG assumption, a PPT adversary can
generate a valid proof with the signer such that

logy (decLE(T, V,W)) # dec”™(E,,) mod p
only with probability2=>1.

Proof. Definem = decP*(FE,,). Paillier encryption is 1-1 OVEL',, SO it is well-defined andn € Z,.
Also E,, € Z}, can be written agz,, = g"(4,,)" mod n? for someA,, € Z:. Similarly, definem’ =
logy (dec™® (T, V,W)). Recall that) € G\{1} and the order of is primep. So is a generator of;, and
we can get™ = dec®(T,V,W) andm’ € Z,. Alsot,v € G are generators @, andT,V € G can be
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written asT’ = t*, V = v! for somek, | € Z,. Note thatdec™®(T,V,W) = . SoW = ™' T°V¢ =
Qm’tkdvlg — gm’wk—&-l_

Now we assume that there is a PPT adversary who can generate a valid proof with the signer such that
m # m’ mod p. Up to now we have equations:

m # m/ mod p m € Zn,m' € Zy 1)
E,, = g™(A;)" mod n? Am € Zy, 2
W = 0™ whtt k€7, (3)
T =tk (4)
V=1 (5)
We have assumed that the proof is valid. So all verification equations hold:
Em = g (Fp)"(Ep )% mod n? (6)
W = gomusktsipyd (7)
T = tse T (8)
V =osvd (9)

From equations (2) and (6), we have

Ep = g5 (Fp)"(Em)® mod n? = g* (F,,)"(g™(Am)")% mod n? = g*»F4™(F, (A,,)4)" mod n?

By the similar way, we can géft = ¢Stk | — psitdil andy/ = gsmtdim’y,(su+dik)+(si+dil)  Now we

call
~ def

m = $m + dym mod n (20)
B & F(A)% mod n (11)
P Sk + dik mod p (12)
7 f s;+ dyl mod p (13)
' s, + dym’ mod p (14)

Consider thagcd(n, p) = 1. From the equation (10), we can lét = s,, + dim + An, whereA € Z.
S0 — s, — dym = An. Recall thats,,, € +[0, 22T 1+ +1] andm € £[0, 2%+ ] dy € {0, 1}M,
andm € [0,2"]. SOMm — s,, — dym € £[0, 220 TM1 2] 'and A = 0 becausé, > v, + Ao + A1 + 3. S0
m = Sy + dym.

From the equation (14), we can let = s,, + dym’ + Bp whereB € Z. Som — m' = dy(m —
m’) — Bp. Recall thatp 1 (m — m’). We can find suclB only in the case op | (m — m') — di(m —
m’). Note that(m,m’, m,m’) is determined before receiving the challengiefrom the signer because
(t,v,w, Ey,0,T,V,W;C1) is sent before receivind; and(f«?m,f, 17, /W> is bound by the commitment
C; under the DLOG assumption. So we have only probakiiity! to find B. Therefore, under the DLOG
assumption, the adversary cannot develop a valid proof mit m’ mod p except negligible probability
27,

]

Theorem 4.3 (Unforgeability). The proposed scheme is unforgeable under the LRSW assumption.

Proof. In this part, we will show under LRSW assumption, no PPT adversary dssn achieve “one-
more” forgery with non-negligible probability. Lép, g, G, Gr,e; X,Y') be the input instance of LRSW
problem. If a PPT use# obtains? + 1 valid message-signature pairs afteimes successful executions
with the signer, we can construct oraglevhich will output a valid pai(m*, (a*, b*, ¢*)), wherem* is not
queried to the oracl®y y.
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1. The oracle setsub = (p, g, G, Gr,e) andPKs = (X,Y). The oracle generatess; = (Q, g, h, G, H)
andr; = r for the equivocal Pedersen commitment scheme; genetaggs= (n, g) andm = (p,q)
for the Paillier encryption; setsrs = (crsj, crsz). Now the oracle supplies the adversary with
(pub, crs, PKs), keeps(ri, 12).

2. The oracleZ will be queried by.A which operates like that in one of the two cases below:

Case 1: A queriesZ with (start, msg), wheremsg = { PKy, E,, (0, T,V,W),C1}. The oracleZ will
create a session identityd and set the corresponding state= L ; the oracleZ will simulates
the signeiS with msg till S either terminates or returns a respongeto the user; the oraclé
records the current state é. If S returnsrsp thenZ returns this with the session identity £
i.e. Z returns{sid, d;,C2} to A, whered; < {0,1}* andCy = g2, v < Zg.

Case 2: A queriesZ with (advance, sid, msg), wheremsg = {da, (Sm, Sk, S, Fm), <Em, f, ‘A/, W7 1)}
The oracleZ will simulate the signe$ with msg and previous stat&. TheS checks whether all
equations holdCy =7 g“'h#t wherew; = H(Ep, T,V, W), En =" g™ (Fp)"(Ep)® mod
n2, T =7 ¢sed 7 =7 sty T =7 gsmypsstsiiy e |f not true, terminates. Otherwise, the
oracleZ generates an identically distributed responsd to
Consider the Pedersen commitment scheme is involved. Eemma 4.2above, under the
DLOG assumption, except negligible error probabifity*', the oracleZ can obtain then un-
der{6,T,V,W} by decryptingm from E,,, and then obtaidd’, b’, 77, V', W') based on this
m: the oracleZ simulatesS to decryptE,, into m = dec£®(E,,) by using the trapdoor in-

T2

formationm, = (p,q); then the oracl€ simulatesOx y with inputm mod p which returns

r

(a,b,c), and computes’ = a, b’ = b, W' = cw® ", T" = t*", V' =", wherek” 1" & 7,
Note that hereg(T”, V', W’) is in fact the ciphertext of over the public key(t, v, w). The
simulated{d’, ", 7", V', W'} is indistinguishable from the protocol answer consider the error
probability2~*1 is negligible. In fact, without the error probability, the two distribution is iden-
tical, i.e. {a,b,cw® T " 1"V =~ {(0)Y, (0¥)Y, (Wr¥grwh +1)o' (Trygh o' (yayylye’

for random(k”,1”) and (o/,k’,1"). Note that(a,b, c) is the response from)yy. So,a is

a random element ifs, b = a¥, ¢ = a*T™*. We knowW = Mkt T = ¢k, v =

v!, for somek,l € Z,. We can computdW=vgewk +1 )" = ((7mawk+)Tygrh +)e’
((9)0/)I+mxyw(kzy+k’)a’+(lzy+l’)a’, (T:vytk’)o/ — ((tk)zytk’)a’ — t(kzy—l—k’)a', (Vazyvl’)a’ —
((vhyrut ) = pley e’ Replace®, (kzy + k'), (lzy + 1)’ with a, &, 1", we will know
the two probability distributions are identical.

Next, the oracl€ randomly selects,, sy, sy < Z,, and letLy = e(T, V)% e(t,a’)* e(T", 0)%,
Ly = e(V,V)%e(v,a' ) e(V',0)%, Ly = (e(W,V)e(0,a")* e(w, ') +5v e(W', 0)%; com-
puteswo = H(d', b, T, V', W' Ly, Ly, Lw); uses the trapdoor, = r to computeu, such
thatCo = g“2h*?, i.e. up = 222, Consider the 3-move proof is zero-knowleddamn0d, the
simulated distributioda’, ¥, T, V!, W', Ly, Ly, Ly, p2; Sz, Sk, Sy } is indistinguishable from
that in the protocol answer.

3. A outputs message-signature pairs.

Now assume thatd can break the scheme, which meatsan generaté’ message-signature pairs
(m3;0%), (m3;03),...,(mp;0) with m; # m; and?’ > ¢. Sincel’ — ¢ > 1, at least one message, say
mg,, is not queried to oracl®x y, though(mg,; o) is a valid pair. In other word, we can construct a valid
pair (mg); of,), wheremy, is not in query history. This breaks the LRSW assumption.

]
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4.4.3 Blindness

In this subsection, we show the blindness of our scheme. Before going to the proof of the blindness of
our scheme, we first build a useful lemma which guarantee that the signer will use the correct ciphertext
(0, T,V,W) and his secret key, y) to generatéa’, b’, 7", V', W') based on the three-move proof.

Lemma 4.4. In the blind signature generation protocol, under the DLOG assumption, a PPT adversary can
generate a valid proof with the user such that

log, Y # log, b mod p
or
log, X +log, X -log, Y -log, (decLE(T, V,W)) # log, (decLE(T’, V', W")) mod p
only with probability2=>2.
Proof. Based on the verification equatiefa’,Y) = e(?,y) it is very easy to prove the first part of the
lemma. Next we focus on the second part. Now we heve- ¢¥, X = ¢*, i/ = (a')Y. Definem =
logy (dec™(T,V,W)), and we havd” = t*, V = !, W = §™w"**! for somek, [ € Z, by using the same

argument in the proof dfemma 4.2 Note thatG is also order prime. There exisf, E’, ?, k., U',nez,
such that,

Ly = e(T,b)%(t,d EA (15)
Ly = e(V,V)%e(v,a)! R (16)
Ly = (G(W, b/)e( ’ a/))x e(w) a,)ﬁ (17)
e(T",0) = e(T,0)%e(t,a’)* (18)
e(V',0) = e(V,V)%e(v,a')! (19)
e(W’,0) = (e(W,b)e(0,a)" e(w, a’)" (20)

Assume there is a PPT can generate valid proof suchdgja +log, X -log, Y -logy (dec™” (T, V,W)) #
logy (dectE(T', V', W’)) mod p; the verification equations are

Lt = e(T,b)%e(t,a' ) e(T",0)% (21)

Ly = e(V,0)%e(v,a’)*e(V', 0)% (22)

Ly = (e(W,V)e(8,a")** e(w,a’)s+5ve(W', §)% (23)
From equations (15,16,18,19,21,22), we can obtain

Se =T + dox mod p (24)

sp =K +dok’ mod p (25)

sp =1+ dyl’ mod p (26)
From equations (17, 20, 23, 24), we can obtain

Spr + sy =N+ dom mod p 27)
From equations (25-27), we can obtain

K47 —7=—do(K +1'—n) mod p (28)

Note that(a’, V', T", V’ W' Ly, Ly, Ly ) is bound by commitment’s which is sent before the challenge
dy; and (K, 1, n, k:’ I A> is determined before receiving, from the user. So, except probabiliy *2,
the signer cannot get; before receiving it from the user. Now the equatipn= k" + 1’ mod p holds;
otherwise the signer can compute suth= —(k' + 1" — 7)/(k" + " — n) before he receives the value.
Put the equatiom = &’ + I’ mod p into equation (28), we can also gét= %’ + I’ mod p. Assume
a = 0 and recall that/ = (a’)¥, we can obtairil” = T*¥~'¢tk'e’ from equation (18); similarly we
can obtainy’ = V@#ve'yl'e” and W' = W' gre’yk o'+’ Defined = dectP(T’,V',W’'). Then
d = % = gletaymla’ = (g/)rFoym - And log, (dec™P(T, V', W')) = log, ¢ = x + aym =
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log, X + log, X -log, Y - logy (dec™(T,V,W)) mod p which contradicts the assumption. So, based
on a secure commitment scheme, except the probability, no PPT adversary can develop a valid proof
such thalog, X + log, X -log, Y - log, (dectB(T,V,W)) # log, (dec®(T",V',W’)) mod p. This
completes the proof.

O

Theorem 4.5 (Blindness).The proposed scheme is blind under the DLDH assumption and the DCR as-
sumption.

We start from the blindness model, and define it as Game 0; we slightly change Game 0 by simulating the
left user instantiation by Dandgd’s trick in Game 1; and then we slightly change Game 1 again and do
the similar simulation for the right user instantiation in Game 2. The statistical distance of the probability
distribution of Game 0 and Game 1, and of Game 1 and Game 2 are negligible. Now we slightly change
Game 2 into Game 3 when two user instantiations verify the verification equations successfully: instead of
generatingr based or{a’, v/, 7", V', W’) in Game 2, generateby using the signing keyz, y) onm. Based
onLemma 4.4we show the statistical distance between Game 2 and Game 3 is negligible. Next we slightly
change Game 3 by simulating the left user instantiation with inputting a random message (not one of the
messages selected by the adversary) to the Paillier encryption in Game 4; then do the similar simulation for
the right user instantiation in Game 5. Both distances between Game 3 and Game 4, and Game 4 and Game 5
are negligible under the DCR assumption. Similarly, we slightly change Game 5 into Game 6 by simulating
the left user instantiation with inputting a random message to the linear encryption; then change Game 6 into
Game 7 by similar way for the right user instantiation. Again the distances between Game 5 and Game 6,
and Game 6 and Game 7 are negligible under the DLDH assumption. Therefore, the probability distribution
in Game 0 is indistinguishable from that in Game 7. Consider in Game 7, the two meg&sages; ) have

never been involved in the communications between the user instantiations and the adversary signer, which
means the adversary has no advantage to win the game (with just probélh)dityredictqb). So, in Game

0, the adversary has at most negligible advantage to win the game under the assumptions.

Proof. We use the sequential games technique to prove this part, and define@ﬁbﬂween the adversary
A and the oracl@j’ which simulates two user instantiation: the left die and the right on&J?, where
j=0,1,...,7. Also we defineE; to be the event that = ¢’ in G*.

Game 0O:
Follow the blindness model, we can define Game 0 as below:

Gp'(1%)

1. ¢ < {0,1};

2. (pub,crs, PKs, SKs) « gen(1?);

3. ¢~ AIg(lk’p“b’Crs’PKS)(l’\,pub, crs, PKs, SKs);
4. if ¢ = ¢’ thenl,

HereZ{ is defined as:

- Given (challenge, mo, m1), the oracleZ] simulatesU” (resp. UR) with m,, (resp. m;_,). The
oracleZ; keeps a database with the state of each user instantiation; the state includes all coin tosses
of the user instantiation and the contents of all tapes including the communication tape. Here the
oracle usest! (resp.st®) to record the state di” (resp.U%).

- Given(advance, p, msg), wherep € {L, R}:
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— If msg = L, thenIgj recovers the state af?, and simulates the user instantiatiof till U”
either terminates or returns a response to the signef. iéturns a responsep, thenIg’ returns
rsp to A. The oracle will record the current statg i.e. st” = st”||st. Letm be the simulated
message fou?, i.e.m = my for p = L andm = m,_, for p = R, we have,

(@) (PK{,SK{)) «— gen™¥(1*)
(b) m & &[0, 280t Mt AL B, & ZE, o,k L kLS 7y, 0 G\{1}, 11 < Zg.

(C) Em < ench (m, Ay,)

~

(d) <T7 VYa W> — enC££7PK6 (ma 07 7{\’ )

(&) Ev < encl% (i, Bn)

(f) <Ta Va W> — enCﬁlfb,PKS (7/7\1, 07 k? )

9) w1 = H(Ep, T,V, W), Cy = gth
(h) rsp = {PKU7 EM7 <07 T7 V7 W>7 Cl}

— If msg = {di1,Ca}, thenIg’ recovers the state of”, and simulates the user instantiatiof
with msg till U? either terminates or returns a respongeto the signer. 11U returns a response
rsp, thenIg returnsrsp to .A. The oracle will record the current statg i.e. st” = st?||st.
Herersp is in the form of{da, (s, sk, 51, Fin)s (Em, T, V., W, 1)}, where(E,,, T, V., W, 1)
is recovereAd from the previous stAatam‘, and(s.,, sk, si, Fi,) is generated as;,, = m—d;-m
iNZ,spy =k—dy-kmodp,s; =1 —dj -1 mod p, F, = By (Ap) ™% mod n, dy < {0,1}72.

- Given (terminate, msg”, msg™), the oracleZ recovers the state” (resp.st?), and simulates the
user instantiatiold” (resp. UR) with msg” (resp. msg™) till U (resp. UT?) either terminates or
returns an output, wheresg? is in form of {s,, sg/, sy;a', 0, T, V', W' Ly, Ly, Lw, u2)}. Each
U” will verify all equations:

Cy = g“2h#*2? wherewy = H(a’, o, 7" V!,W', L, Ly, Lw),

e(d,Y)=re(V,g),

Ly = e(T, b))% e(t,a')* e(T", 0)%,

Ly = e(V,V)%=e(v,a’)"e(V’, 0)%,

Ly = (e(W,¥)e(,a")* e(w,a’)*+sve(W', 0)%
If the two user instantiations verify the verification equations successfully, each of them generates
o= (a,b,c)bya = () b= (V) c= (W /(TOV*%)). Letthe generated signatures from the
two user instantiations bey, o; for messagen, m; respectively. The oracle setp = (og,01).
Otherwise setsp = (L, L). The oracle returnssp to .A.

Game 1:
We modify Gg! into G{* by changing step 2 into:

2. (pub, crsy, PKs, SKs) « gen(1*); generatesrs; = (Q, g, h, G, H) andr; = r for the equivocal
Pedersen commitment scheme;set = (crs, crss).

and changingg5 into If). Note that[f) is same aig except that
- Given(advance, p, msg), wherep € {L, R}. If p = R, If’ operates identically as‘f; butifp =L,

If works as follows:
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—If msg = L, thean recovers the state af”, and simulates the user instantiatidf till UZ
either terminates or returns a response to the signef: teturns a responsep, thenIfs returns
rsp to A. The oracle will record the current state i.e. st” = st%||st. Letm = m,, we have,
(a) (PK&,SK&) — genF (1)

(b) A & Z%, okl & Zp, 6 < G\{1}.
(c) B — encfrasi2 (m, Ap,)

(d) <T7 ‘/a W> — encﬁlﬁ;’p[(& (ma ‘9’ k) l)

(e) 11 & Zg, G = gn

(f) rsp={PK},En, (0,T,V,W),C1}

— If msg = {di1,Ca}, thenIi’5 recovers the state ot”, and simulates the user instantiatidh
with msg till U% either terminates or returns a respongeto the signer. U returns a response
TSP, thenIf’ returnsrsp to A. The oracle will record the current state i.e. st = st||st.

(@) sp & £[0, 20T A e] B ST sy s & Ly

(b) Em = gSm(Fm)n(Em)d mod n2

(c) W = gsmpsetsiyyd T = gsepdi | = psiyds

(d) user; = r to computey; such thatC; = g“h* wherew, = H(E,.,T,V,W), i.e.
p = 252 mod Q

(e) rsp = {an <Sm7 Sk Sl Fm)? <Em,j—‘\a ‘75 W,Ml)}

Game 2:
We modify G into G£ by changingZ{ into ZJ. Note thatZ{ is same ag? except that :

- Given (advance, p, msg), wherep € {L, R}. If p = L, Z{ operates identically &&’; but if p = R,
Ig) operates similarly as the cage= L with m = m;_g4, i.e. runs the same operations for the right
user instantiatiot .

Game 3:
We modify G3' into G4 by changinglf into If. Note thatng is same agf except that

- Given(terminate, msg”, msg™), the oracleZ{ recovers the statet’ (resp.st%), and simulates the
user instantiatiold” (resp. U®) with msg” (resp. msg®) till U (resp. UF) either terminates or
returns an output.

If the two user instantiations verify the verification equations successfully, now the oracle generates
two signatures, o for mg, m; by using the signing keyr = (a, a?, a®+*¥™) wherea < G. The
oracle setrsp = (0¢, 01). Otherwise setsp = (L, L). The oracle returnssp to .A.

Game 4.
We modify G3' into G;' by changinglgf’ into Z{'. Note thatZ{ is same aig’ except that

- Given (challenge, mg, m1), the oracIerf randomly selectsng, m; from the message space and
simulatesU” (resp.U®) with m or mg (resp.mq_g Or my).

- Given (advance, p, msg), wherep € {L, R}. If p = R, I operates identically &&; but if p = L,
7 works as follows:
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—If msg = L, theanf recovers the state af”, and simulates the user instantiatidf till UZ
either terminates or returns a response to the signef: teturns a responsep, theanf returns
rsp to A. The oracle will record the current state i.e. st = stZ||st. Letmn = g, m = my,
we have,

@) (PK&,SK&) «— genF (1%)

(b) A, & Z%, okl & 7y, 0 & G\{1}.
(€) Em « encl%, (m, Ap)

(d) <T7 ‘/7 W> = enc§£7pK6 (ma 07 k? l)

(€) m & Zg, CL =g
(f) rsp = {PK[[J/a Eﬁ’m <97 T? Va W>7 Cl}
— If msg = {di1,Ca}, theanf recovers the state ot”, and simulates the user instantiatidh

with msg till U% either terminates or returns a respongeto the signer. IU returns a response
TSP, theanf’ returnsrsp to A. The oracle will record the current state i.e. st = st!||st.

(@) s & [0, 200 M) B B 7 sy s - 7,

(b) Eg = g* (Fn)"(Ez)™ mod n?

(©) W = gsmuwsststWwds T = sk | = ps1yh

(d) user; = r to computey; such thatC; = g“h* wherew, = H(Ex,T,V,W), i.e.
p1 = 2= mod Q

(€) rsp = {da, (Sm, Sk, S1, Fin), (Em, f, 17, /V[7,,u,1)}

Game 5:
We modify G£! into GA by changingZy into I?. Note thatzg’ is same ag{ except that

- Given(advance, p, msg), wherep € {L,R}. If p = L, Ig’ operates identically as?; but if p =R,
Igf operates similarly as the cage= L with m = my, m = m_g4, i.e. runs the same operations for
the right user instantiatiold .

Game 6:
We modify G2 into Gg' by changinglgf into zgf. Note thatzg’ is same agg’ except that

- Given(advance, p, msg), wherep € {L, R}. If p = R, Igf’ operates identically aggﬁ; butif p = L,
72 works as follows:

— If msg = L, thenZ{ recovers the state of*, and simulates the user instantiatiof till U”
either terminates or returns a response to the signgf: teturns a responsep, thenI(‘f returns
rsp to A. The oracle will record the current statg i.e. st = st”||st. Letm = my, we have,

(@) (PK{, SK{j) «— gen""(1%)
(b) A, & Z%, okl & Z,, 0 & G\{1}.

(C) E’Ffb — encfrasig (TAfL,Am)

) (T, V,W) « enc;ﬂ’PK& (m,8,k,1)
(€) 11 & Zg, CL =gn

(f) rsp = {PK{, E7,(0,T,V,W),C1}
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— If msg = {d1,Cs}, thenIg’ recovers the state af:~, and simulates the user instantiatioh
with msg till U% either terminates or returns a respongeto the signer. I returns a response
TSP, thenI(‘f returnsrsp to A. The oracle will record the current statg i.e. st = st||st.

(@) s & [0, 200 M) B B 7 sy s - T,
(b) B =g (Fn)"(Em)" mod n?
(©) W = 0smus iy T — sy 17 — pi {7

(d) user; = r to computeu; such thatC; = g“th# wherew; = H(Em,f, v, W), ie.
/-’Ll = 771;0.)1 mOd Q

() rsp = {da, (Sm; 5k, 81, Fm), (B, T, V, W, 1)}

Game 7:
We modifng‘ into G“;‘ by changinglg into If. Note thatZ$ is same aggf except that

- Given (advance, p, msg), wherep € {L, R}. If p = L, Z? operates identically &&; but if p = R,
I$ operates similarly as the cage= L with m = m, i.e. runs the same operations for the right user
instantiationU”?.

Compute the Statistical Distance:

We prove in Game 0 and Game |Br[Ey| — Pr[E,]| is negligible. Observe that, for the probability dis-
tributions of the right user instantiatiofid’?]o, [U¥]; are identical. We still need to show for the left user
instantiationgU*]o, [U%];, the statistical distance of the probability distributions is negligible. First, we
prove the statistical distance pf,,]o and[s,,]; are negligible. Observe that in both gamesec [0, 2"7],

m € 4[0,2%+M+%] d; & {0,1}*. We can obtain that the statistical distance of the random variables
[$m]o = M — di -m and[s,,]; < £[0, 20T 1] is less thak~*~1. Then we can observe thid,, ], and
[Fn]1, [sk]o and[sk]1, [si]o @and[s;]; are identically distributed. So the statistical distancegf s, s;, Fino
and[s,, si, 51, Fm]1 18272071, From the equivocal property of the Pedersen commitment scheme, we know
the distribution of{ E,,, T, V, W, 1 } in Game 1 is identical to that in Game 0. So the statistical distance
of the two games i8 %1, i.e. | Pr[Eo] — Pr[E;]| < 27—, Use the similar argument, we can show in
Game 1 and Game 2Pr[E;] — Pr[Ey]| < 271,

Now we prove in Game 2 and Game 3, under the DLOG assumpftidfills] — Pr[Es]| is negligible.
From Lemma 4.4 in Game 2, if the user instantiation can verify the verification equations successfully,
then the generated signaturesis= (a,b = a¥,c = a*+t™*Y) except probability2=*2. And in Game 3,
sighaturer is generated as above without any error probability. Consider there are two user instantiations.
So,| Pr[Eg] — Pr[Eg]| < 272+,

We prove in Game 3 and Game 4, under the DCR assumpfiafits] — Pr[E4]| is negligible. Observe
that, the probability distributions of the right user instantiatidng|s, [U%]; are identical. For the left
user instantiation§U”|s, [U%]4, under the DCR assumptiof¥,,]; and[E5]4 are indistinguishable. So,
| Pr[Es] — Pr[E4]| < Advpcgr. By the similar argument, we can obtaiRr[E4] — Pr[Es]| < Advpcrg.

Next we prove in Game 5 and Game 6, under the DLDH assumptitiiEs| — Pr[Eg]| is negligible.
Observe that, for the probability distributions of the right user instantiafidfi, [U%]s are identical, and
for the left user instantiationd)~]5, [U%]s, under the DLDH assumptiofi]’, V, W5 and [T, V, W] are
indistinguishable. Sq,Pr[Es] — Pr[Eg]| < Advp.pn. By the similar argument, we can gebr[Eg] —
Pr[E~]| < AdvpLpH-
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In Game 7 is not used, so the adversadyhas only probability% to win the game, i.ePr[E7] = 3
Based on the argument above, we can get

[Pr[Eo] — 5| = [Pr[Eo] - PF[E7H—|ZPF[ j] — Pr[E g+1]I<Z|Pr[ il = Pr(Ej]|

S D S VR B )\2+1 + Advpcr + AdvDCR + AdvpipH + AdvpLpH
=272 4 972 Fl 4 9Advpcr + 2AdVpLpH

which is negligible. This completes the proof of blindness.
O

Remark 4.6. Both unforgeability and blindness depend on the DLOG assumption as wélhelorem 4.3
andTheorem 4.5we do not include the DLOG assumption, because the DLOG assumption can be implied
from the LRSW assumption or the DLDH assumption. Note that in our scheme, the size of elliptic curve
groupsG andG is same.

5 Extensions and Variants

Stronger Blindness Property. The formal model ofSection 3can be strengthened with respect to the
blindness property by allowing to the malicious signer to select the public/secret-kdyiggitS Ks instead

of selecting these values honestly aslin@97. Itis simple to modifyDefinition 3.2to include such stronger
adversaries; this strengthening of tde©97 model has been observed recently@kp0g ANNO6] as well.

Our scheme can be easily modified to achieve such stronger blindness as follows: we have the signer make
an extractable commitment on the signing K&§s = (x, y) (using the same public-parameters employed

for the users’ extractable commitment) and prove that such commitment is consistent with the computation
of the encryption). In the blindness proof, the oraclé€ can extract the signing key and the security proof
remains essentially unchanged; note though that unforgeability as argliedanem 4.3will also rely on

the DCR assumption.

Public-Tagging and Partial Blindness. We construct an extension of our blind signature that allows the
“public-tagging” of a message that is blindly signed. Public-tagging of blindly signed messages gives rise to
what is called a partially blind signatur&if96]: the signer knows a portion of the message that he is about to
sign. Public-tagging is useful as it allows the signer to keep the same public-key and issue blind signatures
for different purposes (e.g., a bank may issue e-coins that are publicly-tagged blind signatures, and the
tagging will correspond to the denomination, i.e., there will be a different tag for each coin denomination).
It should be stressed that in a blind signature with public tagging the blindness property is only enforced
within blind signatures with the same public-tag. The unforgeability property on the other hand remains
identical. We develop a public-tagging mechanism for our basic scheme. The key idea is the following: we
replace the underlying digital signature &L{04] with the two message-block extended version (Scheme
C for two messages irC[L04]). In the modified blind signature the messages will be of the formtag).
The public informatiortag is included intopub. Heretag € [0,2"7]. Note that the exact choice for the
value oftag is negotiated by the signer and the user outside of the signing protocol.

In the modified signature that we use, the public and secret-key of the signer are modified and the values
PKs = (X,Y) andSKs = (z,y) they are substituted witt Ks = (X,Y, Z), SKs = (z,y, z), where
X =¢%Y = ¢g¥, Z = g*. Signing a messagen, tag) corresponds to the following operation: select a
randoma € G and output the signatuke = (a, a?, a?, a¥?, a®T*¥ym*ey=tae) - The modified signature has
the following verification process: Given a message-signature(paitag; o), whereo = (a, A, b, B, ¢) ,
we can verify it by the verification equationsta, Z) = e(g, A); e(a,Y) = e(g,b) ande(A,Y) = e(g, B)
ande(X,a)e(X,b)"e(X, B)*8 = e(g, c).
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The detailed partially signing protocol is similar to our basic signing protocol (i.e., it retains the four-
move structure with short communication) and is shown in detdfigure 3 We can obtain the security
theorem below:

Theorem 5.1. Under the LRSW assumption the proposed partially blind signature scheme is unforgeable
even if the public-tag is adversarially selected for each signature; Under the DLDH assumption and the
DCR assumption, the proposed scheme is blind for signatures with the same public-tag.

To prove the unforgeability property in the theorem above, we can use the similar proof itleadn
rem 4.3 Consider that the scheme above is based on Camenisch-Lysyanskaya two message-block signature
[CLO4], we reduce the unfogerability to the security of the Camenisch-Lysyanskaya two message-block
signature which is also based on the LRSW assumption. Consiglés fixed across protocol executions,
we can also use the similar proof idealiheorem 4.530 show the blindness of the above scheme is based
on the DLDH and the DCR assumptions.
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crs = <Qagaha GaHv nag>; PUb = <p7gaGa GTve;tag>; PKS - <X3KZ>

MSG = (m), m € [0,2"7]

SKS = <$,y, Z>

(PKy,SKy) < gen™#(1%)

PKy = {(t,v,w), SKy = (4,§)

m < £[0, 200t A A B, 7
ak Lk EZ,,0 & G\{l}, 1 & Zo
E,, =g™(A,;,)" mod n?

E‘m = g™ (B,,)" mod n?
T =1tk V=0l W = gmukt!
T =1k, V = o, W = g+
PPN PKyY,Em (0,T,V,W),C1
wi =H(Ep,T,V, ) C; = g“th#*
dy,C2

dy & {0,132, 5,y = —dym (N 7Z)
sp =k —dik, s =1 —dyl

d2,($m 81,50, Fm ) (B , TV, W 1)

F,, = By (A,,) "% mod n

(S2,857,81)

(a’,A"b B T" V' W' ,Lr,Ly,Lw j2)
wy =H(a, A0, B, T, V!, W,

Ly, Ly, Lw)
Co =" g¥2h#2, e(a’, Z) =" e(A', g)
e(d,Y) = e(t,9), e(A,Y) =" e(B', )
Ly =" e(T, V)%= e(t,a’)* e(T",0)"
Ly =" e(V,V/)%ve(v,a' ) e(V', )%
Ly =" (e(W,V')e(8, o’ (B')€))*

e(w, a)gk"”l/ (W, 9)a
a=(a')*,b=(b)" c_(#v’,g)
A= ()0, B = (B)

= {(a,A,b,B,c)

dy & {0,1}M
o KT KT E Ty, o & Zg
o =07, A= 0" 1 = 6v', B = g
A U VR Ve TN
W' = Weye' gz’ +ayza' tagy k' o/ +1'a’
Lt = e(T,V)%e(t,a')¥
Ly = e(V,b)%e(v, a')?
Ly = (e(W,¥)e(,d'(B')2€))" -

e(w, a’)ElJr?
we = H(a', A"V, B, T V' W',

Ly, Ly, Lw)

02 — ng h*2

Ey € L%y, s €7 £[0, 200 At

wi = H(Em, T, ?,/V[?), C, =" g¥rth™
E,, =" gSm(F )" (B, )® mod n?

T\ 7 s‘del, V 7 st le

/W _7 gsmwsk+slwd1

Sy = T — dox,

Sk = ]{/3\/ — dgk,, S = ﬁ — dgl/

output(m, tag; o)

Figure 3: Partially blind signature generation protocol.

22



References

[Abe01]

[AF96]

[ANNO6]

[AO00]

[AO01]

[BBS04]

[BNPSO01]

[CDP94]

[Cha82]

[CKWO04]

[CLO4]

[CLOS02]

Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures.
In Birgit Pfitzmann, editorEUROCRYPT 20Q1lvolume 2045 ofLecture Notes in Computer
Sciencepages 136-151. Springer, 2001.

Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In Kwangjo Kim and
Tsutomu Matsumoto, editor&SIACRYPT 1996/0lume 1163 of_ecture Notes in Computer
Sciencepages 244-251. Springer, 1996.

Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On the (im)possibility of blind
message authentication codes. In David Pointcheval, e@GBiRSA 2006volume 3860 of
Lecture Notes in Computer Scienpgages 262—-279. Springer, 2006.

Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir
Bellare, editor,CRYPTO 2000volume 1880 ofLecture Notes in Computer Scienqeges
271-286. Springer, 2000.

Masayuki Abe and Miyako Ohkubo. Provably secure fair blind signatures with tight revocation.
In Colin Boyd, editorASIACRYPT 20Qolume 2248 ot ecture Notes in Computer Science
pages 583-602. Springer, 2001.

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew K.
Franklin, editor, CRYPTO 2004volume 3152 ofLecture Notes in Computer Sciengages
41-55. Springer, 2004.

Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The power
of RSA inversion oracles and the security of Chaum’s RSA-based blind signature scheme. In
Paul F. Syverson, editdfinancial Cryptography 200lvolume 2339 of_ecture Notes in Com-
puter Sciencgpages 319—-338. Springer, 2001.

Lidong Chen, lvan Damiyd, and Torben P. Pedersen. Parallel divertibility of proofs of knowl-
edge (extended abstract). In Alfredo De Santis, edE/ROCRYPT 1994volume 950 of
Lecture Notes in Computer Scienpgages 140-155. Springer, 1994.

David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editor€RYPTO 1982pages 199-203. Plemum Press, 1982.

Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind signatures without
random oracles. In Carlo Blundo and Stelvio Cimato, edit®SN 2004 volume 3352 of
Lecture Notes in Computer Scienpgages 134-148. Springer, 2004.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew K. Franklin, editdRYPTO 2004volume 3152 ol_ecture Notes
in Computer Scien¢gages 56—72. Springer, 2004.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. 3mMOC 2002pages 494-503, 2002. Full version
athttp://www.cs.biu.ac.il/ ~lindell/PAPERS/uc-comp.ps

23


http://www.cs.biu.ac.il/~lindell/PAPERS/uc-comp.ps

[Dam88]

[Dam0o0]

[FO092]

[GMW87]

[JLO97]

[Kim04]

[Lin03]

lvan Damg@rd. Payment systems and credential mechanisms with provable security against
abuse by individuals. In Shafi Goldwasser, edi@RYPTO 1988volume 403 ol ecture Notes
in Computer Scienggages 328—-335. Springer, 1988.

Ilvan Damgard. Efficient concurrent zero-knowledge in the auxiliary string mode EWRO-
CRYPT 2000volume 1807 ofLecture Notes in Computer Sciengages 418—-430. Springer,
2000.

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large
scale elections. In Jennifer Seberry and Yuliang Zheng, edASHCRYPT 19920lume 718
of Lecture Notes in Computer Scienpages 244-251. Springer, 1992.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majorityPloceedings of the Nineteenth Annual
ACM Symposium on Theory of Computipgges 218-229, New York City, 1987.

Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended
abstract). In Burton S. Kaliski Jr., editaGRYPTO 1997volume 1294 ofLecture Notes in
Computer Scienggages 150-164. Springer, 1997.

Kwangjo Kim. Lessons from Internet voting during 2002 FIFA WorldCup Korea/Japan(TM).
In DIMACS Workshop on Electronic Voting — Theory and Pract&®04.

Yehuda Lindell. Bounded-concurrent secure two-party computation without setup assumptions.
In STOC 2003pages 683—692. ACM, 2003. Full versiorhétp://www.cs.biu.ac.il/
~lindell/lPAPERS/conc2party-upper.ps

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In

[Oka92]

[Oka06]

[0089]

[Pai9g]

[Ped91]

Howard M. Heys and Carlisle M. Adams, editoBglected Areas in Cryptography 1998lume
1758 ofLecture Notes in Computer Scienpages 184-199. Springer, 1999.

Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In Ernest F. Brickell, edi@RYPTO 1992volume 740 ofLecture Notes
in Computer Scienggages 31-53. Springer, 1992.

Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In Shai
Halevi and Tal Rabin, editor§,CC 2006 volume 3876 of_ecture Notes in Computer Science
pages 80—-99. Springer, 2006. An extended versibitt@at/eprint.iacr.org/2006/

102/ .

Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge interactive proofs and commu-
tative random self-reducibility. In Jean-Jacques Quisquater and Joos Vandewalle, &dlitors,
ROCRYPT 198%0lume 434 of_ecture Notes in Computer Scienpages 134-148. Springer,
1989.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editUROCRYPT 199%olume 1592 ot ecture Notes in Computer Science
pages 223-238. Springer, 1999.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, edit@RYPTO 1991volume 576 of_ecture Notes in Computer Science
pages 129-140. Springer, 1991.

24


http://www.cs.biu.ac.il/~lindell/PAPERS/conc2party-upper.ps
http://www.cs.biu.ac.il/~lindell/PAPERS/conc2party-upper.ps
http://eprint.iacr.org/2006/102/
http://eprint.iacr.org/2006/102/

[P0i98]

[PS96]

[PS97]

[PWO1]

[Yao86]

David Pointcheval. Strengthened security for blind signatures. In Kaisa Nyberg, Edite6)-
CRYPT 1998volume 1403 ofecture Notes in Computer Sciengages 391-405. Springer,
1998.

David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Kwangjo
Kim and Tsutomu Matsumoto, editorBSIACRYPT 1996volume 1163 ofLecture Notes in
Computer Scien¢ages 252—-265. Springer, 1996.

David Pointcheval and Jacques Stern. New blind signatures equivalent to factorization (ex-
tended abstract). IACM Conference on Computer and Communications Secpates 92—-99,
1997.

Birgit Pfitzmann and Michael Waidner. How to break and repair a “provably secure” untraceable
payment system. In Joan Feigenbaum, ed@&tYPTO 1991volume 576 ofLecture Notes in
Computer Scienggpages 338—350. Springer, 1991.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstra2?th In
Annual Symposium on Foundations of Computer Sciepages 162—167, Toronto, Ontario,
Canada, 1986. IEEE.

25



	Introduction
	Preliminaries
	Formal Model for Blind Signatures
	Blind Signature Scheme
	Blindness and Unforgeability

	The Proposed Scheme
	Setup and Generation of Keys
	Signing Protocol
	Signature Verification
	Correctness and Security
	Correctness
	Unforgeability
	Blindness


	Extensions and Variants

